IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received August 10, 2019, accepted August 22, 2019, date of publication September 3, 2019, date of current version

September 18, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2939142

Heterogeneous Implementation of a Voronoi

Cell-Based SVP Solver

GABRIEL FALCAO', (Senior Member, IEEE), FILIPE CABELEIRA',

ARTUR MARIANO'“2, AND LUIS PAULO SANTOS?23

! Department of Electrical and Computer Engineering, Instituto de Telecomunicages, University of Coimbra, 3030-290 Coimbra, Portugal

2INESC TEC, 4200-465 Porto, Portugal
3Departamento de Informatica, Universidade do Minho, 4710-057 Braga, Portugal

Corresponding author: Gabriel Falcao (gff @co.it.pt)

This work was supported in part by the Instituto de Telecomunicagdes, in part by the Fundagao para a Ciéncia e a Tecnologia (FCT) under
Grant UID/EEA/50008/2019 and Grant PTDC/EEI-HAC/30485/2017, and in part by the National Funds through the Portuguese Funding
Agency, FCT—Fundago para a Ciéncia e a Tecnologia, under Grant UID/EEA/50014/2019. The work of A. Mariano was supported by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Grant 382285730.

ABSTRACT This paper presents a new, heterogeneous CPU+GPU attacks against lattice-based (post-
quantum) cryptosystems based on the Shortest Vector Problem (SVP), a central problem in lattice-based
cryptanalysis. To the best of our knowledge, this is the first SVP-attack against lattice-based cryptosystems
using CPUs and GPUs simultaneously. We show that Voronoi-cell based CPU+4-GPU attacks, algorithmically
improved in previous work, are suitable for the proposed massively parallel platforms. Results show that
1) heterogeneous platforms are useful in this scenario, as they increment the overall memory available in
the system (as GPU’s memory can be used effectively), a typical bottleneck for Voronoi-cell algorithms, and
we have also been able to increase the performance of the algorithm on such a platform, by successfully
using the GPU as a co-processor, 2) this attack can be successfully accelerated using conventional GPUs
and 3) we can take advantage of multiple GPUs to attack lattice-based cryptosystems. Experimental results
show a speedup up to 7.6x for 2 GPUs hosted by an Intel Xeon E5-2695 v2 CPU (12 cores x2 sockets)
using only 1 core and gains in the order of 20% for 2 GPUs hosted by the same machine using all 22 CPU
threads (2 are reserved for orchestrating the GPUs), compared to single-CPU execution using the entire 24
threads available.

INDEX TERMS Lattices, lattice-based cryptanalysis, Voronoi-cell, algorithms, high performance com-
puting, parallelism, multi-threading, multicores, graphics processing units, multi-GPU, parallel computing,

CUDA, OpenMP, StarPU.

I. INTRODUCTION

Two decades ago, it was shown that quantum computers
will easily break current cryptosystems. With the discov-
ery of polynomial time algorithms, solving the underlying
mathematical problems, such as factorization of large num-
bers and the computation of discrete logarithms becomes far
simpler [8], [42], [43]. Since then, finding efficient alterna-
tives to classical cryptosystems, such as RSA and ElGamal,
has become a central goal for the cryptography scientific
community.

The associate editor coordinating the review of this article and approving
it for publication was Gang Mei.

127012

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

A. PREPARING FOR THE POST-QUANTUM ERA

As time went by, several cryptosytems have been proposed
[4], [10], [15], [19], [20], in order to anticipate the rise
of this so-called post-quantum era. In fact, this has been
a race against the clock, as it urges to find efficient and
safe alternatives before quantum computers are practical.
Therefore, all the proposed cryptosytems are based on the
premise that adversaries cannot brake them, even if they have
access to large-scale quantum computers. This is typically
impossible to prove and empirical attacks have to be con-
ducted, so that security parameters are defined based on the
empirical performance of the best attacks, implemented on
the best computing platforms. Until quantum computers are
available, we are forced to draw conclusions based on the

VOLUME 7, 2019

https://orcid.org/0000-0002-5006-3662

G. Falcao et al.: Heterogeneous Implementation of a Voronoi Cell-Based SVP Solver

IEEE Access

best computing platforms available today, such as massively
parallel platforms. Up until now, there is substantial work on
computing platforms with tens of CPU cores e.g. [9], [13],
[30], or, alternatively, solely on GPUs, but there is no work on
CPU+GPU platforms, except for building blocks for attacks
rather than attacks themselves [23] or attacks that can be
broken down into many instances of the same attack [25],
which is typically not the case with most attacks.

B. LATTICE-BASED CRYPTOSYSTEMS

Currently, lattice-based cryptosystems constitute the most
promising type of post-quantum cryptosystems; first, they
support Fully Homomorphic Encryption [18], which allows
any operation on encrypted data without decrypting it, sec-
ond, they are relatively efficient in practice [4], [33], and
third, they are easy to implement [22], [31], [32]. Needless to
say, they are also believed to be safe against quantum adver-
saries [8], [33]. The key concept of most modern and ancient
cryptosystems is a mathematical problem that is easily solved
by the parties using the cryptosystem but very hard to solve by
eavesdroppers. For lattice-based cryptosystems, those prob-
lems are the Shortest Vector Problem (SVP), the Closest
Vector Problem (CVP) and derivatives of these. The reason
why lattice-based cryptosystems are believed to be secure
for the post-quantum era is that these problems cannot be
solved (exponentially) faster with quantum computers, when
compared to conventional computers. In this paper, we refer
to the algorithms that solve these problems as attacks.

C. LATTICES
As lattices are the backbone of lattice-based cryptosystems,
it is important to explain this concept.

Lattices are discrete subgroups of the n-dimensional
Euclidean space R”, with a strong periodicity property. We
refer the reader to the papers [35], [39] in order to learn
more about lattices, especially in the context of lattice-based
cryptography.

A lattice £ generated by a basis B, a set of linearly inde-
pendent vectors by, ... ,b,, in R", is denoted by:

m

L(B) = xeR":x:Zuibi,ueZm}, (1)
i=1

where m < n is the rank of the lattice. When m = n,

the lattice is said to be of full rank. When n is at least 2, each

lattice has infinitely many different bases.

Although there are non-integer lattices, lattice-based cryp-
tography commonly uses integer lattices in practice: solving
lattice problems on integer lattices is still hard, and integer
lattices are easier to handle computationally (e.g. there are
no precision/numerical problems). As an example, Figure 1
shows a lattice in R?, where the basis is B = {b1, by}.
The vector b3 shown in the picture is a linear combination
of the basis vectors. This linear combination also shows
that b1 can be made shorter (in terms of Euclidean norm,
which is the default meaning of length in the context of this

VOLUME 7, 2019

FIGURE 1. Example of a lattice in R2 and its basis (b;,b,) in red.

paper) at the cost of by, given that b3 is smaller than by.
This process, of making lattice vectors (bases) shorter by
adding/subtracting other lattice vectors, is often referred to as
vector (basis) reduction, and is widely used in various lattice
algorithms.

D. LATTICE PROBLEMS FOR LATTICE-BASED
CRYPTOGRAPHY

The security of lattice-based cryptosystems is based on prob-
lems like the SVP, CVP and approximated versions of these.
These problems have been widely studied over the last
decades, especially from a theoretical standpoint e.g. [2], [3],
[17], [26], [34]. The work around implementations of these
problems has also been getting traction over the last decade.
In particular, many parallel, efficient versions of algorithms
that solve these problems have been proposed e.g. [9], [13],
[21], [30]. As mentioned, this is key to assess the security of
the cryptosystems, by assessing the real hardness of SVP and
other problems that underpin the security of the cryptosys-
tems. The key idea is that cryptosystems have the so called
“security parameters” (e.g. the key size), which cannot be
predicted upfront in order to make the system secure. Instead,
we rely on the performance and potential of the best attacks,
in order to extrapolate such parameters. Intuitively, we would
simply set these parameters very high, but the problem is
that this leads to inefficient (i.e. slow) cryptosystems (and
setting them too low results in insecure systems). Therefore,
only practical testing with attacks enables us to choose realist,
grounded parameters that are both efficient and secure. To this
end, attacks must leverage all the computing power available
on the system, which often goes well beyond the CPU, includ-
ing co-processors initially dedicated to specific tasks, such
as the GPUs. As the implementation of algorithms on het-
erogenous CPU+GPU architectures poses many challenges,
including e.g. data management and workload distribution,
this is usually done with frameworks that assist programmers
in this task. In this paper, we used StarPU [6], a task-based
framework for CPU+GPU architectures, which we briefly
present later on. As we show in this paper (Section V explains
this in detail), we have identified a gap in the available work:
there is very little exploration of heterogeneous platforms in

127013

IEEE Access

G. Falcao et al.: Heterogeneous Implementation of a Voronoi Cell-Based SVP Solver

the context of lattice-based cryptosystems and none pertain-
ing to hard attacks, such as those based on the SVP, which we
solve in this paper.

E. OUR CONTRIBUTION

In this paper, we select a type of attack — an SVP-solver based
on the Voronoi cell of a lattice — that has been often mentioned
in the literature [2], [12], [34], but rarely studied or published
about, as this algorithm is commonly accepted as impractical.
In this work, we show that the algorithm can be made practical
while taking advantage of massively parallel architectures,
in particular those with CPUs and GPUs. This work is also
innovative as we present the first ever heterogeneous imple-
mentation in the context of lattice-based cryptanalysis and the
SVP in particular. There are two main motivations for this
work: 1) although we are aware of this algorithm practical
limitations, due to increasing memory requirements with the
number of dimensions, the actual performance of Voronoi
cell was never studied in-depth, something we address in
this paper and 2) this is the first paper on a single instance
of a SVP attack implemented on a CPU+GPU platform,
providing novel insight on how to make use of these platforms
in the context of lattice-based cryptanalysis. Implementing
this algorithm on heterogeneous environments makes sense
at several levels, one of which being the possibility to har-
ness the entire memory space in the hardware, a remarkable
problem in Voronoi cell-based algorithms. Our optimizations
on this algorithm, together with the heterogeneous implemen-
tation that we devised, show that the algorithm is far more
practical than previously thought. We hope that this paper
opens up a new realm of research around Voronoi cell-based
algorithms for lattice-based cryptanalysis.

F. ROADMAP

Section II shows the specifications of the hardware we used
to conduct the experiments reported on this paper. Section I1I
presents the algorithms, including the original Voronoi algo-
rithm [2] and its upgraded version, Voronoi 2.0 Section IV
briefly presents a CUDA implementation of Voronoi 2.0,
which kickstarted our work. Section V lays out the reasons
for using CPU+GPU platforms for this problem. Section VI
goes over our heterogeneous implementation, briefly pre-
senting StarPU, which underpins our implementation, and
the several aspects of the heterogeneous implementation,
including workload distribution, scheduling and data man-
agement. It also shows the performance of our heterogeneous
implementation in practice, whose results we comment on.
Section VII shows the practical impact of our contributions
and Section VIII concludes the paper.

Il. HARDWARE SPECIFICATIONS
To carry out the tests in this paper, we picked the machines
specified in Table 1.

The clock frequency in parenthesis is the maximum fre-
quency of the CPU, when Turbo Boost is turned on. L1 cache
values are split between instruction cache (i) and data

127014

TABLE 1. Specifications of our computer systems. SMT stands for
simultaneous multi-threading and HT stands for hyper threading.

Machine A B

Sockets 1 2

CPU Intel Core i3 6100 Intel Xeon E5-2695 v2
Clock frequency 3.70 GHz 2.40 GHz (3.20 GHz)
Cores per

socket 2 12

SMT Yes (W/HT, 4 threads) | Yes (W/HT, 24 threads)
L1 Cache 32kBi+32kBd 32kBi+32kBd

L2 Cache 256 kB 256 kB

L3 Cache 3 MB 30 MB

RAM 8 GB 64 GB

Number of GPUs | 1 2

GPU T&Iﬁé’}gelzorce NVIDIA Tesla K20m
GPU Clock rate 1759 MHz 706 MHz

GPU RAM 6 GB 5 GB

g‘l: z;) ?l‘e’:“MP GCC (g++) 5.4.0 GCC (g++) 4.4.6
CUDA CUDA Toolkit CUDA Toolkit
Compiler 9.1 Compiler (nvce) 7.0.28 Compiler (nvce)

cache (d). Machine A runs Ubuntu 16.04.1 x86_64 with
kernel version 4.13 and Machine B runs CentOS x86_64 with
kernel version 2.6.32. All programs were compiled with the
-march=native -03 optimization flags.

The lattices used in this paper were obtained using
the SVP-Challenge (https://www.latticechallenge.org/svp-
challenge/) lattice basis generator.

lll. THE ALGORITHM(S)
A. VORONOI CELL BY AGRELL ET AL.
The algorithm we implemented on our CPU+GPU comput-
ing platform, called Relevant vectors was presented by Agrell
et al. in [2]. In essence, this algorithm is an enumeration-
based CVP solver that can be adapted to solve the SVP, com-
pute the Voronoi cell of a lattice, and other lattice problems.
Formally, the Voronoi cell V of a lattice £ — the set of all
points closest to zero than any other lattice point — is given
by Equation 2,

VO ={xeR":|xl| <llx—vI| YveLl}, (2
where n is the dimension of the lattice.

The idea behind enumeration algorithms is to examine all
possible lattice points inside a certain radius — either from an
hypersphere or a parallelepiped (the Voronoi-cell algorithm
is based on the former).

The Relevant Vectors algorithm uses this enumeration-
based CVP-solver to compute the Voronoi cell of a lattice.
We can break down this algorithm into 4 steps:

o first, the algorithm generates the target vectors, which

will later feed the enumeration-based CVP-solver;

« second, the lattice basis is converted to a lower triangular
form (that exists for all lattice bases), required by the
CVP-solver, so that lattices of any type are supported;
this is equivalent to a change in coordinate system. The
target vectors are also transformed into the new coordi-
nate system.

VOLUME 7, 2019

G. Falcao et al.: Heterogeneous Implementation of a Voronoi Cell-Based SVP Solver

IEEE Access

« third, the CVP-solver (please see Algorithm Decode in
paper [2]) is executed over all target vectors; this is
referred to as the decode step;

« fourth, the output of the decode function is converted
back to the original coordinate system and processed.
If the result is valid, i.e. the decoded vector is indeed a
relevant vector, it is added to the list of relevant vectors.

The solution to the SVP is the shortest vector of the Voronoi

relevant vectors (set N in Algorithm 1). The pseudo-code of
the implementation is shown in Algorithm 1.

Algorithm 1 Relevant Vectors

Input: Basis matrix B
Output: Relevant Vectors A

1 M =Reduce(B); /* for example, using the
LLL algorithm =/

2 [Q, R] = QR decomposition of M;

3 G=RT;

s H=GL; /% lattice basis on modified

coordinate system */

N=2; /+ list of relevant vectors =/

6 TV = Compute(TV); /% see (3) %/

7 forall the vectors s € TV do

X = AllClosestPoints(M, H, Q, s);
9 if | X'| = 2 then
10 | N=NU{2x-2s:xe X}

W

11 return N/

Function AllClosestPoints
Input: Matrix M, matrix H, matrix Q, vector s
Output: List of vectors X

1 Compute x = SQT; /* conversion of the
target vector to the modified
coordinate system */

U = Decode(H, x);

Compute y as the lowest value |[uM — s|| for all u € U;
Compute X as all {uM :u e, |j[uM —s|| = y}
return X

N A W N

As shown in Line 1 of Algorithm 1, it is desirable to
use a lattice basis reduction algorithm on the input basis
B, resulting in the reduced basis M (this could either be
done with LLL [27] or BKZ [11], [41]), as SVP-solvers find
shortest vectors faster on reduced bases. This increases both
performance and numerical stability, given that lattice basis
reduction algorithms shorten the basis vectors.

After reducing the input basis, the algorithm performs
the coordinate system transformation. Given this is constant
for a given lattice, it is only performed once. This can be
achieved with e.g. a QR decomposition. Afterwards, the s;,
i=1,...,2" — 1 target vectors (where n is the dimension of
the lattice) are generated according to Equation 3.

TVM) = {s =M :ze{0,1/2)" — {0}} 3)

VOLUME 7, 2019

After this step, the algorithm enters the main loop, com-
posed of iterations that decode a target vector.

The decode procedure outputs I/, which is then processed
according to Equation 4, resulting in set X.

y min[||uM—s||fora1]ueU}

X

{uM:ueU,HuM—sII:J/] 4)

If set & has two, and only two vectors, then the solution
is valid, a relevant vector has been found, and it is added to
the list of relevant vectors . In this case, these vectors are
symmetric to one another and, therefore, have the same norm
(if the SVP is to be calculated, we only need to keep one
of these vectors). Conversely, if only one or more than two
vectors are returned in matrix X, the result is not valid, and
is discarded.

B. VORONOI 2.0

In [38], we proposed a number of modifications to this algo-
rithm, resulting in an algorithm we call Voronoi 2.0, which
we describe very briefly in this section, as we generalize our
results for this algorithm as well (although this algorithm
cannot be ported to an heterogeneous platform the same way
as we do in this paper, as we will explain later on). In essence,
we were able to 1) find a correlation between the target
vectors and their solution (i.e. the solution of the decode
procedure on them), concluding that, in general, the smaller
the target vectors, the smaller their solution and 2) determine
that, if target vectors are sorted by increasing norm, we only
need to decode a given percentage (which varies depending
on the used lattice basis) of the target vectors. This enabled us
to implement improvements to specifically address the SVP,
including:

o Pruning. We implement simple pruning (where we sim-
ply discard target vectors whose norm is larger than the
norm of the shortest solution vector found up until some
point), Gaussian pruning (where we also discard vectors,
but according to the Gaussian heuristic, a popular heuris-
tic in the context of SVP-solvers) and the previous two
combined.

o Sorting. We determined that sorting the target vectors
upfront would result in a speedup if pruning is used.

These optimizations yield a speed up relatively to Voronoi
1.0 that can be as high as 800x, as demonstrated in [38].
Additionally, in the same paper, we presented a CPU imple-
mentation that scales linearly with the number of CPU cores
and a GPU implementation, which we briefly reproduce in
Section IV, that is competitive with the CPU version.

IV. A CUDA GPU IMPLEMENTATION

This work is based on the first Voronoi-cell based algo-
rithm proposed in the context of lattice-based cryptanalysis,
by Agrell et al. [2]. In particular, this builds up on ideas that
we used to implement a parallel GPU version of the algorithm
[38], whose performance we show in Figure 2.

127015

IEEE Access

G. Falcao et al.: Heterogeneous Implementation of a Voronoi Cell-Based SVP Solver

10

-

Execution Time (s)

o
.

10 11 12 13 14 15 16 17 18 19 20
Lattice Dimension

FIGURE 2. CUDA execution time (Machine A).

As with any other attack against lattice-based cryptosys-
tems, the required time to solution grows exponentially.
Although this algorithm is among the best from a complexity
standpoint, it hits a memory wall pretty quickly (that is, for
relatively low dimensions). This depends on how exactly the
implementation is devised, but as a reference, we can safely
say that if a thread decodes a single target vector, memory
usage for dimension 25 would be 386 GB, ballpark. The more
vectors are decoded per thread, the lower this figure, but the
lower the parallelism degree in the GPU and therefore the
lower the performance. In other words, for the implementa-
tion to be efficient, the memory requirements are too high and
memory limitation is hit quickly.

On the other hand, there are no memory walls hit for
sieving (and enumeration, more prominently) until at the
very least dimension 80 or so e.g. [28], [30]. This was
our motivation to design Voronoi 2.0; by pruning the set
of target vectors it reduces both memory and computation
requirements. Sadly, implementing Voronoi 2.0 on GPUs
(and heterogenerous platforms, for that matter) has, as we will
show, 2 major obstacles. The first problem concerns the use
of memory. The memory available in one GPU is too small
to test the algorithm on “‘relatively interesting” dimensions.
Although Voronoi 2.0 is much less memory-demanding than
the original Voronoi-cell algorithm, there are still consid-
erable memory requirements. On a relatively modern and
memory-capable GPU with, say, 6GB, we would probably
not surpass dimension 21-23 with Voronoi 2.0 for safe prun-
ing parameters (to understand the goal of pruning parameters,
we refer the reader to [38]).

The second obstacle pertains to the impossibility of imple-
menting (efficient) critical sections on GPUs (and heteroge-
neous systems). Our Voronoi 2.0 algorithm relies on critical
sections in order to prune the set of target vectors to con-
sider, a procedure that is repeated many times throughout the
application. As such, we see this as a critical problem, which
has no quick fix, and therefore we have started by studying
the effect of the original Voronoi-cell based algorithm on

127016

heterogeneous systems first, which is the central goal of this
paper. We believe that it is possible to infer the performance of
Voronoi 2.0 on these systems, based on the results we present
if this problem is solved. In fact, we comment on this later on
in this paper.

V. WHY TO USE CPUS AND GPUS?

There are essentially 3 reasons why it makes sense to
study Voronoi (both the original as well as Voronoi 2.0) on
CPU+GPU computing platforms.

The first reason is related with security. Making use of all
resources available on the computing platform is a critical
problem in the context of lattice-based cryptanalysis, as we
briefly explained in Section I and explain in more detail
in Section VII, later in this paper. In short, this is because
adversaries may have these computational resources at their
disposal, and therefore it is critical for cryptographers to
know how powerful a given attack is on such computing
platforms. To the best of our knowledge, there are no pub-
lished works on heterogeneous CPU+GPU attacks against
lattice-based cryptosystems, although this has been done in
the context of current, pre-quantum cryptosystems and their
cryptanalysis e.g. [16], [36].

Another critical factor to consider is the power required
to successfully attack a cryptosystem. In fact, some players
may define key sizes based on the financial capability of
possible adversaries, under the premise that certain attacks
are not financially viable regarding the power they require
to break a cryptosystem, which is intrinsically given by a
dollar-day metric [40]. Since GPUs are known to be more
power efficient than CPUs in terms of dollars per FLOP
(= dollars per watt times watt per FLOP), even though this
depends on the exact used GPU [1], it is fundamental to
include them while assessing attacks in practice. In fact,
it has been shown that CPU+4GPU platforms can be even
more energy/resource efficient than using CPUs or GPUs
isolated [14], [24]. This aligns well with the natural energy
consumption wall that needs to be investigated in the context
of lattice-based cryptanalysis, which should be explored with
the usage of heterogeneous systems, as we do in this paper.

The third reason is the natural memory increase, as we use
more computing devices. Obviously, adding more computing
devices increases the memory available and as we explained
in Section IV, Voronoi is a memory-eager algorithm. This is
also true for other SVP-attacks, such as sieving algorithms
[26], [29], [30], which also hit a memory wall but also are
able to trade memory consumption and execution time. This
allows us to reach higher dimensions.

These reasons motivate an heterogeneous implementation,
based on CPUs + GPUs, as detailed in the following.

VI. AN HETEROGENEOUS IMPLEMENTATION OF THE
VORONOI CELL ALGORITHM

The core contribution of this work is the implementation
of the Voronoi cell based algorithm on an heterogeneous
platform, meaning an implementation that could make use of

VOLUME 7, 2019

G. Falcao et al.: Heterogeneous Implementation of a Voronoi Cell-Based SVP Solver

IEEE Access

the CPU and the GPU simultaneously. As mentioned before,
such an implementation of Voronoi 2.0 has a major obstacle.
This version of the algorithm has to use a critical section (or
similar, as long as it is safe to use concurrent accesses) to
update the minimum norm at a given moment. Sadly, neither
CUDA nor StarPU allow critical sections among different
SMs without compromising parallelization gains, a crucial
feature for this implementation. There are software-based
solutions that allow critical sections between SMs, but these
are very inefficient since these operations must be executed
sequentially by the CUDA threads (especially if if used often
throughtout the application, as in this case) and would render
our implementation too slow. As a critical section is not feasi-
ble within the GPU, we were forced to implement the original
Voronoi cell algorithm on our CPU+GPU setup, pushing
the problem of concurrent updates of the minimum norm to
future work. Yet, we can learn from this and extrapolate on a
few conclusions if Voronoi 2.0 would be implemented, as we
will show later in this paper.

A. THE STARPU FRAMEWORK IN A NUTSHELL

We have implemented an heterogeneous implementation on
top of the StarPU framework [6]. This framework integrates
the concepts of “codelets” and ‘“‘tasks”. StarPU defines
a codelet as ‘““a computational kernel that can possibly
be implemented on multiple architectures such as a CPU,
a CUDA device or an OpenCL device”, while a task ““consists
in applying a codelet on a data set, on one of the architectures
on which the codelet is implemented” . Tasks in StarPU, as is
the case with CUDA kernels, are launched asynchronously.
These tasks are executed by workers, which are processing
units or parts of one.

B. CONSIDERATIONS ON OUR IMPLEMENTATION

There is a number of aspects to consider and optimize
in a CPU+GPU implementation of the Voronoi algorithm,
including 1) workload distribution, 2) scheduling of tasks and
3) memory management, which we address in the following.

1) WORKLOAD DISTRIBUTION

As derived from the StarPU framework, we can view our
implementation as a set of tasks, which can run on a CPU
core or a (whole) GPU. Each task consists of a given fixed
number of target vector decode instances; the number of tasks
depends on the lattice dimension, as it defines the number
of decodes to perform. All in all, defining the workload
distribution in this model boils down to choosing the number
of tasks (the more tasks we create, the fewer decodes there
are within each task).

The best granularity of tasks in terms of throughput per-
formance can only be determined empirically. In the context
of lattice-based cryptanalysis, this is a major flaw, because
attacks are only ran once per lattice basis/input data; neverthe-
less, we did conduct tests to determine the best task granular-
ity. Also, if we were to develop a CPU+GPU implementation
by hand, this would be a trivial problem, as we could run a

VOLUME 7, 2019

small part of the algorithm on a small data set on both units
and thus infer a good workload distribution.

We have implemented codelets for both the CPU and GPU,
the latter being based on CUDA. Each of these codelets allo-
cate auxiliary memory for the target vectors to be decoded,
and the memory is freed once the kernel is finished.

This creates some computing stress, especially on the GPU
side, but there is no way, in our opinion, to mitigate this;
we note, however, that this is not as problematic as actually
transferring data over the PCI-e bus on every executed task,
which does not happen in our implementation.

2) SCHEDULING

The StarPU framework incorporates several different sched-
ulers, assigning tasks to the computing units (that is, the CPU
cores and the GPU(s)) transparently to the user. We have
used the eager scheduler, which stores tasks on a central task
repository which workers (either a CPU core or a GPU card)
take work (or tasks, in the introduced nomenclature) from.
This mechanism does not include data prefetching, because
the scheduler does not know upfront on what worker tasks
will be executed.

A very relevant aspect of scheduling optimization is the
granularity of tasks. We have experimented with this, run-
ning several different granularities and assessing the ultimate
results of the StarPU framework. In our particular application,
the granularity is actually given by the number of target vec-
tors incorporated on each task. We have tested runs with tasks
encapsulating a number of target vectors that can range from
210 to 216 (the number of target vectors for each dimension
is itself a power of two). To better understand how tasks
are formed, we have drawn Figure 4 as well. These tests
were done for 22 CPU threads and 2 GPU cards, our best
computing setup (StarPU requires one CPU thread to manage
each GPU). The results are shown in Figure 3, for 22 threads
and 2 GPU cards and we also show the performance for
1-22 CPU threads and 2 GPUs cards on Table 2 (in the table,
we excluded task granularity = 2!° as it performs consid-
erably worse than the other tested granularities, as shown
in Figure 3).

Given that our StarPU implementation performs best for
tasks entailing 2!2 target vectors on the maximum input size
tested, lattices in dimension 20, we have fixed this task gran-
ularity for all the results presented in the rest of this paper. As
it is amortized over several runs, all results exclude the GPU
wake-up time, i.e. the time it requires to “activate” the GPU
or the time elapsed between launching the StarPU application
and the GPU actually becoming available to execute work.

It is important to say that while the overall (that is CPU
RAM and GPU RAM) memory of the system limits the
maximum possible lattice dimension, the memory in each
GPU card also poses a challenge.

That is well verified in our tests; up until dimension 19,
the GPU kernel that processes a task will be launched with
2* threads (for task granularity = 2”). However, in dimension
20, due to the memory limitation on the GPUs (5 GBs),

127017

IEEE Access

G. Falcao et al.: Heterogeneous Implementation of a Voronoi Cell-Based SVP Solver

—a— 210 target vectors per task
— o— 212 target vectors per task ¥
—a— 24 target vectors per task ~
— v— 218 target vectors per task o

-

Execution Time (s)

Mo 11 12 138 14 15 16 17 18 19 20
Lattice Dimension

FIGURE 3. Performance of our application implemented on the StarPU

framework for different task granularities (number of target vectors per

task). All results were obtained running 22 threads and 2 GPU cards
(machine B).

we are forced to launch a maximum of 2*/2 threads per
GPU kernel, as each thread allocates additional memory per
target vector decoded (in particular, more memory as the
dimensions grows). This means that, for dimension 20, each
thread running on the GPU will decode 2 target vectors rather
than 1.

If we were able to run higher lattice dimensions (which
we cannot as our system is limited to a total of 74 GBs,
i.e., 64GBs of CPU RAM and 5GB per GPU), the number of
GPU threads launched per task would continue to drop, as the
memory required by each GPU thread would grow. Naturally,
that this would impact the performance of the GPUs and
therefore the overall performance of our StarPU application.

3) DATA MANAGEMENT

StarPU offers two functions to allocate data, starpu_malloc()
and starpu_memory_pin(). Either way, memory is (possi-
bly) transferred asynchronously, thus permitting data transfer
to be overlapped with computation. Data management is
entirely up to the framework.

In fact, this is not very relevant for our application as
the only data that is actually transferred over the PCI-e bus
is, at the end of the application, the set of relevant vec-
tors decoded on the GPU side (which is actually partitioned
among blocks, so that all tasks are data-independent before
StarPU). This matrix is once again generated by aggregating
all blocks at the end of the application, which is ilustrated
in Figure 4; we let StarPU manage data coherence. This is
simpler than managing memory explicitly, especially with
dynamic scheduling of tasks.

C. PERFORMANCE BENCHMARKS AND RESULTS

We have tested our implementation extensively to deter-
mine not only its overall performance (and actual gain in
using GPUs) but also the overhead that is incurred by
using StarPU.

127018

Relevant vector matrix 2" x n

N
N

Block 1 (for task 1)

Block with 2*? x n elements

Block k (for task k)

/ Block with 2'2 x n elements
FIGURE 4. Partition of the matrix that holds the 2" relevant vectors in
blocks with the best performing granularity, 212 target vectors per task.

Note that each block has 212 x n positions as each vector has n
coordinates.

TABLE 2. Performance of our application implemented on the StarPU
framework for different task granularities (number of target vectors per
task), for 1-22 CPU threads and 2 GPU cards (machine B), in seconds.

Tomion | 1] 2]] 8] w] =]
i 18 2121 | 1.726 | 1.202 | 0.884 | 0.580 | 0.484
o 1.091 | 1.027 | 0.896 | 0.717 | 0.561 | 0.520
12)34“' 18 1169 | 1.163 | 0.906 | 0.662 | 0.667 | 0.649
g}{}" 9 4.884 | 3.971 | 2.875 | 1.902 | 1.216 | 0.945
12’}‘;'- 19 2.379 | 2.186 | 1.838 | 1.478 | 1.047 | 0.915
i 19 2369 | 2.001 | 1.947 | 1.378 | 1.323 | 0.911
i 20 22.53 | 16.31 | 10.51 | 6.219 | 3.535 | 2.733
Dig-20 9.442 | 8.210 | 6.499 | 4.651 | 3.029 | 2.452
el 6.909 | 6.277 | 5.494 | 3.954 | 2.934 | 2.849

1) STARPU'S OVERHEAD
StarPU’s semi-automatic data scheduling and memory man-
agement does not come for free. We have tested the exact
overhead introduced by StarPU so that it does not cloud the
gains that we have by using multiple GPUs. To that end,
we have implemented a parallel CPU-only version of the
algorithm in standard C++-, with OpenMP, and compared
that against the StarPU version. We have tested multiple
thread counts so that we can comment on the scalability both
with and without StarPU. Figure 5 shows the performance of
both versions, for 1-24 threads, and for readability purposes
we also show the results for dimensions 18-10 in Table 3.
Looking at the figure, there is one result that stands out:
the overhead is much more noticeable for lower dimensions.
Note, however, that until dimension 17, most runs take less
than 1 second and therefore these results should be taken

VOLUME 7, 2019

G. Falcao et al.: Heterogeneous Implementation of a Voronoi Cell-Based SVP Solver

IEEE Access

100

—— OpenMP 1 thread
—%¥— OpenMP 8 threads
—&— OpenMP 24 threads
—& - StarPU 1 thread
=V - StarPU 8 threads
—® - StarPU 24 threads

Execution Time (s)
o

000167 32 13 14 15 16 17 18 19 20
Lattice Dimension

FIGURE 5. Performance of our application implemented on OpenMP and
StarPU (without GPUs), for 1-24 threads (machine B).

TABLE 3. Performance of the CPU version (OpenMP vs StarPU), for 1, 2, 4,
8, 16 and 24 threads, in seconds. Results obtained on Machine B.

o |] 2] e[s] e[w]
]())ipne};ulv?p 7.831 | 4.565 | 2.248 | 1.111 | 0.558 | 0.384
om 1S | 7503 | 3.960 | 1.965 | 1.063 | 0.595 | 0.451
3;‘,‘;111\21, 18.09 | 11.27 | 5.305 | 2.610 | 1.311 | 0.922
om | 19.02 | 9392 | 4535 | 2.417 | 1.205 | 0.955
gip“e};]ﬁ’l, 53.82 | 32.58 | 15.89 | 8.074 | 4.042 | 2.918
?f;'iﬁ) 54.58 | 28.16 | 13.81 | 7.142 | 3.708 | 2.598

with a pinch of salt. As we want to run the algorithm with as
many threads as possible, the overhead introduced by StarPU
on the CPU side is negligible (and sometimes, StarPU is
even faster). Although we are not sure why this happens,
it could be that the scheduler of StarPU is more efficient
than the OpenMP dynamic scheduler, the scheduler we use.
Another possible test is the overhead that StarPU introduces
on the CPU side when using GPUs. This could be tested using
the OpenMP and CUDA versions for the same workload
that StarPU ultimately assigns to the CPU and the GPU,
respectively. However, it should come at no surprise that
StarPU’s memory management and scheduling mechanisms
incur potentially large overheads and there is not much to be
learned from that, in our view.

As the lower dimensions are executed too quickly and all
the results were obtained with Turbo Boost technology turned
on, showing the actual scalability figures is not particularly
relevant. However, we can say that our StarPU application’s
scalability is in line with our OpenMP implementaiton, which
we have shown to scale linearly in previous work.

2) OVERALL PERFORMANCE
The most important test to be made is the actual overall
performance of our application simultaneously running on

VOLUME 7, 2019

100

~fl— OpenMP 1 thread
== OpenMP 8 threads

—— OpenMP 22 threads
== OpenMP 24 threads
t =M StarPU 1 thread
=¥ StarPU 8 threads

=8 StarPU 22 threads

Execution Time (s)

10 11 12 13 14 15 16 17 18 19 20
Lattice Dimension

FIGURE 6. Performance of our OpenMP implementation (1-24 threads)
and our StarPU implementation (1-22 CPU threads and 2 GPU cards).
Results obtained on machine B.

TABLE 4. Performance of our OpenMP implementation (1-24 threads)
and our StarPU implementation (1-22 CPU threads and 2 GPU cards).
(NP = Not Possible) Results obtained on Machine B.

‘ Thread ‘ 1 ‘ 2 ‘ 4 ‘ 8 ‘ 16 ‘ 22 ‘ 2 ‘
Count
Dim. 18 17 g0) | 4565 | 2.248 | 1.111 | 0.558 | 0.413 | 0.384
OpenMP : -2 :
Dim. 18
Sty | 1:091 | 1.027 | 0.896 | 0.717 | 0.561 | 0.520 NP
Dim. 19
Openvip | 18:09 | 11.27 | 5305 | 2.610 | 1311 | 0.958 | 0.922
Dim. 19 :
Sy | 2379 | 2186 | 1.838 | 1.478 | 1.047 | 0.915 NP
Dim.20 | 0 0o | 3258 | 15.80 | 8.074 | 4.042 | 3.056 | 2.918
OpenMP
Dim. 20 : : -
Smoy | 9442 | 8.210 | 6.499 | 4.651 | 3.029 | 2.452 NP

CPUs and GPUs, which we show in Figure 6. For readability
purposes we also show the results for dimensions 18-20 in
Table 4.

The results deserve a few comments. First, both imple-
mentations scale well, although as shown in Table 4, this
can only be seen in dimension 20, because other dimensions
do not run long enough for this to show up. Secondly, our
heterogeneous implementation (on StarPU) is better than
the OpenMP version if we are to compare StarPU running
22 threads and 2 graphic cards and OpenMP with 24 threads
(as mentioned, StarPU controls the execution of each GPU
with a CPU thread, thus only allowing 22 threads for actual
work). This is already true for dimension 19, even though the
execution time is very small for the higher thread counts. In
dimension 20, where the application takes about 3 seconds
with 24 OpenMP threads, we obtain a gain of roughly 20%
with our heterogeneous implementation. We expected this
gap to grow with the lattice dimension, should higher dimen-
sions be possible to run on this computing system. For higher
dimensions, the penalty paid for transferring memory over the
PCle bus will dilute (with 22 threads and 2 GPUs, the execu-
tion takes less than 3 seconds and therefore speedups are not
as noticable as if the execution took for, say, 30 minutes).

127019

IEEE Access

G. Falcao et al.: Heterogeneous Implementation of a Voronoi Cell-Based SVP Solver

The gain obtained by our heterogeneous implementation
(or, conversely, the use of GPUs) is more noticeable for
1 thread, as GPU’s represent a proportionally higher com-
puting capability in this scenario. This can be observed in
the first column for the thread counts, which compares the
OpenMP implementation with a single thread versus StarPU
with 1 CPU thread and 2 graphic cards. In this setup, our
speedup reaches 7.18x, 7.6x and 5.7x for dimension 18,
19 and 20, respectively.

We can observe that the speedup decreases with the thread
count, because the added computing power with the 2 graphic
cards becomes proportionally lower as we increase the num-
ber of threads (a good example to understand this is that if
we had, say, 1000 threads, adding these 2 GPU cards would
not make much - or any - difference). We believe that the
overall speedup is smaller for dimension 20, compared to the
lower dimensions, because the GPU threads decode 2 target
vectors instead of 1, a problem we have mentioned before.
Dimension 20 is precisely the maximum input size that satu-
rates the memory on the GPUs side. Of course that, in theory,
we could use Direct Memory Access (DMA) to overcome
this problem, but the overall memory of the system would
hit a wall anyways for a relatively low lattice dimension (e.g.
dimension 22). Plus, DMA would increase memory transfer
latency considerably, which would not be interesting in this
particular case. The central goal of this paper is to prove that
heterogeneous computing systems can be used successfully
to attack lattice-based cryptossytems.

We also conducted benchmarks to determine the workload
of each device. The GPUs executed 25% of the overall work-
load (32 out of 128 StarPU-tasks), for dimension 19, and
17% (44 out of 256) for dimension 20. We also measured
the average idle time of the GPUs (only for seed 0), which
came out at 131ms (i.e. 14% of the total execution time) for
dimension 19 and 159ms, for dimension 20 (i.e. 6.5% of the
total execution time). We believe that if it was possible to test
higher dimensions, the idle time of the GPUs would continue
to decrease as more workload gives the scheduler a chance to
optimize distribution.

Another interesting test would be to determine the gains
of a single GPU, however this is not possible for the highest
dimensions tested due to lack of memory. In fact, this is a
good example of the arguments presented in Section V, where
we argued that an heterogeneous CPU+4GPU implementation
would make sense as it increases the overall memory avail-
able, therefore allowing for higher dimensions.

A short note on inferring results for heterogeneous Voronoi
2.0 without actual testing: we believe that Voronoi 2.0 would
also be accelerated, with good results, on such an environ-
ment, even if critical sections were implemented via software.
This is because its computational essence is identical to that
of the original Voronoi algorithm, and the only difference
between the algorithms is that Voronoi 2.0 discards some
computation that Voronoi actually performs.

The efficiency of our heterogenous implementation can
also be assessed on the CPU and the GPU level. At this

127020

level two distinct scenarios occur: 1) the CPU exploits the
large amounts of cache memory available and the ability
to deal efficiently with divergence, namely through branch
predictors, execution out of order mechanisms, etc., since
control flow exists in the Voronoi algorithm when decoding
target vectors, but it looses in terms of compute capability due
to the limited number of cores available; 2) the GPU, on the
other hand, exploits quite well data-parallelism due to the
thousands of cores available, which is a known characteristic
of the Voronoi algorithm in parallel, as several decodes could
be performed in parallel and several coordinates of vectors
could be assessed in parallel, although it contains a smaller
cache memory and performs a significant number of slow
global memory accesses, that also originate bank conflicts,
retrieving/sending data from/to DRAM (please recall that
massive amounts of memory are necessary for running the
algorithm).

VII. PRACTICAL IMPACT OF OUR CONTRIBUTIONS

AND RELATED WORK

As mentioned before, this is the first ever heteroge-
neous CPU+GPU implementation of a SVP-attack against
lattice-based cryptosystems.

A. RELATION WITH CRYPTOGRAPHY

Security parameters for these systems are usually considered
based on the extrapolation of implementations of attacks
in practice. For instance, if we determine that an attack is
feasible using 32 CPU cores with a given security parameter,
then we choose a parameter such that the attack becomes
intractable on that computing platform. However, if one
argues that a given algorithm can only make use of a spe-
cific computing platform (e.g. CPUs), then extrapolations
disregard the use of other platforms or cumulative hardware
resources, such as GPUs. This opens up a gap in security,
as adversaries may be able to use these computing platforms
and therefore come up with attacks that are practical, even for
strong security parameters chosen based on the performance
of other, weaker computing platforms. This is why it is so
important to determine the performance of attacks in practice,
on the best possible computing platforms.

For instance, we have done curve fitting on the perfor-
mance of our implementations, and the execution time of our
OpenMP CPU implementation grows according to 4.57 x
10~8exp(0.8852n), the GPU CUDA implementation seems
to grow according to 4.489 x 10~ 7exp(0.8027n), and our
heterogeneous implementation, with 22 threads and 2 GPUs,
only grows according to 3.652 x 10~ 7exp(0.7847n). For
visual purposes, we plot these curves in Figure 7 for relevant
values of n, the dimension of the lattice. For dimension 40,
the OpenMP version would take 3.46 years, our heteroge-
neous implementation on StarPU would take 181 days and the
CUDA version would take 1.25 years. This can make a huge
difference when determining security parameters. Although
cryptographers define security parameters such as the key
size, let us think about.

VOLUME 7, 2019

G. Falcao et al.: Heterogeneous Implementation of a Voronoi Cell-Based SVP Solver

IEEE Access

1000

— OpenMP
— — CUDA
StarPU

100

0.1F

Execution Time (Days)

0.01¢

0001556 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Lattice Dimension

FIGURE 7. Extrapolation of the execution times of Voronoi on a CPU, on a
GPU and on the CPU+GPU platforms, based on curve fitting.

B. RELATED WORK

There are, to our knowledge, two papers exploring CPUs
and GPUs in the context of lattice-based cryptanalysis. The
first paper, published in 2011, introduced several important
concepts such as a new bounding function for enumeration
with pruning, and the price of breaking a system, in dol-
lars, depending on a few variables. The paper also pre-
sented an SVP-attack (enumeration with extreme pruning)
on CPUs and GPUs, but in a different manner than our
attack: the authors randomize several lattice basis and run
several instances of BKZ (an advanced lattice-basis reduction
algorithm) and enumeration on them. Therefore, this explores
course-grained parallelism, running several instances of the
same algorithm on different bases. The number of instances
started depends on the success probability of each instance.
This means that if the number of instances is low, then the
parallelism is also low. Plus, this is not generalizable to
other attcks (e.g. Voronoi and Sieving), because these are
based on a single instance of the algorithm running on a
single basis.

The second paper, published in 2014, implements a
relaxed version of LLL, called “cost-reduced MB-LLL”
or CR-MB-LLL, a lattice reduction algorithm, on hetero-
geneous systems [23]. The authors showed that the het-
erogeneous implementation of the CR-MB-LLL algorithm
performs better than the multi-threaded version for CPUs,
if large matrices (i.e. lattice bases) are provided as input. It
is important to say that this cannot be used as an SVP-attack,
but rather a «-SVP attack (arelaxed version of the SVP where
the solution is at most «% off the optimal solution) or a lat-
tice reduction algorithm, which is typically applied before a
“hard” SVP-attack.

We hope that our paper fosters the community to explore
heterogeneous systems with other algorithms (e.g. HashSieve
and LDSieve [7], [26] and, recently, the General Sieve Kernel
[5]1), which have been used to break higher dimensions of the
SVP-challenge with CPUs alone.

VOLUME 7, 2019

VIil. CONCLUSION

We have shown, for the first time, that heterogeneous
CPU+GPU hardware platforms can be used to attack
lattice-based cryptosystems. Although possible in theory, this
had never been shown with any algorithm before, to our
best knowledge. This opens a new realm of possibilities,
such as determining security parameters for cryptosystems
more assertively, as we now should consider platforms with
multiple GPUs in such extrapolation.

In particular, we have shown that Voronoi cell-based algo-
rithms, important algorithms in the context of lattice-based
cryptanalysis are suited for these platforms. Our results show
that using two not-so-modern GPUs (released in Jan. 2013)
in addition to a 24-core CPU system delivered a maximum
7.6x speedup, when compared to the performance of the
CPUs alone. In fact, this remained true even considering that
StarPU, the framework we implemented the algorithm on,
has to use a CPU-core to manage each additional GPU, thus
turning them off for computation; in other words, 22 CPU-
cores with 2 GPUs was a better setup for our application than
24 CPU-cores.

Voronoi’s algorithm conditional statements limit the per-
formance that can be extracted from the GPUs due to threads
divergence.

Future Work. We plan to investigate Voronoi 2.0 - an
algorithm we devised and proposed on another paper - on
CPU+GPUs in the future. To this end, we may consider
making our implementation DM A-capable to eliminate mem-
ory walls on the GPU(s) side. We are currently investigat-
ing algorithm optimizations which results on lower thread
divergence on the GPUs; additionally, future experiments will
be executed on NVidia GPUs with either Volta or Turing
architectures - these support independent thread scheduling,
which minimizes the impact of thread divergence and opti-
mizes synchronization primitives [37], therefore potentially
allowing for the implementation of Voronoi 2.0.

REFERENCES

[1] Y. Abe, H. Sasaki, S. Kato, K. Inoue, M. Edahiro, and M. Peres,
“Power and performance of GPU-accelerated systems: A closer look,”
in Proc. IEEE Int. Symp. Workload Characterization (IISWC), Sep. 2013,
pp. 109-110.

[2] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, ““Closest point search in lat-
tices,” IEEE Trans. Inf. Theory, vol. 48, no. 8, pp. 2201-2214, Aug. 2002.

[3] M. Ajtai, R. Kumar, and D. Sivakumar, ““A sieve algorithm for the shortest
lattice vector problem,” in Proc. 33rd Annu. ACM Symp. Theory Comput.,
2001, pp. 601-610.

[4] S. Akleylek, N. Bindel, J. Buchmann, J. Krimer, and G. A. Marson,
“An efficient lattice-based signature scheme with provably secure instanti-
ation,” in Proc. 8th Int. Conf. Prog. Cryptol. (AFRICACRYPT), vol. 9646.
Berlin, Germany: Springer-Verlag, Apr. 2016, pp. 44—60. [Online]. Avail-
able: https://eprint.iacr.org/2016/030. doi: 10.1007/978-3-319-31517-1_3.

[5] M. R. Albrecht, L. Ducas, G. Herold, E. Kirshanova, E. W. Postlethwaite,
and M. Stevens “The general sieve kernel and new records in lattice
reduction,” Cryptol. ePrint Arch., Tech. Rep. 2019/089, 2019. [Online].
Auvailable: https://eprint.iacr.org/2019/089

[6] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, *“StarPU:
A unified platform for task scheduling on heterogeneous multi-
core architectures,” in Euro-Par 2009 Parallel Processing, H. Sips,
D. Epema, and H.-X. Lin, Eds. Berlin, Germany: Springer, 2009,
pp. 863-874.

127021

http://dx.doi.org/10.1007/978-3-319-31517-1_3

IEEE Access

G. Falcao et al.: Heterogeneous Implementation of a Voronoi Cell-Based SVP Solver

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

A. Becker, L. Ducas, N. Gama, and T. Laarhoven, ‘“New directions in near-
est neighbor searching with applications to lattice sieving,” in Proc. 27th
Annu. ACM-SIAM Symp. Discrete Algorithms (SODA). Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics, 2016, pp. 10-24.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2884435.2884437
D. Bernstein, J. Buchmann, and E. Dahmen, Eds., Post-Quantum
Cryptography. Berlin, Germany: Springer-Verlag, 2009. [Online]. Avail-
able: http://www.springerlink.com/content/978-3-540-88701-0

J. W. Bos, M. Naehrig, and J. van de Pol, “Sieving for shortest vectors
in ideal lattices: A practical perspective,” Cryptol. ePrint Arch., Tech.
Rep. 2014/880, 2014. [Online]. Available: https://eprint.iacr.org/2014/880
J. Buchmann, E. Dahmen, and A. Hiilsing, “XMSS—A practical forward
secure signature scheme based on minimal security assumptions,” in Proc.
4th Int. Conf. Post-Quantum Cryptogr. (PQCrypto), 2011, pp. 117-129.
Y. Chen and P. Q. Nguyen, “BKZ 2.0: Better lattice security estimates,”
in Proc. Adv. Cryptol.-ASIACRYPT, 17th Int. Conf. Theory Appl. Cryptol.
Inf. Secur. Berlin, Germany: Springer, 2011, pp. 1-20.

F.J. G. Correia, “Assessing the hardness of SVP algorithms in the presence
of CPUs and GPUs,” M.S. thesis, Dept. Inform., Univ. Minho, Braga,
Portugal, 2014.

O. Dagdelen and M. Schneider, “Parallel enumeration of shortest lattice
vectors,” in Proc. Euro-Par-Parallel Process., 16th Eur. Conf. Parallel
Process.. Berlin, Germany: Springer, 2010, pp. 211-222.

T. Dong, V. Dobrev, T. Kolev, R. Rieben, S. Tomov, and J. Dongarra,
“A step towards energy efficient computing: Redesigning a hydrodynamic
application on CPU-GPU,” in Proc. IEEE 28th Int. Parallel Distrib. Pro-
cess. Symp., May 2014, pp. 972-981.

L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky, “Lattice signatures
and bimodal Gaussians,” JACR Cryptol. ePrint Arch., vol. 2013, p. 383,
2013.

H. M. Fadhil and M. 1. Younis, ““Parallelizing RSA algorithm on multicore
CPU and GPU,” Int. J. Comput. Appl., vol. 87, pp. 15-22, Feb. 2014.

N. Gama, P. Q. Nguyen, and O. Regev, ‘‘Lattice enumeration using extreme
pruning,” in Proc. EUROCRYPT, 2010, pp. 257-278.

C. Gentry, ““A fully homomorphic encryption scheme,” Ph.D. dissertation,
Dept. Comput. Sci., Stanford, CA, USA, 2009, Art. no. aAI3382729.

O. Goldreich, S. Goldwasser, and S. Halevi, “Public-key cryptosys-
tems from lattice reduction problems,” in Proc. 17th Annu. Int. Cryp-
tol. Conf. Adv. Cryptol. (CRYPTO). London, U.K.: Springer-Verlag,
1997, pp. 112—131. [Online]. Available: http://dl.acm.org/citation.cfm?id=
646762.706185

J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: A ring-based public
key cryptosystem,” in Algorithmic Number Theory (Lecture Notes in Com-
puter Science). Berlin, Germany: Springer-Verlag, 1998, pp. 267-288.

T. Ishiguro, S. Kiyomoto, Y. Miyake, and T. Takagi, ‘“‘Parallel Gauss
Sieve algorithm: Solving the SVP challenge over a 128-dimensional ideal
lattice,” in Public-Key Cryptography—PKC (Lecture Notes in Computer
Science), vol. 8383. Berlin, Germany: Springer, 2014, pp. 411-428.

J. Ding, X. Xie, and X. Lin, “A simple provably secure key exchange
scheme based on the learning with errors problem,” Cryptol. ePrint
Arch., Tech. Rep. 2012/688, 2012. [Online]. Available: https://eprint.iacr.
org/2012/688

C. M. J6zsa, F. Domene, A. M. Vidal, G. Pifiero, and A. Gonzélez, ‘‘High
performance lattice reduction on heterogeneous computing platform,”
J. Supercomput., vol. 70, no. 2, pp. 772-785, Nov. 2014. doi: 10.1007/
s11227-014-1201-2.

K. Kothapalli, D. S. Banerjee, P. J. Narayanan, S. Sood,
A. K. Bahl, S. Sharma, S. Lad, K. K. Singh, K. Matam, S. Bharadwaj,
R. Nigam, P. Sakurikar, A. Deshpande, I. Misra, S. Choudhary, and
S. Gupta, “CPU and/or GPU: Revisiting the GPU vs. CPU myth,” CoRR,
vol. abs/1303.2171, Mar. 2013, pp. 1-20.

P-C. Kuo, M. Schneider, O. Dagdelen, J. Reichelt, J. Buchmann,
C.-M. Cheng, and B.-Y. Yang, “Extreme enumeration on GPU and
in clouds,” in Proc. Cryptograph. Hardw. Embedded Syst.-CHES, 13th
Int. Workshop Cryptograph. Hardw. Embedded Syst. Berlin, Germany:
Springer, 2011, pp. 176-191.

T. Laarhoven, “Sieving for shortest vectors in lattices using angular
locality-sensitive hashing,” in Proc. CRYPTO, 2015, pp. 3-22.

A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovdsz, “Factoring polynomials
with rational coefficients,” Math. Annabel, vol. 261, no. 4, pp. 515-534,
1982.

A. Mariano, T. Laarhoven, and C. Bischof, ““A parallel variant of LDSieve
for the SVP on lattices,” in Proc. 25th Euromicro Int. Conf. Parallel,
Distrib. Netw.-Based Process. (PDP), Mar. 2017, pp. 23-30.

127022

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(391

(40]

[41]

(42]

[43]

A. Mariano, “High performance algorithms for lattice-based cryptanaly-
sis,” Ph.D. dissertation, Dept. Comput. Sci., Technische Universitit Darm-
stadt, Darmstadt, Germany, 2016.

A. Mariano and C. Bischof, “Enhancing the scalability and memory usage
of HashSieve on multi-core CPUs,” in Proc. PDP, 2016, pp. 545-552.

A. Mariano, T. Laarhoven, F. Correia, M. Rodrigues, and G. Falcdo, “A
practical view of the state-of-the-art of lattice-based cryptanalysis,” IEEE
Access, vol. 5, pp. 24184-24202, 2017.

P. Martins, L. Sousa, and A. Mariano, “A survey on fully homomorphic
encryption: An engineering perspective,” ACM Comput. Surv., vol. 50,
no. 6, p. 83,2017.

D. Micciancio and O. Regev, ‘“‘Lattice-based cryptography,” in Post-
Quantum Cryptography. Berlin, Germany: Springer, 2009, pp. 147-191.
D. Micciancio and P. Voulgaris, “A deterministic single exponential time
algorithm for most lattice problems based on Voronoi cell computations,”
in Proc. STOC, 2010, pp. 351-358.

P. Q. Nguyen and J. Stern, “The two faces of lattices in cryptology,” in
Proc. CaLC, 2001, pp. 146-180.

E. Niewiadomska-Szynkiewicz, M. Marks, J. Jantura, M. Podbielski, and
P. Strzelczyk, “Comparative study of massively parallel cryptalysis and
cryptography on CPU-GPU cluster,” in Proc. Mil. Commun. Inf. Syst.
Conf., Oct. 2013, pp. 1-8.

NVIDIA. (2017). Nvidia Tesla V100 GPU Architecture. [Online].
Available: https://images.nvidia.com/content/volta-architecture/pdf/volta-
architecture-whitepaper.pdf

Omitted for Blind Review, Omitted, 2019.

O. Regev, Lattice-Based Cryptography. Berlin, Germany: Springer, 2006,
pp. 131-141.

M. Riickert and M. Schneider, “Estimating the security of lattice-
based cryptosystems,” IACR Cryptol. ePrint Archive, vol. 2010, p. 137,
Jan. 2010.

C. P. Schnorr, “A hierarchy of polynomial time lattice basis reduction
algorithms,” Theor. Comput. Sci., vol. 53, nos. 2-3, pp. 201-224, 1987.
P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in Proc. 35th Annu. Symp. Found. Comput. Sci. (SFCS).
Washington, DC, USA: IEEE Computer Society, Nov. 1994, pp. 124-134.
doi: 10.1109/SFCS.1994.365700.

P. W. Shor, “Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer,” SIAM J. Comput., vol. 26, no. 5,
pp. 1484-1509, 1997. doi: 10.1137/S0097539795293172.

GABRIEL FALCAO (S’07-M’10-SM’14)
received the Ph.D. degree from the University
of Coimbra, in 2010, where he is currently an
Assistant Professor with the Department of Elec-
trical and Computer Engineering. In 2011 and
2017, he was a Visiting Professor with EPFL,
and in 2018, he was a Visiting Academician with
ETHZ, Switzerland. He is also a Researcher with
the Instituto de Telecomunicac¢des. His research
interests include parallel computer architectures,

energy-efficient processing, GPU- and FPGA-based accelerators, and
compute-intensive signal processing applications. He is a member of the
IEEE Signal Processing Society and a Full Member of the HIPEAC Network
of Excellence.

FILIPE CABELEIRA received the B.Sc. and M.Sc.
degrees in electrical and computer engineering
from the Faculty of Science and Technology,
University of Coimbra, Portugal, in 2017 and
2019, respectively. His work focuses on the imple-
mentation of efficient parallel algorithms for
lattice-based cryptography on multicore CPUs and
GPUs. His research interests include parallel com-
puting and lattice-based cryptography.

VOLUME 7, 2019

http://dx.doi.org/10.1007/s11227-014-1201-2
http://dx.doi.org/10.1007/s11227-014-1201-2
http://dx.doi.org/10.1109/SFCS.1994.365700
http://dx.doi.org/10.1137/S0097539795293172

G. Falcao et al.: Heterogeneous Implementation of a Voronoi Cell-Based SVP Solver

IEEE Access

ARTUR MARIANO received the Ph.D. degree
from the Darmstadt University of Technology,
Germany. He holds a postdoctoral position
with CSIG, INESC TEC, University of Minho,
Portugal. He works on lattice-based cryptanaly-
sis, with particular focus on understanding the
efficiency of attacks on modern and high-end
: computer architectures. He is currently involved
‘ with multi-disciplinary national and international

i projects aiming at understanding and improving
the practicability of lattice-based cryptanalysis. He was a recipient of
the DFG Postdoctoral Grant to work on high-performance lattice-based
cryptography, is currently hosted by Luis Paulo Santos, and is looking to
establishing his own research group.

g

VOLUME 7, 2019

LUIS PAULO SANTOS is currently an Assistant
Professor with the Department of Informatics,
Universidade do Minho, Portugal. He lectures
computer architecture and computer graphics.
In 2019, he joined the International Iberian Nan-
otechnology Laboratory, Quantum Software Engi-
neering Group, Braga, Portugal, as a Research
Associate. He has spent several periods as an
Invited Researcher on a few international insti-
tutions, such as the University of Bristol, U.K.,
the Warwick Manufacturing Group, University of Warwick, U.K., Université
de Rennes I, France, and the Texas Advanced Computing Center, University
of Texas at Austin, USA. He has been the Vice-Director of the Department
of Informatics and of its bachelor’s and M.Sc. degrees in computer science.
He has been the Director of the Doctoral Program on Informatics. He is
a Senior Researcher of INESC TEC, Portugal. More recently, he became
interested on quantum computing and its applications to global illumination,
and graphics and numerical integration, in general. His research interests
include global illumination and parallel processing.

Dr. Santos has been the Chair of the Eurographics Portuguese Chapter,
since 2016. He has published several articles on conferences and journals
within these areas of knowledge. He participated on several research projects,
supervised five Ph.D. students, and acted as an Associate Editor of Elsevier’s
Computers and Graphics, from 2011 to 2019.

127023

	INTRODUCTION
	PREPARING FOR THE POST-QUANTUM ERA
	LATTICE-BASED CRYPTOSYSTEMS
	LATTICES
	LATTICE PROBLEMS FOR LATTICE-BASED CRYPTOGRAPHY
	OUR CONTRIBUTION
	ROADMAP

	HARDWARE SPECIFICATIONS
	THE ALGORITHM(S)
	VORONOI CELL BY AGRELL ET AL.
	VORONOI 2.0

	A CUDA GPU IMPLEMENTATION
	WHY TO USE CPUS AND GPUS?
	AN HETEROGENEOUS IMPLEMENTATION OF THE VORONOI CELL ALGORITHM
	THE STARPU FRAMEWORK IN A NUTSHELL
	CONSIDERATIONS ON OUR IMPLEMENTATION
	WORKLOAD DISTRIBUTION
	SCHEDULING
	DATA MANAGEMENT

	PERFORMANCE BENCHMARKS AND RESULTS
	STARPU'S OVERHEAD
	OVERALL PERFORMANCE

	PRACTICAL IMPACT OF OUR CONTRIBUTIONS AND RELATED WORK
	RELATION WITH CRYPTOGRAPHY
	RELATED WORK

	CONCLUSION
	REFERENCES
	Biographies
	GABRIEL FALCAO
	FILIPE CABELEIRA
	ARTUR MARIANO
	LUIS PAULO SANTOS

