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We present a new concept for a system network to represent systems that are able to undergo
structural change. Change in structure is defined in general terms, and includes the addition
and deletion of systems and the modification of the relations among components. The
structure of a system network is stored in the network executive. Any change in structure-
related information is mapped into modifications in the network structure.

Based on these concepts, we derive three new system specifications that provide a shorthand
notation to specify classes of dynamic structure systems. These new formalisms are: dynamic
structure discrete time system, dynamic structure differential equation specified systems, and
dynamic structure discrete event system specification. We demonstrate that these formalisms
are closed under coupling, making hierarchical model construction possible. Formalisms are
described using set theoretic notation and general systems theory concepts.
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1. INTRODUCTION

General systems theory provides a formal representation of dynamic sys-
tems. The book [Zeigler 1976] is a milestone in modeling and simulation
theory. It offers modeling formalisms for the specification of the most
common dynamic systems, like the DEVS formalism to model discrete
event systems. General systems theory, however, was developed to repre-
sent systems with a time invariant structure [Mesarovic and Takahara
1975; Wymore 1977; Zeigler 1976; Zeigler 1985]. We describe a new
approach to the representation of systems that can undergo structural
changes. These systems are referred to here as dynamic structure systems.
The concept of dynamic structure systems network is formalized and the
dynamic structure network system specifications for the three more com-
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mon modeling formalisms are derived, namely, discrete time systems,
(Ordinary), differential equation systems, and discrete event systems. These
formalisms are proved closed under coupling, making a hierarchical repre-
sentation of systems possible [Zeigler 1976; 1984]. All the formalisms also
have a parallel interpretation, making them amenable to parallel imple-
mentation.

This work is a generalization of the dynamic structure discrete event
system specification (DSDEVS), a formalism to represent discrete event
systems that can change their structures dynamically [Barros 1995; Barros
1996a; Barros 1996c] to other types of systems. The DSDE, a parallel
version of the original DSDEVS, is presented; the DSDEVS is a rigorous
approach to representing dynamic structures in discrete event systems.

This paper is organized into five sections. In Section 2 we summarize the
three modeling formalisms developed by Zeigler for representation of basic
systems (nonnetwork): discrete time system specification (DTSS); differen-
tial equation system specification (DESS); and discrete event system spec-
ification (DEVS). These formalisms are used to describe system networks.
Section 3 introduces the new concept of dynamic structure system network.
Section 4 develops the concept of a dynamic system network for DTSS,
DESS, and DEVS formalisms. Section 5 presents the conclusions.

2. FORMALISMS FOR BASIC SYSTEMS

To facilitate the understanding of the three dynamic structure formalisms,
we first briefly describe the concept of system and summarize three
systems specifications. A complete description has been made by Zeigler
[1976; 1984]. A system specification provides a shorthand notation to
specify classes of systems that have some common properties. A complete
system description can be derived from its specification. The procedure for
this conversion and the conditions that must be observed can be found in
Zeigler [1976]. For convenience, we have extended all the original formal-
isms to include the model initial state.

2.1 System

A system is an abstract concept that describes how entities behave over
time. It describes output behavior on the basis of inputs and state informa-
tion. Formally a system is an 8-tuple [Zeigler 1976], S 5 (T, X, V, Q, q0,
Y, d, l), where T is the time base, X is the input value set, Y is the output
value set, V is the input segment set, Q is the set of states, q0 is the initial
state, d: Q 3 V 3 Q is the transition function, and l: Q 3 Y is the output
function.

The system is subject to the following two constraints [Zeigler 1976]:

(1) V is closed under composition;
(2) for every pair of contiguous segments v and v9 [ V and for all q [ Q,

d(q, vv9) 5 d(d(q, v), v9).
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If the time base is the set of real numbers, the system is said to be
continuous. If the time base is the set of integers, the system is said to be
discrete. A detailed description can be found in Zeigler [1976].

2.2 Discrete Time System Specification

Some systems change their states at regular intervals. Input and output
segments are only computed at the end of these intervals. A discrete time
system specification provides a short notation to characterize a family of
systems with an integer time base. Formally, a discrete time system
specification is a 6-tuple [Zeigler 1976]: DTSS 5 (X, Q, q0, Y, d, l),
where X is the set of input values, Q is the set of states, q0 is the initial
state, Y is the set of output values, d: Q 3 X 3 Q is the single step
transition function, and l: Q 3 Y is the output function.

At a periodic rate, this model checks its inputs and, based on its state
information, produces an output and changes its internal state.

2.3 Differential Equation System Specification

Differential equations are used as a compact notation to describe a large
family of dynamic systems. Instead of describing the relation between the
input and the state of a system, a differential equation is used to relate the
input and the model state derivative. A differential equation system speci-
fication is a 6-tuple [Zeigler 1976]: DESS 5 (X, Q, q0, Y, f, l), where X is
the set of input values, Q is the set of internal states, q0 is the initial state,
Y is the set of output values, f: Q 3 X 3 Q is the rate of change function,
and l: Q 3 Y is the output function.

The DESS is subjected to the constraints, X [ Rl, Q [ Rm, Y [ Rn with
l, m, n [ I0

1, and f satisfies the Lipschitz condition.
Let v: ^t1, t2& 3 X be a bounded continuous segment, and q [ Q be a

state. A segment Fq,v: ^t1, t2& 3 Q is a solution associated with v and q if

(1) Fq,v(t1) 5 q
(2) dFq,v(t)/dt 5 f(Fq,v(t), v(t)), t [ ^t1, t2&.

The solution for the state trajectory is given for t [ dom(v) 5 ^t1, t2&, by
Fq,v(t) 5 q 1 *t1

t f(Fq,v(t9), v(t9)) dt9.
In many cases, however, this integral cannot be computed analytically,

and simulation is still the best tool.

2.4 Discrete Event System Specification

Some systems change their states a finite number of times in a bounded
interval. The time base is the set of nonnegative real numbers, R0

1.
Although the state does not change continuously, the time when these
changes occur is a real number. A discrete event system specification is a
7-tuple [Zeigler 1976]: DEVS 5 (X, S, s0, Y, d, l, t), where X is the set of
input values, S is the set of partial states, s0 is the initial partial state, Y is
the set of output values, and d: Q 3 (X ø {B}) 3 S is the transition
function, where Q 5 {(s, e) us [ S, 0 # e # t(s)} is the state set, e is the
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time elapsed since last transition, q0 5 (s0, 0) is the initial state, B is the
null value (absence of value), l: S 3 Y is the partial output function, and
L: Q 3 Y is the output function defined by

L~s, e! 5 Hl~s!

B

if e 5 t~s!

if e , t~s!J
t: S 3 R0

1 is the time advance function.
If no event arrives at the system, it will stay in partial state s for time

t(s). When e 5 t(s), the system changes to the state (d(s, t(s), B), 0). If
an external event, x [ X, arrives when the system is in the state (s, e) it
will change to the state (d(s, e, x), 0). If an external event arrives when
e 5 t(s), the system changes to the state (d(s, t(s), x), 0). A DEVS can
only produce an output when e 5 t(s); in all other cases there is no output,
i.e., L(s, e) 5 B, if e , t(s). A DEVS specifies a system only if it is
legitimate [Zeigler 1976].

3. DYNAMIC STRUCTURE SYSTEM NETWORK

A heuristic rule to handle complex systems is to decompose them into less
complex ones. Such a combination of systems is called a system network.
Networks described by conventional formalisms have a static structure
[Mesarovic and Takahara 1975; Wymore 1977; Zeigler 1976]. The real
world can, in some cases, be better represented by system networks that
undergo structural changes. We introduce the dynamic structure system
network, a new concept that can change its structure dynamically. To
simplify the presentation, we describe networks without inputs and out-
puts only.

A dynamic structure system network is a tuple, DSSN 5 (x, Sx), where x
is the network executive name, and Sx is the system describing the execu-
tive x.

The dynamic structure system network is defined with a special compo-
nent, the network executive x. Sx, the model of the executive, is a modified
system defined by the 10-tuple, Sx 5 (T, Xx, Vx, Qx, q0,x, Yx, g, (*, dx,
lx), where g: Qx 3 (* is the structure function, and (* is the set of
network structures.

The meaning of the other variables was previously described in Section
2.1.

A structure ( [ (* at a state qx [ Qx is given by ( 5 g(qx) 5 (D, {Si},
{Ii}, {Zi}), where D is the set of component (system) names. For all i [ D,
Si is a system component i, Ii is the set of influencers of component i, and Zi
is the i-input function.

The state variables are subjected to the following constraints: x [y D, for
all i [ D, Si 5 (T, Xi, V i, Qi, q0,i, Yi, d i, l i) is a system, and Zi: 3 j[Ii

Yj 3 Xi.
Because the network coupling information is located in the state of the

executive, transition functions can change this state and, in consequence,
change the structure of the network.
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Definition 1. The 4-tuple (D, {Si}, {Ii}, {Zi}) 5 g(qx), qx [ Qx, is
referred to as the network structure.

Definition 2. Any change in the network structure (D, {Si}, {Ii}, {Zi}),
is defined as a change of structure.

Changes in structure are defined in a broad sense, including changes in
component interconnection, changes in system definition, and the addition
or deletion of system components.

Example. Figure 1(a) describes a dynamic structure network. From the
diagram, we can infer the structural properties of the network, namely, its
composition and the interaction among systems. This network is defined by
DSSN 5 (x, Sx 5 (T, Xx, Vx, Qx, q0,x, Yx, g, (*, dx, lx)).

If Figure 1(a) represents the initial structure of the network, then
g(q0,x) 5 (D, {Si}, {Ii}, {Zi}), where D 5 {A, B}, SA 5 (T, XA, VA, QA,
q0, A, YA, dA, lA), SB 5 (T, XB, VB, QB, q0,B, YB, dB, lB), Ix 5 {}, IA 5
{x}, IB 5 {x, A, B}, ZA: Yx 3 XA, and ZB: Yx 3 YA 3 YB 3 XB.

The executive state after receiving the segment vx [ Vx is given by q9x 5
dx(qx, vx), and the new network structure is given by g(q9x) 5 (D9, {S9i},
{I9i}, {Z9i}), where D9 5 {A}, S9A 5 (T, XA, VA, QA, q0, A, YA, d9A, lA), I9x
5 {}, I9A 5 {x, A}, and Z9A: Yx 3 YA 3 XA.

The block diagram corresponding to this new structure is given in Figure
1(b). Changes in structure include the deletion of system component B, the
change of the transition function of component A from dA to d9A, the change
of the influencers of A, and change of the input function of component A.

When the executive modifies its state, the network structure can also be
modified. Because the network structure is stored in the executive state,
any kind of structural change can be achieved. Namely, changes in

—components, represented by D;
—system representation of components, represented by {Si}; and
—connections among components, represented by {Zi} and {Ii}.

The structure can change not only by the addition or deletion of compo-
nents, but also by changing the model definition and connections as well.

Fig. 1. Dynamic structure network.
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The set of added and removed components in each transition depends on
the application domain. This information is stored in the state variables
and within the transition functions. Models can be kept in the executive
state variables, but as long as they do not belong to set D 5 projD(g(sx)),
they are not components of the network.

4. MODELING FORMALISMS FOR DYNAMIC STRUCTURE NETWORKS

We have seen that system specifications provide a compact and simple
notation to describe basic systems. We now develop system specifications to
describe a network of systems. Table I represents both the basic and the
network system specifications. The new formalisms use the same represen-
tation for basic systems, but use the concept of dynamic structure network
to describe special subclasses of system networks.

We have created three formalisms, DSDT, DSDQ, and DSDE, to repre-
sent networks of the previously described models—respectively, DTSS,
DESS, and DEVS. The DSDE formalism presented here is a modified
version of an earlier version [Barros 1996]. This formalism defines its
behavior in a parallel way, making such networks more amenable to an
implementation in a parallel machine.

To build complex models it is necessary to use formalisms that support
hierarchical and modular models. Models can thus be decomposed into
other models in a recursive way. This kind of modular construction is only
possible if formalisms are closed under coupling.

Definition 3 [Zeigler 1984]. A formalism is closed under coupling if any
network obtained by coupling components specified by the formalism can
also be specified by the formalism.

To show the correctness and the usefulness of the new modeling formal-
isms, we demonstrate that they are closed under coupling.

4.1 Dynamic Structure Discrete Time System Specification

The dynamic structure discrete time system specification is a formalism to
describe basic or network discrete time systems. The DSDT basic model is

Table I. Modeling Formalisms for Dynamic Structure Systems
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the DTSS model described in Section 2.1. The network of simple DTSS
models is referred to as a dynamic structure discrete time system network.
Formally, a dynamic structure discrete time system network is a tuple,
DSDTN 5 (x, Mx), where x is the name of the dynamic structure network
executive, and Mx is the model of the executive x.

The model of the executive is a modified DTSS defined by the 8-tuple,
DTSSx 5 (Xx, Qx, q0,x, Yx, g, (*, dx, lx).

The network structure (, at a state qx [ Qx, is given by ( 5 g(qx) 5
(D, {Mi}, {Ii}, {Zi}), where for all i [ D, Mi 5 (Xi, Qi, q0,i, Yi, d i, l i) is
a DTSS.

THEOREM 1. The DSDT formalism is closed under coupling; that is, the
DSDTN 5 (x, Mx) is equivalent to the DTSS 5 (Q, q0, d).

PROOF. We describe the DTSS in terms of the elements in the DSDTN.
The state set Q is given by Q 5 øqx[Qx

(3i[Dx
Qi), where Dx, the set of

components associated with a state qx, is given by Dx 5 projD(g(qx)) ø
{x}, and the model of component i [ Dx, is given by Mi 5 (Xi, Qi, q0,i, Yi,
d i, l i).

Note that the state set Q is the union of all possible states that might
exist in a network; that is, this set contains all the possible states of the
network for all possible combinations of components. So the transition
function d maps values from Q to Q.

The initial state, q0 [ Q, is given by q0 5 3i[D0,x
q0,i, where D0,x, the

initial set of network components, is given by D0,x 5 projD(g(q0,x)) ø {x}.
To define the transition function d: Q 3 Q, let qx [ Qx be the current

executive state and ( the current network structure, ( 5 g(qx) 5 (D,
{Mi}, {Ii}, {Zi}).

The new executive state q9x [ Qx is given by q9x 5 dx(qx, xx), where the
input xx of the executive is given by xx 5 Zx (3d[Ix

ld (qd)).
After the executive transition, the new network structure (9 is given by

(9 5 g(q9x) 5 (D9, {M9i}, {I9i}, {Z9i}).
The transition function is thus defined by d(3i[Dø{x} qi) 5 3d[D9ø{x}

qd, where the new state q9j [ Q9j of each component j [ D9 (the new set of
network components) is given by

(1.1)
q9j 5 H d j~qj , xj!

q0, j

if j [ K
if j [ AJ

(1.2)

and the input xj of component j is given by xj 5 Zj(3d[Ij
ld(qd)).

A is the set of the new (added) components, A 5 D9 2 D, and K is the
set of the kept components, K 5 D ù D9.

Line 1.1 of the definition computes the next state of systems that are not
removed from the network. The next state is obtained using the current
structure of the network, i.e., (D, {Mi}, {Ii}, {Zi}). The network structure
(D9, {M9i}, {I9i}, {Z9i}), will only be used in the next step. Line 1.2 of the
definition states that the new added components have an initial state given
in their definition.
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We emphasize that there is no ambiguity in the formalism. All the
outputs are taken simultaneously, and the current network structure (D,
{Mi}, {Ii}, {Zi}) is used to compute the next state. The new structure (D9,
{M9i}, {I9i}, {Z9i}) is only used in the next transition. If the output values
were not taken at the same time, their processing order will lead to
different results. If, for example, the executive inputs were processed first,
the network structure could be changed and the other input values would
act on a different network.

4.2 Dynamic Structure Differential Equation System Specification

The dynamic structure (ordinary) differential equation system specification
is a formalism to specify basic or network differential equation systems.
The DSDQ basic model is the DESS model described in Section 2.2. The
network of simple DESS models is referred to here as the dynamic
structure differential equation system network. A dynamic structure differ-
ential equation network is a tuple, DSDQN 5 (x, Mx).

The model of the executive is a modified DESS and is defined by DESSx 5
(Xx, Qx, q0,x, Yx, g, (*, fx, lx), subject to the constraint that g is a continuous
function.

The network structure, at a state qx [ Qx, is given by the tuple, g(qx) 5
(D, {Mi}, {Ii}, {Zi}), where for all i [ D, Mi 5 (Xi, Qi, q0,i, Yi, fi, l i) is a
DESS.

Due to its discrete nature, the set D of components cannot be changed
continuously, so the set D must remain unchanged. Also, the equivalent
basic model of a network model has a state given by the cross product of
states of the components. So adding and removing components will add or
remove state variables. As the creation or the destruction of a state
variable is a discontinuity, these types of systems cannot be described by
differential equations satisfying the Lipschitz condition. However, adding
and removing components can be represented by hybrid (continuous-dis-
crete) models.

For the overall model to be described by a differential equation satisfying
the Lipschitz condition, the structure function g must be a continuous
function.

Although components must remain the same, their definition, repre-
sented by {Mi}, can be changed continuously. These changes must follow
some constraints. As described in Section 2.3, a DESS M is given by M 5
(X, Q, q0, Y, f, l), and the sets X, Q and Y are subjected to the
constraints, X [ Rl, Q [ Rm, Y [ Rn with l, m, n [ I0

1.
The values of l, m, and n cannot, obviously, be changed continuously, and

consequently the sets X, Q, and Y cannot be changed. However, the values
of f and l can be changed continuously, as they represent functions of real
variables. The change of the initial state q0 can be achieved, but is of little
interest because it is only used once at the time each component is placed
in the network.
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Changes of structure in continuous systems also include the change of
the input function Zi, of component i. The change of the influencers of a
component i, Ii, cannot be achieved due to the discrete nature of this set.

THEOREM 2. The DSDQ formalism is closed under coupling; that is, the
DSDQN 5 (x, Mx) is equivalent to the DESS 5 (Q, q0, f ).

PROOF. We describe the DESS in terms of the elements in the DSDQN.
The state set Q is given by Q 5 3i[Dx

Qi, where Dx, the set of
components associated with any state qx [ Qx, is given by Dx 5
projD(g(qx)) ø {x}.

The initial state, q0 [ Q, is given by q0 5 3i[Dx
q0,i.

To define the rate of change function f: Q 3 Q, let the current network
structure by given by ( 5 g(qx) 5 (D, {Mi}, {Ii}, {Zi}) and the new
network structure by (9 5 g(q9x) 5 (D, {M9i}, {I9i}, {Z9i}).

The rate of change function is defined by f(3 i[Dx
qi) 5 3i[Dx

q9i, where
the new state q9i [ Qi, of each component i [ Dx is given by q9i 5 Fqi

,vi(t1 1 e),
lim e 3 0, and for each i [ Dx, v i: ^t1, t1 1 e& 3 Xi, is a bounded
continuous segment and Fqi

,v i: ^t1, t1 1 e& 3 Qi a solution associated
with vi and qi, such that Fqi

,vi(t1) 5 qi and dFqi
,vi(t)/dt 5

fi(Fqi
,vi(t),v i(t)), for t [ ^t1, t1 1 e& and the input segment, vi is given,

for t [ dom(vi) 5 ^t1, t1 1 e&, by v i(t) 5 Zi(3d[Ii
ld(Fqd

,vd(t))).
The next state is computed using the current structure of the network

(D, {Mi}, {Ii}, {Zi}). The new network structure (D, {M9i}, {I9i}, {Z9i}), will
only be used at time t1 1 e.

Example. Consider a dynamic structure system network that changes
its structure continuously by adapting the input, output, and rate of change
function of one of its components. The network in Figure 2 is a DSDQN,
and its description is given by DSDQN 5 (x, Mx).

The model of the executive is a DESS defined by DESSx 5 (Qx, q0,x, g,
(*, fx), where Qx 5 R3 and fx: Qx 3 Qx.

We consider, in this example, a rate of change function given by fx((a, b,
c)) 5 (2a2, 2b, 2c3), where a state qx [ Qx is given by qx 5 (a, b, c).

The network structure at state qx [ Qx is given by ( 5 g(qx) 5
(D, {Mi}, {Ii}, {Zi}), where D 5 {A, B}, MA 5 (QA, q0, A, YA, fA, lA), and
MB 5 (XB, QB, q0,B, fB), with YA 5 XB 5 QA 5 QB 5 R, lA 5 a l9A, and
fA 5 b f 9A, where f 9A is a function satisfying the Lipschitz condition, {Ix} 5
{IA} 5 {} and IB 5 {A}.

Fig. 2. Block diagram of the dynamic structure differential equation network.
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The input function of model B is expressed by ZB: YA 3 XB, and is
defined by ZB( y) 5 c y.

The values of a, b, and c are controlled by the differential equation fx, and
thus they change continuously. We emphasize that for each value of the
triple (a, b, c), and by Definition 2, there is a different network. We note
that changes in model input function, for example, cannot be made in static
structure models.

In general, all problems can be reduced to basic models, and structure
variation does not increase the power of representation of any formalism.
However, structure in general, and dynamic structures in particular, can in
many cases lead to models that are easier to understand and implement.

4.3 Parallel Dynamic Structure Discrete Event System Specification

The problem of representing discrete event systems that undergo structural
changes has been the subject of many research papers Thomas 1994;
Uhrmacher and Arnold 1994; Vasconcelos 1993; Zeigler and Reynolds 1985;
Zeigler and Praehofer 1989; Zeigler et al. 1991]. However, these approaches
do not achieve a general and formal framework for this problem. A rigorous
approach is the DSDEVS formalism [Barros 1995; 1996a]. A comparison of
the several methods used to represent dynamic structure discrete event
systems can be found in Barros [1997b]. The parallel dynamic structure
discrete event system specification is a generalization of the original
DSDEVS formalism, and allows the specification of dynamic structure
networks of discrete event systems. The DSDE basic model is the DEVS
described in Section 2.3. The network of simple DEVS models is referred to
as the parallel dynamic structure discrete event system network. Formally, a
parallel dynamic structure discrete event system network is a tuple,
DSDEN 5 (x, Mx), where x is the name of the dynamic structure network
executive and Mx is the model of the executive x.

The model of the executive is a modified DEVS, defined by the 9-tuple,
Mx 5 (Xx, Sx, s0,x, Yx, g, (*, dx, lx, tx).

The network structure ( [ (*, at a state sx [ Sx, is given by the tuple
( 5 g(sx) 5 (D, {Mi}, {Ii}, {Zi}), where for all i [ D, Mi 5 (Xi, Si, s0,i,
Yi, d i, li, t i) is a DEVS, and Zi(3 uIiu B) 5 B.

The last constraint states that if all the influences of a component have a
null output value, then the component will receive a null input; that is, the
input function does not create a value from an absence of values. This
behavior is universally accepted for discrete event systems.

THEOREM 3. The DSDE formalism is closed under coupling; that is, the
DSDEN 5 (x, Mx) is equivalent to a basic model DEVS 5 (S, s0, d, t).

PROOF. We describe the DEVS in terms of the elements in the DSDEN.
The partial state set S is given by S 5 øsx[Sx

(3i[Dx
Qi), where Dx, the

set of components associated with the current partial state sx, is given by
Dx 5 projD(g(sx)) ø {x}, and the state set of a component i is defined by
Qi 5 {(si, ei) usi [ Si, 0 # ei # t i(si)}.
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We define si (the time component i must still remain in the current state)
by s i 5 t i(si) 2 ei.

The initial partial state is given by s0 5 3 i[D0,x
q0,i, where D0,x, the

initial set of network components, is given by D0,x 5 projD(g(s0,x)) ø {x}.
The time advance function is given by t: S 3 R0

1, and is defined by
t(s) 5 min {siui [ Dx}.

The set of states Q is given by Q 5 {(s, e) us [ S, 0 # e # t(s)}.
To define the transition function d: Q 3 S, let the current network

structure ( [ (*, at the current state sx [ Sx, be given by ( 5 g(sx) 5 (D,
{Mi}, {Ii}, {Zi}), and let (9 be the new network structure associated with
the new executive state s9x [ Sx, (9 5 g(s9x) 5 (D9, {M9i}, {I9i}, {Z9i}).

Thus the transition function is defined by d(3i[Dx
qi, e) 5 3 j[D9x

qj,
where the new set of network components (including the executive) is given
by D9x 5 projD(g(s9x)) ø {x}, and the new state q9j [ Q9j of each component
j [ D9x, is given by

q9j

5 5~dj~sj , ej 1 t~s!, xj!, 0!

~sj , ej 1 t~s!!

q0, j

if j [ Dx ù D9x∧~xj Þ B∨sj 5 t~s!!

if j [ Dx ù D9x∧xj 5 B∧sj . t~s!

if j [ D9x 2 Dx

6 ~3.1!

~3.2!

~3.3!

with xj 5 Zj (3d[Ij
Ld (qd)).

Line 3.1 of the definition computes the next state of the models that
either receive an external input or are scheduled to change; line 3.2
computes the next state of the remaining components. These models only
update their elapsed time.

All inputs to a model are considered simultaneously, making this inter-
pretation more amenable to a parallel implementation. In an earlier
version, the DSDEVS formalism imposed the condition that inputs from
different models could only be considered one at a time, serialized by a
select function.

Line 3.3 of the definition states that the new added components start in
their own initial state.

Example. Consider the simple network in Figure 3. This model repre-
sents a flow-shop, in its initial structure, with one workstation (W1) and
one product generator (G). At scheduled times, the generator shifts be-
tween the current product and a new product. This layout alteration is
performed by the flow-shop executive upon generator request. The two
types of products differ in one operation made by workstation W2. When a
product requires two operations, the visit to W2 follows the process in W1.
The flow-shop network is defined by FS 5 (x, Mx), where Mx 5 (Xx, Sx,
s0,x, g, (*, dx, tx), Xx 5 {change}, and tx(sx) 5 `.

The executive does not produce any output, it only reacts to external
messages to change the network structure. As a consequence, an executive
output function can be omitted. The initial structure is given by ( 5
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g(s0,x) 5 (D, {Mi}, {Ii}, {Zi}), where D 5 {G, W1}, MG and MW1 are DEVS
models, IG 5 {W1}, IW1 5 {G}, Ix 5 {G}, and ZG: YW1 3 XG, ZW1: YG 3
XW1, Zx: YG 3 Xx.

This network is depicted in Figure 3. We consider this the initial
flow-shop configuration. The first change command will transform this
model into a two-workstation flow-shop. At scheduled times the generator
G changes the product type by issuing a message to the executive to add or
remove one workstation to the shop floor. The executive will then commute
to another flow-shop layout. Products will differ because they do not
undergo the same set of operations. The transition function is defined by
d(s0,x, e, change) 5 s9.

The new executive state represents a flow-shop with two workstations;
that is, (9 5 g(s9) 5 (D9, {M9i}, {I9i}, {Z9i}), with D9 5 {G, W1, W2}, MG,
MW1 and MW2 are DEVS models, IG 5 {W2}, IW1 5 {G}, IW2 5 {W1}, Ix 5
{G}, and ZG: YW2 3 XG, Zx: YG 3 Xx, ZW1: YG 3 XW1, ZW2: YW1 3
XW2.

The executive state is changed by the addition of one workstation, W2.
The influencers’ set and the output functions were also modified. The new
flow-shop is represented in Figure 4. The next executive state is given by
d(s9, e, change) 5 s0.

The new executive state represents a flow-shop at the initial configura-
tion; that is ( 5 g(s0) 5 (D, {Mi}, {Ii}, {Zi}).

4.4 Parallel Formalisms

The DSDEVS, an earlier version of the DSDE formalism, is described in
Barros [1995] and Barros [1996a], and was implemented in the DELTA

modeling and simulation environment [Barros 1996b]. However, the
DSDEVS does not capture the parallel nature of discrete event systems.
The formalism uses a select function to choose and to change only one
model at each time.

In the DSDE formalism, the select function is removed by considering for
each model its influencers instead of its influencees. This allows all the
inputs to every model to be considered simultaneously, i.e., in parallel.

Fig. 3. Single workstation network.
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The P(arallel)-DEVS, a formalism to capture the parallelism in static
structure discrete event systems, is described in Chow and Zeigler [1994].
This formalism also removes tie breaks. However, it still keeps the influ-
ences of each model, and does not allow the existence of model self-loops. A
more detailed comparison of the DSDE and P-DEVS formalisms is not in
the scope of this paper, and can be found in Barros [1997a].

Parallelism can be seen at two levels: (1) implementation and (2) formal-
ism. At the former level, all modeling formalisms allow some type of
parallelization. We refer to parallelism at the formalism level only. Al-
though the original differential equation and discrete time networks are
inherently parallel, discrete event networks were designed to be sequential
[Zeigler 1976]. To our knowledge, the P-DEVS and the DSDE are the only
discrete event formalisms that work in parallel; i.e., that do not have a tie
break function to select just one event when several occur at the same time.

All the network formalisms rely on the definition of the influencers of a
model. However, the formalisms for static structure models have two
different types of definitions [Zeigler 1976]. Differential equations and
discrete time networks are based on the set of influencers; but discrete
event networks are defined with the set of influences. Thus the first two
networks are parallel in nature, while discrete event networks must be
interpreted in a sequential, i.e., nonparallel, way.

4.5 Modeling Heterogeneous Systems

Current modeling and simulation methodology does not provide a common
definition of networks for the various types of system specifications [Prae-
hofer 1991]. This situation makes it difficult to integrate heterogeneous
models. Here we outline the benefits of the methodology just developed for
mixing heterogeneous systems.

Although there are many methods to integrate differential equations,
they are all variations of sampling methods. In these methods, components
are sampled at some rate (usually fixed), and a numerical integration
method is used to compute the descriptive variables. From the computa-

Fig. 4. A two-workstation flow-shop.
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tional perspective, these methods have been implemented by discrete time
machines.

A discrete time system can be viewed as a special case of a discrete event
system with a constant time advance function. However, combining these
two systems is not easy, since in the previous simulation methodology they
had a different network definition. In the methodology presented here,
integration of discrete time and discrete event systems is easier to accom-
plish because all types of networks share the same definition.

5. CONCLUSIONS

We have described three new modeling formalisms for the specification of
dynamic structure system networks: (1) dynamic structure discrete time
system specification, (2) parallel dynamic structure discrete event system
specification, and (3) dynamic structure differential equation system specifi-
cation. We proved that these formalisms are closed under coupling, and can
thus be used to build models in a hierarchical and modular way. Their
parallel nature makes them amenable to implementation on parallel com-
puters. Research is currently being developed to make a computational
implementation of the formalisms.
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