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Abstract: Unmanned aerial systems (UASs) have recently been proven to be valuable remote sensing
tools for detecting marine macro litter (MML), with the potential of supporting pollution monitoring
programs on coasts. Very low altitude images, acquired with a low-cost RGB camera onboard a UAS
on a sandy beach, were used to characterize the abundance of stranded macro litter. We developed
an object-oriented classification strategy for automatically identifying the marine macro litter items
on a UAS-based orthomosaic. A comparison is presented among three automated object-oriented
machine learning (OOML) techniques, namely random forest (RF), support vector machine (SVM),
and k-nearest neighbor (KNN). Overall, the detection was satisfactory for the three techniques, with
mean F-scores of 65% for KNN, 68% for SVM, and 72% for RF. A comparison with manual detection
showed that the RF technique was the most accurate OOML macro litter detector, as it returned
the best overall detection quality (F-score) with the lowest number of false positives. Because the
number of tuning parameters varied among the three automated machine learning techniques and
considering that the three generated abundance maps correlated similarly with the abundance map
produced manually, the simplest KNN classifier was preferred to the more complex RF. This work
contributes to advances in remote sensing marine litter surveys on coasts, optimizing the automated
detection on UAS-derived orthomosaics. MML abundance maps, produced by UAS surveys, assist
coastal managers and authorities through environmental pollution monitoring programs. In addition,
they contribute to search and evaluation of the mitigation measures and improve clean-up operations
on coastal environments.

Keywords: drone; anthropogenic debris; OBIA; random forest; support vector machine;
k-nearest neighbor

1. Introduction

The amount of anthropogenic debris in marine and coastal environments is increasing dramatically
and constitutes a global issue. Monitoring the abundance and characterization of anthropogenic
marine debris (or marine litter) becomes essential to identify the main sources [1,2] and to design
effective mitigation measures [3,4]. In particular, as marine litter is present in large quantities on
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coastlines [5–7], action plans have been implemented to map the load and type of marine litter on
beaches worldwide [8–17].

The most common technique for marine litter monitoring relies on an in-situ visual census
approach. This technique, performed generally four times per year, consists of counting, classifying,
and recollecting the marine litter items, within the same chosen area [18–20]. Although these surveys
can be achieved at low cost, with minimal equipment by inexperienced surveyors under instruction [19],
the in-situ visual census method requires intensive human effort [7,21].

To overcome the limitations of visual census, recent works have explored the viability of an
unmanned aerial system (UAS)-based approach for the detection, identification, and classification of
marine litter in coastal areas [22–29]. In these works, the drone flew at a variable height between 6 and
40 m, with the camera gimbal at −90◦, and collected high resolution images of the beach surface. In
general, the obtained final resolution, expressed usually in terms of ground sampling distance (GSD),
allowed one to properly identify the marine macro litter (hereinafter MML), which was defined as any
persistent anthropogenic solid material disposed or abandoned in marine and coastal environments,
with its lower limit of 2.5 cm in the longest dimension [30].

MML items are usually detected on UAS-derived orthomosaics. The detection can be performed
manually following an image screening procedure [22,23,25,28,29,31] or by applying automated
detection techniques [22–24,27,32]. To date, three main automated pixel-based MML detection
techniques have been proposed, namely image processing threshold method [24], random forest
(RF) [23,27], and convolutional neural network (CNN) [22]. The image processing threshold proposed
by Bao et al. [24] was applied successfully on images where the beach surface was smooth and
characterized by a regular colored background. However, this approach was inadequate for a universal
application since sandy beaches often present footprints and ripples on their surface. RF and CNN
were tested on more complex environments. Martin et al. [23] used RF and histogram of oriented
gradients (HOG) as a feature descriptor (F-score 44%), while Gonçalves et al. [27] had better results
(F-score 75%) adopting a color feature descriptors. Fallati et al. [22] implemented a deep-learning
CNN obtaining contrasting results at two study sites (F-score 49% and 78%). Gonçalves et al. [26]
compared the manual and pixel-based automatic detection performances obtained by RF and CNN
algorithms. Random forest classifier returned the best-automated detection rate (F-score 70%), whereas
CNN performed slightly worse (F-score 60%) due to a higher number of false positive detections. A
comparison highlighted that the automated techniques could provide a reliable density map of MML
load, with faster surveys, and therefore increased frequency of observations.

The previous experiences underlined that the automated detection of MML on UAS-based
imagery is a challenging task. The MML bulk is often composed of items with different materials,
chromas, and geometries, along with items partially buried and not fully visible. In addition, the wide
variety of marine environment characteristics that constitute image background (e.g., sandy beaches,
vegetated dune, and rocky shores) further complicates the task of finding a general solution. Finally,
environmental conditions (e.g., sun brightness and shadows) and different GSDs can affect image
quality, and thus the automated detection accuracy. Therefore, it is of interest to further the search for
an optimal solution.

In general, automated identification of MML items on UAS images has been performed using
pixel-based image analysis (PBIA), in which every MML pixel is evaluated and grouped together on
the image level by means of statistical clustering of pixel values. This approach is appropriate in cases
where the objects are similar or smaller than the pixel size. On the contrary, when the pixel size is
much smaller than the objects (high spatial resolution images), it is preferable to detect the objects
by grouping near-homogeneous pixels [33]. In addition, due to the ultrahigh spatial resolution of a
UAS-based orthomosaic (5.5 mm in this study), the classification of MML is faced with issues of having
very high intraclass spectral variability and very low multiclass statistical separability. Therefore, an
object-based image analysis (OBIA) classification approach may be a better solution, since the image
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segmentation technique is directed by the relative object heterogeneity and internal homogeneity
criteria, weighted by its spectral and shape characteristics [33].

The main objective of this work was to propose and evaluate a simple and cost-effective UAS-based
approach for automatically generating MML abundance maps of sandy beaches. In this context,
we evaluated the performance of three commonly used object-oriented machine learning classifiers
(OOML), namely support vector machine (SVM), k-nearest neighbor (KNN), and random forest
(RF), to automatically detect MML items on an orthomosaic derived from UAS flight. In addition,
this work contributes to advances in remote sensing MML surveys by optimizing automated MML
detection on UAS-derived orthomosaics. The MML abundance maps produced by the UAS surveys
can assist environmental pollution monitoring programs and contribute to the search and evaluation of
mitigation measures. Furthermore, these MML maps can also improve the clean-up activities on coastal
environments carried out by governmental authorities in close partnerships with all stakeholders,
including non-governmental organizations, municipalities, local communities, and the private sector.

2. Materials and Methods

A simple, cost-effective, and UAS-based framework was used for generating MML abundance
maps of sandy beaches, in compliance with European Directives [34]. This framework, described in
Figure 1, was composed of four operational steps. First, a very low altitude UAS flight was planned and
the corresponding ultrahigh resolution images were acquired over the targeted area. Then, the image
block was processed using a Structure from Motion and Multi Video Stereo (SfM-MVS) processing
workflow to generate the digital surface model (DSM) and the orthomosaic. In the third step, the MML
items were detected in the orthomosaic by a supervised and OOML classifier, which used a minimal
training effort. In the last step, abundance maps were created by using the centroids of the macro litter
objects classified in the previous step.
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Figure 1. Proposed framework for mapping the abundance of macro-litter on sandy beaches using an
unmanned aerial system (UAS).

2.1. Study Area

Cabedelo Beach (40◦08′12.8”N and 8◦51′47.5”W, Figure 2) is a sandy beach located on the western
Portuguese coast facing the North Atlantic Ocean (OSPAR area 5, Iberian coast, [34]), southward
Mondego River estuary (Figueira da Foz). The beach is backed by a stabilized dune, with a crest height
that varies between 5 and 10 m moving southwards (see Figure 2).
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[35]. This component was essential to ensure good stabilization of the image acquisition process and 
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Figure 2. Location of the study area in the North hemisphere (a) and in Portugal (b). UAS and
satellite view of Cabedelo beach, respectively (c) and (d). Orthomosaic and digital surface model (DSM)
generated by using a Structure from Motion and Multi Video Stereo (SfM-MVS) processing workflow
(e) and (f). Training and validation areas used in machine learning methods are also shown in (e).

2.2. Field Data Acquisition and Unmanned Aerial Syetem (UAS) Survey

The acquisition of aerial images was performed with the quadcopter Phantom 4 Pro (Figure 3a)
on 15 February 2019 at 12:30 a.m., a sunny day with clear sky and light wind. The choice of this aerial
platform was driven by the need for the aircraft to be deployed in very small places and flown at a very
low cruise speed. This rotary wing, which was significantly more affordable than most rotary wings,
was equipped with a one-inch 20 megapixels CMOS (complementary metal oxide semicondutor)
sensor (camera model FC6310, 24 mm full-frame equivalent) with a mechanical shutter. The camera
was also combined with a three-axis brushless gimbal, that smooths the angular movements of the
camera, dampens vibrations, and maintains the camera in a predefined position [35]. This component
was essential to ensure good stabilization of the image acquisition process and to avoid blurring in the
very low altitude images.

Concerning the image acquisition strategy and taking into account the current practices in
UAS-based environmental monitoring [36], the following three main issues were considered: mission
planning, UAS georeferencing accuracy, and camera settings. The mission planning must include all the
parameters that allow the UAS to perform the flight autonomously. For nadiral image acquisition, the
most important parameters are as follows: (i) nominal flight height, (ii) image overlap, (iii) geometry
of surveyed area, and (iv) camera settings. On the basis of these parameters, the flight mission
software computed, for the given camera model, the expected ground sampling distance (GSD) and
the flight path (waypoints) to follow. In this work, mission planning was carried out using the freeware
mobile application DroneDeploy (Figure 3b). The drone was set to fly at an altitude of 20 m, with the
camera gimbal set to −90◦ for capturing photos perpendicular to the direction of the flight (Figure 3b).
The images with a resolution of 4864 × 3648 pixels (aspect ratio 4:3) were overlapped with 80% front
and 70% side rates. The final image nominal spatial resolution (GSD), was 5.5 mm.
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In general, the positioning and image georeferencing accuracies of a UAS are driven by internal
quality of the on-board Global Navigation Satellite System (GNSS) sensors. Using the waypoints
computed by the mission planning software, the UAS performs an autonomous flight and records
digital images with the specific camera settings at the indicated geographic positions. During the
flight, the camera position and attitude are also recorded by the internal UAS GNSS sensors. However,
Phantom 4 Pro navigation sensors are not accurate enough to perform a correct georeferencing of the
derived geospatial products. Therefore, ground control points (GCPs) are needed for georeferencing
digital surface model (DSM) and an orthomosaic in a specific cartographic coordinate system to
eventually refine the auto-calibrated camera model. Along with GCPs, it is recommended to acquire
additional points that can be used as independent check points (CHP) for assessing geometric accuracy
of derived geospatial products. In order to maintain a low cost and simple approach, we acquired
only five GCPs for georeferencing purposes and two CHPs for assessing the horizontal and vertical
accuracy of the generated orthomosaic and DSM, respectively (Figure 3c).

Regarding camera settings, the overall exposure of each image has a significant impact on the
geometric and radiometric quality of the final UAS-based geospatial products [37]. The ISO, aperture,
and shutter speed are the three fundamental camera settings that determines the image exposure. In
this work, ISO, shutter speed, and aperture were set to 100, 1/1250 s, and f/3.2, respectively, in order
to accommodate the scene to daytime illumination conditions and to obtain sharp and well-exposed
image data.

2.3. Structure from Motion and Multi Video Stereo (SfM-MVS) Processing

Generating a DSM (and the subsequent orthomosaic) from a block of overlapping images and
processed with a SfM-MVS photogrammetric workflow requires that every part of the surface is imaged
from two or more different positions [38,39]. The first step of this process consists of detecting features
(keypoints) in each image and assigning a unique identifier to them, regardless of the image perspective
and scale. The external orientation of the images (i.e., camera position and attitude) and the coordinates
of the tiepoints (i.e., scene geometry) are then reconstructed simultaneously through the automatic
identification of matching keypoints (tiepoints) in multiple images. These features, which are tracked
from each image pair of the whole image block, allow one to estimate the initial camera positions and
the object coordinates of tiepoints. Then, these initial values are simultaneously optimized in a bundle
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block adjustment (BBA), which minimizes the overall residual error and produces a self-consistent
three-dimensional (3D) model with the associated camera parameters.

Agisoft Metashape (v. 1.5.3, [40]) was adopted as a Structure from Motion and Multi Video Stereo
(SfM-MVS) processing software package to produce the digital surface model (DSM) and the related
RGB orthomosaic. The processing strategy was divided into the following steps:

1. Photo alignment Using the keypoints detected on each image, the process computes the internal
camera parameters (e.g., lens distortion), the external orientation parameters for each image, and
generates a sparse 3D point cloud.

2. Georeferencing The geospatial 3D point cloud is assigned to a specific cartographic (or geographic)
coordinate system.

3. Camera optimization Camera calibration and the estimation of its interior orientation parameters
are refined by an optimization procedure, which minimizes the sum of re-projection errors and
reference coordinate misalignments. For this step, the sparse point cloud is statistically analyzed
to delete misallocated points and to find the optimal re-projection solution.

4. Dense matching The MVS dense matching technique generates a 3D dense point cloud from
multiple images with optimized internal and external orientation parameters.

5. DSM and orthomosaic generation The DSM is interpolated from the 3D dense point cloud, and
consequently, the orthomosaic is generated from this DSM. It is worthwhile to note that we
imaged a scene with low variation in height relative to the flying height. Therefore, the extra
time-consuming steps of mesh generation and 3D texture mapping were not necessary for the
generation of the orthomosaic.

2.4. Classification Preprocessing, Nomenclature, and Training Areas

Before classification, the UAS-based orthomosaic was cropped to a manually digitized outline of
the beach area that was monitored and where the MML was present. The aim of this preprocessing
step was to either simplifying the beach cover nomenclature or minimizing the negative influences of
non-beach areas (dune, rocs, and walkways) on the classification procedure.

Considering that we were interested in mapping MML abundance on a sandy beach, a
nomenclature (classification scheme) was carefully selected and defined (Table 1 and Figure 4) taking
into account that the corresponding classes were as follows: (i) mutually exclusive; (ii) exhaustive, and
if necessary (iii) hierarchical [41].

Table 1. Nomenclature and training sample size used for the object-based image analysis
(OBIA) classification.

Class ID Class Name Description Count

Litter MML Persistent, manufactured, or processed solid material 86
VegDeb Vegetation debris Non-anthropogenic (vegetation) debris 91

Sand Dry sand All kind of dry sand located in the back shore 120
Shadow Cast shadows Shadows of all kind of elevated objects and footprints 97
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The previously mentioned literature supports that, at least, image segmentation, training sample,
feature space, and tuning parameters can have a significant impact on classification accuracy and
efficiency [42,43]. Collecting adequate training data is a time-consuming and expertise demanding
task. However, as we wanted to propose a simple, easy, and accessible OBIA classification approach,
we decided to use a rectangular training area, outlined manually over the orthomosaic, where the
variability of each beach cover class was well represented. After carefully inspecting the orthomosaic,
this training area was located at the south part of the study area and represented only one-third of the
total surface area to be classified. Within this training area, several polygons representing each class
where manually digitized in a GIS environment (Figure 4).

2.5. Feature Space and Data Normalization

Implementing a successfully OBIA classification requires careful selection of suitable discriminating
features (or variables) such as spectral signatures, vegetation indices, transformed images, as well as
textural and contextual information [44]. In our case, the spectral dimensionality was restricted to the
RGB wavelengths of the low-cost onboard UAS camera which is sensitive to illumination intensity.
The bands of the RGB wavelengths are highly correlated, mixing the color and intensity information,
and in general this color space is not perceptually uniform [27]. To overcome these limitations, and
considering that MML is generally characterized by its strong manufactured color, we used transformed
image features described by the following three additional color spaces (see Figure 5): hue-based
(HSV), perceptually uniform (CIE-Lab), and luminance-based YCbCr [45]. For each color space, the
color is described differently from the RGB additive color model [46]. In HSV (hue, saturation, and
value), the color information is only contained in the hue channel. In CIE-Lab, the color information is
contained in two chromaticity layers, i.e., the red-green axis (a) and the blue-yellow axis (b). In YCbCr,
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the intensity or luminance (Y) is easily discriminated from the two chrominance components: the blue
(Cb) and the red (Cr).Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 19 

 

 
Figure 5. Twelve image features used in OBIA classification. The RGB orthomosaic is converted to a 
newly 12 band composite orthomosaic image organized in the following order: bands 1–3 (RGB), 
bands 4–6 (perceptually uniform (CIE-Lab)), bands 7–9 (hue-based (HSV)), and bands 10–12 
luminance-based (YCbCr). 

Considering that the color space transformations generated a mixture of spectral bands (RGB) 
with synthetic bands, data normalization was important for some classifiers to treat each band 
equally. For the SVM and KNN classifiers, bands were normalized by using linear scaling to produce 
a range from zero to one. 

2.6. Image Segmentation 

Segmentation is the process of dividing the image into non-overlapping image objects that are 
spatially and spectrally homogeneous. As a first and most critical step of OBIA classification [47], the 
quality of the image segmentation has a significant impact on the classification accuracy. Over-
segmented objects which contain only a part of the target object class, and under-segmented objects 
which contain more than one target object class, both cause negative effects on the predicted class 
signatures [48]. 

In this study, the segmentation of the synthetic remote sensing image was realized with the 
multi-resolution image segmentation algorithm (MRIS) available in Trimble eCognition Developer® 
(usually known as eCognition) [49]. The MRIS is a bottom-up region growing technique driven by 
the following three main parameters: scale, shape and compactness. The most important is the scale 
parameter that controls the average size in pixels of the resulting image objects (a higher value results 
in larger objects). Shape and compactness define the object homogeneity and are weighted from zero 
to one. Shape controls how much the segmentation is influenced by the spectral (color) information 
versus the object shape information (a higher value means lower influence of color). Compactness 
also controls the object shape (a higher value means more compact objects but less spectrally 
homogeneous) [47]. The values of these three parameters were selected using an iterative trial and 

Figure 5. Twelve image features used in OBIA classification. The RGB orthomosaic is converted
to a newly 12 band composite orthomosaic image organized in the following order: bands 1–3
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Considering that the color space transformations generated a mixture of spectral bands (RGB)
with synthetic bands, data normalization was important for some classifiers to treat each band equally.
For the SVM and KNN classifiers, bands were normalized by using linear scaling to produce a range
from zero to one.

2.6. Image Segmentation

Segmentation is the process of dividing the image into non-overlapping image objects that are
spatially and spectrally homogeneous. As a first and most critical step of OBIA classification [47],
the quality of the image segmentation has a significant impact on the classification accuracy.
Over-segmented objects which contain only a part of the target object class, and under-segmented
objects which contain more than one target object class, both cause negative effects on the predicted
class signatures [48].

In this study, the segmentation of the synthetic remote sensing image was realized with the
multi-resolution image segmentation algorithm (MRIS) available in Trimble eCognition Developer®

(usually known as eCognition) [49]. The MRIS is a bottom-up region growing technique driven
by the following three main parameters: scale, shape and compactness. The most important is the
scale parameter that controls the average size in pixels of the resulting image objects (a higher value
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results in larger objects). Shape and compactness define the object homogeneity and are weighted
from zero to one. Shape controls how much the segmentation is influenced by the spectral (color)
information versus the object shape information (a higher value means lower influence of color).
Compactness also controls the object shape (a higher value means more compact objects but less
spectrally homogeneous) [47]. The values of these three parameters were selected using an iterative
trial and error process, combined with a visual analysis performed by an experienced operator. In
order to find a single segmentation scale that would best separate the four cover classes and based
on similar research on OBIA analysis of ultrahigh sub-decimeter UAS imagery [50], we started by
fixing the values of the two parameters shape and compactness to 0.1 and 0.5, respectively. Then, the
training area was segmented at seven segmentation scales, starting at 10 and ending at 80 by using
scale increments of 10 (see Figure 6). The scale 30 was the best because it retained the individual marine
litter items (Figure 6c); at a coarse scale (Figure 6b), these items were very often merged into broader
image objects such as vegetation debris.
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2.7. Classifiers and User-Defined Parameters

In the context of detecting MML items from an orthomosaic with ultrahigh resolution
(sub-centimeter level), the following three supervised, non-parametric and object-oriented machine
learning classifiers were evaluated: (1) RF, a decision-tree-based ensemble algorithm; (2) SVM, a
statistical learning algorithm; and (3) KNN, an instance-based learning algorithm.

2.7.1. Random Forest

RF is an ensemble classifier that uses a large number of decision tree classifiers to assign a final
class of the unknown object by majority voting of all decisions taken at each tree [51]. Each tree is
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constructed and trained automatically using a random set (in general, two thirds) of the training data
(referred to as in-bag samples) and a random set of the variables [43]. The remaining training data
(in general, one third) that is not used at each tree, is known as out-of-bag samples and is used in
an internal cross-validation technique to provide an independent estimate of the overall accuracy of
the RF classification [52]. In order to generate a prediction model, two important and user-defined
parameters need to be set, i.e., the number of decisions trees to be generated (ntree) and the number of
variables used in each node to make the tree grow (Mvar). The published literature has highlighted
that the RF classifier is more sensitive to the Mvar parameter than to the ntree parameter [53]. Since the
computational efficiency and the non-overfit properties of the RF classifier allows the error to stabilize
before 500 trees are achieved, this number of trees is commonly assigned to the ntree parameter [43,52].
Regarding the Mvar parameter, the square root of the total number of variables is the value commonly
used in classification problems [43]. However, in some software implementations (e.g., eCognition),
the RF algorithm can be subject to the same parameters as decision trees (DT). These parameters
include the following: (i) depth (Dep) to regularize each tree (i.e., to limit the way it grows) preventing
overfitting; (ii) minimum number of samples (Ns) that a node must contain to consider splitting;
(iii) maximum categories to cluster possible values of a categorical variable; and (iv) the use (or non-use)
of surrogates to work with missing data [49]. The following additional eCognition parameters are:
(i) active variables (Mvar); (ii) forest accuracy, for the desired level of accuracy, and (iii) termination
criteria, which can be set to the maximum number of trees, forest accuracy, or both.

2.7.2. Support Vector Machine

According to the principle of statistical learning theory, the SVM constructs an optimal hyperplane
(i.e., a decision surface) that separates the dataset into a discrete predefined number of classes in a
way consistent with the training examples [54]. The amount of training data that can be misclassified
(e.g., on the wrong side of the hyperplane) is controlled by a positive user-defined parameter C (the
cost parameter). A large C value decreases the number of misclassified objects, but can create an
overfitted model that may not be adequate to classify new data [55]. When it is not possible to separate
the classes linearly, kernel functions are used to project the input data into a high-dimensional feature
space that increases the separability of these classes in this feature space [56]. The most commonly
used kernel functions in remote sensing are linear, polynomial, and radial basis function (RBF) which
is controlled by the gamma (Υ) parameter [52]. Adjusting the value of Υ changes the shape of the
decision boundary; smaller values mean a smoother boundary, whereas higher values mean a more
complex boundary. In eCognition, the SVM classifier was implemented with the following configurable
parameters: (i) C, (ii) kernel function (linear or radial basis function), and (iii) gamma (for RBF only).
The optimal values of C and Υ are often determined by using the grid search method (also known as
exhaustive search), which uses a large range (search interval) of different pairs of parameters and the
one having the highest classification accuracy rate in this interval is selected [57].

2.7.3. K-Nearest Neighbor

KNN is a relatively simple instance-based learning approach. An object is classified based on the
weighted average value of the class attributes of its k spectrally nearest neighbor (e.g., k = 5) in the
training set [58]. The performance of this classifier is mainly influenced by the key parameter k [55].
In eCognition. The KNN was implemented with only one configurable parameter, k.

2.8. Tuning the Primary Classifier Parameters

The strategy used for tuning the classifier was to modify one by one each of the primary parameters,
while maintaining the others fixed. For RF, we started with the default values and we modified
successively the ntree, depth, and Ns, one parameter at a time. For SVM, we also started with the
default values and we modified successively the Υ and C parameters, one at a time. For KNN, only the
number of neighbors (K) was tuned, since it was the only implemented parameter.
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2.9. Performance Assessment

In order to have a valuable reference for evaluating the performance detection of the classifiers,
the RGB orthomosaic map was visually screened and manually processed by an operator in the GIS
environment. For each object recognized as marine litter item by the operator, the approximated center
of marine litter item shapes was marked. For further details about the manual procedure and the type
of MML encountered at Cabedelo beach, please refer to Gonçalves et al. [26,27].

The automated detection performances were evaluated with the F-score statistical analysis.
The centroid of all the objects labeled as MML by the algorithms were compared to the centroids of
MML objects delineated manually in the testing areas. When the distance between the centroids was
smaller than 20 cm (setup threshold), the detection was marked as true positive (TP), otherwise as false
positive (FP).

Finally, all the marine litter items not detected by the automated algorithm were counted as false
negatives (FN). In detail, the precision (P) is a measure of the method to not generate false positives
and is defined as:

P(%) =
TP

TP + FP
× 100 (1)

To measure the sensitivity of each method to not generate false negatives we use the recall (R),
which is given by:

R(%) =
TP

TP + FN
× 100 (2)

The F-score (F) is a measure of the overall quality of the method and combines the previous P and
R metrics as:

F(%) = 2
P R

P + R
× 100 (3)

It also varies between 0% and 100%, where 0% means no correlation between the predicted and
observed MML items and 100% means a perfect classification (i.e., a perfect match).

2.10. Quantifying Macro Litter Abundance

Quantifying and mapping the abundance of MML on coastal areas is an important issue to
understand the dynamics of their deposition, to compute accumulation rates, and to identify spatial
distribution patterns over time for improving the planning of clean-up operations [28,29]. In this study,
kernel density estimators (KDE) were used for quantifying the MML abundance. First, the polygonal
macro litter items detected by a particular OOML method were converted to point features using the
centroid of these polygonal features. Then, using a KDE function, these point events (i.e., the centroids
of the macro litter items) were transformed into a continuous surface that represented the point density
(i.e., the number of MML items per square meter) in a two-dimensional (2D) space [59]. The two key
parameters of a planar KDE function are the kernel function and the search bandwidth. However, there
is consensus that the choice of the bandwidth that determines the smoothness of the density surface
is more important than the choice of the kernel function [60]. In this work, the quartic function was
used for estimating the MML density at each cell of the orthomosaic image. In addition, to generate a
smooth MML abundance map, a sufficiently large bandwidth of 10 m was chosen.

3. Results

3.1. Georeferencing Accuracy

The geometric accuracy of the SfM-MVS processing workflow was evaluated by using the
reprojection error of the tie points (0.2 pix), the RMSE of 5 GCPs (1.0 cm in XY and 2.5 cm in Z), and the
RMSE of 2 CHPs (1.5 cm in XY and 3.4 cm in Z). Using these two CHPs we assessed the accuracy of the
orthomosaic (0.4 cm in XY) and the DSM (2.8 cm in Z). Overall, the accuracy of the two geospatial
products exported from Agisoft MetaShape (the orthomosaic and the DSM with spatial resolutions of
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5.5 and 7.6 mm, respectively) are in same level as the NTRIP-GNSS method used for georeferencing,
which are suitable for mapping the MML abundance.

3.2. Effects of the Tuning Parameters on the F-Score

For each machine learning, the effect of the tuning parameters had a different impact on the
F-score (Figure 7). Running the RF with the default parameters (ntree = 50, Dep = 0, and Ns = 0), a
mean F-score of 59% was achieved for the two validation areas (A1 and A2). Running the SVM with
the default values (Υ = 0 and C = 2), a mean F-Score of 22% was achieved. Running the KNN with the
default values (K = 1), a mean F-score of 30% was observed. These findings are in agreement with
those presented in [55], highlighting that the default parameters are not appropriate for this work and
must be tuned.
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Regarding the RF optimization, choosing the default values of depth and Ns, the best F-score
was achieved for ntree = 500. Setting the values ntree = 500, Ns = 0 (default), and varying the Dep
value, the best F-score was obtained for Dep = 5. Setting the values of ntree = 500 and Dep = 5, the
best F-score was obtained for NS = 5. Concerning the SVM, the best tuning parameters were obtained
setting firstly the default of C = 2 and varying the values of Υ, obtaining the best F-score for Υ = 0.1.
Finally, using Υ = 0.1 and varying the values of C, the best F-score was obtained for C = 5. For KNN,
the procedure was straightforward with the best F-score obtained for K = 10 (Figure 7).

3.3. Comparisons of the Classifiers for Mapping Marine Litter

In the previous section, for deriving the optimized parameters of each machine learning classifier,
42 beach cover maps were generated, i.e., 21 for the RF, 14 for the SVM, and seven for the KNN. Details
of these classification maps obtained with the optimized parameters of each machine learning classifier
are shown in Figure 8.

Although the classifications maps are visually quite similar, a detailed analysis about the detection
performance of the MML class showed significant differences among the three machine learning
algorithms (see Table 2). First, we found that for each validation area the detection performance
obtained by each machine learning method was very similar. Second, RF registered the highest number
of TP with a mean recall of 67%. Third, SVM returned the lowest number of FP, thus, the highest
precision (77% on average). Fourth, KNN had the worst performance in terms of F-score, although
results did not differ significantly from SVM and RF. Overall, the averaged F-score slightly varied
between the three machine learnings techniques, with 65% for KNN, 68% for SVM, and 72% for RF.
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Table 2. Performance detection for the tree classifiers.

O-O
Classifier Parameters Area TP FN FP P (%) R (%) F (%)

RF ntree = 500; Dep = 5;
Ns = 5

A2 77 41 25 75 65 70
A3 87 37 29 75 70 73

SVM Υ = 0.1; C = 5 A2 74 44 21 78 63 69
A3 76 48 26 75 61 67

KNN K = 10
A2 72 46 34 68 61 64
A3 78 46 38 67 63 65

For SVM and KNN the 12 bands are normalized.

3.4. Mapping Marine Litter Abundance

The MML class objects detected by each optimized OOML classifier are exported as 2D polygon
shapefiles and converted to a point geometry using the centroids of polygons in a GIS environment.
Using the planar KDE function available on ArcGIS, each point layer was, then, converted to a density
map representing the MML abundance (Figure 9). In order to evaluate the performance of each
classifier to map MML abundance, the orthomosaic was manually screened by an experienced operator
to produce a reference dataset of the centroids of the MML items present at the beach. Then, this
reference dataset was used to generate the reference MML abundance map which in turn was employed
to evaluate, visually and quantitatively, the performance of each classifier. Figure 9 shows the centroids
of the MML items manually screened in the orthomosaic and the MML abundance maps obtained
manually and automatically using the three OOML classifiers (RF, SVM, and KNN). All three OOML
classifiers returned MML accumulation patterns that were visually consistent with the manual method,
identifying two main MML clusters at the beach area. In addition, we found a strong correlation
between the manual abundance map and each OOML abundance map, with R2 (r-square) values
of 0.79 (RMSE 0.028 items/m2) for RF, 0.76 (RMSE 0.027 items/m2) for SVM, and 0.83 (RMSE 0.026
items/m2) for KNN.
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4. Discussion

4.1. UAS Type and Flight Mission

In environmental monitoring, the acquisition of aerial images with UAS platforms is commonly
performed by the following two categories of systems: multirotor and fixed wing. These two systems
have different performances in terms of takeoff capabilities, payload, flight time, cruise speed, and
stability of image acquisition. Fixed wing UASs have very good flight endurance, high cruise speeds,
and can cover large areas in one flight. However, they require a suitable landing area and skills for
taking off and landing them softly to avoid damage to the aircraft and payload sensors. Multirotor
UASs are easy to fly, including takeoff, and landing. In addition, the cruise speed can also be as low as
necessary. In this work, the multirotor option was chosen due to its low cruise speed and its vertical
takeoff and landing (VTOL) capabilities, which allowed the UAS to be deployed at very small areas of
the beach. Nevertheless, the short operational time of the multirotor battery limits the flight time and
restricts the extent of the beach area to be surveyed. In this study, one battery allowed an operational
flight time of about 27 min. Using the current flight planning settings (Section 2.2), we were able to
scan a beach area of ~2 ha (370 × 65 m) with eight parallel flight lines. In this context, to extend the
scanned area, it has been suggested to fly multi-battery missions using specialized UAS flight mission
and autopilot software (e.g., DroneDeploy and DJI MapPilot) with a resume feature [36]. In addition,
the recent availability of off-the-shelf UASs incorporating onboard RTK-GNSS sensors, has generated
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high accuracy and precise geospatial products [61], removing the time-consuming framework steps of
preflight GCP and CHP displacements and the post-flight acquisition of their coordinates.

4.2. Object-Oriented Machine Learning Methods

In contrast to previous studies conducted by different authors [22,23,62], in this work, the MML
detection on the orthomosaic with ultrahigh spatial resolution was preferable to the use of single
UAS-based imagery, because the subsequent generation of a georeferenced abundance map was a
straightforward step. The OBIA classification approach based on the proposed nomenclature was
efficient for extracting the MML class and proved to be well suited for transferring the process to other
orthomosaic areas. In fact, the mean values of the 12 composite bands collected for all the object classes
on the training area could be applied directly on the other orthomosaic areas without any editing.
Using a tiling and stitching approach implemented in the server version of eCognition, the proposed
classification approach could be used to detect MML items over larger orthomosaic areas, as long
as the beach substrate remained similar to the training area where the class statistics were collected.
The comparison among the three OOML classifiers showed that RF obtained better results than SVM
and KNN. However, when we compared the automated abundance maps with the one produced
manually, the map generated by the KNN classifier achieved the best correlation factor.

Once color was the key element for detecting MML, colored items similar to the sand color were
not detected; they were included in the sand class. In this context, it was expected that the use of the
volume of the MML items derived from the DSM would decrease the number of false positives [63].
However, the heights of the MML objects were not expressive, and hence, the DSM was not used for
this purpose. Inaccurate classification was also due to the low payload capabilities of the low-cost UAS,
since the images were acquired by an inexpensive off-the-shelf camera. Its low radiometric quality
and low spectral resolution were significantly influenced by the lighting and atmospheric conditions.
To mitigate the impact of lighting and atmospheric conditions on the accuracy of litter detection and to
maximize the contrast between the sand and the colored litter items, it has been suggested to fly in
similar geometric lighting and sunny conditions [31,64]. Future work should explore the feasibility
of using multispectral sensor products for automatically categorizing marine litter items, which are
expected to have a unique reflectance response based on their color and material (e.g., [65]).

It is worth mentioning that we were interested in mapping only one land cover beach class (i.e., the
MML class). The use of a supervised multiclass classifier may not necessarily be an appropriate
approach because these classifiers require considerable effort to produce an exhaustive and mutually
exclusive training dataset, which should include all classes present in the area of interest [66,67].
However, when only two classes were considered (litter and non-litter), the labeling accuracy of the RF
classifier was decreased significantly, i.e., approximately 35% (F-score 44%).

In comparison with previous works [22,23,26], the OOML classifiers presented here were simpler
to use for inexperienced analysts, achieved a similar (sometimes a slightly better) F-score, and did
not show any particular issue regarding the shadows and the transparent objects. While the absolute
segmentation and OOML parameters could have different values for different spatial resolutions
(different flying heights) and in different beaches with different substrate, we expect that the proposed
classification workflow would offer reliable guidance for selecting and tuning these parameters.

5. Conclusions

This study showed that a consumer-grade UAS combined with SfM-MVS methods can be used
effectively for generating an ultrahigh resolution orthomosaic (sub-centimeter level) and for monitoring
sandy beaches polluted by MML. The low spectral resolution of the orthomosaic was overcome by
combining four color spaces (RGB, CIE-Lab, HSV, and YCbCr) with an OBIA approach which proved
to be highly suitable for extracting marine MML objects from ultrahigh resolution imagery.

After being optimally tuned, the three compared object-oriented machine learning (OOML)
classifiers, namely random forest (RF), support vector machine (SVM), and k-nearest neighbor (KNN),
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were shown to have quite similar performances (F-score) for detecting colored MML objects. Although
the RF had more parameters to be tuned, and therefore appeared to be more complex to optimize, the
number of trees (ntree) was the most influencing parameter. On the contrary, for the KNN, which
had one parameter to be tuned, the F-score was slightly worse than the other two machine learning
classifiers. Nevertheless, the MML abundance map generated from KNN was well correlated with the
abundance map produced manually. This suggests that this OOML classifier can be used effectively by
nonexpert remote sensing analysts in a simple MML abundance map framework.

The synergistic use of small UAS with OOML classifiers is a major step towards cost-effective
and efficient operational programs for monitoring MML abundance and detecting hotspots on sandy
beaches, as they can be easily implemented by local, municipal, and national environmental agencies.

Future research should focus on the use of one-class classifiers with minimal labeling effort to
generate abundance maps from an ultrahigh resolution orthomosaic obtained by a consumer-grade
UAS incorporating RTK-GNSS sensors.
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35. Gašparović, M.; Jurjević, L. Gimbal influence on the stability of exterior orientation parameters of UAV
acquired images. Sensors 2017, 17, 401. [CrossRef]
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47. Drǎguţ, L.; Tiede, D.; Levick, S.R. ESP: A tool to estimate scale parameter for multiresolution image

segmentation of remotely sensed data. Int. J. Geogr. Inf. Sci. 2010, 24, 859–871. [CrossRef]
48. Huang, H.; Lan, Y.; Yang, A.; Zhang, Y.; Wen, S.; Deng, J. Deep learning versus Object-based Image Analysis

(OBIA) in weed mapping of UAV imagery. Int. J. Remote Sens. 2020, 41, 3446–3479. [CrossRef]
49. Trimble. eCognition Developer: User Guide; Trimble: Munich, Germany, 2019.
50. Laliberte, A.S.; Rango, A. Texture and scale in object-based analysis of subdecimeter resolution unmanned

aerial vehicle (UAV) imagery. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1–10. [CrossRef]
51. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
52. Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing:

An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [CrossRef]
53. Ghosh, A.; Joshi, P.K. A comparison of selected classification algorithms for mappingbamboo patches in

lower Gangetic plains using very high resolution WorldView 2 imagery. Int. J. Appl. Earth Obs. Geoinf. 2014,
26, 298–311. [CrossRef]

54. Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm.
Remote Sens. 2011, 66, 247–259. [CrossRef]

55. Qian, Y.; Zhou, W.; Yan, J.; Li, W.; Han, L. Comparing machine learning classifiers for object-based land cover
classification using very high resolution imagery. Remote Sens. 2015, 7, 153–168. [CrossRef]

56. Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222.
[CrossRef]

57. Mather, P.; Tso, B. Classification Methods for Remotely Sensed Data; CRC Press: Boca Raton, FL, USA, 2016; ISBN
9780429192029.

58. Chirici, G.; Mura, M.; McInerney, D.; Py, N.; Tomppo, E.O.; Waser, L.T.; Travaglini, D.; McRoberts, R.E. A
meta-analysis and review of the literature on the k-Nearest Neighbors technique for forestry applications
that use remotely sensed data. Remote Sens. Environ. 2016, 176, 282–294. [CrossRef]

59. González-Ramiro, A.; Gonçalves, G.; Sanchez-Rios, A.; Jeong, J.S. Using a VGI and GIS-based multicriteria
approach for assessing the potential of rural tourism in Extremadura (Spain). Sustainability 2016, 8, 1144.
[CrossRef]

http://dx.doi.org/10.3390/s17020401
http://dx.doi.org/10.3390/rs12061001
http://dx.doi.org/10.1177/0309133317703092
http://dx.doi.org/10.1177/0309133315615805
http://dx.doi.org/10.1016/j.rse.2011.11.020
http://dx.doi.org/10.1016/j.isprsjprs.2016.01.011
http://dx.doi.org/10.1080/01431160600746456
http://dx.doi.org/10.1016/j.procs.2015.07.362
http://dx.doi.org/10.1080/13658810903174803
http://dx.doi.org/10.1080/01431161.2019.1706112
http://dx.doi.org/10.1109/TGRS.2008.2009355
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1080/01431161.2018.1433343
http://dx.doi.org/10.1016/j.jag.2013.08.011
http://dx.doi.org/10.1016/j.isprsjprs.2010.11.001
http://dx.doi.org/10.3390/rs70100153
http://dx.doi.org/10.1080/01431160412331269698
http://dx.doi.org/10.1016/j.rse.2016.02.001
http://dx.doi.org/10.3390/su8111144


Remote Sens. 2020, 12, 2599 19 of 19

60. Fotheringham, S.; Brundson, C.; Chalrton, M. Qualitative Geography: Perspectives on Spatial Data Analysis;
SAGE Publications: London, UK, 2010; ISBN 9780761959472.

61. Przybilla, H.; Bäumker, M. RTK and PPK: GNSS-Technologies for direct georeferencing of UAV image flights
(10801). In Proceedings of the FIG Working Week 2020 Smart Surveyors for Land and Water Management,
Amsterdam, The Netherlands, 10–14 May 2020; pp. 10–14.

62. Kako, S.; Isobe, A.; Magome, S. Low altitude remote-sensing method to monitor marine and beach litter
of various colors using a balloon equipped with a digital camera. Mar. Pollut. Bull. 2012, 64, 1156–1162.
[CrossRef]

63. Kako, S.; Morita, S.; Taneda, T. Estimation of plastic marine debris volumes on beaches using unmanned
aerial vehicles and image processing based on deep learning. Mar. Pollut. Bull. 2020, 155, 111127. [CrossRef]
[PubMed]

64. Kedzierski, M.; Wierzbicki, D.; Sekrecka, A.; Fryskowska, A.; Walczykowski, P.; Siewert, J. Influence of lower
atmosphere on the radiometric quality of unmanned aerial vehicle imagery. Remote Sens. 2019, 11, 1214.
[CrossRef]

65. Acuña-Ruz, T.; Uribe, D.; Taylor, R.; Amézquita, L.; Guzmán, M.C.; Merrill, J.; Martínez, P.; Voisin, L.;
Mattar, B.C. Anthropogenic marine debris over beaches: Spectral characterization for remote sensing
applications. Remote Sens. Environ. 2018, 217, 309–322. [CrossRef]

66. Mack, B.; Roscher, R.; Waske, B. Can I Trust My One-Class Classification? Remote Sens. 2014, 6, 8779–8802.
[CrossRef]

67. Deng, X.; Li, W.; Liu, X.; Guo, Q.; Newsam, S. One-class remote sensing classification: One-class vs. Binary
classifiers. Int. J. Remote Sens. 2018, 39, 1890–1910. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.marpolbul.2012.03.024
http://dx.doi.org/10.1016/j.marpolbul.2020.111127
http://www.ncbi.nlm.nih.gov/pubmed/32469764
http://dx.doi.org/10.3390/rs11101214
http://dx.doi.org/10.1016/j.rse.2018.08.008
http://dx.doi.org/10.3390/rs6098779
http://dx.doi.org/10.1080/01431161.2017.1416697
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Field Data Acquisition and Unmanned Aerial Syetem (UAS) Survey 
	Structure from Motion and Multi Video Stereo (SfM-MVS) Processing 
	Classification Preprocessing, Nomenclature, and Training Areas 
	Feature Space and Data Normalization 
	Image Segmentation 
	Classifiers and User-Defined Parameters 
	Random Forest 
	Support Vector Machine 
	K-Nearest Neighbor 

	Tuning the Primary Classifier Parameters 
	Performance Assessment 
	Quantifying Macro Litter Abundance 

	Results 
	Georeferencing Accuracy 
	Effects of the Tuning Parameters on the F-Score 
	Comparisons of the Classifiers for Mapping Marine Litter 
	Mapping Marine Litter Abundance 

	Discussion 
	UAS Type and Flight Mission 
	Object-Oriented Machine Learning Methods 

	Conclusions 
	References

