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Abstract: The estimation of the parameters of an odour source is of high relevance for multiple
applications, but it can be a slow and error prone process. This work proposes a fast particle
filter-based method for source term estimation with a mobile robot. Two strategies are implemented
in order to reduce the computational cost of the filter and increase its accuracy: firstly, the sampling
process is adapted by the mobile robot in order to optimise the quality of the data provided to
the estimation process; secondly, the filter is initialised only after collecting preliminary data that
allow limiting the solution space and use a shorter number of particles than it would be normally
necessary. The method assumes a Gaussian plume model for odour dispersion. This models average
odour concentrations, but the particle filter was proved adequate to fit instantaneous concentration
measurements to that model, while the environment was being sampled. The method was validated
in an obstacle free controlled wind tunnel and the validation results show its ability to quickly
converge to accurate estimates of the plume’s parameters after a reduced number of plume crossings.

Keywords: mobile robotics; gas source localisation; particle filter

1. Introduction

The occurrence of natural catastrophes and human-caused chemical disasters may cause serious
environmental impacts, creating the need for methods that quickly estimate the location of the release
source, aiding the response teams. The problem of Source Term Estimation (STE) consists of using
information from distributed sensors to estimate the parameters of a chemical source. This is often
tackled with mathematical methods that assimilate data from static sensor networks [1] or from mobile
sensing platforms [2]. The Gaussian Plume model is at the core of many regulatory atmospheric
dispersion models and is typically used to model the dispersion of contaminants on the atmosphere [3].
It models the time-averaged chemical dispersion in an environment and thus it is often quite distinct
from the instantaneous plumes that can be observed. This is due to the natural phenomena associated
with air flow and chemical dispersion. The gas particles, once released, flow with the wind and
spread through molecular diffusion and turbulent dispersion, creating intermittent and meandering
gas distribution, which are called gas plumes. Probabilistic prediction and data assimilation methods
have been extensively used to produce accurate or satisfactory estimates of odour sources. The Particle
Filter, a Bayesian method also known as Sequential Monte Carlo, has been widely used in highly
nonlinear applications with mobile robots. The idea is to generate a population of random particles,
each one encoding a solution of the target problem, which are iteratively improved. These filters
have also previously been used for odour source localisation, both for single and for multiple mobile
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robot systems [4–8]. However, due to the exponential growing need of the number of particles with
the dimension of the state vector, the previous works have usually estimated a reduced number of
source parameters. Additionally, these works did not validate or evaluate their results in controlled
environments, making difficult to compare multiple experiments. Independently from the estimation
process, any method can only perform well if it is fed with relevant data, which depends on the
strategy employed to sample that data across the active region of the odour plume. Given the need for
fast estimations, as well as the current autonomy limitations of mobile robots, efforts should be made
to sample the environment in the most efficient manner. This paper contains three main contributions:

1. Two-stage estimation algorithm: Most of the existing approaches to STE that rely on Particle
Filters do so by using short state vectors, i.e., estimate a reduced number of parameters of the
underlying odour dispersion models. Conversely, the present work intends to estimate many
parameters of the Gaussian Plume model. Traditionally, this would imply a substantial increase
of the number of particles used, slowing down the estimation process. This work proposes an
inverse method to provide rough estimates of the parameters of the Gaussian Plume model
from a set of environmental measurements obtained from a single plume crossing. These rough
estimates are used to restrict the search space of the Particle Filter, improving the quality and
speed of the estimation process.

2. Bio-inspired navigation strategy: A navigation strategy is proposed to improve the speed of
the estimation process and reduce the effort made by the robot. Drawing inspiration from
counterturning behaviours present in nature, a Genetic Algorithm is applied to evolve the
sequence of motions that optimise the quality of the environmental measurements.

3. Wind tunnel validation of the proposed approach: Thus far, most of the existing works test their
approaches either in simulation or in uncontrolled environments. The present work evolves the
sampling strategies in a realistic simulator and validates the complete approach in a controllable
wind tunnel where distinct environmental conditions may be created.

The remaining of this paper is organised as follows: Section 2 presents related work on
Source Term Estimation methods, Section 3 presents the problem formulation as well as the methods
used for the estimation process; Section 4 describes the proposed solution. The experimental setup is
presented in Section 5; Section 6 describes the experimental results obtained in the evaluation of the
work; and Section 7 draws the conclusions from this work and provides insight into future endeavours.

2. Related Work

There are two different strands of work for locating odour sources: plume tracing methods and
source estimation methods. The plume tracing methods aim to use environmental information to
guide the robot to the location of the odour source. Conversely, source estimation methods focus
on using environmental data to estimate the parameters of the chemical source, without the need to
navigate to its location. This section presents some of the main works of both approaches.

2.1. Plume Tracing Methods

Plume tracing methods attempt to use environmental information to guide the robot to the location
of the chemical source. The plume tracing methods have three well defined stages, each requiring a
distinct behaviour: (1) Plume Search, where the robot must explore the environment, searching for
the initial odour cues; (2) Plume Track, where the robot is in contact with the odour plume and must
follow it to the vicinity of its source; and (3) Source Declaration, where the robot must pinpoint the
location of the odour source.

Due to the ability of animals to successfully locate odour sources, most of the existing plume
tracing methods are inspired by their behaviours, which are designed to work in specific conditions.
One of the most important environmental conditions is the strength and stability of the air flow.
In environments where the flow is weak or non-existent, biological organisms employ chemotactic
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strategies, which use information about the chemical gradient. One such behaviour is the biased
random walk observed in bacteria and other small organisms [9]. In environments containing strong
winds, animals typically take advantage of the airflow information to guide their search process [10].
A popular anemotactic approach is inspired by the behaviours of the male silkworm moth while
tracking a trail of pheromone [11].

2.2. Source Term Estimation

The goal of Source Term Estimation (STE) is to predict the dispersion of chemical plumes by
estimating the parameters of the emitting source, such as the location and emission rate. Usually,
two main approaches are used to tackle this problem: optimisation methods and probabilistic
approaches, both of which have the objective of finding the best match between the measured
and predicted data. Regarding the probabilistic approaches, particle filter algorithms have been
widely used in this field of research [4–8,12] due to their ability to deal with multimodal distributions
and highly nonlinear applications. This method consists of generating a large number of random
hypothesis (particles) to approximate the posterior probability of a state vector. One of the downsides
of particle filters is their computational complexity, which is proportional to the number of particles
and observations. Bourne et al. [7] employed a Particle Filter to estimate the plume source parameters
on a multi-robot STE approach. The proposed method was validated in a small arena with a custom
humidity generator and three mobile robots. Li et al. [4] proposed an odour source localisation
algorithm based on a particle filter. The method employs an exploration behaviour that aims to
improve the information gain when a target chemical is detected. The detections are binarized and the
validation was done with a mobile robot in an open, uncontrolled, environment. Neumann et al. [6]
proposed to solve the STE problem by combining a plume tracking algorithm and a particle filter.
The plume tracking algorithm is used to reach the vicinity of the odour source, at which point
the particle filter is employed for declaring the source. Binary gas information is used during the
plume acquisition and plume tracking stages, whereas the concentration values are used on the
source declaration step. The method is validated in simulation and outdoors with a micro-drone.
Ristic et al. [12] proposed a particle filter with Rao–Blackwell dimension reduction in order to estimate
the location and emission rate of a plume source. With this method, the posterior density of the source
emission rate, conditioned by the source position is computed analytically, and the estimation is only
performed on the position states of the model. Numerical tests with simulated and experimental data
show the improvements of the method. Lu et al. [5] dealt with the problem of odour source localisation
using multiple mobile robots. A particle filter was used to estimate the position of the odour source
from the observations of the entire robot group. The source position is estimated based on wind
information and chemical detection events. The proposed approach was evaluated in simulation,
with the results showing that the search time was reduced by cooperation. Park et al. [8] propose a
multi-robot particle filter for estimating the position of an odour source as well as its emission rate.
A set of simulation-based experiments are conducted to study the impact of the number of robots as
well as of their coordination mechanism. The results showed that using coordination between the
robots increased the performance of the estimation method.

To sum up, the existing works focus mainly on estimating a reduced number of parameters
of the chemical plume. Most works validated the proposed approach with simulations, and the
few that used real world experiments did so in uncontrolled environments. Moreover, the existing
works often rely on binary chemical detections, rather than using the actual chemical concentration
values. The present work aims to go one step further, estimating a broader number of parameters.
A two-step estimation method is proposed to cope with the increased problem complexity and
optimized zig-zagging trajectories are used to devise the sampling trajectories that optimise the quality
of the information gathered.
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3. Methods

This section describes the methods used in the present work for addressing the STE problem.

3.1. Problem Statement

Consider a mobile robot moving in known positions x(t) across a R2 space. The robot is equipped
with a gas sensor and a 2D anemometer that enable acquiring the gas concentration c(x(t)) and wind
speed u(x(t)) along its trajectory. Assume an open, but bounded workspace, with air flowing in a
dominant direction ū, containing an odour source located in an unknown position (xs, ys, hs) and
releasing a chemical vapour at constant, but unknown rate Q. It should be noted that the odour plume
generated by the odour source in this environment will not be smooth, but it will contain internal
intermittency, generated by the turbulence created by the interaction in between the air flowing and
the surfaces of the environment. The problem here is estimating the location and intensity of the odour
source based on measurements collected by the robot while it covers the environment. The efficiency
of this estimation process will depend on the Source Term Estimation algorithm employed and from
the quality of the data provided to that algorithm. The later depends on the trajectory of the robot
while covering the environment.

3.2. Plume Model

A three-dimensional Gaussian Plume model, as described by Equation (1), describes time-averaged
spatial distribution of a chemical vapour c̄(x, y, z) released from a point source located in position
(0, 0, h), in a referential centred on the source, and releasing the chemical at a rate Q. The environment
is supposed to be homogeneous, unbounded, and flat, and the average downwind direction ū is
assumed to be aligned with the x coordinate axis. The crosswind direction is assumed to be aligned
with the y coordinate axis and z represents the distance to the soil surface, in the previously mentioned
referential [3]:

c̄(x, y, z) =
Q

2πūσyσz
exp

(
−y2

2σ2
y

)[
exp

(
−(z− h)2

2σ2
z

)
+ exp

(
−(z + h)2

2σ2
z

)]
(1)

The lateral and vertical dispersion coefficients, σy and σz respectively, are functions of the
downwind distance to the source (x), frequently modelled by the polynomials of Equations (2) and (3),
whose coefficients depend on the atmosphere stability [13]:

σy = axb (2)

σz = cxd (3)

3.3. Particle Filter Algorithm

The objective of a Particle Filter is to recursively approximate the posterior probability density
function (PDF) for the system states with a group of particles using a series of weighted random samples
and observation values [14]. Particle Filters can be used to estimate non-Gaussian distributions and
nonlinear processes representing belief by random samples. The downside is the higher computational
power required for large state spaces, as the amount of particles that must be generated grows
exponentially with the number of dimensions of the space.

Each of the particles is a hypothesis consisting of a state x(i)t and a corresponding weight w(i)
t

representing the likelihood of that particle (Equation (4)):

χt := {(xi
t, wi

t)} i ∈ {1, . . . , N} (4)
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The likelihood is obtained by evaluating how well each hypothesis matches the observations yt,
where a better match results in a more significant weight value (i.e., better fitness value). Depending on
their weight, the particles have a higher or lower chance to be replicated to the next iteration through
the resampling process, also known as sequential importance resampling (SIR). The purpose of this
method is to replace hypothesis with lower weights by those with higher weights, in order to improve
the convergence of algorithm. This process is iterated multiple times until an estimate of the state
vector x given by Equation (5) is obtained. The posterior density function of state is approximated as
given in Equation (6):

xt =
N

∑
i=1

wi
tx

i
t (5)

p(xt|c1:t) ≈
N

∑
i=1

wiδ(xt − xi
t) (6)

In an STE process, the Gaussian Plume model is combined with the Particle Filter through
a state space composed by the state transition model and the measurement model presented by
Equations (7) and (8):

xt+1 = xt + vt (7)

ct = c(x, y, t) (8)

The variable x represents our hypothesis (i.e., a particle), each containing the parameters to be
estimated. The vt follows a normal distribution vt ∼ N (0, σv) and is used to update the particles on
the prediction step during the filter iterations. ct represents the measured concentration values on
multiple positions of the odour plume.

4. Proposed Solution

This work proposes to tackle the problem of STE by decomposing it into two sub-problems:
(1) how to sample the environment and (2) how to use the information gathered to estimate
the parameters of the chemical source. This section describes the proposed approaches for each
sub-problem, starting with the trajectories made to sample the plume (Section 4.1) and moving on to
how to estimate the parameters of the source (Section 4.2). Figure 1 presents the overall strategy of the
the proposed method.

Prior estimation

Pre-estimation Step:

Generate source
localization bounds;
Generate Q bounds;
Generate ay bounds.

Initialization Step:

Generate uniformly
distributed particles with
pre-estimated bounds;

Generate equally
distributed weights.

Prediction Step:

Update particles based
on the predicted value.

Update Step:

Update particles
weights based on the

observations.

Resampling Step:

Discard particles with
lower weights and
replace them with

copies of particles with
higher weights.

Terminate Process

If max number of
interations
reached or

solution
converged

Fine Estimation 
with Particle Filter

Measurements

Plume Sampling

Figure 1. Overall strategy of the proposed method.
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4.1. Sampling Strategy

Before estimating the parameters of the odour source, the robot must move in the environment,
gathering samples of gas concentration and wind velocity.

In nature, animals track scents with counterturning behaviours [10]. Two types of counterturning
behaviours can be distinguished: (1) zigzagging, when the agent changes its position in the upwind
axis; and (2) casting, when the motion is solely in the crosswind axis. In the zigzag behaviours,
the angles of the counterturns have to be defined and do not have to necessarily be the same. In this
work, the purpose of moving the robot is not to find the odour source, but to sample the environment
in a way that optimises the quality of the estimation. Preliminary experiments showed that performing
an initial plume crossing in the crosswind direction provided good data for the pre-estimation method,
but was insufficient for accurately estimating the parameters of the chemical plume. To that end,
and drawing inspiration from the upwind zigzag motions of the Dung Beetle [15], the trajectories were
defined as consisting of two parts: (1) a plume searching stage and (2) a plume transversing stage.
In the first stage, the robot moves directly crosswind (casting), halting after leaving the chemical plume.
This stage is particularly important for the prior estimation step. In the second stage, the robot performs
a series of diagonal motions to sample the environment (zigzagging). These motions are straight lines
performed at an offset to the crosswind direction. As soon as the robot exits the plume, it will select the
next offset, apply it to the opposite crosswind direction, and go back into it. An example trajectory is
depicted in Figure 2. The question now is how to optimally select these offsets. In this work, a Genetic
Algorithm shall be used to evolve the trajectories of the robot.

Figure 2. Example of an evolved trajectory. The grey dotted line represents the initial plume crossing,
whereas the black dotted line shows the subsequent crossings, each with a different offset to the
crosswind direction.

Evolutionary Algorithms [16] are a family of stochastic search heuristics loosely inspired by
the principles of Natural Selection and Mendel’s genetics. Two of its sub-families are Genetic
Algorithms (GAs) and Genetic Programming (GP). The main difference between them is that GAs
evolve solutions for a given problem, whilst GPs evolve computer programs that, once executed,
produce those solutions.

In this work, a GA is used to evolve the sampling trajectories. Each individual encodes a
trajectory and, as previously mentioned, each trajectory is composed of two parts: an initial plume
crossing directly in the crosswind direction and the motions to perform when sampling the plume.
In turn, these motions consist of straight movements with an offset to the crosswind direction. Thus,
the genotype of each individual consists of a vector of real-valued numbers, corresponding to the
offsets to be added to the crosswind direction towards upwind on each plume crossing.

The size of each genotype is allowed to vary between 1 and 5 offsets. As a result, the trajectories
consist of an initial plume crosswind with no offset to the crosswind direction, followed by a
sequence of 1 to 5 diagonal plume crossings. The maximum length for the trajectory was selected



Sensors 2020, 20, 7025 7 of 17

as the results of preliminary experimentation showed no further performance gains with longer
trajectories. Moreover, as moving the robot in the environment is a time and energy-consuming
process, shorter trajectories are preferred and thus the GA is allowed to search for shorter trajectories
that optimise the estimation quality.

The algorithm starts by creating a population of randomly-generated trajectories, which must
be evaluated. The evaluation of each trajectory consists of running a simulation and collecting
environmental data along the mentioned trajectory. In this work, the simulator proposed in [15] is used
and each trajectory is evaluated until its termination or until the simulation time expires. The samples
collected in simulation are fed into the particle filter, which outputs the best estimate for the source’s
parameters. Analysing the results of preliminary experimentation, it was possible to verify that there
are multiple sets of parameters for the Gaussian Plume model that fit the collected samples. i.e., it is
possible to parametrise the Gaussian Plume model with the source at various locations if the remaining
parameters are also modified so that it matches the measurements from the environment. As a result,
and due to the various parameters having very different magnitudes, we opted by computing the
fitness of each trajectory only as the error (Euclidean distance) between the estimation of the source’s
position and the ground truth. After evaluation, the trajectories are evolved over a set of generations.
On each generation, a subset of trajectories are chosen to act as mates, producing offspring through one
point crossover and Gaussian mutation. The parameters of the GA and of the simulator are respectively
presented in Tables 1 and 2.

Table 1. Parameters of the genetic algorithm.

Parameter Value Description

gens 100 Number of generations used
pop_size 100 Size of the population used by the algorithm
elite_size 10 Amount of individuals from the previous population that

survive into the next
n_offspring 50 Number of offspring created per generation
domain (0, 0.7× π/2) Interval of possible offsets
p_cross 0.7 Crossover rate
p_mut 0.3 Mutation rate
σ 10% domain amplitude Standard deviation of the Gaussian mutation
tourn_size 3 Size of the tournaments for selecting the parent individuals

Table 2. Parameters of the simulator.

Parameter Value Description

Ws 0.05 m/s Initial wind speed
Wd 0 rad Initial wind direction
Wv 0.01 rad Standard deviation of the Gaussian noise added to the wind vectors
Fr 0.1 Hz Filament emission rate
γ 0.05 m/s Filament growth rate
Kx 5 Parameter of the wind equations
Darena 40 m × 30 m Dimensions of the arena
Cellsize 7.2 m Width of the cells for computing the wind
Sregion (38 m, 21 m) Start region of the robot
Sstep 0.5 s Duration of the simulation step
Stime 1800 s Maximum evaluation time

Evolution Results

Thirty independent runs of the GA were made, yielding 30 strategies. In order to assess the
robustness and true worth of the strategies, each one was run in the 30 instances of the simulation
environment. Figure 3 presents the boxplots of the obtained fitness values (Euclidean distance between
the estimated and real position of the odour source) for each of the best strategies. From the boxplots,
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it is clear that some strategies over-fit their environment, but have poor generalisation ability. In this
work, the maximum acceptable error is considered to be of 5 m in the simulation environment and
0.5 m in the real world arena. Given the dynamic nature of the odour dispersion process, and the
possible differences in the location of the robot and chemical source, it is not feasible to find an overall
best set of angles. However, focusing on the strategies that attain a median error below 5 m, a pattern
emerges, where, apart from the initial zero-offset crossing, a good quality strategy should have a
sequence of at least four crossings with offsets between 12◦ and 45◦.

Figure 3. Fitness of the best strategies on the 30 instances of the simulation environment.

4.2. Parameter Estimation

The parameters of the source are estimated with a particle filter. Each particle encodes the position
and emission rate of the chemical source, along with estimates of parameters that are specific to the
Gaussian plume model. In turn, the Gaussian plume model is used by the Particle Filter to evaluate
the quality of each particle. This is done by comparing the environmental samples collected by the
robot to the Gaussian plume model parametrised with each particle.

The high dimensionality of the estimation vector creates a large search space, where it is difficult
for the Particle Filter to find good estimates. As a result, and based on the environmental data collected
by the robot, a prior estimation method is proposed for bounding the search space for the location and
emission rate of the odour source, as well as for the horizontal dispersion of the plume. This restriction
of the search space optimises the generation of the particles, and consequently the search process of
the Particle Filter. This section presents the proposed prior estimation method, as well as the particle
filter algorithm.

4.2.1. Prior Location Estimation

Considering that a set of environmental samples of a plume crossing is obtained, the coordinates
of the location of the first (xin, yin) and last (xout, yout) odour detection can be used to narrow the
region of the search space for particle generation. Due to the nature of the odour dispersion model,
and considering a uniform wind along the x axis, the location of the plume’s source (xs, ys) is likely to
be between yin and yout and on xs < min(xin, xout).

This region is considerably smaller than the entire arena and is an approximation of the real value.
The initial particles will be generated within this region and, as a result of the reduced search space,
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fewer particles may be used, the initial standard deviation will be lower and the weight values will
reflect the reduced error due to the larger proximity to the location of the source.

4.2.2. Prior Emission Rate Estimation

According to the law of conservation of energy, the total energy of an isolated system remains
constant over time. When crossing the plume with the robot, the concentration values are obtained,
along with a displacement. Assuming a uniform air flow, the area under the concentration curve along
the y coordinates will provide an approximation of the maximum concentration value measured near
the source. This value can be used to bound the interval of the source’s emission rate. The area under
the concentration curve is computed through its integral, as presented in Equation (9):

Q =
∫ zmax

zmin

∫ ymax

ymin

c̄(y, z) ū dy dz (9)

c̄(y, z) represents the gas concentrations measured by the sensor that equip the robot at each (x, y)
location along the plume crossing; ū is the mean wind velocity; ymin and ymax respectively correspond
to the y coordinates where the robot entered and exited the plume. The prior estimation of the emission
rate is obtained by converting the value resulting from computing this integral. This process allows for
limiting the search space of the emission rate for the particle filter and optimising the generation of the
initial particles.

4.2.3. Prior Sigma Estimation

In a recent work [17], a method for computing the horizontal plume spread (σy) was proposed.
This method is based on the crosswind integration of the concentration measurements, in order to
determine the second moment of the mean of the data, as shown in Equation (10):

〈Y〉2 =
1
A

∫ +∞

−∞
(Y−Y0)

2c(x, y)dy (10)

where Y is the cross-plume coordinate in meters, c(x, y) is the measured concentration, Y0 is the
weighted plume centreline, and A is the integrated concentration, computed through Equation (11):

A =
∫ +∞

−∞
c(x, y)dy (11)

σy is obtained as a square root of 〈Y〉2. As the estimation process is computed on observations from
plume crossings, the measured concentration data and the respective locations contain the information
needed to apply this method to obtain a pre-estimation of σy. Y is obtained from the y location
values of the trajectory of the robot. Y0 is obtained from the position with the highest measured
concentration value, approximately corresponding to the plume centreline. c(x, y) is the multiple
chemical concentration measurements obtained along the trajectory of the plume crossing. From this
estimation, a correlation between σy and ay is obtained serving as a reference to generate the bounds
aylb and ayub for this state on the Particle Filter.

4.2.4. Particle Filter

This work uses a SIR Particle Filter, as the one described in the previous section, to estimate
the parameters of an odour plume after each plume crossing. Let us consider the state vector
x = {xs, ys, Q, ay, b}, containing the parameters of a 2D Gaussian plume, as described by Equation (12),
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where xs and ys represent the source location, Q the emission rate, and ay and b are the coefficients
from the crosswind dispersion σy = ay(x− xs)b:

c̄(x, y) =
Q

2πūσy
exp

(
−y2

2σ2
y

)
(12)

Additionally, let us consider a set of N hypothesis, represented by χt := {(xi
t, wi

t)}, i ∈ {1, . . . , N}
particles, containing a state vector xi

t and its respective weight wi
t, whose value represents a degree of

confidence about how the state vector explains the data observed in the field. A Particle Filter uses the
following steps to adjust iteratively the values of each particle, searching for sets of particles that better
explain the observed data.

1. Filter initialisation: Generate a set of N particles χ0t with initial values xi
0 uniformly spread across

a search space with boundaries defined by the previous estimation process (Equation (13)) and
uniform weights wi

0 = 1/N:

Xi =



xi
s = U (xin, xout)

yi
s = U (yin, yout)

Qi = U (Qlb, Qub)

ai
y = U (aylb, ayub)

bi = U (blb, bub)

(13)

The boundaries (blb and bub) for parameter b were not pre-estimated, but this parameter is widely
studied, and its range is well defined in the literature.

2. Prediction: Predict the next state of each particle following the equation xt+1 = xt + vt, where vt

is an added random noise that follows a normal distribution N (0, σr). σr is the defined variance
of each parameter, defined to prevent a premature convergence of the particles and allow better
exploration of the search space.

3. Update: All particles are evaluated against the measured concentration values using the following
fitness function:

e1:s
t = f (xi

t)− y1:s, (14)

where f is the Gaussian plume model from Equation (12), xi
t the particle being evaluated,

and y1:s the concentration measurements from the plume crossing with s the observation number.
The weight of each particle is then updated according to Equation (15) and is later normalised
with Equation (16), so all weights sum to 1:

wi
t =

1
∑ns

s=1(e
s
t)

2 (15)

wi
t =

wi
t

∑N
i=1 wi

t
(16)

4. Resampling: In the resampling process, the particles are selected with probability proportional to
their weight, thus the best particles will appear more often in the next iteration and the worst
particles will disappear in the process. The systematic resampling [18] is used when the effective
number of particles (Ne f f ) is below a threshold, being Ne f f by Equation (17),

Ne f f =
1

∑N
i=1 w2

i
(17)
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5. Compute estimations: The state estimation and the variance of the particles on each iteration is
computed by Equations (18) and (19), respectively.

xt =
N

∑
i=1

wi
tx

i
t (18)

vart =
N

∑
i=1

wi(xi
t − xt) (19)

6. Check convergence: If the solution converges or a maximum number of iterations is reached,
the filter terminates and outputs the last state estimation, variance, weights, and particles
distribution. Otherwise, the process will repeat from the prediction step.

5. Experimental Setup

The main elements employed to validate the proposed methodology are a controllable testing
environment and a mobile platform, able to estimate its pose and to measure the concentration of the
target gas and the wind speed at its location.

5.1. Testing Environment

The testing environment employed to validate the proposed methodology is a large wind
tunnel-like environment, with 3 m width by 4 m long, by 0.5 m height, as already used in previous
works (e.g., [19]). This environment is large enough to carry-out olfactory experiments with
single or multiple small robots (see Figure 4a). The airflow inside the environment is controlled
from 0 until 1 m/s through an array of 24 axial ventilators, whose speed can be individually
controlled. This airflow is monitored with a WindSonic ultrasonic anemometer from Gill Instruments
(Lymington, UK). The gas source employed in this work uses a piezoelectric transducer to evaporate
ethanol at a constant rate (Figure 4b left). The intensity of this source can also be adjusted through
the piezoelectric driver, but, in this work, it was kept constant at about 7 µg/s. All experiments
can be defined, monitored, and logged through a custom software solution developed with Node.js
(https://nodejs.org/) and running on an Orange Pi 3 single board computer (SBC) (Xunlong Software,
Shenzhen, China), which guarantees all real-time communications and database storage through an
InfluxDb (https://www.influxdata.com/). The interface with the system is made through a web-page
and Socket.Io (https://socket.io/) communication.

(a) (b)
Figure 4. Experimental setup. (a) Wind tunnel environment; (b) odour source (left) and mobile
robot (right).

https://nodejs.org/
https://www.influxdata.com/
https://socket.io/
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5.2. Mobile Robot

A modified version of the mobile robot used by [20] was developed for these experiments
(Figure 4b right). This is a two-wheeled, differential-driven unit with odometry, a Marvelmind v4.9
(Marvelmind Robotics, Tallinn, Estonia) beacon for global localisation and a 360◦ LiDAR for obstacle
avoidance. The robot has 160 mm diameter and a height of 300 mm, when the localisation beacon is
installed. It uses an STM32 MCU to support low level motion control and an ESP32 MCU for high-level
navigation and Wi-Fi communication. Additionally, the robot contains a gas sensing unit and a 2D
anemometer for environmental sensing. The navigation, data processing algorithms are implemented
in C++ and Python as Robot Operating System (ROS) (https://www.ros.org/) nodes.

5.3. Odour Compass

The robot senses the environment with a metal oxide gas sensor (MOX) (three sensors were
installed in the robot, but only one, at the same height as the gas source, was used in this work) and a
custom 2D thermal anemometer. MOX sensors are resistive transducers that decrease their resistance
in atmospheres containing oxidising vapours, such as ethanol. The sensor used in this work was
a MiCS-5524 from SGX Sensortech (Corcelles-Cormondreche, Switzerland). This sensor can detect
few parts per million (ppm) of ethanol vapour and has a rise time constant of about 1–2 s, which is
relatively fast for chemical sensors, but a slower fall time constant of 5 to 10 s. The gas sensor was
calibrated by a process like the one described in [21], using an enclosed box, where the concentration
of ethanol was changed in a set of known values. For experiments involving multiple different gases,
an array of MOX sensors, such as the one used in [22], could have been used.

The top of the robot contains a thermal anemometer composed by an air deflecting cylinder
surrounded by five self-heated thermistors that measure the airflow intensity at their locations.
The global airflow intensity around the robot and the airflow direction are estimated by processing the
response of all five measuring elements, as described in [23].

These two sensing systems are sometimes referred to as an odour compass, by their ability to
provide information to estimate the direction of an odour source, measuring the gas concentration
c(x, y, t) and the airflow vector u(x, y, t) at a given position (x, y).

6. Experimental Results

While developing this work, the proposed method was tested and validated more than 50 times
in the described environment, placing the source in different positions and using different airflow
intensities. In these tests, the method was able to provide consistent estimates of the defined state
vector, and, in particular, consistent estimates of the odour source localisation. This section summarises
some of these results, characterising first the performance of the estimation process, while the robot
is covering the environment, and later characterising that same performance, but for three different
trajectories: one of the best trajectories obtained from the GA and two empirically devised trajectories.
In order to keep the results comparable, the shown results were taken in the same environmental
conditions: the odour source was placed at (0.5, 0, 0.2) and its intensity was set to a release rate Q of
approximately 6 µg/s. The wind ū was set to uniform at 0.31 m/s speed. The algorithm was developed
in Python and optimized with the Numba JIT compiler. Using a PC equipped with an Intel I7-8750H
CPU and 16 GB RAM, it takes roughly 120 ms to perform 60 iterations of the particle filter algorithm
with 1000 particles. Disabling the Numba optimisation, the execution time rises to approximately 3 s.

6.1. Plume Intensity and Dispersion

The current work estimates five parameters from a Gaussian plume. In order to evaluate how
the estimation process evolved for the intensity and the dispersion, an experiment was designed
consisting of crossing the plume twice, in the opposite direction, at three downwind distances from
the source (1, 2 and 3 m), as shown in Figure 5 (top). The robot was moved slowly, at a speed

https://www.ros.org/
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of 20 mm/s. The concentration measurements show that the plume dispersion increases with the
distance to the chemical source, as predicted by the Gaussian Plume model. Despite the relatively
slow motion, it is possible to observe a short response time, when entering the active region of the
plume, and a longer recovery time when leaving the plume, caused by the slower falling dynamics of
the gas sensor, which insert distortions in the spatial measurements and cause errors in the estimation
process. The intermittent and chaotic nature of the plume is also observed by the rapid changes on the
instantaneous concentration values along the trajectories, resulting in a rugged concentration curve,
compared to the smooth average values provided by the Gaussian Plume model.

Figure 5. Trajectories used to evaluate the evolution of the estimation process while six crossings were
performed at three downwind distances. The top figure shows the trajectory and the concentration
measurements along the experiment. The particles distribution is shown in the bottom figures.

The distribution of the estimates of the multiple parameters can be estimated by the distribution
of the values of those parameters contained in the population of particles. The evolution of those
distributions is shown in Figure 5 (bottom) for the parameters Q, ay, and b. This analysis was done by
fixing the parameters xs and ys equal to their true value and leaving the other parameters free to be
adjusted by the filter. It is clearly visible that the variance of all parameters reduces while the robot
increasingly covers the plume and approaches the source, and it is also possible to see that the average
of Q tends to the true value and the horizontal dispersion coefficients are coherent with what would
be expected for a laminar atmosphere (see [13]).

6.2. Sampling Strategy Analysis

In order to validate a cover strategy proposed by the GA, the odour plume was covered by three
different trajectories: one meeting the criteria proposed by the GA for a good coverage and two other
trajectories with different angles. Table 3 shows the angles and number of crossings of each trajectory.
The first and third trajectories were devised based on empirical experimentation, whereas the second
one was optimised by the GA.
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Table 3. Evaluated trajectories and respective angles.

Trajectory 1◦ Cross Angle 2◦ Cross Angle 3◦ Cross Angle 4◦ Cross Angle 5◦ Cross Angle

1 0◦ 45◦ 0◦ 45◦ 0◦

2 0◦ 20◦ 43◦ 40◦ 39◦

3 0◦ 47◦ 63◦ − −

As the wind tunnel’s length and width is 10 times smaller than the simulated environment,
the threshold for acceptable estimation errors is set to 0.5 m. Each trajectory was performed five times
under the same conditions.

To evaluate whether there are statistically significant differences in the obtained results,
100 independent estimation trials were performed for each trajectory, and the Wilcoxon test was
employed to compare the data, with a 95% confidence interval. The results of this test, presented in
Table 4, show that at the chosen confidence level there are statistically significant differences between
the estimations obtained from all trajectories.

Table 4. Results of the Wilcoxon test (Z|p).

State Traj1-Traj2 Traj1-Traj3 Traj2-Traj3

xs 9218 | 0.0 11, 503 | 0.0 860 | 0.0
ys 3819 | 0.0 25, 006 | 0.0 14, 714 | 0.0
Q 25, 204 | 0.0 0 | 0.0 0 | 0.0

The impact of the number of particles on the quality of the estimation was also evaluated and
presented in Table 5. This table shows that the improvement in the estimation process for 500 and
5000 particles was minimal, which may be explained by the reduction of the search space provided by
the prior estimation.

Table 5. Mean and standard deviation results from multiple runs with different amounts of particles.

N. Particles xs (m) ys (m) Q (µg/s) ay b

100 0.39± 0.2262 0.05± 0.0620 7.44± 2.4267 0.22± 0.0518 0.38± 0.1852
500 0.40± 0.2096 0.06± 0.0562 7.51± 2.2206 0.22± 0.0441 0.38± 0.1655

5000 0.38± 0.2028 0.06± 0.0560 7.25± 2.0291 0.21± 0.0359 0.40± 0.1558

Figure 6 (left) shows an example run of the measured concentration values during each motion
where the active region of the plume is detected, and the estimation results for each crossing are also
presented in this figure (right). Figure 7 presents the results of the three trajectories where the evolution
of the estimation error along with the respective distance to the source is shown. Trajectory 1 and
trajectory 2 show better estimation results than trajectory 3. The same figure shows that, with fewer
crossings (larger angles), the estimation error of the position increases at the same Euclidean distance
to the source. All three trajectories have acceptable estimation results. The parameter xs is the most
sensitive in the whole process. It contains a large uncertainty in the beginning of the process, but, as the
robot crosses the plume and moves closer to the source, its error and uncertainty becomes smaller,
until about 10 cm. The centre of the plume ys is always accurately estimated, from the beginning of
the process. We do not have a ground truth for the dispersion coefficients, but the values obtained for
parameters ay and b are in line with what would be expected for a very stable environment, such as
the one we employed in the experiments. The emission rate Q, together with xs, are the most unstable
and uncertain parameters, needing more plume crossings to obtain more confident estimates. This is
attributed to the variability of the instantaneous concentration measurements that may be far from
the expected value and highly influence the estimate of those two parameters. The dynamics of the
environment along with the response of the sensor can have a significant impact on the readings
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that, when compared to the hypothesis evaluated with the Gaussian Plume, resulting in plumes with
different widths and emission rates, increasing the error on the estimations. Figure 6 shows that
trajectories with angles larger than 45◦ increase the uncertainty of the estimates, with particular impact
on the estimate of Q. The estimation process seems to not be highly affected by the crossing angle,
when the robot is moving close to the odour source.

Figure 6. Dataset of three trajectories with different angles. Trajectory 1 (top row) was performed with
angles 0◦, 45◦, 0◦, 45◦, and 0◦ relatively to crosswind. Trajectory 2 (middle row) was evaluated with
0◦, 20◦, 43◦, 40◦, and 39◦, respectively, and the trajectory 3 (bottom row) with angles 0◦, 47◦, and 63◦.
The left column shows the trajectories, measured concentrations along the plume crossings, and the real
odour source location. The right column shows the performance of the algorithm along the crossings.
Some of the boxplots were scaled by 0.1 to improve the visualisation of the data.

Figure 7. Evolution of the estimation performance of each trajectory along the plume crossings. The dot
points show the location estimation error according to the crossings. The bar plot shows the minimum
Euclidean distance to the odour source.
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7. Conclusions

The quality of a Source Term Estimation process depends both on the quality of the estimation
algorithm and on the quality of the data used in the estimation. This work proposes a GA-based
approach that generates optimal trajectories to guide a mobile robot across the active region of an
odour plume in order to sample valuable data to be used by a particle filter-based algorithm used in the
STE of the plume. Using trajectories with crossing angles in the range from 12◦ to 45◦ tends to generate
better estimates, reducing the uncertainty of the results. The proposed implementation efficiently
estimates a five-dimensional state vector by a two-step approach: the initialization of hypothesis
from a limited search space defined by conventional inverse processes, and a later refinement of this
hypothesis through a particle filter that runs after each plume crossing with a robot. The methodology
was extensively tested and validated in a controlled environment, having systematically provided
good estimation results. This controlled environment allows for keeping constant and predictable
conditions, which are key to comparing results in this area. In the future, the proposed method shall
be tested on plumes with higher disturbance and further developed to estimate their three dimensions,
exploring the vertical dispersion of the odour.

Author Contributions: Conceptualization, H.M., R.B., J.M. and L.M.; methodology, H.M., L.M.; software, H.M.,
R.B. and J.M.; hardware, H.M. and R.B.; validation, H.M., R.B., J.M. and L.M.; investigation, H.M., R.B., J.M.
and L.M.; writing—original draft preparation, H.M., R.B. and J.M.; writing—review and editing, L.M. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the Portuguese Foundation for Science and Technology
(FCT), projects UID/EEA/00048/2019, UID/CEC/00326/2019 and Ph.D. studentships SFRH/BD/149527/2019,
SFRH/BD/147988/2019 and SFRH/BD/129673/2017, co-funded by the European Social Fund and by the State
Budget of the Portuguese Ministry of Education and Science.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

GA Genetic Algorithm
GP Genetic Programming
MOX Metal Oxide Gas Sensor
PDF Probability Density Function
SIR Sequential Importance Resampling
STE Source Term Estimation

References

1. Hakim, K.; Jayaweera, S.K. Source localization and tracking in a dispersive medium using wireless sensor
network. EURASIP J. Adv. Signal Process. 2013, 2013, 147. [CrossRef]

2. Hutchinson, M.; Liu, C.; Chen, W.H. Source term estimation of a hazardous airborne release using an
unmanned aerial vehicle. J. Field Robot. 2019, 36, 797–817. [CrossRef]

3. Pal Arya, S. Air Pollution Meteorology and Dispersion; Oxford University Press: New York, NY, USA, 1999.
4. Li, J.G.; Meng, Q.H.; Wang, Y.; Zeng, M. Odor source localization using a mobile robot in outdoor airflow

environments with a particle filter algorithm. Auton. Robot. 2011, 30, 281–292. [CrossRef]
5. Lu, Q.; Han, Q.L. Decision-making in a multi-robot system for odor source localization. In Proceedings

of the 37th Annual Conference of the IEEE Industrial Electronics Society (IECON 2011), Melbourne, VI,
Australia, 7–10 November 2011; pp. 74–79.

6. Neumann, P.P.; Hernandez Bennetts, V.; Lilienthal, A.J.; Bartholmai, M.; Schiller, J.H. Gas source localization
with a micro-drone using bio-inspired and particle filter-based algorithms. Adv. Robot. 2013, 27, 725–738.
[CrossRef]

7. Bourne, J.R.; Pardyjak, E.R.; Leang, K.K. Coordinated Bayesian-Based Bioinspired Plume Source Term
Estimation and Source Seeking for Mobile Robots. IEEE Trans. Robot. 2019, 35, 967–986. [CrossRef]

http://dx.doi.org/10.1186/1687-6180-2013-147
http://dx.doi.org/10.1002/rob.21844
http://dx.doi.org/10.1007/s10514-011-9219-2
http://dx.doi.org/10.1080/01691864.2013.779052
http://dx.doi.org/10.1109/TRO.2019.2912520


Sensors 2020, 20, 7025 17 of 17

8. Park, M.; Oh, H. Cooperative information-driven source search and estimation for multiple agents. Inf. Fusion
2020, 54, 72–84. [CrossRef]

9. Adler, J. Chemotaxis in bacteria. Annu. Rev. Biochem. 1975, 44, 341–356. [CrossRef] [PubMed]
10. Kennedy, J.S. Zigzagging and casting as a programmed response to wind-borne odour: A review.

Physiol. Entomol. 1983, 8, 109–120. [CrossRef]
11. Marques, L.; Nunes, U.; de Almeida, A.T. Olfaction-based mobile robot navigation. Thin Solid Film 2002,

418, 51–58. [CrossRef]
12. Ristic, B.; Gunatilaka, A.; Wang, Y. Rao–Blackwell dimension reduction applied to hazardous source

parameter estimation. Signal Process. 2017, 132, 177–182. [CrossRef]
13. Carrascal, M.; Puigcerver, M.; Puig, P. Sensitivity of Gaussian plume model to dispersion specifications.

Theor. Appl. Climatol. 1993, 48, 147–157. [CrossRef]
14. Gustafsson, F. Particle filter theory and practice with positioning applications. IEEE Aerosp. Electron. Syst. Mag.

2010, 25, 53–81. [CrossRef]
15. Macedo, J.; Marques, L.; Costa, E. A comparative study of bio-inspired odour source localisation strategies

from the state-action perspective. Sensors 2019, 19, 2231. [CrossRef] [PubMed]
16. Eiben, A.E.; Smith, J.E. Introduction to Evolutionary Computing, 2nd ed.; Springer: Berlin/Heidelberg,

Germany, 2015.
17. Finn, D.; Clawson, K.L.; Eckman, R.M.; Liu, H.; Russell, E.S.; Gao, Z.; Brooks, S. Project sagebrush:

Revisiting the value of the horizontal plume spread parameter σy. J. Appl. Meteorol. Climatol. 2016,
55, 1305–1322. [CrossRef]

18. Li, Q.; Liu, Z.; Xiao, X. A gas source localization algorithm based on particle filter in wireless sensor network.
Int. J. Distrib. Sens. Netw. 2015, 11, 874535. [CrossRef]

19. Marjovi, A.; Marques, L. Optimal swarm formation for odor plume finding. IEEE Trans. Cybern. 2014,
44, 2302–2315. [CrossRef]

20. Macedo, J.; Marques, L.; Costa, E. Locating Odour Sources with Geometric Syntactic Genetic Programming.
In Proceedings of the International Conference on the Applications of Evolutionary Computation (Part of
EvoStar), Online Conference, 15–17 April 2020; pp. 212–227.

21. Turduev, M.; Cabrita, G.; Kırtay, M.; Gazi, V.; Marques, L. Experimental studies on chemical concentration
map building by a multi-robot system using bio-inspired algorithms. Auton. Agents Multi-Agent Syst. 2014,
28, 72–100. [CrossRef]

22. Marques, L.; Almeida, N.; de Almeida, A. Olfactory sensory system for odour-plume tracking and localization.
In Proceedings of the IEEE SENSORS, Toronto, ON, Canada, 22–24 October 2003; Volume 1, pp. 418–423.

23. Baptista, R.; Magalhães, H.; Macedo, J.; Marques, L. 2D thermal wind sensor for mobile robot anemotaxis:
Design and validation. In Proceedings of the IEEE International Symposium on Safety, Security, and Rescue
Robotics (SSRR 2020), Online Conference, 4–6 November 2020; pp. 227–232.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.inffus.2019.07.007
http://dx.doi.org/10.1146/annurev.bi.44.070175.002013
http://www.ncbi.nlm.nih.gov/pubmed/1094913
http://dx.doi.org/10.1111/j.1365-3032.1983.tb00340.x
http://dx.doi.org/10.1016/S0040-6090(02)00593-X
http://dx.doi.org/10.1016/j.sigpro.2016.10.005
http://dx.doi.org/10.1007/BF00864921
http://dx.doi.org/10.1109/MAES.2010.5546308
http://dx.doi.org/10.3390/s19102231
http://www.ncbi.nlm.nih.gov/pubmed/31091812
http://dx.doi.org/10.1175/JAMC-D-15-0283.1
http://dx.doi.org/10.1155/2015/874532
http://dx.doi.org/10.1109/TCYB.2014.2306291
http://dx.doi.org/10.1007/s10458-012-9213-x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Plume Tracing Methods
	Source Term Estimation

	Methods
	Problem Statement
	Plume Model
	Particle Filter Algorithm

	Proposed Solution
	Sampling Strategy
	Parameter Estimation
	Prior Location Estimation
	Prior Emission Rate Estimation
	Prior Sigma Estimation
	Particle Filter


	Experimental Setup
	Testing Environment
	Mobile Robot
	Odour Compass

	Experimental Results
	Plume Intensity and Dispersion
	Sampling Strategy Analysis

	Conclusions
	References

