
Dynamic Structure Multiparadigm Modeling
and Simulation

FERNANDO J. BARROS
Universidade de Coimbra

This article presents the Heterogeneous Flow System Specification (HFSS), a formalism aimed to
represent hierarchical and modular hybrid flow systems with dynamic structure. The concept of
hybrid flow systems provides a generalization of the conventional concept of hybrid system and it
can represent a whole plethora of systems, namely: discrete event systems, multicomponent and
multirate numerical methods, multirate and multicomponent sampling systems, event locators
and time-varying systems. The ability to join all these types of models makes HFSS an excellent
framework for merging components built in different paradigms. We present several examples of
model definition in the HFSS formalism and we also exploit the ability of the HFSS formalism to
represent mutirate numerical integrators.

Categories and Subject Descriptors: I.6.1 [Simulation and Modeling]: Simulation Theory—
systems theory

General Terms: Design, Experimentation, Performance

Additional Key Words and Phrases: Dynamic Structure systems, hybrid systems, multirate sam-
pling, variable step integration

1. INTRODUCTION

Hybrid systems are commonly defined as systems exhibiting both continuous
and discrete behavior. While discontinuities are represented by discrete event
systems, the continuous behavior is usually described by differential equations.
There has been an intense research in these types of systems, and examples can
be found in Alur et al. [2001], Antsaklis [2000], Barros [2002a], and Branicky
and Mattson [1997].

Although differential equations are widely used for representing continu-
ous systems, they are not exclusive; for example, control and signal areas use a
representation based on sampling. Besides the traditional approaches based on
single-rate sampling, there has been research on multirate systems. Numerical

This work was partially funded by the Portuguese Science and Technology foundation under Project
PRAXIS/EEI/14152/98.
Author’s address: Departamento de Engenharia Informática, Universidade de Coimbra, Pólo II,
PT-3030 Coimbra, Portugal; email: barros@dei.uc.pt.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2003 ACM 1049-3301/03/0700-0259 $5.00

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 3, July 2003, Pages 259–275.

260 • Fernando J. Barros

methods for solving differential equations also rely on sampling, and multi-
rate integration has been subject of research [Engstler and Lubich 1997; Howe
1998].

To achieve an unified representation of all these types of systems, we have
developed the Heterogeneous Flow System Specification (HFSS) [Barros 2002a].
This formalism relies on time-varying and multicomponent sampling for provid-
ing a common representation of all kinds of continuous systems in digital com-
puters. Multirate numerical methods for solving differential equations can also
be represented in the HFSS formalism. This formalism also provides support
for discrete event systems and event detection. The HFSS formalism provides,
thus, a unified framework for representing digital control, signal processing,
numerical integration and hybrid systems. Because all these types of systems
share the same underlying representation, they can be arbitrarily connected to
build complex models.

In addition, the HFSS formalism offers the ability to represent systems with
a time-varying structure. Examples of these types of systems include mobile
agent systems [Barros 2001] and switching systems [Barros 2003].

To simplify the specification of systems of Ordinary Differential Equations
(ODEs), we present the Differential Equation Discrete Flow System Specifica-
tion (DEDF) formalism, which is aimed to directly represent hybrid systems
described by ODEs and discontinuities. This formalism can encode multirate
integration methods.

Traditional modeling formalisms for continuous or hybrid systems are based
on ideal representation of continuous signals. These modeling approaches are
based on analogue or hybrid state machines that have a counterpart in analogue
and hybrid computers. Examples include modeling formalisms for differential
equations [Zeigler 1976] and for hybrid systems [Praehofer 1991]. These mod-
eling approaches, while being powerful abstractions for describing systems, do
not provide the necessary constructs to represent continuous systems in digi-
tal computers. Or, in other terms, we can say that these approaches are pure
modeling formalisms in opposition to modeling and simulation formalisms. A
different situation occurs in the discrete event field where modeling and simula-
tion formalisms, like the DEVS formalism [Zeigler 1976], were earlier created,
providing not only modeling constructs but also their representation in digital
computers. The simulation relationship was formalized in the realm of discrete
event systems by the concept of abstract simulator [Zeigler 1984], a construct
to extract model dynamic behavior.

Recently, there has been a growing interest in developing modeling and sim-
ulation formalisms to represent hybrid systems in digital computers [Barros
2002a; Zeigler and Lee 1998]. These formalisms permit to discuss the efficiency
of the numerical simulators that represent continuous variables, and also, and
perhaps more importantly, they enable model interoperability. This last char-
acteristic cannot be discussed in the realm of pure modeling formalisms. The
realization of pure modeling formalisms is made in an ad hoc basis. This ca-
suistic implementation renders impossible to achieve model interoperability
for there is no universal underlying discrete state machine that supports their

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 3, July 2003.

Dynamic Structure Multiparadigm Modeling and Simulation • 261

implementation. This is particularly pertinent when events detectors need to
be used [Praehofer 1991].

While implementation of discrete state machines in digital computers is a
trivial task, the implementation of continuous systems in digital computers has
proven to be a challenging one. Actually, the opposite situation would probably
arise if modern computers were analog. In this case, continuous systems would
have a trivial implementation while discrete event systems would need some
kind of, albeit nontrivial, approximation. This situation has changed with the
creation of the Continuous Flow System Specification (CFSS) [Barros 2002b],
which has established the use of multicomponent and multirate sampling for
representing continuous signals.

The unification of sampled based systems with discrete event systems was
made by the HFSS formalism [Barros 2002a] that has introduced a new
paradigm for simulating hybrid systems in digital computers. Although sam-
pling, especially single-rate sampling, has been extensively used in many fields
like control and signal processing, a unified modeling formalism has not been
created before. The HFSS provides sounds semantics for representing and sim-
ulating discrete and continuous signals on digital computers. For example, it
is possible to describe numerical integrators as part of the formalism and not
as an external construct that needs to be incorporated into a pure modeling
formalism so it can be realizable in a digital computer. HFSS precise semantics
enable the interoperability of hybrid systems in a similar manner existing for
discrete systems.

To illustrate the use of the HFSS, we present examples of hybrid systems with
both static and time-varying structure modeled in the CHAOSTALK environment,
a Smalltalk implementation of the HFSS formalism.

2. HETEROGENEOUS FLOW SYSTEMS

The Heterogeneous Flow System Specification (HFSS) is a formalism intended
to represent piecewise constant partial state systems that accept and produce
both continuous and discrete input flows. The HFSS achieves the represen-
tation of continuous flow systems based on sampling [Barros 2002a]. Discrete
event representation is based on the DEVS formalism [Zeigler 1976]. The HFSS
formalism can be used as a basis for the representation of numerical inte-
gration methods aimed to solve differential equations, as we showed in the
Section 2.3.

2.1 HFSS Basic Model

A Heterogeneous Flow System Specification (HFSS) is defined by

HFSS = (X , Y , S, ρ , τ, q0, δ,3c, λ),

where
X = X c × X d is the set of input flow values

X c is the set of continuous input flow values
X d is the set of discrete input flow values

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 3, July 2003.

262 • Fernando J. Barros

Y = Yc × Yd is the set of output flow values
Yc is the set of continuous output flow values
Yd is the set of discrete output flow values

S is the set of partial states (p-states)
ρ: S→ R+0 is the time to input function
τ : S→ R+0 is the time to output function
Q = {(s, e)|s ∈ S, 0 ≤ e ≤ ν(s)} is the state set and

ν(s) = min {ρ(s), τ (s)} is the time to transition function
q0 = (s0, e0)| ∈ Q , is the initial state
δ : Q × (X c × X φ

d)→ S is the transition function
where

X φ
d = X d ∪ {φ} and

φ represents the absence of value
3c : Q → Yc is the continuous output function
λ : S→ Y φ

d is the partial discrete output function
The discrete output function, 3d : Q → Y φ

d , is defined by

3d (s, e) =
{
λ(s) if e = τ (s)
φ otherwise

The output function, 3:Q → Yc × Y φ
d , is defined by

3(q) = (3c(q),3d (q))

Figure 1 represents typical trajectories of a HFSS component. At time t0, the
component is in state (s0,e0) when it receives a discrete input xd0 .

It changes then to the p-state s1 = δ(s0, e0, (xc0 , xd0)). During the interval
ρ(s1), no discrete input arrives and, at time t1 = t0 + ρ(s1), the system changes
to p-state s2 = δ(s1, ρ(s1), (xc1 , φ)), where xc1 is the value of the continuous
flow at time t1. At p-state s2, the time to input function is equal to the time-
to-output function and the time-to-transition is scheduled to time t2 = t1+ν(s2).
During this interval, there is no discrete flow, but the discrete value xd2 arrives
at the end of the interval. The component changes at time t2 to p-state s3 =
δ(s2, ν(s2), (xc2 , xd2)). The time-to-transition function is now equal to the time-
to-input function. The component is scheduled to change at time t3 = t2+ τ (s3).
The component changes then to p-state s4 = δ(s3, τ (s3), (xc3 , φ)) because there is
no discrete flow. The continuous output is always defined whereas the discrete
output is only nonnull at times t2 and t3, when the elapsed time equals the time
to output function δ.

The HFSS provides a general framework for modeling arbitrary hybrid flow
systems in digital computers that, contrarily to analog computers, can only deal
with a representation based on piecewise constant p-states. The simulation of
HFSS basic models can be made using the abstract simulator described in
Barros [2002c].

Example 1. Triangular Wave Generator. Consider a triangular wave gen-
erator that produces discrete outputs at wave extreme values. The generator is
described by four parameters: maximum value (vMax), minimum value (vMin);

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 3, July 2003.

Dynamic Structure Multiparadigm Modeling and Simulation • 263

Fig. 1. HFSS trajectories.

time to reach the maximum value (tUp) and time to reach the minimum value
(tDown). This generator can be described by

T = (X , Y , S, ρ , τ, q0, δ,3c, λ),

where
X = {} × {}
Y = R×R
S = {(phase, beta, vMin, vMax, tUp, tDown)|

phase ∈ {#down, #up}; vMin, vMax ∈ R;
beta, tUp, tDown ∈ R+} and vMin < vMax

ρ(phase, beta, vMin, vMax, tUp, tDown) = ∞
τ (phase, beta, vMin, vMax, tUp, tDown) = beta
q0 = (#down, down, min, max, up, down), 0)
δ((#down, beta, vMin, vMax, tUp, tDown), e, (φ, φ)) =

(#up, tUp, vMin, vMax, tUp, tDown)

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 3, July 2003.

264 • Fernando J. Barros

Fig. 2. Triangular wave generator trajectories.

δ((#up, beta, vMin, vMax, tUp, tDown), e, (φ, φ)) =
(#down, tDown, vMin, vMax, tUp, tDown)

3c((#down, beta, vMin, vMax, tUp, tDown), e) =
vMax + e(vMin − vMax)/tDown

3c((#up, beta, vMin, vMax, tUp, tDown), e) =
vMin + e(vMax − vMin)/tUp

λ(#down, beta, vMin, vMax, tUp, tDown) = vMin
λ (#up, beta, vMin, vMax, tUp, tDown) = vMax

Figure 2 represents generator output trajectories for the parameters set in
the initial state q0. Generator initial value is max and its initial phase is #down.
During time down, generator continuous output flow decreases from max to
min. At the end of the down time interval, the discrete output of value min is
produced. The component then changes its phase to #up and, during time up,
it produces a linear-increasing output value. At the end of this interval, the
discrete output value max is produced.

The continuous output flow of the generator is the triangular wave and the
discrete output flow corresponds to the extreme values of the wave. Every com-
ponent connected to this generator can sample the triangular wave at their own
sampling rate, for the generator output is continuous, whereas they all receive
the information of wave extremes values conveyed by the generator.

Example 2. Proportional Controller. A first-order proportional controller
with a fixed sampling rate of R seconds can be described by the structure

P = (X , Y , S, ρ , τ, q0, δ,3c, λ),

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 3, July 2003.

Dynamic Structure Multiparadigm Modeling and Simulation • 265

where

X = R× {}
Y = R×R
S = {(phase, r, x1, x0)| phase ∈ {#run, #out}; r ∈ R+; x1, x0 ∈ R}
ρ(phase, r, x1, x0) = r
τ (#out, r, x1, x0) = 0
τ (#run, r, x1, x0) = ∞
q0 = (#run, R, 0, 0), R)
δ((#run, r, x1, x0), e, x) = (#out, r, x0, x)
δ((#out, r, x1, x0), e,−) = (#run, r, x1, x0)
3c((r, x1, x0), e) = x0 + e × (x0 − x1)/r
λ(phase, r, x1, x0) = x0

The controller is a hybrid system that receives continuous input flows and
produces both continuous and discrete output flows. It samples the input at
every time interval specified by variable r, and it keeps the current and the
past input values at variables x0 and x1, respectively. The output is piecewise
linear, and it is computed from the previous two samples. When a new sample
is read, the new control level does generally correspond to the predicted control
level and a discontinuity at the output signal occurs. Thus, the controller sends
a discrete flow to signal the discontinuity. Hybrid integrators connected to the
controller use this signal to perform correct computations over discontinuities.

For simplicity, we have considered that the proportional factor equals to the
unit. We have also simplified controller initial conditions considering current
and past values of the controller to be zero.

From the example, it is evident that changes in the sampling rate can be
trivially achieved by changing variable r within the transition function.

2.2 HFSS Network Model

HFSS networks are an arbitrary composition of HFSS components. Hierarchi-
cal composition is a key to represent complex systems by allowing a represen-
tation based on small components that can be independently developed and
tested [Barros 1998]. Time-varying structure systems are also better repre-
sented by dynamic structure models. In this case, dynamic structure models
offer a more intuitive representation of reality for they are able to mimic the
dynamic creation and destruction of entities, and the dynamic nature of the
relationship existing among entities within a system [Barros 1997]. Formally,
a Heterogeneous Flow System Specification Network is a 4-tuple

HFNN = (X N , YN , η, Mη),

where

N is the network name
X N = XcN × XdN is the set of input flow values
XcN is the set of continuous input flow values
XdN is the set of discrete input flow values

YN = YcN × YdN is the set of output flow values

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 3, July 2003.

266 • Fernando J. Barros

YcN is the set of continuous output flow values
YdN is the set of discrete output flow values

η is the name of the dynamic structure network executive
Mη is the model of the executive η

The model of the executive is a modified HFSS, defined by

Mη = (X η, Yη, Sη, γ ,6∗, ρη, τη, q0,η, δη,3cη, λη),

where

6∗ is the set of network structures
γ.Qη → 6∗ is the structure function

The network structure 6 j ,e ∈ 6∗, corresponding to the state (sj ,η, e) ∈ Qη, is
given by the 4-tuple

6 j ,e = γ (sj ,η, e) = (D j , {Mi, j ,e}, {Ii, j }, {Zi, j ,e}),
where

D j is the set of component names associated with the executive state qj ,η
for all i ∈ D j

Mi, j ,e is the model of component i
Ii, j is the set of components influencers of i
Zi, j ,e is the input function of component i

For simplicity, we assume here that the models and input functions do not
change with executive elapsed time e. Thus, Mi, j ,e = Mi, j , Zi, j ,e = Zi, j , and
γ.Sη → 6∗. An example of a continuous variation of the input function is de-
scribed in Barros [2000].

These variables are subject to the following constraints for every sj ,η ∈ Sη:

η /∈ D j
N /∈ IN, j
Mi, j = (X i, j , Yi, j , Si, ρi, τi, q0,i, δi, j ,3ci, j λi, j) is a basic HFSS model, for all

i ∈ D j , with δi, j : Qi × (X ci, j × X d φ

i, j
)→ Si

Z N , j : ×
k∈IN , j

Yk, j → YN

Zi, j : ×
k∈Ii, j

Vk, j → X i, j , for all i ∈ D j ∪ {η},
where

Vk, j =
{

Yk, j if k 6= N
X N if j = N

The equivalence between HFSS networks and atomic models is established
in Barros [2002a]. The abstract simulator for HFSS networks can be found in
Barros [2002c].

2.3 Differential Equation/Discrete Flow System Specification (DEDF)

The HFSS formalism provides a general framework for representing systems
with both discrete and continuous input/output flows. The formalism provides

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 3, July 2003.

Dynamic Structure Multiparadigm Modeling and Simulation • 267

a direct representation of systems based on sampling, and it is well suited
for representing digital control and digital signal systems. However, such a
direct representation can be cumbersome when specifying ODEs. The HFSS
formalism can be used as a framework to create other formalisms to represent
ODEs with discontinuities. These systems are commonly known as hybrid or
combined systems. We create the Differential Equation/Discrete Flow System
Specification (DEDF) to describe hybrid systems using a combination of ODEs
and discrete event systems. Although the DEDF can be reduced to the HFSS
formalism, it allows a direct representation of ODEs; thus, it offers a more
friendly syntax for specifying some type of systems. For simplicity, we describe
a 1st order version of the DEDF formalism. However, higher order methods can
be developed. A DEDF is defined by

DEDF = (X , Y , Sd , ρ , τ, q0, δd , f , λ),

where

X = X c × X d is the set of input flow values
X c ⊆ R, is the set of continuous input flow values
X d is the set of discrete input flow values

Y = Yc × Yd is the set of output flow values
Yc ⊆ R, is the set of continuous output flow values
Yd is the set of discrete output flow values

Sd is the set of discrete partial states
S = X c × Yc × Sd is the set of partial states
ρ : S→ R+0 is the time to input function
τ : S→ R+0 is the time to output function
Q = {(s, e)|s ∈, 0 ≤ e ≤ min {ρ(s), τ (s)}} is the state set
q0 = (s0, e0) ∈ Q , is the initial state
δd : Q × (X c × X φ

a)→ S is the discrete transition function
f : X c × Yc → Yc is the derivative function
λ : S→ Y φ

d is the partial discrete output function

We consider that both input and output continuous flows are based on the set
of real numbers R. This is not a limitation, for the ultimate goal is to use mul-
tirate methods where each variable is independently integrated. An extension
to vectors of variables in Rn would be straightforward.

The time-to-transition function is used to compute the time-to-read the next
input when no discrete values occur. Due to the modularity of the formalism,
each model can have its own time-to-transition function and thus its own inte-
gration time step [Barros 2000]. The discrete transition changes the model p-
state in the presence of discontinuities. For combining DEDF and HFSS models,
we need to establish their equivalence. A DEDF = (X , Y , Sd , ρ , τ, q0, δd , f , λ) is
equivalent to the HFSS = (X , Y , S, ρ , τ, q0, δ,3c, λ), where

S = X c × Yc × Sd .

The continuous output function just assumes a linear interpolation and is given
by

3c((x, y , s), e) = y + e. f (x, y).

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 3, July 2003.

268 • Fernando J. Barros

Fig. 3. Ball and elevator coordinate system.

The transition function uses first order Euler integration method for updating
continuous values and it is defined by

δ((x, y , s), e, (xc, xd)) = δd ((xc, y + e. f (x, y), s), e, (xc, xd)).

Since DEDF models can be reduced to HFSS models, both types of models can
be arbitrarily connected.

The creation of formalisms to represent other numerical methods, like an
adaptive step-size 3rd order method used later in this article, can be made
within the HFSS paradigm that offers, thus, a framework for mutirate numer-
ical integration.

3. HYBRID SYSTEMS

Hybrid systems are commonly defined as systems ruled by ordinary differen-
tial equations (ODEs) except at points when states variables change abruptly.
They can thus be viewed as a combination of ODEs and discrete event systems.
Many types of hybrid systems have been described in the literature [Alur et al.
2001; Antsaklis 2000; Barros 2002a; Branicky and Mattson 1997; Deshpande
et al. 1997; Praehofer 1991]. To illustrate the HFSS representation of hybrid
systems, we consider a simple system composed by a bouncing ball confined to
a 1-dimensional moving elevator of 2.5 m height. The ball is launched from a
height of 0.4 m relative to the elevator ground, and with a null velocity relative
to the ground. The ball bounces every time it reaches the elevator limits and it
loses part of the relative velocity in every collision. The ball and elevator coor-
dinate system is represented in Figure 3, where ve and ye represent elevator
velocity and position relative to the ground and vb and yb represent ball velocity
and position relative to the ground.

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 3, July 2003.

Dynamic Structure Multiparadigm Modeling and Simulation • 269

The ball can hit the elevator in two positions: ground and ceiling. For model-
ing these collisions, we use two detectors one for each type. The ground collision
is defined as:

D1 ≡ ye − yb = 0.

For an elevator with 2.5 m height, the collision with the ceiling is defined by

D2 ≡ ye − yb − 2.5 = 0.

Before collision, the relative velocity is given by

vr = ve − vb.

After a collision, the elevator velocity remains the same, but the relative velocity
is given by

v′r = ve − v′b = −kvr ,

where v′b represents the ball velocity after the collision, and k, 0 < k ≤ 1 models
the loss of relative velocity due to the collision. After collision, ball velocity is
thus given by

v′b = (1+ k) ve − kvb.

The HFSS model of the collision component is given by

C = (X , Y , S, ρ , τ, q0, δ,3c, λ),

where

X = R2 × {#detect}
Y = {φ} × R
S = {(phase, k, out)| phase ∈ {#run, #out}; k ∈ R+; out ∈ R}
ρ(phase, k, out) = ∞
τ (#out, k, out) = 0
τ (#run, k, out) = ∞
q0 = (#run, k = 0.95, φ),0)
δ((#run, k, out), e, (<vb, ve>, d)) = #out, k, (1+ k)× ve − k × vb)
δ((#out, k, out), e,−) = #run, k, φ)
3c((phase, k, out), e) = φ
λ(phase, k, out) = out.

The collision receives a pair of input values corresponding to the ball and ele-
vator velocity and the additional value d from one of the detectors.

The ball is a free-fall body whose position is given by

y ′′b = −g ,

where g = 9.807 m/s2 is the standard gravity acceleration at Earth’s surface.
The elevator position is given by

ye = y0 +
∫

ve dt,

where y0 is the elevator initial position and ve is the elevator velocity (consid-
ered here to be a known function). Figure 4 represents the HFSS model of the
ball—elevator system.

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 3, July 2003.

270 • Fernando J. Barros

Fig. 4. Bouncing ball and elevator block diagram.

All the elements in the block diagram have an HFSS equivalent. Integrators
are based on a DEDF like formalism that implements a 3rd order adaptive step-
size integrator. Detectors operate using both variable sampling and the bisec-
tion method to detect zero-crossing. The velocity of the elevator is given by the
triangular wave generator described in Section 2.1 that it is also HFSS equiva-
lent. This equivalence is central to component integration and new integrators
and detectors can be added as long as their equivalence to the HFSS formalism
can be defined. For example, higher-order methods can be easily merged with
the described models. Thus, the HFSS formalism provides a standard to model
interoperability for it does not depend on any particular implementation.

Figure 5 illustrates the results produced in CAOSTALK, a Smalltalk imple-
mentation of the HFSS formalism. Elevator velocity has a maximum of 10 m/s
and a minimum of −10 m/s. Time up and time down equal to 3 s. Elevator
height is 2.5 m. We consider that initially the elevator ground is at position 0 m
and that the ball starts at position 1 m with a null velocity. In every collision,
the ball loses 5% of the relative velocity (k = 0.95). Figure 5 depicts ball and
elevator positions. A third curve represents the ball height relative to the ele-
vator ground. The complex behavior of the ball depends on the relative velocity
at collision times and, thus, sometimes the ball hits the elevator ceiling, while
other times the ceiling is not reached.

The velocities of the elevator and the ball are depicted in Figure 6. The dis-
continuities in ball velocity corresponding to the collisions are also represented
in the figure.

Simulation was performed using a variable-step numerical integrator whose
steps are independent and change accordingly to the local error. Figure 7 rep-
resents the time steps taken by the integrating that computes ball position.

Small time steps are used after collisions so the third order integrator can
operate. Between collisions, the time steps can be quit large, keeping, however,
the local truncation error within prescribed bounds. The possibility to change
the integration step can lead to more efficient integration for, in general, the
integrators will achieve the same prescribed accuracy using different step sizes.

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 3, July 2003.

Dynamic Structure Multiparadigm Modeling and Simulation • 271

Fig. 5. Ball and elevator position.

Fig. 6. Ball and elevator velocity.

4. HYBRID DYNAMIC STRUCTURE SYSTEMS

The hybrid systems considered so far have a static structure. We consider now
the bottle-filling system of Figure 8 which is modeled as a hybrid system with
a dynamic structure.

The filling system is composed by the filler F and the sensor S. Bottles are
inserted below the filler by a conveyor. When the bottle arrives its capacity is
read and the filler starts to fill the bottle. The scale below the bottle senses
bottle volume weight and signals when the bottle is filled. When this happens,
the conveyor removes it from the filler and brings a new empty bottle.

The HFSS model of the described system is represented in Figure 9. The
filler is modeled by component P, a 1st-order proportional controller. The scale

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 3, July 2003.

272 • Fernando J. Barros

Fig. 7. Time steps for ball position integrator.

Fig. 8. Bottle filling system.

is modeled by the detector D. The bottle is represented by an active component
that can give information about its current volume. The conveyor is represented
within the executive model that can add or remove bottles to the system. When
a bottle is currently being filled, the model structure is represented by Figure 9.
The bottle is an integrator that receives as input the filling rate from the con-
troller P.

The detector D signals the executive when bottle is filled. The executive
then removes the bottle, and the network structure becomes represented by
Figure 10. After conveyor transport time, the executive inserts a new bottle and
the model structure becomes again represented by Figure 9. Structural changes
correspond to the insertion of empty bottles and the removal of filled bottles.
Given that each bottle represents a differential equation, structural changes
correspond to modifications in the set of equations describing the model.

The controller P is described in Section 2 and it has a fixed sampling rate of
0.1 s. Controller input function is given by

ZC = (max − b)+ 0.05,

where max is the bottle maximum volume, b is the bottle current volume and
0.05 cl/s is the minimum filling rate. Controller output is depicted in Figure 11

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 3, July 2003.

Dynamic Structure Multiparadigm Modeling and Simulation • 273

Fig. 9. Filling a bottle.

Fig. 10. No bottle to fill.

for a sequence of 4 bottles. During the bottle transit time of 2 s, the controller
output is zero.

The volume of a sequence of 4 bottles is given at Figure 12. This value is
computed by a hybrid integrator based on a variable-time-step 3rd-order al-
gorithm. This algorithm needs to reinitialize every time the input has a dis-
continuity. Thus, time steps are reset whenever the controller issues a discrete
flow value. This situation occurs every 0.1 s, at controller sampling points.
This figure reflects also the dynamic structure model approach employed. The
absence of volume value indicates that currently no bottle is being filled corre-
sponding to a model without the integrator.

This example, although very simple, demonstrates the ability of the HFSS
formalism to represent models usually seen as belonging to different paradigms,
namely: digital control, hybrid numerical integrators, event detectors and dy-
namic structure models. The HFSS approach allows us to perceive these differ-
ent paradigms as particular cases of hybrid flow systems.

5. CONCLUSIONS

The HFSS formalism provides a general representation of hybrid systems in
digital computers based on a broad utilization of the sampling concept. Both
time-varying and multirate sampling can be used. Numerical integration meth-
ods based on multirate and adjustable step can be described in the DEDF
formalism. The equivalence between HFSS and DEDF formalism allows us
to merge both models in the same network. The ability to change network

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 3, July 2003.

274 • Fernando J. Barros

Fig. 11. Controller output.

Fig. 12. Bottle volume.

structure can lead to more efficient and more understandable models. This
feature is of crucial importance to represent very complex models. The HFSS
formalism provides a comprehensive framework for combining models built
in different paradigms. It is a general modeling formalism that can represent
namely: dynamic structure systems, hybrid flow systems, multirate numerical
methods and multirate sampling systems.

REFERENCES

ALUR, R., GROSU, R. LEE, I., AND SOKOLSKY, O. 2001. Compositional refinement for hierarchical
hybrid systems. In Hybrid Systems: Computation and Control. Proceedings of the 4th Interna-
tional Conference (HSCC’01). Lecture Notes in Computer Science, vol. 2034. Springer-Verlag,
New York, 33-48.

ANTSAKLIS, P. J. 2000. A brief introduction to the theory and application of hybrid systems. Proc.
IEEE 88, 7, 879–887.

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 3, July 2003.

Dynamic Structure Multiparadigm Modeling and Simulation • 275

BARROS, F. J. 1997. Modeling formalisms for dynamic structure systems. ACM Trans. Model.
Comput. Simulat. 7, 4, 501–515.

BARROS, F. J. 1998. Hierarchical testing of dynamic structure models: A practical approach. Trans.
SCS 15, 4, 181–189.

BARROS, F. J. 2000. A Framework for representing numerical multirate integration methods. In
Proceedings of the 2000 AI, Simulation and Planning in High Autonomy Systems (Tucson, Az.).
SCS International, 149–154.

BARROS, F. J. 2001. Modeling and simulation of mobile software agents in chaos. In Proceedings of
the European Simulation Symposium/DEVS Workshop (Marseille, France). SCS International,
605–610.

BARROS, F. J. 2002a. Modeling and simulation of dynamic structure heterogeneous flow systems.
Simulat. Trans. SCS 78, 1, 18–27.

BARROS, F. J. 2002b. Towards a theory of continuous flow models. Int. J. Gen. Syst. 31, 1, 29–39.
BARROS, F. J. 2002c. Abstract simulators for dynamic structure hybrid components. In Proceed-

ings of the AI, Simulation and Planning in High Autonomy Systems. SCS International, 71–77.
BARROS, F. J. 2003. Modeling and simulation of switched systems: A dynamic structure approach.

In Proceedings of the 2003 Summer Computer Simulation Conference (Montreal, Ont., Canada).
SCS International, Simulation Series, 35, 3, 426–431.

BRANICKY, M. S. AND MATTSON, S. E. 1997. Simulation of hybrid systems. In Hybrid Systems IV,
P. J. Antsaklis, W. Korn, A. Nerode, and S. Sastry, Eds. Lecture Notes in Computer Science, vol.
1273. Springer-Verlag, New York, 31–56.

DESHPANDE, A., GOLLU, A., AND SEMENZATO, L. 1997. The shift programming language and run-time
system for dynamic networks of hybrid automata. In Proceedings of the 1997 NATO Workshop on
Discrete Event and Hybrid Systems. Lecture Notes in Computer Science. Springer-Verlag, New
York.

ENGSTLER, C. AND LUBICH, C. 1997. Multirate extrapolation methods for differential equations
with different time scales. Computing 58, 173–185.

HOWE, R. M. 1998. Real-time multi-rate asynchronous simulation with single and multiple pro-
cessors. In Proceedings of SPIE 12th Annual International Symposium on Aerospace/Defense
Sensing, Simulation and Controls: Enabling Technology for Simulation Science, vol. 3369
(Orlando, Fla.). SPIE, 331–342.

PRAEHOFER, H. 1991. System theoretic foundations for combined discrete-continuous system
simulation, Ph.D. Dissertation, Department of Systems Theory and Information Engineering,
Univ. Linz.

ZEIGLER, B. P. 1976. Theory of Modelling and Simulation, Wiley, New York.
ZEIGLER, B. P. 1984. Multifacetted Modeling and Discrete Event Simulation. Academic Press,

Orlando, Fla.
ZEIGLER, B. P. AND LEE, J. S. 1998. Theory of quantized systems: Formal basis for DEVS/HLA dis-

tributed simulation environment. In Proceedings of SPIE 12th Annual International Symposium
on Aerospace/Defense Sensing, Simulation and Controls: Enabling Technology for Simulation Sci-
ence, vol. 3369 (Orlando, Fla.). SPIE, 49–58.

Received December 2001; revised June 2002, November 2002, April 2003; accepted June 2003

ACM Transactions on Modeling and Computer Simulation, Vol. 13, No. 3, July 2003.

