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Abstract: Land Surface Temperature (LST) is increasingly important for various studies assessing
land surface conditions, e.g., studies of urban climate, evapotranspiration, and vegetation stress.
The Landsat series of satellites have the potential to provide LST estimates at a high spatial resolution,
which is particularly appropriate for local or small-scale studies. Numerous studies have proposed
LST retrieval algorithms for the Landsat series, and some datasets are available online. However,
those datasets generally require the users to be able to handle large volumes of data. Google Earth
Engine (GEE) is an online platform created to allow remote sensing users to easily perform big
data analyses without increasing the demand for local computing resources. However, high spatial
resolution LST datasets are currently not available in GEE. Here we provide a code repository that
allows computing LSTs from Landsat 4, 5, 7, and 8 within GEE. The code may be used freely by users
for computing Landsat LST as part of any analysis within GEE.

Keywords: Land Surface Temperature; Landsat; Google Earth Engine; ASTER GED; high resolution

1. Introduction

Land Surface Temperature (LST) is an important component of the Earth’s energy budget,
closely linked to the partitioning between sensible and latent heat fluxes. As such, high-resolution
satellite-derived LST is increasingly used in various applications related to the assessment of land
surface conditions, including mapping the urban extent and the intensity of urban micro-climates,
estimating high-resolution evapotranspiration for the management of water resources and assessing
vegetation stress [1–15].

The Landsat series of satellites have the potential to provide LST estimates at a high spatial
resolution that are particularly appropriate for local and small-scale studies. Numerous LST algorithms
for the Landsat series have been proposed [16–30]. While most algorithms are simple to implement,
they require users to provide the necessary input data and calibration coefficients, which are generally
not readily available. Some datasets are available online (e.g., [25,26]); however, they generally require
users to be able to handle large volumes of data. Google Earth Engine (GEE; [31]) is an online
platform created to allow remote sensing users to easily perform big data analyses without the need
for computation resources. All Landsat Level-1 and 2 data are directly available to GEE, including
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top-of-atmosphere (TOA) and surface reflectance (SR) data. However, until now high-resolution LST
datasets from Landsat have been unavailable in GEE.

High-resolution LST may also be derived from the Chinese Huan Jing 1 (HJ-1) Infrared Scanner
(IRS) at about 300 m [32,33] or from the Ecosystem Spaceborne Thermal Radiometer Experiment
on Space Station (ECOSTRESS) thermal infrared sensor at about 70 m [34]. While the former is not
currently available in GEE, the latter is bounded to provide observations over a relatively short period.
The Landsat series, which provides high spatial resolution observations in the thermal infrared (~100 m)
available over 38 years, is among the most wide-spread used sensors for high resolution LST retrievals.

Here we propose a methodology for deriving LST from the Landsat series of satellites (i.e., Landsat
4, 5, 7, and 8), which is fully implemented in GEE. Parastatidis et al. [26] previously proposed a similar
method that resulted in a web application that allowed users to derive LST data with GEE. However,
since the data are only accessible through the web application, this method still requires users to
download large amounts of data if they wish to perform time-series analyses. In contrast, here we
provide a code repository with all the GEE scripts necessary to compute LSTs from Landsat data.
The repository allows users to perform any data analysis they require within GEE without the need to
store data locally. The code is written in Javascript and built with the new ‘GEE modules capability’,
which makes its application easy—users only need to add a “require( . . . )” command to their scripts
to access the code for computing Landsat LST.

The LST is computed using the Statistical Mono-Window (SMW) algorithm developed by the
Climate Monitoring Satellite Application Facility (CM-SAF) for deriving LST climate data records from
Meteosat First and Second Generation (MFG and MSG) [35]. Due to its simplicity, the algorithm is
easy to calibrate and implement. Besides Landsat data, the LST production code makes use of two
other datasets available within GEE, atmospheric data from the re-analyses of the National Center for
Environmental Prediction (NCEP) and National Center for Atmospheric Research (NCAR) [36] and
surface emissivity from the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global
Emissivity Database (ASTER GED) developed by the National Aeronautics and Space Administration’s
(NASA) Jet Propulsion Laboratory (JPL) [37].

The quality of the Landsat LST computed with the proposed methodology is assessed with
comparisons against in situ LST, which were derived from radiance measurements from six stations
belonging to the Surface Radiation Budget Network (SURFRAD) [38], the Baseline Surface Radiation
Network (BSRN) [39], and the Karlsruhe Institute of Technology (KIT) network [40].

Section 2 describes the input data used by the LST algorithm (Section 2.1), the LST retrieval
procedure (Section 2.2), and the station data used for validation (Section 2.3). Section 3 shows
the obtained algorithm calibration (Section 3.1), examples of the derived LST and necessary layers
(Section 3.2), and the results of the validation exercises (Section 3.3). Section 4 discusses the results and
Section 5 summarizes the presented work.

2. Materials and Methods

2.1. Input Data

2.1.1. Landsat Data

TOA brightness temperatures for the Landsat’s thermal infrared (TIR) channels are provided
by the United States Geological Survey (USGS) and are fully available and ready to use in GEE for
Landsats 4–8, collection 1. The USGS derives the TOA values from raw orthorectified digital numbers
data using the respective calibration coefficients [41]. The data from the Landsat series are considered
consistent and inter-calibrated, and all TIR bands have been resampled to 30 m spatial resolution.
The data are organized into Tiers based on their quality. Landsat scenes with the highest available
data quality are placed into Tier 1, being suitable for time-series analysis, while the remainder are
assigned to Tier 2 [42]. The results shown in this work are entirely based on Tier 1 data, but the code
may equally be applied to Tier 2 data. Table 1 describes the properties of the spectral bands used in this
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study for each Landsat. Besides the TIR band, the red and near-infrared (NIR) bands are used to derive
the Normalized Difference Vegetation Index (NDVI), which is calculated from the SR values (instead
of the TOA values, which is less accurate). For Landsat-4 and Landsat-5, data acquisition in the visible
and infrared spectral regions is performed by the Thematic Mapper (TM) sensor, while for Landsat 7,
it is performed by the Enhanced Thematic Mapper Plus (ETM+; an improved version of the TM). For
Landsat 8, the Operational Land Imager (OLI) acquires data in the visible and short-wave infrared
range, and the Thermal Infrared Sensor (TIRS) provides the TIR data. The TIR band of Landsat 7 is
available in low and high gain variants [43]. Here we choose to use the low-gain version, which has
lower radiometric resolution but the higher dynamic range and, therefore, prevents saturation at high
brightness temperatures.

Table 1. Bands, Google Earth Engine dataset, spatial resolution, equatorial crossing time (E.C.T.), and
available date range for each Landsat satellite.

Satellite Used
Bands

Wavelength
(µm) Dataset Spatial

Resolution E.C.T. Date Range

Landsat 4
(TM)

Red: B3
NIR: B4
TIR: B6

0.63–0.69
0.76–0.90
10.4–12.5

C01/T1_SR
C01/T1_SR

C01/T1_TOA

30 m
30 m

1202 m

9:45 am
(16-day)

22 August 1982
to

14 December
1993

Landsat 5
(TM)

Red: B3
NIR: B4
TIR: B6

0.63–0.69
0.76–0.90
10.4–12.5

C01/T1_SR
C01/T1_SR

C01/T1_TOA

30 m
30 m

1202 m

9:45 am
(16-day)

1 January 1984
to

5 May 2012

Landsat 7
(ETM+)

Red: B3
NIR: B4
TIR: B61

0.63–0.69
0.77–0.90
10.4–12.5

C01/T1_SR
C01/T1_SR

C01/T1_TOA

30 m
30 m
602 m

10:00 am
(16-day)

1 January1999
to

present

Landsat 8
(OLI; TIRS)

Red: B4
NIR: B5
TIR: B10

0.64–0.67
0.85–0.88

10.6–11.19

C01/T1_SR
C01/T1_SR

C01/T1_TOA

30 m
30 m

1002 m

10:00 am
(16-day)

11 April 2013
to

present

Note: 1 low gain band (B6_VCID_1); 2 resampled to 30 m.

The SR data for each Landsat are also available in GEE, as provided by the USGS. The SR
data from Landsat 8 are generated using the Land Surface Reflectance Code (LaSRC) algorithm,
where atmospheric correction is performed using a radiative transfer model, auxiliary atmospheric data
from MODIS, and makes use of the coastal aerosol band for aerosol inversion tests [44]. For Landsat
4-to-7, SRs are derived with the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS)
algorithm, which calculates the radiative transfer for atmospheric data from MODIS and NCEP.

Cloud coverage information, including cloud shadowing, can be retrieved from the quality
assessment band (BQA), which is also made available by the USGS through GEE.

2.1.2. Atmospheric Data

Information on the atmospheric water vapor content is required to better account for atmospheric
contributions in the TIR observations. Total Column Water Vapor (TCWV) values from NCEP/NCAR
reanalysis data are available on GEE [36]. Currently, the NCEP/NCAR reanalysis is the only global
TCWV dataset available on GEE that covers the full period of operations of the Landsat series.
The TCWV data are available globally from 1948 to the present, with a six-hourly temporal resolution
and 2.5 degrees spatial resolution. TCWV data from the two closest analyses (available at 00, 06, 12,
and 18 UTC) are linearly interpolated to each Landsat image acquisition time. Only the NCEP/NCAR
grid-boxes containing the respective Landsat pixels are considered.
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2.1.3. Surface Emissivity

The LST retrieval algorithm used here requires prescribed values of surface emissivity. As in the
operational Landsat LST product [25], we derive the surface emissivity for our LST retrievals from the
ASTER GEDv3 dataset developed by JPL [37]. This dataset includes the emissivity for the five ASTER
bands in the TIR region and is derived with a Temperature-Emissivity Separation (TES) algorithm from
all clear-sky ASTER images acquired between 2000 and 2008. The emissivity data have a reported
accuracy of ~0.01 and are provided with a spatial resolution of 100 × 100 m2 [45]. The emissivity data
are adjusted to match Landsat’s thermal bands using the coefficients provided by [25].

The ASTER GEDv3 dataset corresponds to the average of all retrievals performed over an
eight-year period; therefore, emissivity variations over time, e.g., due to annual and inter-annual
variations in vegetation density, need to be accounted for. Following [25], we apply a vegetation
adjustment using Landsat derived NDVI and mean ASTER GEDv3 NDVI. The NDVI is commonly used
to derive the fraction of vegetation cover (FVC) [25,26,37,46]. Here we use the relationship proposed
by Carlson and Ripley [46]:

FVC =

(
NDVI−NDVIbare

NDVIveg −NDVIbare

)2

(1)

where NDVIbare and NDVIveg are the NDVI values of completely bare and fully vegetated pixels,
respectively. Following previous studies (e.g., [17,47–50]), these two threshold values are set to
NDVIbare = 0.2 and NDVIveg = 0.86. Although some studies use NDVIveg = 0.5, Jiménez-Muñoz
et al. [50] showed that for high-resolution images, the values between 0.8 and 0.9 are more appropriate.
Pixels with NDVI below NDVIbare are considered completely bare, while pixels with NDVI above
NDVIveg are considered fully vegetated.

Emissivity values over vegetated areas at any given time, may then be derived using the
Vegetation-Cover method [51,52], which is defined as:

εb = FVCεb,veg + (1− FVC)εb,bare (2)

where εb,veg and εb,bare are the emissivity of vegetation and bare ground for a given spectral band b.
The emissivity of vegetated surfaces typically shows relatively small variations in the TIR region and,
therefore, this value is prescribed to εveg = 0.99 [53]. For each pixel, the effective emissivity (εb) for
each Landsat band is derived as follows [25]:

(1) ASTER FVC is derived from NDVI using Equation (1);
(2) The bare ground emissivity (εb,bare) for each ASTER band is derived from the original ASTER

emissivity (εb) and the corresponding ASTER FVC, using Equation (2) with the prescribed value
of εb,veg = 0.99;

(3) The bare ground emissivity for each Landsat TIR band (εb,bare) is derived from the ASTER bare
ground emissivity using the spectral adjustments provided in Table II of [25];

(4) FVC values for the Landsat image are computed from the respective NDVI values using
Equation (1);

(5) The vegetation cover method (2) is used to obtain the actual surface emissivity for each Landsat
TIR band.

For practical purposes, the possibility to directly use the ASTER emissivity corrected for the
Landsat TIR band is also available in the code. Users may then choose whether they wish to apply the
NDVI-based correction or use the instantaneous ASTER emissivity values.
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2.2. LST Retrieval

2.2.1. SMW Algorithm

LST is computed with the SMW algorithm developed and used by CM-SAF to derive LST data
records from the MFG and MSG series of satellites. The approach is based on an empirical relationship
between TOA brightness temperatures in a single TIR channel and LST and utilizes simple linear
regression [35,54–56]. The model consists of a linearization of the radiative transfer equation that
maintains an explicit dependence on surface emissivity:

LST = Ai
Tb
ε

+ Bi
1
ε
+ Ci (3)

where Tb is the TOA brightness temperature in the TIR channel, and ε is the surface emissivity for
the same channel. The algorithm coefficients Ai, Bi; and Ci are determined from linear regressions of
radiative transfer simulations performed for 10 classes of TCWV (I = 1, . . . ,10), ranging from 0 to 6 cm
in steps of 0.6 cm, with values of TCWV above 6 cm being assigned to the last class. Unlike for the
analogous algorithms developed by CM-SAF for MFG and MSG, here the coefficients are not stratified
by satellite view angle, because the Landsat sensors have a considerably narrower the near-nadir field
of view (FOV).

2.2.2. Algorithm Calibration

The calibration database used to obtain the coefficients of Equation (3) has been derived using
a dataset of air temperature, water vapor, and ozone profiles compiled by Borbas et al. [57] and its
procedure follows Martins et al. [57]. The Borbas dataset comprises over 15,000 profiles and includes
ancillary variables such as surface pressure, spectral emissivity, skin temperature, and elevation.
To achieve a uniform coverage of surface and atmospheric conditions in the calibration exercise,
a sub-set of profiles is selected as follows:

(1) We define classes of LST ranging from 200 K to 330 K in steps of 5 K, and classes of TCWV from 0
to 6 cm in steps of 0.3 cm. TCWV values above 6 cm are assigned to the last class.

(2) The Borbas database is iterated to randomly attribute a single clear-sky profile to each TCWV/LST
class. At each new iteration, profile selection is limited to those with a great-circle distance to
already selected profiles greater than 15 degrees. This guarantees a more extensive geographical
coverage of the calibration database.

(3) For each of the selected profiles, surface conditions are varied to ensure a wide range of conditions
are included in the database: following [57], LST is set with respect to air temperature (Tair),
namely to the difference between LST and air temperature (LST-Tair) ranging from -15 K to +15 K
in steps of 5 K. Surface emissivity values are varied between 0.9 and 0.99 in steps of 0.01.

The selection procedure leads to a set of 257 profiles. For each profile, seven values of LST and
10 values of emissivity are prescribed, which yields a total of 17,990 cases for the calibration exercise,
with sample sizes varying between 1260 and 2450 for each TCWV class considered for the coefficient
derivation (Section 2.2.1). The obtained coefficients are validated using the full Borbas dataset with the
provided LST and emissivity values.

For both, the calibration and validation databases, the respective brightness temperatures that
would be observed by the Landsat sensors are computed in the Radiative Transfer for the TIROS
Operational Vertical Sounder (RTTOV) version 12 developed by the Numerical Weather Prediction
Satellite Application Facility (NWP-SAF) [58].

2.2.3. Processing Chain

Landsat LST values are produced using the algorithm described in Section 2.2.1, with the
coefficients determined with the calibration procedure described in Section 2.2.2 and the datasets
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presented in Section 2.1. The production chain was fully coded in JavaScript using the Code Editor
Platform. The code is available from the GEE or Git repositories, respectively:

• https://code.earthengine.google.com/?accept_repo=users/sofiaermida/landsat_smw_lst
• https://earthengine.googlesource.com/users/sofiaermida/landsat_smw_lst

Figure 1 illustrates the processing chain for generating Landsat LSTs. The users first provide
the date range, the Landsat satellite (4, 5, 7, or 8), the region of interest to process, and an NDVI flag
indicating if they wish to apply the NDVI-based correction to emissivity. Based on this information,
the main module, Landsat_LST, loads the respective collections of TOA brightness temperatures
(BT) and Surface Reflectance (SR). A cloud mask is applied to both using the quality information
bands (module cloudmask). For each TOA BT image, the two closest TCWV NCEP analysis times are
selected and interpolated to the Landsat observation time (NCEP_TPW). The SR data are, in turn,
used to compute NDVI (compute_NDVI), which is then converted to FVC values as described in
Section 2.1.3 (compute_FVC). These FVC values are then used together with previously computed
ASTER emissivity values for bare ground (ASTER_bare_emiss) to obtain the corresponding Landsat
emissivity (compute_emissivity). Finally, the SMW algorithm is applied to the TOA TB of the Landsat
TIR band (SMWalgorithm); the algorithm coefficients are mapped onto the Landsat image based on
TWVC from NCEP and taking the classes defined in Section 2.2.1. The code and the LUT containing
the coefficients are available to the users in the indicated repository (module SMW_coeffcients).
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In the same repository, we provide two scripts with examples demonstrating the usage of the
modules for spatial and temporal analysis.

2.3. In situ Data

The quality of the LST data retrieved with the algorithm described above is evaluated by comparing
the retrievals with in-situ LST from validation stations. In this study, we use six stations from the
SURFRAD network, two stations from the BSRN network, and three stations from the KIT network.
Table 2 shows the location, land cover type, and period of observation of each station. The SURFRAD
network was established in 1993 with the purpose of providing continuous long-term measurements
of the surface radiation budget over the United States [38], and their data have been widely used in
validation and quality assessment exercises of satellite LST [25,59–62]. The BSRN is a global network
of surface radiation stations managed by the Data and Assessments Panel from the Global Energy
and Water Cycle Experiment (GEWEX) under the framework of the World Climate Research Program
(WCRP) [39]. From the full BSRN network, we selected two stations that had the necessary variables
and were located in sufficiently homogeneous areas. Both the SURFRAD and BSRN stations provide
broadband hemispherical upwelling and downwelling infrared radiance measurements performed
by pyrgeometers with an uncertainty of about 5 Wm−2. The KIT stations are specifically dedicated
to LST validation [40]. At these stations, Heitronics KT15.85 IIP radiometers (KT15; full-view angle
of 8.3◦) measure upwelling and downwelling radiances in the 9.6–11.5 µm spectral region, with an
accuracy of 0.3 K in equivalent brightness temperature [40]. At the EVO and KAL sites, upwelling
radiance is measured by two radiometers, one facing the ground and another a nearby tree. These two
measurements allow the upscaling of the upwelling radiances to the satellite FOV [40,63,64].

Table 2. Location, land cover type, and start date of the records of the SURFRAD, BSRN, and KIT
stations used to assess the quality of the Landsat LST retrievals.

Site Location ID Coordinates Elevation Land Cover Start Date

SURFRAD

Bondville, IL BND 40.051◦N
88.373◦W 213 m Grassland 1 April 1994

Desert rock, NV DRA 36.623 ◦N
116.020 ◦W 1004 m Shrubland 1 March 1998

Fort Peck, MT FPK 48.308 ◦N
105.102 ◦W 636 m Grassland 1 November 1994

Goodwin Creek, MS GWN 34.255 ◦N
89.873 ◦W 96 m Grassland 1 December 1994

Penn State Un., PA PSU 40.720 ◦N
77.931 ◦W 373 m Cropland 1 June 1998

Sioux Falls, SD SXF 43.734 ◦N
96.623 ◦W 483 m Grassland 1 June 2003

Table Mountain, CO TBL 40.126 ◦N
105.238 ◦W 1692 m Grassland 1 July 1995

BSRN

Cabauw, Netherlands CAB 51.9711◦N
4.9267◦E 0 m Grassland 1 December 2005

Gobabeb, Namibia GOB 23.519504◦S
15.083229◦E 407 m Desert 15 December 2012

KIT

Evora, Portugal EVO 38.540 ◦N
8.003 ◦W 230 m Savanna 1 January 2009

Gobabeb, Namibia GBB 23.551 ◦S
15.051◦E 406 m Desert 1 January 2009

Kalahari, Namibia KAL 22.933 ◦S
17.992 ◦E 1380 m Shrubland 1 January 2011
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Station measurements are resampled from the one-minute frequency to satellite observation time
by averaging observations performed within ±3 min from the Landsat image acquisition time.

2.3.1. In situ LST Derivation

The pyrogeometers used at SURFRAD and BSRN stations provide broadband radiances in the
infrared wavelength range of 4–50 µm. In the case of broadband measurements, the radiative transfer
equation may be approximated by the Stefan–Boltzmann law:

LST =
4

√
Lu − (1− εBB)Ld

εBBσSB
(4)

where Lu and Ld are the measured upward and downward longwave radiances, respectively, εBB is the
broadband emissivity of the surface, and σSB is the Stefan–Boltzmann constant. Following Malakar
et al. [25], the broadband emissivity of each site is derived from the ASTER GEDv3 product:

εBB = 0.128 + 0.014εA10 + 0.145εA11 + 0.241εA12 + 0.467εA13 + 0.004εA14 (5)

where εAi, j = 10 − 14 denote the ASTER narrowband emissivities of bands 10 to 14, respectively.
To account for vegetation dynamics at the site, each ASTER band emissivity is first corrected using the
actual Landsat FVC at the time of observation (see Section 2.1.3). The respective broadband value for
each Landsat pixel is then obtained with Equation (5).

For the KIT sites, LST is derived from Planck’s law using a simplified version of the radiative
transfer equation [40]:

Bλ(LST) =
Lλ,u − (1− ελ)Lλ,d

ελ
(6)

where Bλ(LST) represents Planck’s function for wavelengthλ, and ελ is the respective surface emissivity.
Lλ,d is the downwelling radiance measured by the upward-facing radiometer. For GBB, the upwelling
radiance, Lλ,u, is directly obtained from the ground-facing radiometer. For EVO and KAL, Lλ,u is
a simple weighted average of the radiances measured by the ground and tree-facing radiometers,
where the fractions of trees/shrubs and ground are used as weights [40,63,64]. To find adequate
fractions of trees/shrubs for the Landsat’s FOV, we use high-resolution flight imagery available on
GEE. A perimeter of 30 m is defined around the stations, and trees/shrubs are identified manually,
yielding values of 45% and 37% for EVO and KAL, respectively. For the GBB station, the emissivity
of the site was determined by Goettsche et al. [65], yielding a value of 0.94 for the KT15 radiometer
band. For EVO and KAL, in order to account for vegetation dynamics, we use the emissivity values
derived for the Landsats, given that the TIR bands are spectrally close to that of the KT15 radiometer.
Due to the narrow band of the KT15 radiometers, a central wavelength of 10.55 µm may be considered
without significant loss of accuracy [40], and LST is obtained by inverting Plank’s function.

2.3.2. Statistical Metrics

The obtained Landsat LST is assessed using robust statistics, as recommended by the Committee
on Earth Observation Satellites Working Group (CEOS) on Calibration and Validation—Land Product
Validation (LPV) Subgroup for the validation of Land Surface Temperature Products [66]. The so-called
accuracy is given by the median error, which is the robust equivalent to the bias and computed as:

µ = median(LSTsatellite − LSTinsitu) (7)

where LSTsatellite and LSTinsitu are the satellite and in situ LSTs, respectively. The robust equivalent to
the error standard deviation is the so-called precision, given by the median of absolute residuals:

σ = median
(∣∣∣(LSTsatellite − LSTinsitu) − µ

∣∣∣) (8)
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As an estimate of the total uncertainty of the product, we also compute the root mean squared
error (RMSE):

RMSE =

√
(LSTsatellite − LSTinsitu)

2

N
(9)

where N is the sample size.

3. Results

3.1. Algorithm Calibration

Algorithm coefficients (A, B, and C of Equation (3)) are obtained by the ordinary least square
fitting against the calibration database described in Section 2.2.2. The database is subdivided in classes
of TCWV from 0 to 6 cm in steps of 0.6 cm, yielding a total of 10 sets of (A, B, C) coefficients. Due to
the different spectral response functions of the sensors, the calibration must be performed for each
Landsat separately. Figure 2 shows the coefficients obtained for the SMW algorithm and Figure 3 shows
the LST error distribution of Equation (3) when applied to the validation database. The coefficients
determined for the four Landsat sensors are very similar (Figure 2), which is to be expected given their
nearly identical TIR bands. As generally seen in LST retrieval algorithms, the retrieval uncertainty
increases with TCWV (Figure 3), which is due to the increased atmospheric contribution of the TOA
BT. This contribution also impacts the 95% confidence intervals of the coefficients, i.e., they become
wider for higher values of TCWV (Figure 2). For Landsat 4 and 7, there is a slight increase of bias with
TCWV, with the LST being generally overestimated and biases reaching 0.9 K and 1.4 K, respectively,
for very moist atmospheres (Figure 3). For Landsat 5, the increase of the bias with TCWV is particularly
high, reaching 2.5 K for TCWV values above 5.4 cm. For Landsat 8, the bias is negligible, and its error
dispersion is also lower.
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3.2. LST Retrieval

Figure 4 shows an example of some of the layers generated by the LST production chain for each
Landsat image; the data were acquired on the 17th of May 2018 in a region in central Portugal close to
Coimbra city, located at approximately 40.2◦N and 8.4◦W. The region is characterized by extensive
forest areas to the west of Coimbra and crop fields in the plains around the banks of the River Mondego.
The crop fields are clearly visible in the RGB composite (Figure 4a) in brown tones and correspond
mainly to maize, which is generally sown in April and harvested in August or September [67]. In the
western part of the Mondego River (close to the river mouth), there are also extensive rice fields. Rice is
sown around April/May, and the harvesting takes place around September/October [67]. Close to the
seashore, there are also large forest areas, but a larger portion was burned by wildfires in October 2017.
The scar of the burned area is also visible in the RGB composite (Figure 4a) as a light brown/yellowish
area extending parallel to the coast, from about 40.2◦N to 40.4◦N.
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Figure 4. Layers of the LST estimation process for the Landsat-8 image retrieved on the 17th of May 2018
over central Portugal (Coimbra). (a) Natural Color (RGB) composite of the red, green, and blue bands
of Landsat-8; (b) ASTER emissivity of band 14; (c) ASTER fraction of vegetation cover (FVC) derived
from ASTER NDVI using Equation (1); (d) Bare ground emissivity of ASTER band 14 derived using
Equation (2); (e) Landsat-8 FVC derived from NDVI using Equation (1); (f) Landsat-8 TIR emissivity
derived with Equation (2) and bare ground emissivity and FVC; (g) brightness temperature (BT; Kelvin)
of Landsat-8 TIR band (B10); (h) land surface temperature (LST; Kelvin) derived for Landsat-8 using
the SMW algorithm.

The first step in the LST production is to match TCVW estimates from NCEP reanalysis data to
the Landsat observation time. However, due to the coarse resolution of the model, TCWV values are
practically constant over the selected area and, therefore, are not shown. The TIR surface emissivity
needed to compute LST is derived from the ASTER GEDv3 dataset. Figure 4b shows the corresponding
emissivity map of ASTER band 14, which approximates the Landsat TIR band best. ASTER NDVI
values are used to compute the respective FVC, which is shown in Figure 4c. FVC and emissivity values
are quite homogeneous over the selected area. FVC is generally quite low, with values between 0.3 and
0.5 for most of the region. The resulting bare ground emissivity map shows values around 0.96–0.97,
which matches those typically found in spectral libraries for the 11µm region [53]. Figure 4d shows the
respective bare ground emissivity for band 14 derived with Equation (2) from the original emissivity
values and the FVC. The FVC values for the Landsat image are also derived from the respective NDVI
(Figure 4e). The instantaneous FVC map for Landsat shows considerably more variability than for
ASTER. The cropland and burned areas show a clear pattern in the FVC map. Furthermore, the rice
fields in the westernmost part of the river had very low NDVI values typically associated with water
and, therefore, were masked out. The resulting TIR emissivity values for Landsat are displayed in
Figure 4f. Areas with low vegetation density have values close to 0.97, while the emissivity values of
densely vegetated areas reach values close to 0.99, both in agreement with typical values in spectral
libraries [53]. This example emphasizes the importance of using vegetation cover to derive dynamic
emissivity values. Figure 4g shows Landsat TOA brightness temperature values, and Figure 4h the
corresponding LST values. For the daytime Landsat scene analyzed here, LST is higher over croplands
and burned areas than over forests.

3.3. Validation with in situ LST

The quality of derived Landsat LST is assessed with in situ LST derived from twelve validation
stations. Since in situ data were unavailable for Landsat-4, comparisons were only performed for
Landsat 5, 7, and 8. We found a considerable number of Landsat LST values, much lower than the
in situ estimates, which is probably due to cloud contamination. Besides producing outliers and
yielding a bias, cloud contamination also affects NDVI and, therefore, emissivity estimation. Indeed,
NDVI values over clouds are generally considerably lower, which results in lower FVC values and,
consequently, lower emissivity; however, the dominant effect is the impact on BT. To assess the quality
of the satellite LST with a minimum of cloud contamination, we applied a “3σ-Hampel identifier” to
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remove potential outliers [68,69]. Figure 5 shows scatterplots between Landsat LST and in situ LST for
each of the twelve sites. For each Landsat, the 3σ limit is indicated by dashed lines, and the provided
statistics are derived after the outliers’ removal. Table 3 presents the corresponding statistics for each
site (black figures—original data, grey figures—outliers removed).Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 21 
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Figure 5. Landsat 5 (L5), 7 (L7), and 8 (L8) LST against in situ LST (K) for the full period of available
data over each validation site. The dashed lines show the ±3σ limits used to filter outliers while colors
indicate the Landsat number (see legends). The respective statistics, namely accuracy (µ; K), precision
(σ; K), and RMSE (K), are shown in the same color as their corresponding Landsat.
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Table 3. Validation statistics for Landsat 5 (L5), 7 (L7), and 8 (L8) over each site, namely accuracy (µ; K),
precision (σ; K), RMSE (K), and the number of observations (N). The black figures are the statistics after
removing outliers with the 3σ-rule. The gray figures are the statistics for the original (unfiltered) data.

Station
µ (K) σ (K) RMSE (K) N

L5 L7 L8 L5 L7 L8 L5 L7 L8 L5 L7 L8

BND
1.2 0.9 1.3 1.4 1.3 1.1 2.5 2.4 2.4 98 177 115
1.1 0.9 1.1 1.5 1.4 1.3 3.2 3.7 4.3 102 190 133

DRA
0.1 −0.6 −0.4 1.0 0.8 1.0 1.7 1.6 2.0 109 189 201
0.1 −0.7 −0.6 1.0 1.0 1.2 6.6 4.1 2.9 115 209 215

FPK
1.9 3.0 2.4 1.1 1.8 1.7 2.6 3.9 3.4 110 242 172
1.8 3.0 2.4 1.4 1.9 1.8 8.8 5.4 3.6 123 250 174

GWN
0.3 0.5 0.0 1.2 0.9 1.1 2.0 1.9 1.8 146 211 115
0.3 0.5 −0.1 1.2 1.1 1.2 3.4 3.8 2.9 155 227 124

PSU
0.2 0.2 1.0 1.1 1.7 2.0 0 23 22
0.2 0.2 1.1 1.1 1.9 2.0 0 24 22

SXF
0.6 0.9 1.0 1.1 1.3 1.0 1.7 2.3 2.1 50 100 115
0.5 0.8 1.4 1.2 1.4 1.2 3.2 3.5 2.6 54 107 123

TBL
2.7 2.6 2.0 1.5 1.9 2.1 3.6 3.7 3.7 119 208 140
2.5 2.4 1.7 1.7 1.9 2.1 4.5 4.8 5.4 123 219 145

CAB
−1.2 −0.6 0.9 0.9 2.3 1.8 0 46 79
−1.4 −0.6 1.4 1.1 5.0 3.0 0 56 86

GOB
2.9 2.3 1.6 1.3 3.7 2.9 0 97 131
3.2 2.4 1.6 1.6 4.2 3.8 0 103 140

EVO
0.3 −1.2 −0.3 1.4 1.3 1.1 2.3 2.2 2.1 29 113 94
−0.1 −1.2 −0.4 1.3 1.3 1.2 3.7 3.0 3.2 31 119 104

GBB
0.2 0.6 1.3 1.5 1.4 1.0 1.9 2.2 1.9 11 106 102
0.2 0.6 1.4 1.5 1.5 1.0 1.9 2.4 2.5 11 108 109

KAL
0.1 0.3 1.1 0.8 1.6 1.4 0 70 86
0.1 0.2 1.2 0.9 2.7 3.7 1 74 92

The accuracy/bias (µ) is generally better than or close to 1 K, except for FPK, TBL, and GOB
stations, with values varying between -1.2 and 1.3 K. The bias is highest at the GOB station but it is very
low at GBB, which is located in the same area. Apart from FPK, TBL, and GOB, the RMSE values range
between 1.4 K and 2.5 K. The lower RMSE values are found in KAL e DRA, and the best precision (σ)
values are found in DRA, CAB, and KAL, which are all located in very homogeneous areas. There is no
evident pattern when comparing between Landsats; Figure 3 suggests that Landsat 8 might perform
slightly better for extremely moist atmospheres (essentially when total column water vapor reaches
values above 5 cm), which, outside the tropics, is rare under clear skies. Without considering FPK,
TBL, and GOB stations, the overall accuracy of the Landsat 5, 7, and 8 is 0.5 K, 0.0(3) K and 0.3 K,
respectively, which meet the threshold accuracy proposed by Guillevic et al. [66]. The overall precision
(RMSE) is 1.3 (2.0) K, 1.1 (2.0) K, and 1.0 (1.9) K for Landsat 5, 7, and 8, respectively.

4. Discussion

This work presents a methodology to derive LST from the Landsat series with GEE.
We implemented the single-channel empirical algorithm proposed by Duguay-Tetzlaff et al. [35]
because it combines simplicity with reasonable accuracy. Furthermore, the CM-SAF used this algorithm
to generate a climate data record of LST for the Meteosat series of satellites and, therefore, has been
extensively analyzed. A similar algorithm (without explicit dependence on emissivity) is used by the
Copernicus Global Land Service to generate LST from the Geostationary Operational Environmental
Satellites (GOES) and the Multi-Function Transport Satellite (MTSAT) [55]; a detailed quality assessment
of this product is performed continuously and available at https://land.copernicus.eu/global/products/lst.
The algorithm uncertainty (Figure 3) obtained here are similar to those obtained by Duguay-Tetzlaff

et al. [35] and Freitas et al. [55]. Landsat 5 shows the largest errors, followed by Landsat 7, 4,
and 8—these discrepancies are related to the different spectral characteristics of the sensors. While the

https://land.copernicus.eu/global/products/lst
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TIR bands of Landsat 4, 5, and 7 have similar widths, their spectral response functions differ slightly.
Of the three satellites, the TIR signal measured by Landsat 5 has the highest weight around 12 µm,
followed by Landsat 7 and 4. Since water vapor absorption/emission in the 12 µm spectral region
is higher than in the 10–11 µm region, a larger contribution from the 12 µm region decreases the
algorithm’s retrieval performance. The TIR band of Landsat 8 is considerably narrower than for the
other Landsats, and excludes the 12 µm region, which allows retrieving LST with better accuracy.
Algorithms using both TIR bands of Landsat 8 (such as split-window algorithms) could provide better
estimates of LST; unfortunately, a calibration problem of the TIRS sensor identified by USGS introduces
large calibration uncertainty into the 12 µm band [70]. We confirmed this with independent Landsat
8 LST retrievals with a split-window algorithm, which showed a substantial degradation of retrieval
quality over the GBB station (not shown).

The quality of the LST retrievals was further assessed in comparisons with in situ LST estimates
from 12 stations obtained from the SURFRAD, BSRN, and KIT networks. The KIT network includes
three stations dedicated to LST retrieval located on sites that are homogeneous at the satellite’s pixel scale.
At these stations, radiance measurements are performed by radiometers with spectral and directional
characteristics similar to those typical of satellite sensors. SURFRAD and BSRN stations provide
hemispherical measurements of broadband infrared radiative flux. Despite providing high-quality
observations, several authors pointed out several limitations of the SURFRAD measurements for
validating satellite LST, most importantly, a lack of spatial representativeness [59,62]. The BSRN sites,
CAB and GOB, are located in highly homogeneous areas and have been previously used for validating
satellite-derived LST (e.g., [70–72]).

In order to study and better understand the impact of land cover heterogeneity on the LST
comparisons, we obtained Google high-resolution images for each site (Figure 6). Within GEE, circles
with 30 m and 100 m radius were superimposed on the images. The 30 m circle is used to represent the
resampled spatial resolution of the Landsat’s TIR bands, while the 100 m circle approximates their
original resolution. The 30 m circles correspond to the geometries used in GEE to extract the Landsat
LST time-series used in the validation exercise. It should be noted that these geometries are not meant
to represent the actual shape of the Landsat pixels. In fact, the actual areas of the circles (with widths of
60 m and 200 m) are larger than both the resampled and original pixel areas. Since the actual position of
Landsat pixels varies between overpasses and to account for geolocation uncertainties, we’ve selected
a slightly larger area. For some stations, these areas are slightly distanced from the station location in
order to encompass more homogeneous surfaces. For instance, at BND shifting the circle slightly to
the northeast ensures that most Landsat signal is coming from the grass patch where the station is
located (Figure 6a).

4.1. SURFRAD Stations

Statistics at BND, SXF, PSU, and GWN suggest good quality of the LST retrievals and agree well
with those obtained by Malakar et al. [25]. Some overestimation at higher LST values is noticeable (above
~305 K; Figure 5). The algorithm validation exercise suggests that the SMW slightly overestimates
high LST values for Landsat 5 and 7 and slightly underestimates high LSTs for Landsat 8 (not shown).
However, the same bias is not observed at DRA, GBB, or KAL stations where even higher LST values
are observed. This suggests a likely underestimation of surface emissivity during the warm season
when LSTs are higher. Although the same method is used to obtain Landsat and in situ emissivity,
the impact of emissivity uncertainties on LST estimates is different in each case. Empirical LST retrieval
algorithms, such as the SMW are generally more sensitive to emissivity errors than methods that derive
in situ LST directly with Planck’s or Stefan–Boltzmann law.

Some authors found large biases when validating satellite-derived LST with in situ LST from DRA
station (e.g., [25,59,62,73]). In contrast, we found good agreement between Landsat LST and DRA
station LST, with bias values within ±0.5 K. DRA station is located in a desert area with sparse shrub
cover. This seems to indicate that the station is more representative of Landsat’s spatial scale than
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satellite sensors with a lower spatial resolution, e.g., MODIS. However, for Landsat, Malakar et al. [25]
obtained a large positive bias over DRA. Looking at Figure 13 in Malakar et al. [25], we found that the
area we selected for the time-series retrieval is slightly north of the respective area used by Malakar
et al. Figure 7 shows LST values from Landsat-8 at DRA averaged for the years 2017 to 2019. The LST
values extracted from our selected area (black circle) are on average 1 K lower than the corresponding
LST extracted slightly further south (purple circle), which might explain the lower bias.

At the FPK station, the biases are slightly larger (1.3 K, 1.9 K, and 1.8 K for Landsat 5, 7, and 8,
respectively) than at most SURFRAD stations (Table 3). The bias seems to be mainly caused by LST
observations above 300 K. As mentioned above, this overestimation at high LSTs could be related to
an underestimation of emissivity during the warm season. We also obtain large biases at TBL station
(2.3 K, 2.1 K, and 1.6 K for Landsat 5, 7, and 8, respectively). Analyses of the average LST retrieved
from 2017 to 2019 with Landsat-8 (Figure 7), indicate that there are strong LST variations (almost 10 K)
around the station, which are likely due to differences in soil and vegetation. The area selected to
extract the Landsat LSTs (black circle) generally has slightly lower LST values than the area directly
around the station (purple circle). However, the bias values are still quite high (Table 3), and the
high spatial heterogeneity at this small scale makes it difficult to select a single representative area for
the station.

4.2. BSRN Stations

The bias obtained at GOB station is quite high (2.3 K and 1.9 K for Landsat 7 and 8, respectively),
while at GBB, which is located in the same area, the bias is much lower (0.1 K, -0.1 K, and 1.1 K
for Landsat 5, 7, and 8, respectively). At GOB, the downwelling radiance sensor is located near the
Gobabeb Research and Training Center, while the upwelling sensor is located approximately 7 km
northeast. Since the upwelling radiance is most relevant for LST derivation, we’ve extracted the LST
times-series for the Landsat at the location of the upwelling sensor. Nevertheless, the distance between
the two sensors may introduce additional uncertainty into the estimation of the in situ LST.

4.3. KIT Stations

Landsat LST shows good agreement with the KIT stations. While EVO and KAL are very
homogeneous in terms of land cover, they are heterogeneous when considering the different surface
elements. Therefore, a proper upscaling of their in situ LSTs is required [40,63,64]. Given Landsat’s
high spatial resolution, we assume that the temperature contrasts between trees/shrubs and sunlit
ground are most relevant and neglect possible shadowing effects. This assumption may lead to a slight
increase in the in situ LST uncertainty. Also, the upscaling methodology is sensitive to the prescribed
fraction of trees/shrubs, particularly at EVO, where LST contrasts between tree crowns and sunlit
ground are the highest. Ermida et al. [64] reported that a 5% error in the fraction of tree crown cover
could lead to an additional LST uncertainty up to 1.4 K in summer.

The GBB site has been carefully characterized in order to provide very accurate LST estimations
for validation exercises. The instrument characteristics are similar to those generally seen in TIR
satellite sensors and therefore is likely to provide LST estimates closer to the satellite estimates.
Also, the emissivity of the site was obtained experimentally, increasing the accuracy of the in situ
LST estimates.

When comparing the three Landsats, we were not able to identify a clear pattern of one sensor
outperforming the other. Although we found a slightly poorer algorithm performance for Landsat-7,
the general statistics do not indicate a lower LST retrieval quality for this sensor. This may be due to
the higher spatial resolution of Landsat 7, which partially compensates the lower radiometric accuracy
by reducing problems associated with site heterogeneity. However, when considering only the most
homogeneous and stable stations GBB, CAB, and GOB, Landsat-7 LSTs show higher RMSE values
that are suspected to be related to limitations in the atmospheric correction. Moreover, the algorithm
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performance is only slightly reduced for extremely moist atmospheres (Figure 3; TCWV above 5 cm),
which rarely occur under clear skies outside the tropics.

It was not possible to validate Landsat-4 LST retrievals since in situ data are unavailable for its
period of operation. However, given the nearly identical instrument characteristics of Landsat 4 and 5,
we expect the quality of the Landsat-4 LST retrievals to closely resemble that of Landsat-5.
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5. Conclusions

High-resolution LST estimates are increasingly used in small-scale studies. The Landsat series of
satellites is particularly appropriate for such studies as it provides imagery at a high spatial resolution
that is suitable for a broad range of applications. Although various algorithms for deriving Landsat LST
have been proposed, such data are not easily available and generally lack consistency for the different
Landsat satellites. Furthermore, the existing Landsat LST datasets require users to store the involved
data locally, and the data processing and analysis may be computationally demanding. Making use of
the computational resources of Google’s servers, the new GEE online platform allows remote sensing
data users to easily analyze large amounts of data. This study provides a GEE repository with all the
code necessary to derive LST from Landsat. Furthermore, users are not required to download any
data: simply by accessing the code, they can perform all their analyses within GEE. Users can also
edit the code to better meet their needs, and improvements may be implemented over time. The GEE
repository is publicly available at:

https://code.earthengine.google.com/?accept_repo=users/sofiaermida/landsat_smw_lst.
The LST values are estimated using the SMW algorithm developed by CM-SAF. For each

Landsat, the algorithm coefficients were derived using the same calibration database, thereby ensuring
consistency between the satellites. All inputs to the algorithm are obtained from the GEE catalog, i.e.,
the water vapor content from NCEP/NCAR reanalysis data and emissivity from the ASTER GEDv3
dataset with an NDVI-based correction for vegetation dynamics. A validation exercise with in situ LST
obtained from 12 stations indicated an overall accuracy of 0.5 K, -0.1 K, and 0.2 K and overall RMSE of
2.0 K, 2.1 K, and 2.1 K for Landsat 5, 7, and 8, respectively.

As the code is available publicly, future improvements to this methodology may be implemented
based on user feedback.
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