
Generating Quadratic Bilevel Programming
Test Problems

PAUL H. CALAMAI

University of Waterloo

and

LUIS N. VICENTE

Universidade de Coimbra

This paper describes a technique for generating sparse or dense quadratic bilevel programming

problems with a selectable number of known global and local solutions. The technique described

here does not require the solution of any subproblems. In addition, since most techniques for
solving these problems begin by solving the corresponding relaxed quadratic program, the global

solutions are constructed to be different than the global solution of this relaxed problem in a

selectable number of upper- and lower-level variables. Finally, the problems that are generated
satisfy the requirements imposed by all of the solution techniques known to the authors.
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1. INTRODUCTION

Bilevel programming has become an important field of mathematical pro-

gramming [Dirickx and Jennegren 1979; Kolstad 1985; Mesanovic et al.

1970]. Applications of these problem are numerous [Bard 1983; Ben-Ayed

et al. 1988; Fortuny-Amat and McCarl 1981], and a significant range of

techniques have been proposed for solving these programs [Bi et al. 1991;

Edmunds and Bard 1991; Gauvin and Savard 1989; Kolstad 1985]. From the
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computational point of view, test problems play an important role, helping to

test and improve codes and allowing for the comparison of different solution

techniques. Although several papers concerning the generation of nonlinear

programming test problems have been published (see, e.g., Floudas and

Pardalos [ 1990], Kalantari and Rosen [ 1986], and Lenard and Minkoff [ 1984]),

none have addressed the need for standardized quadratic bilevel test prob-

lems. We hope the technique presented in this paper fills this void.

The paper is divided as follows: Sections 2 and 3 describe, respectively, the

general quadratic bilevel program (QBP) and a corresponding separable

parametric QBP. Sections 4 and 5 demonstrate that the solution of this

parametric QBP is straightforward, since it only involves the solution of a

number of simple two-variable one-parameter QBPs. Section 5 also derives

the important properties of the separable parametric QBP. In Section 6 we

discuss extensions and modifications to the separable parametric problem

QBP( p), and in Section 7 we introduce a transformation to make the prob-

lems more general. In Section 8 we illustrate our technique with an example.

Finally, in Section 9 we demonstrate that the generated problems satisfy the

requirements of three different solution techniques, and report our conclu-

sions.

2. THE QUADRATIC PROBLEM

Define problem QBP(C, c, S, s, AX, AY, b) as

(the upper-level problem), where y = y( x) solves (the lower-level problem)

Xr[:; :j[~l+[::]l~lminq(x, y) = —
Y

subject to

with

c=

AXx+AYy <b,

c Sx, xERnx,x? CY)SY, Y
ERnY

C..,szx ERn ’xnx, CJY, SYY I= Rnyxny, CZ,, SX, ERn’xny,

Ax(-R6xnx Ay •R~xnY b GR~, and KGR.
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In addition to this problem, define the corresponding relaxed quadratic

program QP(C, c, AZ, AY, b) as

min{Q(x, y):(x, y) E fl},
x>Y

where fl = {(x, y): AZX + Ayy s b}.

3. A SIMPLE SEPARABLE PARAMETRIC QBP

Our technique for generating QBPs involves randomly transforming the

parametric QBP that results when the following substitutions are made in

the original problem definitions:

c= In, Cx= –Inx, Cy=ony, S=()
n Sxx = Onz, Syy = I.Y,

(SXY)LJ = (

H [
P. – Py

AZ= P,, AY = J’y

–P% – P,

where

-1 l<i=j <m,

O otherwise,

II
lm

nx
b=p, and ~= —.-..-,

– lm
2

n=nx+ny and m = min{nx, ny},

IY is the order-y identity matrix and O., is the order-nx zero matrix,

17 is the ones-vector of length y and 07 is the zeros-vector of length y,

pxERm Xnx

(

1 l<i=j <m,
and py ~RmxnY satisfy P,~ =

o otherwise,

and

pERm with p, z 1 for i=l,..., m.

With these substitutions we obtain the following parametric QBP, denoted

QBP( p):

:[ml +[-ijkl ‘Ymin Q(x, y) = —
XIY

2
1 x – Inz.
T Y 2

-(Im—
~ ,: (k -02 +Y:) + 1~ (XL-1)2+ ~ Yf,

L–1 m<isnx m<i<ny
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subject to y = y( x), solving

1
rnin q(x, y) = ~yTSYYy +yTSxYX

y

subject to

with p,~lfori=l, . . ..m.

4. SOLUTION OF THE TWO-VARIABLE QBP

Let ( x‘( p), yG( p)) be a global solution of problem Q13P( p). To obtain

(x~( p), y~( p)), for i = 1,...,m, we exploit the fact that problem QllP( p) is

separable in these pairs of variables. Thus, to obtain (x:( p), yf( p)), k G

{l,...,m], we consider the following two-variable one-parameter QBP, de-

noted QBP( pk ):

min Qh(Xk, Yk) = ~((xk – l)2+yf},
Xk,Yk

where y~ = y( x~ ) solves

with ph > 1.

There are four cases to consider:

(1) Case 1 (Figure 1), where pk = 1;

(2) Case 2 (Figure 2), where 1< pk < 2;

(3) Case 3 (Figure 3), where pk = 2; and

(4) Case 4 (Figure 4), where pk >2.

In each of these four cases, the feasible region 0( pk ), for (x~, yk ), is the

(unbounded) region bounded above by Xk + y~ < pk, bounded below by Xk +

yh > 1, and bounded on the right by Xk – yk s 1.
The set of all feasible points of problem QBP( ph ) is called the induced

region (see Edmunds and Bard [1991] for a complete mathematical descrip-

tion).
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1*
i

Fig. 1. Case 1, where Pk = 1.

PROPOSITION 1. If throughout, the induced region, denoted S, in all four

cases consists of the union of the three sets

which describe three line segments in Q( Ph).

PROOF. Suppose ( xh, yk) G Q( Pk) solves problem QBP( Pk). The

Karush–Kuhn–Tucker conditions of the corresponding lower-level problem

therefore imply that there exists Al, Az, A3 ● R such that

yk–xk=A1– A2+A~,

A1(xk +yk – 1) = o,

A2(–xk –y~ +p~) =0,

~~(–~k +Yk + 1) = O,

A1, A2, A320.
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Fig. 2, Case 2, where 1< pk <2.

Thus, for ( Xk, y~ ) = Q( p~ ) with pk > 1, we have four possibilities:

(1) ( Xh, Yh ) G Int(fl( p~ )). In this case, all constraints are inactive, which
implies that & = Az = As = O. Consequently, yh — Xfi = O. This describes

the interior of Sz.

(2) (xh, y~) satisfies x~ + y~ = 1 with x~ + 1. In this case, & = & = O.
Consequently, y~ – Xh = Al >0. This describes all of S1 and the bottom

endpoint of Sz.

(3) (xk, y~) satisfies Xk + y~ = p~ with Xh + (1 + p~)\2. In this case, Al =
& = O. Consequently, y~ – Xk = – & <0. This describes the top end-

point of Sz and all of S~ except its right endpoint.

(4) (x~, y~) satisfies Xk – y~ = 1. In this case, there are three subcases:

(a) x~ + 1 and x~ + (1 + ph)/2. In this case, Al = Az = O. Consequently,

yh – xh = A3 >0, which yields a contradiction.

(b) xh = 1. In this case, A2 = O. Consequently, y~ – Xh = Al + & >0,

which yields a contradiction.

(c) xh = (1 + pk)/2. In this case, Al = O. Consequently, Yh – Xh = – Az
+ A3. Choosing A2 > A3 avoids a contradiction, implies that yk – Xk <0,
and yields the right endpoint of S~. ❑

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994
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Fig. 3. Case 3, where ph = 2.

If p~ = 1, the induced region is the half-line {(‘k, yk ): ‘k + Yk = 1 and ‘k –

Yk ~ O}.

We now examine problem QBP( ~k ) for each of the four cases for Ph:

Case 1: pk = 1. In this case, the set S’z is the single point (1/2, 1/2), and

the union of the sets S’l and S~ describe the half-line {( xk, yk ): ‘k + Yk = 1

and xk – yk < 1}. For this case, depicted in Fi@re 1, (x~, Y$’) = (x~) Y~) =

(1, O), where (x:, y:) corresponds to the minimizer of the relaxed problem,

yielding Qk(xf, y:) = O.

Case 2: 1< pk <2. In this case, depicted in Figure 2, the set SI describes

the half-line

{($k, Yk):Xk ‘~k = 1 and ‘k ‘Yk ‘0}

(i.e., the points on the line xk + yk = 1 to the left of, and including, the point

(1/2, 1/2)). The set S~ describes the line segment

{(xk,yk):xk+yk=pk and OSxk–~k~l}

(i.e., the points on the line segment joining the point ( ~k/2, ~k/2) to the point

((1 + pk )/2, ( pk – 1)/2)). The set Sz describes the Points on the line segment
joining the point (1/2, 1/2) to the pOint ( p~/2, pk/2).

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994.
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Fig. 4, Case 4, where pk >2

The circle of radius r~ = ( Ph – 1)/ ~, centered at the point (x;, y~) =

(1, O), contains all of the points (x~, yh ) for which Q~(x~, y:) < r~\2 =

(( p~ – 1)/2)2.Since the intersection of this circle with S includes only the

point ((1 + p~)/2, ( pk – 1)/2), we have (x:, y:) = ((1 + ph)/2, ( pk – 1)/2),

with Q~( x:, y:) = (( pk – 1)/2)2. In addition, every point in S1 U S2, except

their unique intersection point (1/2, 1/2), lies outside the circle of radius

r, = ~, centered at (1, O). Consequently, the point (x;, y;)= (1/2, 1/2),
with Qh(x~, Y:) = r~\2 = 1/4, is a local minimizer of problem QBP( p~ )

when 1 < pk < 2.

Case 3: pk = 2. In this case, depicted in Figure 3, the set S’l is the same

as in Case 2, S2 describes the line segment joining the point (1/2, 1/2) to the

point (1, 1), and S3 describes the line segment joining the point (1, 1) to the
point (3/2, 1/2). The points (1/2, 1/2) and (3/2, 1/2) are the only two points

in S within the circle of radius r-h = ~, centered at (1, O). Consequently,

both of these points are (strict) global minimizers of problem QBP( p~ ), when

Pk = z> with 6)k(l/z, 1/’2) = Qk(3/’2, 1/2) = 1/4.

Case 4: pk >2. Figure 4 depicts the Iast possible case. Here the set S1 is
the same as in Cases 2 and 3, Sz describes the line segment joining point

(1/2, 1/2) to the point ( ph/’2, pk/2), and S~ describes the points on the line
segment joining the point ( pk /2, pk/2) to the point ((1 + pk )/2, ( ph – 1)/2).
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The circle of radius rk = ~, centered at (xI, y;)= (1, O), contains all of
the points for which Q~( Xh, yh ) < r~/2 = 1/4. Since the intersection of this

circle with S includes only the point (1/2, 1/2), we have (x:, Y:) =

(1/2, 1/2), with Qk(x~, y:) = 1/4.

In addition, every point in S~, except the one endpoint ((1 + ph )/2, ( pk –

1)/2), lies outside the circle of radius r~ = ( pk – 1)/ ~, centered at the

point (x:, y:) = (1, O). Consequently, the point (x:, y~) = ((1 + ph)/2, ( p~ –

1)/2), with Qk(x~, y;) = r~\2 = (( ph – 1)/2)2, is a local minimizer of prob-

lem QBP( ph ) when p~ >2.

5. SOLUTION AND PROPERTIES OF PROBLEM QBP( p)

Let ( x‘( p), y‘( p)) be the unique global solution of the relaxed (convex)

quadratic program QP( p) that corresponds to QBP( p). Since ( l.X, 0. ~) is

feasible (i.e., (1~1, O~y) ● Q) and Q(x, y) z O = Q(lnX, OnY), we have x~(p) =

1.x and y~(p) = O~Y. In addition, x:(p) = 1 for every m < i < nx, and

y~( p) = O for every m < i < ny.
Since QBP( p) is separable in each of the m two-variable pairs (x,, y,),

i=l ,. ... m, we see (as a consequence of the results presented in the previ-

ous section) that (x:( p), y,G( p)) can easily be obtained by examining the

value of p, and setting ( x!( p), y,G( p)) = ( x?( p, ), y,G( p,)). In addition, the

features of problem QBP( p) can be controlled by adjusting the magnitude of

the m. parameters pl through pm. In order to describe this more precisely,

define the four sets, Ml through Ml (corresponding to Cases 1 through 4,

respectively) as

Ml={k={l,..., m}:ph= l},

Mz={kc{l,..., m}:l<p~ <2},

M~={k~{l,..., m}:p~= 2},

iWA={ke {l,..., m}:p~> 2},

and let m ~, m2, m ~, and mt equal the cardinality of the sets Ml through

MA, respectively.

PROPERTY 1. Problem QBP( p) has 2” global solutions (i.e., when m~ = O,

the global solution is unique) with ualue Q~ = Zk. ~~( pk – 1)/2)2 + (ms +

ml)/4.

The reason for this is that, for each k = MS, there are two global solutions

of problem QBP( p~ ) in the variables ( x~, yh ). The result follows by consider-

ing all combinations of these global solutions in the variables ( xk, yk ) for

k c Ms.

PROPERTY 2. Problem QBP( p) has additional local solutions (i.e., not

global) only when mz + md ~ O. In this case, the number of additional local

minima to problem QBP( p) equals 2mZ+m S+rn& – 2mS.

The reason for this is that, for each k = M2 U MS U Mb, problem QBP( p~ )

has two local solutions in the variables ( Xh, y~ ). By considering all combina-

tions of these local solutions in the variables ( Xh, yk ), for k e M2 U MS U MA,

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994.
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we obtain 2mZ+m3+m4local solutions for problem QBP( p). However, by

Property 1, 2‘3 of these local solutions must be global solutions of problem

QBP( p).

PROPERTY 3. The global solution of problem QBP( p) differs from the

relaxed solution of the corresponding quadratic program QP( p) in both

upper-and lower-level variables as long as ml < m (i. e., mz + m~ + mb + 0).

This result follows since, for k = Mz U M3 U M4, we have (x:( p), Y:( p))

= (X:( p~), Yf( ph)) + (Xf( pk), yf( p,)).

I%OEYNWY 4. The gradients, in the lower-level variables y, of the active

constraints at the global solution of problem QBP( p) are linearly independent

if md = m and linearly dependent if ml + mz B O. If ml + mz = O, but

mz ~ O, then exactly one of the ( nonunique) global solutions of problem

QBP( p) will have linearly independent gradients, and all other global solu-

tions will have dependent gradients.

The proof follows directly upon observing that one of the two local minimiz-

ers, namely, (1/2, 1/2), is on the boundary of only one constraint, whereas

the other, ((1 + pk )/2, ( p~ – 1)/2), is on the boundary of two constraints.

Consequently, the linear independence of the gradients of the active con-

straints of problem QBP( p) is due to its separability and to the linear

independence of the gradients of the active constraint in each two-variable

parametric problem QBP( pk ).

~ROPERIY !5. The complementarily conditions associated with the lower-

level problem of problem QBP( p) are satisfied strictly at the (unique) global

solution of problem QBP( p ) whenever md = m (i. e., the corresponding La-

grange multipliers are strictly positive in this case). These complementarily

conditions are not satisfied strictly whenever ml + m ~ B O. If m ~ ~ O, then

exactly one of the ( non unique ) global minimizers satisfies these conditions

strictly.

This property follows directly from Property 4.

6. EXTENSIONS AND MODIFICATIONS

Problem QBP( p ) can be extended and modified in a number of ways. For

instance, constraints in x and y could be added to the upper-level problem to

bound Q. We describe three other changes here.

6.1 Reducing the Number of Inequality Constraints

The lower-level problem associated with problem QBP( p) has ny variables

(y(i), i == 1,...,ny) and 3m constraints

Xz — y, s 1, i=l ,. ... m,

l<x, +y, <p,, i=l,..., m.

The number of constraints can be reduced, without changing the properties of

problem QBP( p), by redefining the sets Ml through Ml (and their corre-
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sponding cardinalities ml through m~ ) such that

Ml={k={l,.,., fi]:pk=l},

M2={k G{l,...,7ii} :l<ph <2},

M3={k E{l,..., Ei}:pk =2},

M4={k G{l,...,77i} :ph> 2},

where fi s m = min{nx, ny}, and by replacing the original constraints with

l<x, +y,, i=l ,. ..> E,

x~+y~<p~, iGM2UM3Ui144,

xl – y~ < 1, iGiW2UM3UM4

(which induce corresponding changes to the definitions of AX, A,, and b).

If R < m, then the variables (x~, y~), k = R + 1,... , m, are uncon-

strained. This means that (x:, y:) must be the point in Sz closest to

(x?, y:) = (1,0). Thus, (x:, y:) = (1/2, 1/2) when k = {m + 1,..., m}.
This modification yields 37ii – 2 ml constraints in rzy variables, which

corresponds to a reduction of 2 m ~ + 3( m – m) lower-level constraints. Alter-

natively, the sets 0( pfi ) could be defined by the strip {( x~, y~ ): 1 < x~ + y~ <

p~}, ~ ~ {1, ---, m}, or by the quarter space defined by {(xk, y~): xk – yk S 1
andxfi+ yk<pk}, ke {l,.. ., iii}.

6.2 Adding Equality Constraints

Without changing either the relaxed, local, or global solutions corresponding

to problem QBP( p), four types of equality constraints can be added to the

problem:

(1) x,–xj=O, where i#j and i,j~{m+ 1,..., nx}, when nx>ny=m.

(2) yt–yj=O, where i+jandi, j~{m+ 1,..., ny}, when ny>rm=m.

(3) x, – Yj = 1, where i, j G Ml, when ml >0.

(4) x, – y, = O, where i,j = {fi + 1,...,m}, and iii and Ml through M, are

redefined as in the previous section.

To guarantee the linear independence of the gradients (with respect to the

lower-level variables y) of the constraints at optimality, the following condi-

tions must hold:

(1) For type (2) constraints, the variables yt and yj of a particular type (2)
constraint should appear in that constraint only; and

(2) for both type (3) and type (4) constraints, the variable YJ of a particular
constraint in this set should appear in only that specific constraint of

this set.

6.3 Adding a Linear Term to the Lower-Level Objective

A linear term can easily be added to the lower-level objective function by
introducing the change of variables

XL+ XL —(7L, i=l, . . ..m.
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throughout the formulation. This, in effect, is equivalent to setting

(Sy)l = a,, 2=1 ,. ... m,

in the statement of problem QBP.

7. THE TRANSFORMATION

Define the order-n matrix M = HDH, where

IIH
H= ~’ ;

Y

is a block-diagonal matrix with H, and H? constructed as random House-

holder matrices using

Hx = Inx – 2vXv~, with V$UZ = 1, and u. GRn X sparse,

HY = I~Y – 2VYU:, with v~uy = 1, and VY G Rn-y sparse,

and l) is a positive definite diagonal matrix with 2-norm condition number

K2(~) = 106.

In addition, define the augmented matrix A = [AL AY ], and let W = M-1
= HD-lH.

PROPOSITION 2. Problem QBP(C, c, S, s, Ax, A,, b) (and consequently

problem QBP( p)) in the variables x and y is” equivalent to problem

QBP(MCM, Mc, MSM, Ms, AM, b) in the variables F and j under the nonsin -

gular transformation

[;]=W[;]

PROOF. For

problem QBP(C, c, S, s, Ax, A,, b) becomes

>

HMC’M ) ;

+[:;]TM[;]+K,

subject to Y = j(I), solving (the lower-level problem)

‘Fq(J)=MT(MsM)[:l
T

[H]

Sz
—

+s M:,
.Y Y

ACM Transactions on Mathematical Software, Vol 20, No 1, March 1994
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subject to

[1[AM] ~ <b,

which is problem QBP( MCM, Me, MSM, Ms, AM, b) in the variables Z

and ~. ❑

Thus,

is a global solution to the transformed problem. This one-to-one correspon-

dence holds for all minima of problem QBP.

Notes

(1)

(2)

(3)

The sparsity of Ux and UY controls the sparsity of M (and, consequently,

the sparsity of the data).

The 2-norm condition of D controls the 2-norm condition of M (and,

consequently, affects the condition of the problem).

The matrix MCM is positive definite in (x, y), and the submatrix

(MSM)YY is positive definite in y.

8. EXAMPLE

The following simple example illustrates some of the ideas that have been

presented: Suppose the following values of the control parameters were used:

nx=4, ny=2 and m,=~=z,

rn1=rn3=o, and mz=md=l,

and

p~ = 1.5 and p2 = 3.

This corresponds to the following untransformed bilevel problem:

( )min Q(x, y) = ~ ~ ((x, – 1)2 +Y,2) + ~ (x, – 1)2 ,
X!Y 1=1 ~=3

subject to y = y(x), solving

subject to

xl Y1 < 1,

x2 —y2< 1,

xl + Y1 < 1.5,

x2+y25 3,

–xl Y1 < —1,

—X2 — y2 5 —1,

ACM Transactions on Mathematical Software, Vol. 20, No. 1, March 1994.
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where

II

xl

X2
E R4 [1~1 ~ R2

~= and
X3 ‘: Y2 “

X4

Now suppose the following data were used in the transformation:

u:= [0.9 0.3 03 0.11, u~ = [0.8 0.61> and

D = diag(lO, 10,20,20,10, 10).

This would yield the following quadratic bilevel programming problem:

min Q(x, y)
X9Y

xl

X2

1 X3
——

z X4

Y1

Y2

r 197.2 32.4 – 129.6 –43.2 O 0

32.4 110.8 –43.2 –14.4 o 0

– 129.6 –43.2 302.8 –32.4 O 0

I–43.2 – 14.4 –32.4 389.2 0 0

0 0

0 0

0

0

0 100 0
0 0 100

I
–8.56

–9.52

+
–9.92

– 16.64

0
0

xl

X2

X3
+2

X4

Y1

Y2

xl

X2

X3

X4

Y1

Y2

(the upper-level problem), subject to y = Y( x), solving (the lower-level prob-

lem)

minq(x, y)
Y

xl

X2

X3

X4

Y1

Y2

T

1

0 000 – 132.4 – 10.8

0 0 00 – 10.8 – 103.6

0 000 43.2 14.4

0 000 14.4 4.8

– 132.4 – 10.8 43.2 14.4 100.0 0

– 10.8 – 103.6 14.4 4.8 0 100.0
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subject to

13.24xI + 1.08xa –4.32x3 – 1.44X4 – loyl < 1,

1.08xI + 10.36xZ – 1.44X3 –0.48xd – loy2 < 1,

13.24xI + 1.08xZ –4.32x3 – 1.44X4 + loy~ < 1.5,

1.08xI + 10.36xZ – 1.44X3 –0.48xA + loy~ < 3,

– 13.24x1 – 1.08xZ +4.32x3 + 1.44X4 – loy~ < –1,

– 1.08xI – 10.36xZ + 1.44X3 +0.48xA – loy~ < –1,

where

!1
xl

X2
E R4

[1

Y1 ~ ~2
x= and

X3 ‘= Y2 “

X4

Since rrz~ = O and m2 + m~ = 2, this problem has a unique global minimum

with value Q~ = ((1.5 – 1)/2)2 + (m~ + rnl)/4 = 0.3125, as well as an addi-
tional 2na+m3+mi – 2m3 = 3 local solutions.

9. REMARKS AND CONCLUSIONS

Test problems are only useful when they can be used to test solution

techniques. The quadratic bilevel test problems generated by the proposed

technique satisfy this criterion. We confirm this statement by considering

three existing solution techniques.

Branch and Bound and Cutting Algorithms [Edmunds and Bard 1991].

The requirements of these methods are met since, for

W(x) = {y:3x with (x, y) = 0},

we have that

(1) all functions of the lower-level problem are twice continuously differen-
tiable in y for all y = V(X);

(2) the lower-level objective function is strictly convex in y for all y = W(x);

(3) for each x, W( x) is a compact and convex set; and

(4) the upper-level objective function is continuous and convex in x and y.

Steepest Descent Methods [Gauvin and Savard 1989]. The requirements

imposed by these techniques are met since the lower-level objective function
is strictly convex in y (thus guaranteeing the uniqueness of the optimal

solution of the lower-level problem for all x) and since there are no upper-level

constraints.
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Exact Penalty Function Approaches [Bi et al. 1991]. The requirements of

these methods (for p > 1) are met since

(1) the upper-level objective function is twice continuously differentiable

and the lower-level objective function and the constraint functions are

convex in y, for fixed x, and three times continuously differentiable;

(2) the interior of Q is nonempty and its closure is fl;

(3) for each (x, Y( x)) in the induced region of the untransformed problem,

the Hessian of the Lagrangian function associated with the lower-level

problem in y, denoted VYYL, satisfies z~ VYYLz = IIz II2 for all directions

z ER’Y; and

(4) Q is a compact set; the closure property always holds, and to get a

bounded set, without changing any other property, it is sufficient to

introduce the constraint Xh 20 in each problem QIW’( Pk).

The technique proposed in this paper exhibits a number of favorable

properties, not the least of which is that the test problems can be generated

without any significant computational effort. Besides having control over the

number and type of minimizers, the sparsity and condition of the problems

can also be affected. In addition, the number of upper- and lower-level

variables in which the global solutions differ from the corresponding relaxed

solution is controllable.

A FORTRAN 77 code that implements the technique described in this

paper can be obtained by sending an email request to

phcalamai@dial. uwaterloo.ca. In addition to the technique described in this

paper, the authors are currently working on a similar method for the linear

and linear-quadratic bilevel programming problems.
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