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a b s t r a c t

Fresh fish are highly perishable food products and their short shelf-
life limits their commercial exploitation and leads to waste, which
has a negative impact on aquaculture sustainability. New non-
thermal food processing methods, such as high pressure (HP) pro-
cessing, prolong shelf-life while assuring high food quality. The ef-
fect of HP processing (600MPa, 25 �C, 5min) on European sea bass
(Dicentrarchus labrax) fillet quality and shelf life was investigated.
The data presented comprisesmicrobiome and proteome profiles of
control and HP-processed sea bass fillets from 1 to 67 days of
isothermal storage at 2 �C. Bacterial diversity was analysed by Illu-
mina high-throughput sequencing of the 16S rRNA gene in pooled
DNAs from control or HP-processed fillets after 1, 11 or 67 days and
the raw reads were deposited in the NCBI-SRA database with
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Value of the Data
� The data represents an integrated view of the

and safety and makes a relevant contribution t
� A metagenomics approach for the microbiom

fungi) sequencing to provide a global and in-de
processed fillets during storage at 2 �C.

� SWATH-MS proteomics is used to give insight fo
the proteins in sea bass fillets.

� The study demonstrates how integration of co
orate and substantially extend the outcome of

� HP processing is revealed as an emerging pro
modities such as fish fillets.

Specifications Table

Subject area Food science
More specific subject
area

Food processing, Aqu

Type of data Tables, figures, supple
How data was acquired CR-Minolta chromam

Triple TOF 5600 LC-S
Data format Raw, metadata
Experimental factors Marine cultured sea b

and submitted to hig
periods.

Experimental features Colour and texture m
construction of 16S r
bioinformatics analys
identification and qua

Data source location Koropi, Attica, Greece
Data accessibility Data is available in th

PRJNA517779) and a
PXD012737.

Related research article Theofania Tsironi, Li
Santa, Bruno Manad
processing of Europea
monitoring”. Journal o
010
accession number PRJNA517618. Yeast and fungi diversity were
analysed by high-throughput sequencing of the internal transcribed
spacer (ITS) region for control and HP-processed fillets at the end of
storage (11 or 67 days, respectively) and have the SRA accession
number PRJNA517779. Quantitative label-free proteomics profiles
were analysed by SWATH-MS (Sequential Windowed data inde-
pendent Acquisition of the Total High-resolution-Mass Spectra) in
myofibrillar or sarcoplasmic enriched protein extracts pooled for
control or HP-processed fillets after 1, 11 and 67 days of storage.
Proteome data was deposited in the ProteomeXchange Consortium
via the PRIDE partner repository with the dataset identifiers
PXD012737. These data support the findings reported in the asso-
ciated manuscript “High pressure processing of European sea bass
(Dicentrarchus labrax) fillets and tools for flesh quality and shelf life
monitoring”, Tsironi et al., 2019, JFE 262:83e91, doi.org/10.1016/
j.jfoodeng.2019.05.010.
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1. Data
Supplementary Table 1 summarizes 16S rRNA sequencing quality statistics of HP-treated and control
fillets at different time-points during storage, and Fig. 1 presents the alpha rarefaction analysis of the
same data, showing that all sequencing libraries were near to saturation. Supplementary Table S2 lists
the main bacterial genera detected and their relative abundance in each sequencing library.
Supplementary Table S3 lists all bacterial genera detected including those present in low abundance
(<1% of the total genera detected). Similarly, Supplementary Tables S4 and S5 contain, respectively, lists
of the most abundant bacteria species and complete list of detected bacteria, together with the
Shannon diversity index and CHAO1 Richness Estimation for each library. Supplementary Table S6
summarizes the ITS sequence quality statistics for yeast and fungi of HP-treated and control fillets at
the end of storage and Fig. 2 presents the alpha rarefaction analysis of the same data, showing that all
sequencing libraries were near to saturation. Supplementary Tables S7 and S9 list, respectively, the
main fungal genera and species detected by ITS in 1% or more of the reads. Supplementary Tables S8
and S10 list, respectively, the full list of fungal genera and species detected by ITS. Supplementary
Table S11 summarizes the number of proteins and peptides from myofibrillar and sarcoplasmic-
enriched protein extracts that were identified or quantified by SWATH analysis in HP-processed or
control fillets at different storage times. Supplementary Tables S12 and S13 (spreadsheet format) list
the quantification parameters of the total proteome profiles of myofibrillar and sarcoplasmic extracts,
respectively. Supplementary Table S14 lists the 38 proteins from the myofibrillar extract and
Supplementary Table S15 lists the 263 proteins from the sarcoplasmic extract (in spreadsheet format)
that changed greater than 2-fold between the control and HP-processed fillets and/or between cold
storage times; the relative proportions of the proteins are summarized in Fig. 3.
Fig. 1. Rarefaction plots for the microbiome libraries sequenced by 16S rRNA gene sequencing (bacterial diversity), determined
based on all operational taxonomic units (OTUs) found at the genus level, including annotated and non-annotated sequences
(no hits).



Fig. 2. Rarefaction plots for the microbiome libraries directed at the fungal ITS region, determined based on all operational taxo-
nomic units (OTUs) found at the genus level, including annotated and non-annotated sequences (no hits).
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2. Experimental design, materials, and methods

2.1. Experimental set-up and fish fillet samples

European sea bass (Dicentrarchus labrax) (weight: 110 ± 10 g) from Nireus Aquaculture, were
stunned on ice slush (0 �C) immediately upon harvesting, size sorted and transported to the filleting
line within 1 day. In the industrial facilities the fish was filleted after descaling and discarding of the
head. Sea bass fillets were rinsed in tap water, placed in polystyrene boxes with appropriate quantities
of flaked ice (0 �C) and transported to the Laboratory of Food Chemistry and Technology (NTUA, Athens,
Greece) within 2e3 hours.

A laboratory pilot scale Food Pressure Unit (FPU 1.01, Resato International BV, Roden, Holland) with
a maximum operating pressure of 1000 MPawas used for high pressure treatments. The high-pressure
unit had a 1.5 L volume and a multivessel system consisting of six vessels of 45 mL capacity each. All
high-pressure vessels were surrounded by a circulating jacket connected to a heating-cooling system.
The pressure transmitting fluid was polyglycol ISO viscosity class VG 15 (Resato International, BV,
Roden, Holland). Fish fillets were packed in pouches (two per pouch) consisting of a multilayer (PP-PE)
packaging material. HP processed fillets were vacuum-packed and treated in-pack at 600 MPa and
25 �C for 5 min, according to Ref. [1]. The non-processed (control) samples were stored aerobically in
non-sealed pouches, simulating conventional aerobic retail display facilities.

Control and HP-treated (HP) fillets were stored at 2 �C under controlled isothermal conditions in
high-precision (±0.2 �C) low-temperature incubators (SanyoMIR 153, Sanyo Electric, Ora-Gun, Gunma,
Japan), monitored with electronic, programmable miniature data-loggers (COX TRACER ®, Belmont,



Fig. 3. Venn diagrams representing the number of proteins that had a more than 2-fold modified abundance in HPP sea bass fillets
compared to the control groups (C) at the equivalent storage time in days (eg. short-term, C1 and HP1 or long-term, C11, HP67).
Proteins were identified and quantified by SWATH proteomics. For Myofibrillar (red) or sarcoplasmic (blue) protein extracts, the size
of the circles is proportional to the number of proteins that had a modified expression (the number of proteins are indicated next to
the circles). The proteins that changed in the same way between the different treatment groups at the beginning and end of storage
are located in the intersection of two circles in the Venn diagram (the number of common proteins is underlined).
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NC). Samples of ca 5 cm2 sections were collected from fillets at different storage times: 1 day (C1 and
HP1 groups), 11 days (C11 and HP11), 32 days (HP32) and 67 days (HP67). Samples from control fillets
were not collected for the last two time points since they had deteriorated to unacceptable levels after
11 days of storage.

2.2. Colour and texture parameters

Fillet colour change over time and treatment was measured using a CR-Minolta Chromameter
(Minolta Co., Chuo-Ku, Osaka, Japan) with an 8mm diameter measuring area. The instrument was
standardized under “C” illuminant conditions according to the CIE (Commission International de l’
Eclairage) using a standard white reference tile (calibration plate CR-200, L ¼ 97.50, a ¼ �0.31,
b ¼ �3.83). Measurements of CIELab values (L-value: lightness, a-value: redness and greenness, b-
value: yellowness and blueness) were made in three different points of the flesh on the upper side of
the fillet (lateral line) and 3 fillets were tested per group and sampling point.

Texture parameters were evaluated using a texture analyser with a load cell of 5 kg (TA-XT2i, Stable
Micro Systems, Godalming, Surrey, United Kingdom). A compression aluminium plate of 75 mm or 20
mm diameter was selected. Double compression was applied to construct the texture profile analysis
(TPA) parameters of 3 different fillets per group and sampling point. The aluminium plate approached
the sample at the speed of 0.5mm/sec and pressed 2mm into the fish flesh. Then the forcewas reduced
and the sample was allowed to rebound 5 s before the second compression. Force-time curves were
obtained and texture parameters (hardness, cohesiveness and adhesiveness) were determined using
the Texture Expert Exceed Application (Version 2.64, Stable Micro Systems Ltd) [2].

2.3. DNA extracts

Total DNA was separately extracted from 4 fillets from each of the groups C1, C11, HP1, HP11 and
HP67, using a DNeasy Blood & Tissue Kit (Qiagen) with modifications. The excision of approx. 40 mg
taken from the fillet surface was carried out under sterile conditions. Muscle samples were cut into
small pieces, added to 2 ml sterile tubes with 200 ml of lysis buffer (20Mm Tris-HCl, pH 8; 2mM sodium
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EDTA; 1.2% Triton X-100; 40 mg/ml Lysozyme), 200 ml of AL buffer and approx. 400 mg of glass beads
(0.1mm zirconia/silica beads, Biospec). The tubes were maintained on ice until mechanical disruption
was carried out at room temperature in a Bertin Precellys 24 homogeniser; the disruption procedure
was repeated in two pulses of 15 s at 6800 rpm. Tubes were incubated for 30 min at 37 �C to complete
the enzymatic lysis, and then 25 ml of proteinase K (supplied with the kit) was added to each tube,
which were incubated for a further 30 min at 56 �C. Tubes were centrifuged for 1 min at 8000 rpm and
the lysed supernatant was recovered and incubated with RNAse A (10 ml of 10 mg/ml) for 10 min at
room temperature. The remaining steps of the extraction method were performed as recommended in
the protocol of the DNeasy Blood& Tissue Kit, with a final elution of extracted DNA in 50 ml of EB buffer
(10Mm Tris-HCl, pH 8). DNA quality and integrity were analysed using a Nanodrop spectrophotometer
and 1% agarose gel electrophoresis.

2.4. Microbiome library preparation, sequencing and bioinformatics analyses

DNA pools were prepared from individual DNA extracts (ca. 250 ng each) and then concentrated
with an RNeasy Micro Kit (Qiagen), following the manufacturer's instructions, and eluted into 22 ml EB
buffer. Five bacterial microbiome libraries (groups C1, C11, HP1, HP11 and HP67) were prepared from 75
to 210 ng of pooled DNA using the 16S Metagenomic Sequencing Library Preparation protocol (for the
Illumina MiSeq system) and primers spanning the V3 and V4 regions of the 16S rRNA gene [3]. Two
fungal microbiome libraries (C11 and HP67) were prepared from 30 to 130 ng of pooled DNA, using the
same protocol as outlined above but with a set of primers directed against regions ITS3-ITS4 from
Ascomycetes and Basidiomycetes [4]. Libraries were sequenced by Lifesequencing S.L.-ADM (Valencia,
Spain) using an Illumina MiSeq instrument. Sequence data analysis, included: trimming of adaptors
and filtering of low-quality reads that had a minimum value Q20 and minimum read length of 200
nucleotides; removal of chimeras and identification and classification of operational taxonomic units
(OTU). Data analysis was carried out as described in Ref. [5]. For OTU assignment, sequence similarity
searches were made against the NCBI 16S rRNA database (for the 16S libraries) or against an ITS built
database of fungal ITS sequences extracted from NCBI (for the ITS libraries), with a cut-off set at 97%
identity. Global microbiome data analyses were performed as described in Ref. [5], using a pipeline
developed by Lifesequencing S.L.-ADM, and CD-HIT software [6] was used for hierarchy clustering.

2.5. Quantitative proteomics

Differences in the protein content of control (C1, C11) and HP fillets (HP1, HP67) were analysed by
SWATH-MS (Sequential Window data independent Acquisition of the Total High-resolution-Mass
Spectra) using pools of myofibrillar or sarcoplasmic enriched protein extracts (n ¼ 6 per group).
Myofibrillar and sarcoplasmic enriched protein extracts (based on [7] with modifications) were pre-
pared from individual fillets (n ¼ 6 individuals per group). The extraction buffer used for the myofi-
brillar extracts was 50 mM Tris buffer pH 7.2, 100 mM DTT, 1.7% SDS and for sarcoplasmic extracts was
10 mM Tris buffer pH 7.2 and both buffers contained a protease inhibitor cocktail (Sigma, US). The
muscle sample (0.5 g) was reduced to a powder in liquid nitrogen and z0.1 g was solubilized in
extraction buffer (ratio: 1 g of tissue/8ml of buffer), andmechanically disrupted using 0.5mm zirconia/
silica beads (Biospec) in a Bertin Precellys 24 homogeniser using 2 cycles of 20 s at 6800 rpm. The
homogenates were boiled at 95 �C for 10 min and allowed to cool at room temperature. The soluble
protein fraction was separated by centrifugation at 28,000 g for 15 min at 20 �C, alkylated with 40%
acrylamide solution (1:15 of acrylamide: protein solution v/v) and stored at�80 �C. The soluble protein
concentration was determined using the Bradford assay with a bovine serum albumin standard set
(#500e0006 and #500e0207, BioRad, USA). The electrophoretic profile of the myofibrillar and
sarcoplasmic enriched protein extracts was analysed by 1D SDS-PAGE (12%) according to Ref. [8] fol-
lowed by Coomassie blue staining.

For SWATH-MS proteomic analysis the protein extracts were gel digested using the short-GeLC
method [9]. Briefly, a volume corresponding to 50 mg was prepared by pooling protein extracts from
6 individuals/treatment, and a further sample was prepared that consisted of 10 mg from each
experimental group pool. The sample pools were fractionated by SDS- PAGE. Selected gel regions were
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excised and processed as in Ref. [10], for destaining, dehydration, rehydration, in-gel protein digestion
using trypsin, peptide extraction and solid phase extraction with C18 sorbent (OMIX tip, Agilent
Technologies). Samples were analysed using SWATH-MS on a Triple TOF™ 5600 System (Sciex®,
Framingham,MA) using information-dependent acquisition (IDA) of the pooledmixture of all samples;
followed by SWATH acquisition of each individual group pool. Peptide separationwas performed using
liquid chromatography (nanoLC Ultra 2D, Eksigent) on a ChromXP C18CL reverse phase column
(300 mm� 15 cm, 3 mm,120 Å, Eksigent) at 5 mL/minwith a 45 min gradient from 2% to 35% acetonitrile
in 0.1% FA with 5% DMSO, and the peptides were eluted into the mass spectrometer using an elec-
trospray ionization source (DuoSpray™ Source, Sciex).

IDA experiments were performed by analysing each fraction of the pooled mixture. The mass
spectrometer was set for IDA scanning full spectra (350e1250 m/z) for 250 ms, followed by up to 100
MS/MS scans (100e1500 m/z from a dynamic accumulation time e minimum 30 ms for precursors
above the intensity threshold of 1000 counts per second (cps)e in order to maintain a cycle time of 3.3
s). Candidate ions with a charge state between þ2 and þ 5 and counts above a minimum threshold of
10 cps were isolated for fragmentation and one MS/MS spectra was collected before adding those ions
to the exclusion list for 25 s (mass spectrometer operated by Analyst® TF 1.7, Sciex). Rolling collision
energy was used with a collision energy spread (CES) of 5.

The SWATH setup was as in Ref. [11] with the same chromatographic conditions used for IDA ac-
quisitions. Briefly, the mass spectrometer was operated in a looped product ion mode. The SWATH MS
setup was designed specifically for the samples to be analysed, in order to adapt the SWATH windows
to the complexity of this batch of samples. A set of 60 SWATH windows of variable width (containing 1
m/z for window overlap) was constructed covering the precursor mass range of 350e1250 m/z. A
200 ms survey scan (350e1250 m/z) was acquired at the beginning of each cycle for instrument
calibration and SWATH MS/MS spectra were collected from 100 to 1500 m/z for 50 ms resulting in a
cycle time of 3.3 s from the precursors ranging from 350 to 1250 m/z. The collision energy for each
window was determined according to the calculation for a charge þ2 ion centered upon the window
with variable CES (Collision Energy Spread) according to the window. Peptide identification and library
generation were carried out using Protein Pilot software (v5.0, Sciex®) and the following search pa-
rameters: 1) comparison against the predicted proteins from the sea bass genome database (June 2012
draft assembly dicLab v1.0c with annotation from July 2013; file diclab1_pep.faa.gz downloaded from
http://seabass.mpipz.mpg.de/DOWNLOADS/ [12]; 2) acrylamide alkylation; 3) trypsin digestion
(Paragon™ Algorithm).

The SWATH™ processing plug-in for PeakView™ (v2.0.01, ABSciex®) was used for SWATH data
processing, as described in Ref. [9] with minor modifications. Peptides were selected automatically
from the library following the criteria: i) unique peptides for a specific targeted proteinwere ranked by
the intensity of the precursor ion from the IDA analysis; ii) peptides that contained biological modi-
fications and/or were shared between different protein entries/isoforms were excluded. Up to 15
peptides were chosen per protein, and SWATH™ quantification was attempted for all proteins
considered as positive identifications. Peptide retention time was adjusted using the malE-GFP pep-
tides. Up to 5 target fragment ions per peptide were automatically selected and the peak groups were
scored following the criteria described in Ref. [13]. Protein levels were estimated by summing all the
transitions from all the peptides for a given protein as described in Ref. [14] and normalized to the total
intensity of the sample at the protein level. The mass spectrometry proteomics data have been
deposited with the ProteomeXchange Consortium [15] via the PRIDE [16] partner repository with the
dataset identifier PXD012737. In proteomic data analysis, the count ratio method was used to compare
the relative protein abundance modified by HP (HP1/C1; HP67/C11) or storage time (HP1/HP67; C1/
C11) in each type of extract, considering a 2-fold change as the threshold.

Protein lists that changed with the experimental conditions were analysed using the proportional
Venn diagram tool BioVenn (http://www.biovenn.nl) [17], UNIPROT (https://www.uniprot.org/) [18]
and BRENDA (https://www.brenda-enzymes.org) [19] for screening of enzymes, structural proteins
and other classifications. The zebrafish (Danio rerio) orthologues for the sea bass proteins were ob-
tained using stand-alone BlastX (with an E value < 10�10) against the Ensembl zebrafish protein
predictions (GRC Zebrafish Build 10, INSDC Assembly GCA_000002035.3 from Sep 2014, https://www.
ensembl.org [20]) in order to establish a comparative annotation.

http://seabass.mpipz.mpg.de/DOWNLOADS/
http://www.biovenn.nl
https://www.uniprot.org/
https://www.brenda-enzymes.org
https://www.ensembl.org
https://www.ensembl.org
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