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Abstract 

This study investigates the use of several trading strategies, based on Machine Learning methods, to 

profit on the risk premium of the Nordic electricity base-load week futures. The information set is only 

composed by financial data from January 02, 2006 to November 15, 2017. The results point out that the 

Support Vector Machine is the best method, but, most importantly, they highlight that all individual 

models are valuable, in the sense that their combination provides a robust trading procedure, generating 

an average profit of at least 26% per year, after considering trading costs and liquidity constraints. The 

results are robust to the different data partitions, and there is no evidence that the profitability of the 

trading strategies has decreased in recent years. We claim that this market allows for profitable 

speculation, namely by using combinations of non-linear signal extraction techniques. 
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1. INTRODUCTION 

 

There are mainly two types of participants in commodity futures markets. Hedgers, who 

are involved in the production, commercialization, or consumption of the underlying 

commodity, use futures to manage the price risk of their existing or anticipated spot positions. 

While speculators gather information on the future spot price and trade on their expectations.  

Speculation may provide two economic benefits. First, the information gathered by 

speculators is impounded through trading into the futures prices, increasing its informational 

efficiency and accelerating the spot price discovery process. Second, competition between 

speculators tends to lower the risk premium of the futures contract, hence decreasing the 
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implicit cost of hedging. Therefore, speculation is the main force driving liquidity and 

informational efficiency in commodity futures.  

This paper analyses the profitability of trading strategies on the risk premium of the 

Nordic Electricity Base Week Futures. The information set used to create those strategies is 

composed of variables retrieved from the daily spot and futures prices. The paper uses 

several Machine learning (ML) methods to create forecasts of the signal of the risk 

premium, according to which speculative trading positions are initiated. These methods are 

characterized by a high level of flexibility, allowing the consideration of non-linear 

dynamics. Several papers have already address the issue of forecasting future electricity 

prices using non-linear models and some of them use ML, however the literature on non-

linear models applied to the risk premium of electricity futures is still scarce, and, to the best 

of our knowledge, this is the first paper to use ML to devise trading strategies on the risk 

premium of these contracts.  

The existence of a risk premium, and even its predictability, does not necessarily imply 

that there are profitable trading opportunities. An additional step must be taken in devising 

such trading strategies and proving that they offer economically significant risk-adjusted 

abnormal returns after controlling for trading costs and liquidity constraints. This paper 

provides compelling evidence that those trading opportunities do existed for the risk 

premium of Nordic electricity base-load week futures. More precisely, combinations of ML 

methods, such as Regression Trees, Random Forests and Support Vector Machines, using a 

financial information set, from which stands out the futures returns, would have generated a 

profit of at least 26% per year, in the period from October 2013 to November 2017. 

This paper is organized as follows. Section 2 presents a brief literature review. Section 3 

presents the Nordic power market and the specification of the Nord Pool electricity base-load 

week futures contract, describes the data, and provides a preliminary analysis. Section 4 

describes the methods used to construct the trading strategies and explains the sample partition 

used to train, validate, and test them. Section 5 describes the parametrization of the models and 

present the main results on the performance of the trading strategies. Section 6 conducts 

several robustness checks, aiming to assess the sensitivity of the performance results to the 

sample partitioning and possible liquidity constraints. Section 7 concludes the paper. 

 

2. LITERATURE REVIEW 

 

This literature review is three-pronged. First, it looks at the main features and 

predictability of the risk premium in the Nordic electricity futures. Second, it presents some 

findings on the importance of financial data, especially futures prices, in forecasting the risk 

premiums of electricity futures. And third, it gathers supportive information on the ML 

methods used in our empirical application.  

Evidence on the risk premium of Nordic electricity futures and forward contracts can be 

found in several papers, such as Botterud et al. (2002), Mork (2006), Lucia and Torró (2011), 

Haugom et al. (2014), Fleten et al. (2015) and Smith-Meyer and Gjolberg (2016). Although 

these papers show the existence of a negative risk premium, they also highlight its dynamic 

nature. The risk premium seems to be conditional on the holding period, changes in the cost 

structure of power producers and market characteristics, such as maturity and liquidity.  

Several studies, including Lucia and Torró (2011), conclude that the risk premium in the 

Nordic weekly futures is persistent and that, to some extent, can be predicted. Fleten et al. 
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(2015) show that the risk premium has persisted for many years for the Nordic and German 

monthly forward contracts, but its size has reduced recently. High entry costs and low 

speculation capital (as the market is dominated by a limited number of producers, consumers, 

and retailers) can be the reasons for a less efficient market. Conversely, Smith-Meyer and 

Gjolberg (2016) find that after 2008 the Nordic monthly power futures became unbiased and 

claim that the market has matured and now appears to be at least weak form efficient.  

There is a stream of literature that considers the fundamentals to explain the dynamics 

of the risk premium in the Nordic electricity futures. Amongst these variables, stand out the 

reservoir levels, deviations in inflow and consumption from a long-term average, and 

volatility of electricity consumption (Botterud et al., 2002; Cartea and Villaplana, 2008; 

Lucia and Torró, 2011; Weron and Zator, 2014; Haugom et al., 2018). The framework of 

this paper is different, in the sense that it only uses financial data, i.e. the emphasis is on the 

ability of financial data, especially futures prices, to predict the risk premium. This is 

indirectly documented in these papers, as lagged financial variables are also included in the 

regression models, with positive results. In fact, some papers highlight the predictive power 

of futures prices (e.g., Huisman and Kilic, 2012; Paraschiv et al., 2015; Aoude et al., 2016; 

Ferreira and Sebastião, 2018; Steinert and Ziel, 2019).  

Several statistical methods have been proposed for forecasting electricity spot prices. 

Weron (2014) provides a comprehensive review of these methods, covering standard time 

series models and some ML methods, such as Neural Networks and SVMs. This last method 

has been successfully used, for instance, by Gao et al. (2007); Zhao et al. (2008); Saini et al. 

(2010); Shrivastava et al. (2015). Other ML techniques, such as Random Forests (RFs), 

have also been successfully used to forecast electricity prices (see, for instance, Mei et al., 

2014; González et al., 2015; Ludwig et al., 2015; Sadeghi-Mobarakeh et al., 2017). Besides 

these two methods, we also consider Regression Trees (RT). This method is simpler than the 

previous ones and is the basis of RFs. The main idea is to assess if simpler methods might 

also have a good perform in this framework. 

 

3. DATA AND PRELIMINARY ANALYSIS 

 

This paper investigates the Nordic Electricity Base Week Futures (market designation 

ENOW[WW]-[YY]). Weekly futures were chosen amongst other maturities due to its 

sample size, which is large enough to carry out meaningful analyses. These contracts were 

traded on the Nord Pool ASA exchange until November 01, 2010. At that time, the 

exchange was bought by the Nasdaq OMX, and changed its name to NASDAQ OMX Oslo 

ASA, belonging from that date forward to the NASDAQ OMX Commodities Europe. 

The underlying asset of these contracts is a supply of electric energy at a constant power 

of 1 MWh during all hours in a week time for delivery in Norway, Denmark, Sweden and 

Finland (normally 168 hours, except when changes to or from Daylight Savings Time occur, 

which imply a delivery period one hour shorter or longer, respectively). These contracts are 

subjected to cash settlement according to the “Elspot System Price” for the Nordic region, 

published by Nord Pool Spot AS. The contracts are quoted in EUR, have a tick size of 0.01€, 

and are traded during Norway business days. Although during the period under scrutiny there 

were at least six series of weekly futures available for trading and clearing, this paper only 

considers the nearby contract (assuming a roll over procedure in a weekly basis, at the last 

trading day, to the next contract). The decision to only use the nearby contract is driven by 
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liquidity concerns, as most of the trading volume is concentrated in the last week before 

delivery. Hence, there are at most five daily prices for each delivery calendar week. The 

delivery week is from Monday to Sunday, while the last trading day is the last business day 

before the delivery week, hence between the last trading day and the beginning of the delivery 

period there are at least two calendar days (a weekend). 

The raw daily spot and futures prices were collected from the Montel AS Database 

from January 02, 2006 to November 15, 2017, covering a total of 619 weekly calendar 

deliveries. For each week, the delivery spot price is computed as a simple arithmetic average 

of the daily spot prices, which in turn, are the simple arithmetic average of all hourly prices 

(this is the procedure used by the market for the delivery setting). In order to fill in the gaps, 

the following rule was applied: If the market is closed (holiday), or if it is open but there are 

no trades, the previous closing price is used.  

Figure no. 1 plots the time series of the weekly averages of the spot price and daily 

closing price of futures contracts in the last trading week. The differences between the spot and 

futures prices are almost indiscernible at the presenting scale. However, even at this scale, one 

may see that spot prices are more jagged than futures prices, there is a slightly decreasing trend 

in the long run, and, from the middle of the sample, the paths of prices are smoother.  

 

 
Source: Montel AS Database.  

Notes: Spot prices are the weekly spot electricity prices (simple average of hourly spot prices in week 

T). Weighted futures prices are the average of electricity base week futures prices traded on Nord 

Pool. These last series are computed as weighted averages of the daily closing futures prices in the last 

trading week, i.e. in week T-1, using the daily trading volume as weighting scheme. The sample covers 

the period between January 02, 2006 and November 15, 2017. 

Figure no. 1 – Weekly spot and futures prices (Jan. 02, 2006 - Nov. 15, 2017) 

 

Table no. 1 shows some summary statistics of the spot and futures prices, and of the 

risk premium computed as the difference between the spot price and the last closing futures 

prices before delivery. As expected, the futures prices and the spot price statistics are quite 
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similar. The mean, median, minimum, and maximum prices only differ a few cents. Prices 

show mild positive skewness and excess kurtosis and are highly autocorrelated, but there is 

no evidence on the existence of a unit root in those series. There is no discernible pattern in 

the statistics of the futures prices considering the time to delivery. For instance, the statistics 

of the futures price in the last trading day are not always closer to the statistics of the spot 

price than those of the other daily futures prices, except for the mean. The average futures 

price decreases as delivery approaches, rendering a decrease in the absolute value of the risk 

premium. The correlations between the average weekly spot price and the futures prices in 

the last week before delivery are quite high, with this statistic assuming the value 0.97 for 

the average, weighted by trading volume, of the futures closing prices.  

 
Table no. 1 – Summary statistics of spot prices and futures prices 

 ST F0,T F1,T F2,T F3,T F4,T F[0,4],T RPT 

Mean 36.08 36.31 36.39 36.50 36.51 36.58 36.49 -0.24** 

Median 34.12 34.30 34.35 34.25 34.40 34.35 34.20 -0.05 

Min. 7.95 8.10 8.00 9.25 9.25 9.25 9.09 -16.68 

Max. 88.64 90.50 92.30 91.75 92.00 94.50 91.83 13.40 

Std. dev. 13.31 13.51 13.51 13.42 13.37 13.39 13.45 2.80 

Skewness 0.85 0.91 0.94 0.91 0.90 0.91 0.91 -0.29 

Ex. kurt. 1.07 1.23 1.35 1.28 1.24 1.25 1.22 6.78 

ρ(1) 0.95*** 0.96*** 0.95*** 0.95*** 0.95*** 0.96*** 0.96*** -0.002 

𝑪𝒐𝒓𝒓(𝑺𝑻, 𝑭𝒕,𝑻) -- 0.978 0.971 0.965 0.958 0.978 0.971 -- 

ADF -3.57** -3.97*** -4.38*** -3.95*** -4.41*** -4.21*** -3.97*** -12.48*** 

Source: Montel AS Database.  

Notes: This table shows the descriptive statistics on the average weekly spot price, ST, the futures daily 

closing price in the last week before delivery, Ft,T, (t is the number of days before delivery, which 

occurs at time T (the last trading day is assumed to be t = 0), the weighted average by trading volume 

of the futures closing prices, F[0,4],T, and the ex post risk premium using the last closing price, that is 

RPT = ST - F0,T. The sample period is from January 02, 2006 to November 15, 2017The significance of 

the mean risk premium is assessed using the t-statistic with Newey-West HAC standard error, with a 

Bartlett kernel bandwidth of 6. ρ(1) is the first order autocorrelation, 𝐶𝑜𝑟𝑟(𝑆𝑇 , 𝐹𝑡,𝑇) is the correlation 

between the average weekly spot price and the daily futures price in the last week before delivery. 

ADF is Augmented Dickey-Fuller test on the null hypothesis of a unit root, considering a constant, a 

time trend and a number of lags chosen by the AIC criterion. The significance of these two last 

statistics is denoted by *, ** and ***, for the levels of 10%, 5% and 1%, respectively. 

 

The risk premium is negative, with a median value of -0.05€ and an average value of  

-0.24€ (significant at the 5% level). The risk premium is highly volatile, achieving a 

minimum of -16.68€ and a maximum of 13.4€, has negative skewness and excess kurtosis 

(the Jarque-Bera statistic is 1196.41, clearly rejecting the null hypothesis of normality). The 

risk premium has no significant first order autocorrelation and no unit root. 

 

4. METHODOLOGY 

 

This paper addresses the issue of predicting and trading on the futures risk premium. 

The analysis starts with linear models, but arguably the relationship between the risk 

premium and the information set may be non-linear. Since there is no prior information on 
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the structure of these interactions, we resort to three ML methods: Regression Trees (RT), 

Random Forests (RF) and Support Vector Machines (SVM). 

RTs are relatively simple models based on the recursive partition of the space defined 

by the independent variables into smaller regions. Each partition constitutes a node of the 

tree and has two branches. When using the tree to make a prediction (in this case, to predict 

the risk premium), the branch to be chosen depends on the outcome of a test, defined for the 

values of a given independent variable. For instance, the test based on a variable v, can be 

something like “if v>5 then go to the right branch, else go to left branch of the tree”. In 

making a prediction, the tree is thus read from the first node – the root node. Successive 

tests are made, and successive branches are chosen, until a terminal node – a leaf node – is 

reached. This leaf node defines the predicted value of the dependent variable. RTs are 

usually constructed using a two-step process. The first step consists on growing a large tree, 

choosing, at each node, the best independent variable and the best condition based on that 

variable. Such a large tree may lead to overfitting, capturing spurious relationships in the 

data set used to grow it (the training data), and thus performing badly in new data. To avoid 

that, a second step is usually applied, which consists of deleting unimportant leaf nodes by a 

process of statistical estimation (“pruning the tree”).  

RFs are combinations of RTs, such that each tree is built using just a subset of the 

training data, which is sampled independently for each tree (Breiman, 2001). This means 

that, in each tree node, a random subset of the independent variables and a random subset of 

the observations in the training dataset are used to define the test that will lead to the choice 

of the branch. RFs forecasts are then an average of the forecasts made by the different trees 

that compose the “forest”. By using subsets of the data and independent variables in each 

tree node, RFs can reduce the potential overfitting problem.  

SVMs can be used for regression or classification tasks. In the first case, the objective 

is to avoid estimation errors that are larger than a pre-defined value 𝜀. This is achieved by 

minimizing a function that penalizes the deviations between the predicted and the original 

values of the output larger than 𝜀. SVMs handle non-linear models by using the “kernel 

trick”. First, the original data is mapped into a new high-dimensional space, where it is 

possible to apply linear models. Such mapping is based on kernel functions, and SVMs 

operate on the dual representation induced by those functions. The model is linear in the 

new space but non-linear in the original data space. Although it is also possible to use the 

original linear models (“linear kernels”), Gaussian and polynomial kernel functions are 

commonly used in SVMs. According to Tay and Cao (2001) Gaussian kernels tend to have 

good performance under general smoothness assumptions.  

 In our applied work, RTs, RFs and SVMs are implemented in R, using packages rpart 

(Therneau et al., 2018), which implements the CART algorithm (Breiman et al., 1984), 

randomForest (Liaw and Wiener, 2002) and e1071 (Meyer et al., 2017), respectively. For a 

reference on the practical application of these methods in R see Torgo (2016). 

In ML applications, data is often split into a training set, used to estimate the different 

models, a validation set, in which the best model/parameterization is chosen, and a test set, 

where the results of the best model are assessed.  In this work, the main concerns when 

defining the different data subsets were to avoid all risks of data snooping and to make sure 

that the results obtained in the test set can be considered representative. Figure no. 2 

illustrates the sample partition used in the present work. 
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Figure no. 2 – Partition of the overall sample into training, validation, and test periods 
 

The results may depend on the data partition used, therefore we opted for two other 

partitions in order to check the robustness of the results (see Section 6). These partitions 

consider different sizes for the test set, roughly keeping the ratio between the sizes of the 

training and validation sets. The first alternative partition uses 187/113/ 315 observations 

and the second one uses 312/188/115 observations, respectively. 

Choosing a model means defining a method, a set of parameters and a set of 

explanatory variables. Parameter setting in ML applications is usually performed by trying 

many different configurations and choosing the one that leads to the best results. However, 

the main goal of this study is not to extensively test the alternative parameterization of 

different methods, but instead to simply find out if ML can, in general, lead to profitable 

strategies. So, only a small number of alternative parameterizations are initially chosen to 

be tested. In the case of linear regressions and RTs, there are no alternative 

parameterizations, simply different sets of explanatory variables. For the RFs, it is used 

500, 1000 and 1500 trees and the number of variables randomly sampled at each split is 

initially set to one half and one third of the total number of explanatory variables. In the 

case of SVMs, the only alternative parameterizations consist of using different kernels: 

Linear Gaussian, and polynomial. 

 

5. RESULTS 

 

To get a first look at the potential importance of the variables, a linear regression is 

estimated using the first 400 observations (corresponding to the training and validation 

samples). In this regression the dependent variable is the logarithmic risk premium and the 

information set is composed by the logarithmic returns of the futures contracts in the last 

four trading days, the logarithmic spot price in the previous week, the logarithmic premium 

lagged one to four weeks, and dummies for the quarter of the year to which the first day of 

the delivery week belongs. The results are shown in Table no. 2.  

It is noteworthy that this simple linear regression achieves a coefficient of 

determination of around 9% using just financial data for the period between February 10, 

2006, and September 27, 2013. This is an interesting result. Similar regressions, using not 

only financial data but also fundaments, achieved coefficients of determination between 3% 

and 22% – Botterud et al. (2010) obtained a R2 = 0.22 for the period 1996-2006; Weron and 

Zator (2014), obtained a R2 = 0.19 for 1998-2010, and Haugom et al. (2018) got a R2 around 

0.03 for 2004-2013. 
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Table no. 2 – Linear regression of the logarithmic risk premium on financial 

and deterministic variables 

 Coefficient Std. Error 

Constant 0.015 0.057 

𝒓𝟎,𝑻  0.988*** 0.165 

𝒓𝟏,𝑻  -0.138 0.153 

𝒓𝟐,𝑻  0.045 0.161 

𝒓𝟑,𝑻  0.004 0.146 

sT-1 -0.007 0.015 

rpT-1 0.032 0.066 

rpT-2 0.019 0.051 

rpT-3 0.077 0.049 

rpT-4 -0.100* 0.049 

2nd Quarter 0.015 0.013 

3rd Quarter -0.012 0.013 

4th Quarter -0.003 0.013 

R2                  0.092 

F-statistic      5.000*** 

Notes: This table shows the results of the linear regression for the logarithmic risk premium rpT = ln(ST) - 

ln(F0,T ) on the daily logarithmic returns of the futures contract, with delivery at week T, in the last four 

trading days, i.e. rt,T = ln(Ft,T) - ln(Ft+1,T), with t = 0, 1, 2, 3, 4, (the last trading day is denoted by t = 0), 

the logarithmic spot price in the previous week, sT-1 = ln(ST-1), the logarithmic premium up to one to four 

weeks before, rpT-j, with  j = 1, 2, 3, 4, and quarterly dummies, that assume the unit value if the first day 

used for calculating the spot belongs to that period of the year. The data used in this regression is from 

February10, 2006 to September 27, 2013, corresponding to the training and validation periods. 

Significance at the 10%, 5% and 1% levels is denoted by *, ** and ***, respectively. 

 

These results highlight that the return of the futures contract in the last trading day and 

the logarithmic premium one month before are the most significant variables in explaining the 

risk premium. Keeping in mind that it is important to test a variety of explanatory variables, 

the input information was divided into 11 subsets, considering different combinations of the  

logarithmic futures returns t days before delivery occurring at time T, i.e. 𝑟𝑡,𝑇, with t = 0, 1, 2, 

3, 4, (the last trading day is denoted by t = 0), the logarithmic spot price one week prior to 

delivery, 𝑠𝑇−1,  the logarithmic risk premium j weeks prior to the delivery week T, 𝑟𝑝𝑇−𝑗, with  

j = 1, 2, 3, 4, and quarter dummies which assume the unity if the first day of T belongs to that 

quarter of the year, 𝑄𝑠. The most restricted sets are {𝑟0,𝑇, 𝑟𝑝𝑇−4, 𝑠𝑇−1} and {𝑟0,𝑇, 𝑟𝑝𝑇−4, 𝑄𝑠}, 

while the most enlarged set has all the variables described above. 

Each method is run for each set of parameters and for each of those 11 sets of variables. 

For each observation in the validation sample, a model is estimated using the previous 250 

observations – that is, using a rolling window of 250 observations. The next step is to compute 

the returns of a trading strategy that uses the sign of the risk premium forecast to devise a 

position in the futures market in the last trading day. If the risk premium forecast is positive 

(negative) the strategy prescribes a long (short) position in the futures contract, which is held 

during the delivery period, hence capturing the risk premium (symmetrical of the risk 

premium). At this point of the analysis, it is assumed that all prescribed trades are feasible, and 

hence that there are no liquidity constraints. The models are assessed using the time series of 

150 outcomes (the number of observations in the validation sample). 
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For each method, the combination of the set of parameters and the set of variables that 

lead to the best performance are chosen according to the average return per trade during the 

validation sample. Because the models always prescribe a position in the futures markets, 

these values can also be interpreted as weekly averages. Table no. 3 presents, for each 

method, the parameters and set of variables to be used afterwards in the test sample. 

 
Table no. 3 – Models, parameters and sets of variables to be used in the test sample 

Method Parameters Set of variables 
Weekly Average Return 

(Validation sample) 

Linear - 𝑟0,𝑇, 𝑟𝑝𝑇−4, 𝑠𝑇−1 2.83% 

RT - 𝑟0,𝑇, 𝑟𝑝𝑇−4, 𝑄𝑠 2.16% 

RF 
1000 trees, 1/3 of the 

variables at each split 
𝑟0,𝑇, 𝑟𝑝𝑇−4, 𝑠𝑇−1, 𝑄𝑠 2.26% 

SVM Linear kernel 𝑟0,𝑇, 𝑟𝑝𝑇−4, 𝑠𝑇−1, 𝑄𝑠 2.75% 

Notes: The last column shows the weekly average return obtained during the validation sample 

(November 15, 2010 to September 27, 2013). The parameters and variables sets are chosen according 

to the weekly average return. 𝑟0,𝑇 is the logarithmic futures return in the last trading day before 

delivery week T, 𝑟𝑝𝑇−4 is the logarithmic risk premium 4 weeks prior to T, 𝑠𝑇−1 is the logarithmic 

spot price one week prior to delivery and 𝑄𝑠 are quarter dummies that assume the unity if the first day 

of T belongs to that quarter of the year. 

 

The analysis is also conducted on two additional “ensemble models”, based on the four 

initial models – Linear, RT, RF and SVM. Ensemble 3 and Ensemble 4 consider that a trade 

is made only if at least three and if all four models agree on the sign of the risk premium, 

respectively. Hence, while trades prescribed by individual models occur in all weeks, in 

these ensemble models there are several weeks without trades.  

In the test sample, only the sets of parameters and variables with the best performance 

in the validation sample are considered. Again, the models used to obtain the 1-step forecast 

at each observation point are estimated using a rolling window consisting of the previous 

250 observations. The performances of the models, without trading costs and with a 

proportional trading cost of 0.5%, are presented in Table no. 4 and Table no. 5, respectively. 

Notice that the trading strategies only involve taking one position in the futures market that 

is cleared at delivery. According to the information obtained from a broker, this would 

imply 0.0075€/MWh in explicit transaction cost and 0.01€/MWh in clearing costs. This is 

just about 0.0175/36.31 ≅ 0.05% of the average futures price at the last trading day. We 

decide to be conservative and assume a proportional trading cost of 0.5%. This is the most 

used figure for round-trip trading costs in the stock market and it is a higher value than the 

one used by most researchers when dealing with round-trip costs in futures markets (see, for 

instance, Lubnau and Todorova, 2015). Notice that in our case there is no bid-ask spread or 

price slippage (price impact) when the trading position is closed. 

The trading strategies are compared with a Naïve strategy that serves as a benchmark. 

This strategy assumes that the risk premium will always have the same sign as its 

unconditional average during the test sample. In the test sample, the average risk premium is 

0.32%, therefore, the naïve trader is always long in the futures contract and the strategy has 

an average profit equal to that value. The strategy is not so naïve as one would think at a 

first glance, because it is built on the assumption that the investor has a perfect expectation 

about the sign of the future average of the risk premium1. 
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Table no. 4 – Performance in the test sample (without trading costs) 

Model 

% Profitable 

trades 

(# trades) 

Average profit 

per trade (%) 

Standard 

deviation 

 of profit (%) 

Skewness 

of profit 

Sharpe 

ratio 

(%) 

Average 

profit per 

year (%) 

Naïve (long 

position) 
53.02 (215) 0.32 7.03 0.92 4.51 17.92 

Linear 55.35 (215)  0.84 6.98 -0.73 12.01 54.66 

RT 52.56 (215) 0.18 7.03 -0.79 2.60 9.98 

RF 59.53 (215) 1.07 6.95  0.21 15.35 74.15 

SVM 60.00 (215) 1.18* 6.93  0.51 17.01 84.63 

Ensemble3  58.66 (179) 1.19* 6.73 -0.17 17.61 67.04 

Ensemble4 65.91 (88) 1.58** 6.14 -0.74 25.77 40.00 

Notes: This table shows the performance of the trading strategies in the test sample (October 01, 2013 

– November 15, 2017). The average, standard deviation, skewness of profit and Sharpe ratio are 

computed per trade. The average profit per year is computed using the accumulated return in the test 

period (52 weeks) and indicates the expected annual growth rate that compounds to the total 

accumulated return. The two last rows refer to the ensemble classification models based on the first 

four models. In these ensemble models a trade is only made if at least 3 models (Ensemble3) or if the 

four models (Ensemble4) give the same indication. The models are compared with the Naïve trading 

strategy that always considers a long position in the futures contract (the significance at the 10%, 5%, 

and 1% levels are denoted by *, **, ***, respectively). The significance levels are obtained using 

20000 bootstrap samples, created with the circular block procedure of Politis and Romano (1994), 

with an optimal block size chosen according to Politis and White (2004, 2009). 

 

The ranking of the strategies, according to the Sharpe ratio is the following: 1st 

Ensemble4, 2nd Ensemble3, 3rd SVM, 4th RF, 5th Linear and 6th RT. The RT is the only 

model that has a worse performance than the Naïve strategy. For the other models, the 

percentage of successful trades ranges from 55.35% for the Linear model to 65.91% for 

the Ensemble4, the average profit per trade ranges from 0.84% for the Linear model to 

1.58% for the Ensemble4, and the standard deviation per trade ranges from 6.14% for the 

Ensemble4 to 6.98% for the Linear model. The comparison of the trading strategies 

reveals an interesting pattern: A higher average return is associated with a lower risk 

(measured by the standard deviation per trade). The profit asymmetry is low, and it is only 

positive for the Naïve, RF and SVM models. In terms of average profit per trade, only the 

last three models are statistically better than the Naïve strategy: the SVM and the 

Ensemble3 are statistically better at the 10% significance level and the Ensemble4 is 

significantly better at the 5% significance level. Excluding the RT strategy, the average 

profit per year presents high values, ranging from 40.00% for the Ensemble4 strategy to 

84.63% for the SVM strategy. The most robust strategy, Ensemble4, has a lower 

performance in terms of yearly profit than all the other successful strategies due to the 

reduced number of trades (only 88 trades). But one should notice that a yearly profit of 

40% amounts to an accumulated return of 402% during the 4 years of the test sample. 

This is clearly an indication that the strategies are successful in predicting the sign of the 

risk premium in the Nordic electricity base week futures. But this only means profitability 

once trading costs are considered (see Table no. 5).  

 

 

 



Scientific Annals of Economics and Business, 2020, Volume 67, Special Issue, pp. 1-17 11 
 

Table no. 5 – Performance in the test sample (proportional trading costs of 0.5%) 

Model 
% Profitable trades 

(# trades) 

Average profit  

per trade (%) 

Sharpe ratio 

per trade (%) 

Average profit 

per year (%) 

Naïve (long position) 49.77 (215) -0.18 -2.61 -9.08 

Linear  50.70 (215)  0.34 4.85 19.25 

RT 49.77 (215)  -0.32 -4.51 -15.20 

RF 55.81 (215)  0.57 8.15 34.28 

SVM 55.81 (215)  0.68* 9.80 42.36 

Ensemble3  55.31 (179) 0.69* 10.18 34.53 

Ensemble4 62.50 (88) 1.08** 17.62 25.87 

Notes: This table shows the performance of the trading strategies in the test sample (October 01, 

2013 – November 15, 2017) after trading costs, i.e. after deducting 0.5% of the contract price from 

the profit series. The average profit and Sharpe ratio are computed per trade. The average profit per 

year is computed using the accumulated return in the test period (52 weeks), and indicates the 

expected annual growth rate that compounds to the total accumulated return. The two last rows refer 

to the ensemble classification models based on the first four models. In these ensemble models a 

trade is only made when at least 3 models (Ensemble3) or the four models (Ensemble4) give the 

same indication. Average profits per trade better than those of the Naïve strategy at the significance 

levels of 10%, 5% and 1% are denoted by *, **, ***, respectively. These significance levels are 

obtained using 20000 bootstrap samples, created with the circular block procedure of Politis and 

Romano (1994), with an optimal block size chosen according to Politis and White (2004, 2009). 

 

With proportional trading costs of 0.5%, the average profit per trade of the Naïve 

strategy becomes negative, around -0.18%. This implies that it is better for the naïve 

investor to stay-out of the market. The ranking of the strategies is the same as before without 

trading costs, but obviously these costs lower the percentage of profitable trades, the average 

profit per trade, the Sharpe ratio and the yearly average profit of all strategies (the standard 

deviation and the skewness of profits remain the same). After trading costs, only the SVM, 

Ensemble3 and Ensemble4 models perform significantly better than the Naïve strategy. 

Ensemble4 continues to be the most robust model. The difference between the yearly profit 

of Ensemble4 and the other successful models decreases substantially, because the overall 

trading costs SVM are lower due to the lower number of trades. The average profit per year 

after trading costs of Ensemble4 is 25.87%, which accumulates to a total return of 259% 

during the four years of the test period. 

 

6. ROBUSTNESS CHECK 

 

The robustness of the previous results is tested on two aspects: the stability of results 

across the overall sample, which depends on the partition of the data, and the impact of 

eventual liquidity constraints. The first issue is addressed by considering two alternative 

data partitions besides the baseline partition (250/150/215 weeks). The first alternative split 

into training/validation/test samples is 187/113/315 weeks and the second one is 

312/188/115 weeks. 

One may argue that the Nordic electricity futures is a thin traded market, and therefore 

execution risk is high. In this sense, our results are not valid for any trade size, as the 

profitability of the trade depends on the price slippage produced by the trade itself. A 

rigorous robustness test to this type of implicit trading cost is only possible with order book 

information (quotes and quantities) during the last trading day. We do not have that data, but 
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we can still conduct some tests using proxies for the execution prices. In order to guarantee 

that the trading strategies are feasible throughout the last trading session, in each week the 

forecast of the risk premium is obtained at the beginning of the last trading day, using the 

futures return open-to-open instead of the return close-to-close, i.e., using the open price in 

day 𝑡 =  1 and the open price in day 𝑡 =  0. This implies that the return in the last trading 

day, 𝑟0,𝑇, is measured with an error. 

A first test, called Scenario 1, considers the following execution rules: (i) if trading 

volume in the last trading day before delivery is less than 10 contracts, there is no trade; 

(ii) if the model prescribes a position in the futures market, the opening trade occurs at 

the opening price, and, (iii) the profit of each trade is obtained after deducting 

proportional trading costs of 0.5%. The second test, called Scenario 2 is a worst-case 

scenario, with the following execution rules: (i) if trading volume in the las t trading day 

is less than 10 contracts, there is no trade; (ii) if the model prescribes a position in the 

futures market, the opening trade occurs at the worst daily price, i.e., if the model signals 

a long (short) position, the highest (lowest) price of the day is used, and, (iii) the profit 

of each trade is obtained after deducting explicit trading costs of 0.0175€/MWh. Table 

no. 6 presents the profit results of the trading strategies in the two scenarios and 

considering the three data splits.  

Panel A of Table no. 6 considers the initial data split. In the initial test sample 

there are 10 last trading days with less than 10 traded contracts, hence the number of 

trades for the first 4 models in the worst-case scenario is only 205, but some of these 

days are non-trade days for Ensemble3 and Ensemble4, and the number of trades are 

170, i.e. minus 9 trades, and 86, i.e. minus 2 trades, than in the baseline case (Table no. 

5). Given these small differences, the percentage of profitable trades increase and 

decrease slightly in Scenario 1 and Scenario 2, respectively, with the exception being 

Ensemble4, for which the percentage of profitable trades decrease -0.87% in Scenario 1 

and -5.52% in Scenario 2. The average profit per trade and per year in Scenario 1 

increase noticeably, except for Naïve, in which the profits decrease marginally, and fo r 

Ensemble4, in which they only increase slightly (for this strategy the average profit per 

year increases from 25.87% in the baseline case to 27.49% in Scenario 1). The results in 

Scenario 2 are worse for most strategies. However, it is surprising to see that, even in 

this worst-case scenario, the RF strategy has an increase in the yearly profit from 

34.28% to 45.17%, and the Ensemble 3 strategy has an increase from 34.53% to 

48.42%. The yearly profit of Ensemble4 strategy decreases to almost half in Scenario 2, 

achieving the value of 13.99%, but the profit per trade is still significantly better than 

that of the Naïve strategy, at the level of 10%. The removal of the best and worst 10% 

trades decrease the average profit per trade, except for the SVM model in Scenario 2, 

without questioning the profitability of the strategies that are profitable in the baseline 

case. This result also highlights that the profitability of the strategies is not due to just a 

few extreme values in the profit per trade series.  
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Table no. 6 – Performance in different test samples with trading costs and liquidity constrains 

 Scenario 1 Scenario 2 

Model 

% Profitable 

trades 

(# trades) 

Avg. profit 

per trade 

(%) 

Avg. profit 

per year 

(%) 

% Profitable 

trades 

(# trades) 

Avg. profit 

per trade 

(%) 

Avg. profit 

per year 

(%) 

Panel A - Training: 250 weeks; Validation: 150 weeks; Test: last 215 weeks 

Naïve (long 

position) 
50.24 (205) 

-0.16 

(-0.24) 
-8.10 48.29 (205) 

-0.50 

(-0.54) 
-22.77 

Linear 52.68 (205) 
0.53 

(0.40) 
31.58 49.76 (205) 

0.08 

(0.02) 
4.06 

RT 52.68 (205) 
0.02 

(-0.03) 
0.97 49.76 (205) 

-0.40 

(-0.44) 
-18.98 

RF 56.59 (205) 
   1.04** 

(0.74) 
72.06 53.66 (205) 

   0.72** 

(0.48) 
45.17 

SVM 58.05 (205) 
0.79* 

(0.77) 
50.73 55.12 (205) 

  0.44* 

(0.52) 
25.98 

Ensemble3 60.00 (170) 
   1.32** 

(1.12) 
77.00 56.47 (170) 

    0.92*** 

(0.82) 
48.42 

Ensemble4 61.63  (86) 
1.11* 

(0.96) 
27.49 56.98 (86) 

  0.60* 

(0.52) 
13.99 

Panel B - Training: 187 weeks; Validation: 113 weeks; Test: last 315 weeks 

Naïve (long 

position) 
51.15 (305) 

-0.15 

(-0.07) 
-7.41 49.84 (305) 

-0.59 

(-0.41) 
-26.40 

Linear 53.11 (305) 
0.53 

(0.30) 
31.85 50.16 (305) 

0.06 

(-0.01) 
3.31 

RT 53.44 (305) 
0.32 

(0.16) 
18.10 51.48 (305) 

-0.16 

(-0.16) 
-7.80 

RF 53.11 (305) 
0.41 

(0.23) 
23.45 50.49 (305) 

-0.08 

(-0.13) 
-3.94 

SVM 54.10 (305) 
0.39 

(0.21) 
22.56 51.15 (305) 

-0.07 

(-0.12) 
-3.79 

Ensemble3 57.20 (243) 
0.73* 

(0.59) 
35.37 54.32 (243) 

0.19 

(0.22) 
8.06 

Ensemble4 59.84 (127) 
  1.53** 

(1.00) 
39.13 56.69 (127) 

  0.94** 

(0.63) 
22.62 

Panel C - Training: 312 weeks; Validation: 188 weeks; Test: last 115 weeks 

Naïve (long 

position) 
52.78 (108) 

0.21 

(0.11) 
11.73 50.00 (108) 

-0.16 

(-0.19) 
-8.04 

Linear 62.96 (108) 
  1.29* 

(1.13) 
95.38 57.41 (108) 

  0.99* 

(0.90) 
67.59 

RT 53.70 (108) 
0.15 

(0.03) 
8.00 49.07 (108) 

-0.07 

(-0.15) 
-3.81 

RF 58.33 (108) 
0.50 

(0.59) 
29.77 52.78 (108) 

0.22 

(0.29) 
11.95 

SVM 63.89 (108) 
1.11 

(1.13) 
78.00 59.26 (108) 

0.81 

(0.92) 
52.50 

Ensemble3 63.37 (101) 
 1.23* 

(1.07) 
82.13 57.43 (101) 

0.92* 

(0.79) 
56.60 

Ensemble4 66.67  (63) 
1.05 

(1.05) 
37.38 60.32 (63) 

0.84 

(0.87) 
28.83 

Notes: This table shows the trading performance considering trading costs and liquidity constrains, 

and different splits of the series into training, validation, and test periods. The trading strategies are 
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devised upon the forecasts of the sign of the risk premium using the open-to-open return of the futures 

contract in the last trading day. If the trading volume in the last trading day before delivery is less than 

10 contracts, there is no trade. Scenario 1 is defined by the following additional rules: if the model 

prescribes a position in the futures market, the opening trade occurs at the opening price, and, the 

profit of each trade is obtained after deducting implicit trading costs of 0.5%. Scenario 2 is defined by 

the following additional rules: if the model prescribes a position in the futures market, the opening 

trade occurs at the worst daily price, i.e., if the model signals a long (short) position, the highest 

(lowest) price of the day is used, and the profit of each trade is obtained after deducting explicit 

trading costs of 0.0175€/MWh. Below the average profit per trade, in parenthesis, is the average profit 

per trade after removing the highest and lowest 10% profits (no significance tests are performed for 

these values). The average profit per year is computed using the accumulated return in the test period 

(52 weeks) and indicates the expected annual growth rate that compounds to the total accumulated 

return. The two last rows of each panel refer to the ensemble classification models based on the four 

individual models. In these ensemble models a trade is only made if at least 3 models (Ensemble3) or 

if all models (Ensemble4) give the same indication. Average profits per trade better than those of the 

Naïve strategy (always being long in the futures contract) at the significance level of 10%, 5%, and 1% 

are denoted by *, **, ***, respectively. These significance levels are obtained using 20000 bootstrap 

samples, created with the circular block procedure of Politis and Romano (1994), with an optimal 

block size chosen according to Politis and White (2004, 2009). 

 

Other data splits (Panel B and Panel C of Table no. 6) reinforce two earlier important 

claims. First, Ensemble4 is quite a robust procedure. The average profit per year is higher 

when the size of the test sample increases to 315 weeks or decreases to 115 weeks, in 

comparison with the initial test sample size. In these two other data splits, the profits per 

year of Ensemble4 are 39.13% and 37.38% in Scenario 1 and 22.62% and 28.83% in 

Scenario 2, which are higher than the values of 27.49% and 13.99% obtained in the initial 

test sample. Second, profits are generally higher in the last split, which considers only the 

last 115 weeks, so there is no reason to believe that the profitability of these strategies, in 

particular Ensemble4, has decreased in recent years. 

 

7. CONCLUSIONS 

 

This paper gives some insights on predicting the sign of the risk premium of the 

Nordic electricity base-load week futures and checks if this predictability can be 

appropriated by speculative trading on the risk premium. The study uses daily financial data 

in the last trading week from January 02, 2006, until November 15, 2017, covering a total of 

619 weekly calendar deliveries.  

The risk premium, at the last trading day of the futures contracts, is negative with a 

median value of just -0.05€/MWh and an average value of -0.24€/MWh. The properties of the 

risk premium have changed considerably in the sample. For instance, the mean risk premium 

is -1.32% (significant at the 1% level) from January 02, 2006 to November 12, 2010, it 

increases to -1.05% from November 15, 2010 to September 27, 2013, and turn positive in the 

last two years, when it is 0.32%. So, there is a substantial change in the risk premium and the 

market, which was in contango in the early years, went to backwardation in the last years.  

The linear regression of the weekly logarithmic risk premium on a small set of 

financial variables obtains a coefficient of determination of around 9%, with the futures 

returns in the last day achieving the highest contribution to explaining the variability of the 

risk premium. This is better than initially expected, as some analogous models in the 
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literature, which consider not only financial but also fundamental information, achieved on 

average similar results.  

The analysis on predicting the sign of the risk premium begin with linear models. 

However, we conjecture that the relationship between the explanatory variables and the risk 

premium may be more complex, and resort to three ML techniques: Regression Trees (RTs), 

Random Forests (RFs) and Support Vector Machines (SVMs).  

The results show clearly that SVM provides the best of those models, but, most 

importantly, it is shown that all models produce valuable information, in the sense that its 

combination produces a robust procedure to devise a trading strategy designed to capture the 

risk premium. From 2013 until 2017, this strategy would have a yearly profit of roughly 

26%, after considering a proportional trading cost of 0.5%. Arguably this figure overstates 

the trading costs, as the strategies aiming to capture de risk premium of the futures contracts 

only imply one weekly trade in the futures market. 

These results were subjected to several robustness checks. Basically, we have 

considered two additional data splits with 315 and 115 weeks in the test sample (besides the 

baseline split of 215 weeks) and devised a worst-case scenario. In this scenario investors 

gather the information at the opening of the last trading session before the delivery week, 

(this implies that the last daily return of the futures contract – the most important variable in 

all models – is measured with an error using open-to-open prices) and the position in the 

futures market is open at the worst price of the day (the daily high if it is long, the daily low 

if it short). For the individual models, the results in this worst-case scenario, in the different 

data splits, are mixed. However, the Ensemble4 strategy shows a robust performance, 

achieving an average return per year even higher in the additional data splits. 

The smoothness of the risk premium in the last half of the sample suggests that the 

Nordic power market has matured since 2013. But this also implies that the performance of 

our trading strategies was subjected to a harsh test. Hence, we may conclude that there is still 

some space for profitable speculative trading on the risk premium, and most particularly for 

the use of trading schemes built on the combination of non-linear signal extraction techniques. 
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Notes 
 

1 Initially, we also considered two additional naïve strategies (a first one that assumed thatthe risk 

premium in week T would have the same sign as the average risk premium over the previous 250 

weeks, i.e. the strategy uses the sign of a long run moving average to signal the trade, and a second 

one that assumed that the risk premium would have the same sign as the realized risk premium during 

the previous week). These two naïve strategies were significantly worse than the former naïve strategy 

and hence their results are not reported here. 
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