
polymers

Article

Effect of Fibre Orientation and Hostile Solutions on
Stress Relaxation of Glass/Polyamide Composites

Paulo Nobre Balbis dos Reis 1,* , Ana Martins Amaro 2 and Maria Augusta Neto 2

1 C-MAST, Department of Electromechanical Engineering, University of Beira Interior,
Calçada Fonte do Lameiro, 6201-100 Covilhã, Portugal

2 CEMMPRE, Department of Mechanical Engineering, University of Coimbra, 3030-788 Coimbra, Portugal;
ana.amaro@dem.uc.pt (A.M.A.); augusta.neto@dem.uc.pt (M.A.N.)

* Correspondence: preis@ubi.pt; Tel.: +351-275329948

Received: 29 October 2019; Accepted: 17 December 2019; Published: 20 December 2019
����������
�������

Abstract: Polyamide creates high-performance composite materials, which are replacing the
traditional epoxy composites in several applications. In this context, exposure to hostile environments
is expected. On the other hand, due to the viscoelastic nature of the matrix, these composite
materials are prone to stress relaxation. Therefore, the stress relaxation behaviour of glass/polyamide
6 composites was studied considering different fibre directions, as well as exposure to NaOH and HCl
solutions. Stress relaxation tests on the bending mode were carried out, and the stress recorded during
the loading time (7200 s). All tests were characterized by a stress decrease over time, but laminates
with higher fibre angles were more prone to stress relaxation. However, exposure to hostile solutions
promoted more significant decreases, where the highest stress relaxation was achieved for alkaline
environments with values that were three times higher for laminates with fibres at 0◦ and around one
and half times higher for 45◦ fibre alignments when compared with the control samples. Finally, the
Kohlrausch–Williams–Watts (KWW) model showed that it can be used to predict stress relaxation
time, due to the accuracy that was obtained between the experimental and theoretical results.
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1. Introduction

Composite materials with a polymeric matrix are becoming very common due to their excellent
mechanical properties. Among the two types of polymeric matrices that can be identified, thermosets
and thermoplastics, the latter one allows for faster processing techniques and much shorter cycle
times [1].

Polyamide, for example, is an important engineering plastic, with excellent physical and
mechanical properties, that creates high-performance composites [2]. Arhant et al. [3] studied
the replacement of carbon/epoxy composites with carbon/polyamide composites for underwater
applications, because thermoset-based composites (polyester/epoxy) require high thicknesses (more
than 10 mm) and reaching such thicknesses without defects is a challenge. On the other hand, residual
stresses and delaminations are common, and they could lead to premature failures. Despite the
benefits obtained with polyimide laminates, they can microcrack spontaneously when exposed to
hostile environments [4]. Han and Nairn [4], for example, observed that polyimide matrix composites
present degradation in toughness when exposed to water and high temperature, with consequent
microcracking. In fact, several studies can be found in the literature involving such composites,
but many of them analysed their mechanical performance only when exposed to wet environments,
seawater and/or high temperatures [4–10].
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On the other hand, in terms of corrosive environments (alkaline and acidic solutions), the
literature is much more abundant with respect to thermoset composites than thermoplastics. For
instance, studies developed by Stamenovic et al. [11] in glass–polyester composites demonstrated that
alkaline solutions are responsible for the decrease of tensile strength and elastic modulus, because
they are highly corrosive, whereas the opposite tendency occurs when these composites are exposed
to acid solutions. However, for both solutions, the changes observed are very dependent on the
pH value and exposure time. Feng et al. [12] studied the effect of different solutions (H2SO4, NaCl
and NaOH) on glass fibre-reinforced polymer (GFRP)/epoxy composites and observed a decrease in
hardness, flexural strength and elastic modulus, and this trend is even higher for higher concentrations.
Moreover, Amaro et al. [13] analysed the effect of alkaline (NaOH) and acid (HCl) solutions on the
flexural properties of these composites, and the worst bending properties were obtained when the
glass/epoxy composites were exposed to NaOH solutions. The effect of hydrochloric acid (HCl) and
sulphuric acid (H2SO4) was also compared by these authors, and the HCl solution was responsible
for the poorest results [14]. Similar conclusions were also obtained by Kamal and Kadhim [15] on
nano-silica-reinforced (glass/Kevlar) fabric polyester hybrid composites, due to the higher corrosive
effect of alkaline solutions. Finally, the effects of strong acids (HCl, H2SO4, HNO3 and H3PO4) on
mechanical properties of glass/polyester glass-reinforced pipes (GRP) at normal and high temperatures
were evaluated by Mahmoud and Tantawi [16]. They observed significant changes in terms of flexural
strength, hardness and Charpy impact strength, depending on the period of immersion and the type of
acid, as well as the immersion temperature.

Literature reports that polymer ageing can be classified as physical and chemical. Physical ageing
can change the molecular conformation and cause embrittlement, whereas chemical ageing produces
irreversible degradation of the molecular structure [17]. In this context, Benmokrane et al. [18] observed
that both H2O and H+ are soaked through microcracks and voids, causing greater defects, and in
particular, H+ reacted with the resin/fibre interfaces, promoting its debonding. These results seem
to indicate that the damage mechanisms that are initiated by physical and/or chemical reactions
between fibres and matrix are indeed responsible for the lower mechanical properties observed. In
fact, Bazli et al. [19] reported that when the solutions penetrate through voids, cracks or interface
fibre/matrix, an ion exchange is observed that, simultaneously, affects the matrix (chains scission)
and interfacial fibre/matrix bond strength and promotes a decrease of the mechanical properties.
Plain-weave laminates of C-glass and amine-cured epoxy exposed to water and sulfuric acid solutions
were studied by Tanks et al. [20], and they also concluded that both solutions attack the fibre surface,
but the sulfuric acid increases the saturation uptake of water in the material, causing high swelling
stresses that significantly reduce mechanical properties. The resin/fibre interface degradation, due
to the physical and chemical interactions, was also the main damage mechanism that explained the
lower mechanical properties obtained by Wang et al. [21] on basalt composites exposed to acidic
environments and also those obtained by Kusano et al. [22] on fibre-reinforced plastic tanks immersed
in HCl solutions.

This literature review clearly highlights the importance of studying the effects of hostile
environments on the mechanical performance over a composite materials lifetime [23]. However,
due to the viscoelastic behaviour of polymers, polymeric composites are prone to creep and stress
relaxation, which is a great challenge when they are used in long-term applications [24–26]. There
are several published studies related to the creep effects on composites [27–31], inclusively related to
harsh environments [27,32–36], but they are essentially focused on thermoset composites. On the other
hand, literature is not as rich with respect to studies of stress relaxation, but, regardless of the matrix,
some studies reported a significant decrease in stress over time [37–40]. Moreover, they also reported
that this behaviour is strongly affected by the fibre orientation [37,41–44], temperature [37,41,42,44]
and environment [45]. In fact, Amaro et al. [13,14] and Reis et al. [45] observed a significant decrease
on the flexural strength and higher stress relaxation due to fibre/matrix interface degradation that was
promoted by the immersion of the composite into acid and alkaline solutions. Hence, it is clear that the
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interface properties play a relevant role on stresses, because relaxation occurs due to the breaking of
bonds and their propagation [46].

However, to the best of our knowledge, in the literature, there is a lack of studies about the effect
of hostile solutions combined with different fibre directions on viscoelastic behaviour. Therefore, the
main goal of the present study is to investigate the stress relaxation behaviour of glass/polyamide
6 composites, and for this purpose, alkaline (NaOH) and acid (HCl) solutions were selected. Stress
relaxation tests were carried out on the bending mode, and the stress was recorded during the loading
time. The bending mode was selected because, according to Banna et al. [47], it is the most sensitive
for this type of analysis and one of the most popular with structural loading. Finally, as reported
by Arhant et al. [3], the relevance of the present study is based on the replacement of composites of
thermoset resins by thermoplastic ones, especially, for harsh environmental applications.

2. Materials and Methods

All samples were obtained from thin plates of continuous glass fibre-reinforced polyamide 6,
supplied by Bond-Laminates GmbH (Brilon, Germany) under the trade name of Tepex® dynalite
102-RG600(x)/47%. These plates had a 3 mm thickness and were cut using a diamond saw, and a
moving speed chosen to reduce the heat on specimens, with dimensions of 60 mm × 10 mm (mm2).
Finally, they were split into control and study groups, according to Table 1.

Table 1. Hostile environments.

Solutions pH Level Fibre Orientation Immersion Time (Days)

Control sample (CS) -
0◦

-
30◦

45◦

HCl 0.6
0◦

3030◦

45◦

NaOH 13.7
0◦

3030◦

45◦

Three-point bending (3PB) static tests were performed with a spam of 48 mm, according to
American Society for Testing and Materials (ASTM) Standard D 7264/D 7264M-07 [48], and a Shimadzu
AG-10 (Riverwood Drive Columbia, USA) universal testing machine equipped with a 5 kN load cell
was used. For each condition, at least five specimens were tested at room temperature and at a rate of
3 mm/min.

The flexural strength was calculated as the nominal stress at the middle span section and evaluated
using the maximum value of the load (Equation (1)), while the bending stiffness modulus was obtained
by linear regression of the load–displacement curves considering the interval in the linear segment
with a correlation factor greater than 95% according to Equation (2) [49]:

σ =
3 P L
2 b h2 (1)

E =
∆P · L3

48∆u · I
(2)

where P is the load, L the span length, b the width, h the thickness of the specimen, I the moment of
inertia of the cross section and ∆P and ∆u, respectively, the load range and flexural displacement range
in the middle span for an interval in the linear region of the load versus displacement plot.



Polymers 2020, 12, 20 4 of 12

Stress relaxation (SR) tests were also performed with the same equipment (Shimadzu AG-10,
Riverwood Drive Columbia, USA), at room temperature and with geometry similar to those used on
the bending tests. All experimental procedures were supported by ASTM E328-02 [50], where a fixed
strain was applied (corresponding to around 30 MPa for all configurations) and the stress recorded
during the loading time of 7200 s. This bending stress value was selected to guarantee that all SR tests
were carried out in the elastic regime of all conditions studied.

3. Results and Discussion

Three-point bending static tests were performed initially to obtain the effects of fibre orientation
on the flexural properties of continuous glass fibre-reinforced polyamide 6 (Tepex® dynalite
102-RG600(x)/47% Roving Glass—PA6 Consolidated Composite Laminate). In this context, Figure 1
presents typical bending stress–displacement curves, which are representative of the results obtained
by other specimens.
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Figure 1. Typical flexural curves obtained for (a) laminates with different fibre orientations; (b) laminates
with fibres at 0◦ and different hostile environments.

From Figure 1a, it is possible to observe a linear increase of the load with the displacement,
followed by a nonlinear behaviour, wherein the maximum load is reached. For laminates with 0◦

oriented fibres, the fibre breakage is the main failure mode identified, and the posterior data zigzag
corresponds to the initiation of delamination’s propagation. For the other orientations, the failure
mode is essentially based on matrix and/or fibre/matrix interface degradations that are evidenced by
smoother curves [51]. However, the high stress concentration in the pin load contact region should
not be neglected in all failure mechanisms [52]. Similar behaviour is observed when the samples
were exposed to the different hostile solutions, as shown in Figure 1b, for the composites with a fibre
orientation of 0◦, although the data showed lower values of maximum bending stress and flexural
modulus. The quantitative results presented in Table 2 are the average values of these properties for all
conditions analysed.

The results show that flexural strengths of the control specimens with fibres at 30◦ and 45◦ were
about 32.9% and 49.7%, respectively, lower than that of the control specimens with fibres at 0◦. In
terms of the bending modulus, the values decreased around 54.2% and 68.2%, respectively.

However, when the samples were immersed in hostile solutions, these decreases were more
expressive. The 0◦ oriented fibres when exposed to acid and alkaline solutions showed values of
flexural strength that were around 24.5% and 29.6% lower than that of the control group with the same
fibre orientation, and the bending modulus decreased to about 11.2% and 18.7%, respectively. Physical
and chemical reactions promoted by exposure to these solutions affect the matrix (chains scission) and the



Polymers 2020, 12, 20 5 of 12

interfacial fibre/matrix bond strength [19–23], which accelerates the failure mechanisms described above
and, consequently, changes its mechanical properties. While the physical reactions caused embrittlement,
the chemical one produced irreversible degradation of the molecular structure [17]. According to Han
and Nairn [4], polyimide laminates can microcrack spontaneously when exposed to hostile environments.
However, the worst results were obtained with the alkaline solutions, demonstrating its higher severity,
which agrees with the results reported in the open literature [11,13,45,53].

Table 2. The effects of different solutions and exposure time on bending properties.

Samples Flexural Strength/MPa Flexural Modulus/GPa

Average Value Std Dev Average Value Std Dev

CS
0◦ 152.2 12.1 10.7 0.7
30◦ 102.1 10.4 4.9 0.3
45◦ 76.5 2.8 3.4 0.2

HCl
0◦ 114.9 13.3 9.5 0.8
30◦ 95.9 3.9 3.6 0.3
45◦ 66.2 5.0 3.1 0.2

NaOH
0◦ 107.1 12.2 8.7 0.3
30◦ 92.9 7.1 3.1 0.4
45◦ 62.1 2.9 2.8 0.7

For the stress relaxation, Figure 2 shows typical curves obtained for control samples and different
fibre orientations. This figure plots the average bending stress versus time, where σ is the bending stress
at any given moment of the test and σ0 is the initial bending stress. These results are representative of
the stress relaxation behaviour of all conditions analysed.Polymers 2019, 11, x FOR PEER REVIEW 14 of 14 
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It is possible to conclude that, independently of the fibre orientation, the stress decreases with
time, but laminates with higher angles are more prone to stress relaxation. Notice that, when fibres
angle increased, the percentage of the load that was supported by fibres decreased, and therefore, this
phenomenon is mainly controlled by the matrix behaviour. For example, while the difference between
initial and final stresses (after 7200 s) was about 10.3% for the laminates with fibres at 0◦, this value
increased to 30.3% for fibres at 30◦ and to 35.7% for fibres at 45%, evidenced by the higher effect of
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the matrix on the relaxation process. This strong effect of the fibre orientation on the stress relaxation
behaviour agrees with the study by Kawai et al. [38]. In fact, fibres generally slow the relaxation
process, because they hinder the molecular flow in the matrix [24]; however, this phenomenon depends
considerably on the interface properties. Therefore, for laminates with fibres at 0◦, relaxation occurs
due to the initiation and propagation of the fibre/matrix debonding process, but the effect of the
polymeric matrix should not be neglected. In this case, there are essentially two mechanisms that
led to stress relaxation: physical stress relaxation due to molecular rearrangements requiring little
primary bond formation or breakage; and chemical stress relaxation due to chain scission, crosslink
scission or crosslink formation [42,54]. In terms of laminates with fibres at 30◦ and 45◦, in addition to
the mechanisms mentioned above, the breakage of fibre/matrix bonds and their propagation would
also be responsible for the relaxation process. Consequently, higher relaxation values are observed
with the respective fibre angle increase.

In Figure 2, it is also possible to identify an initial regime, in which the stress decreases considerably
in relation to the remaining time [26,40,45,55]. For example, considering laminates with fibres at 0◦, a
decreasing around 8.7% occurred after 1000 s, while the remaining decrease was only 1.5%. These
values were around 22.9% and 9.3% for the 30◦ fibre orientation and were 27.7% and 11% for the
orientations at 45◦, respectively.

The sensitivity to hostile environments (acid and alkaline solutions) is shown in Figure 3 for the
laminates with fibres at 0◦ and 45◦. These curves plot the average bending stress versus time and
are representative of all conditions analysed, where σ is the time-dependent bending stress and σ0 is
the initial bending stress. Regardless of the hostile solution, the stress always decreased over time,
but the decreases were higher for the exposed specimens than those observed for the corresponding
control samples. Table 3 presents all the stress relaxation results, where ∆σ is the ratio of the difference
between initial and final stress.
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For example, exposures to HCl solutions were responsible for an average stress decrease of around
18%, 34% and 40.3%, for the fibre orientations of 0◦, 30◦ and 45◦, respectively. These values were 74.8%,
12.2% and 12.9% greater than those verified for the corresponding control samples, i.e., for the control
specimens with fibre orientations of 0◦, 30◦ and 45◦. Nevertheless, for alkaline solutions these values
were higher and reached values of about 33.7%, 37% and 42%, which correspond to increases of 227.2%,
22.1% and 17.6%, respectively.
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Table 3. Effect of the hostile solutions and fibre orientations on the stress relaxation behaviour.

Samples Initial Stress/MPa Final Stress/MPa
∆σ/%

Average Value Std Dev

CS
0◦

30
26.9 0.46 10.3

30◦ 20.9 0.81 30.3

45◦ 19.3 0.45 35.7

HCl
0◦

30
24.6 1.12 18.0

30◦ 19.8 1.44 34.0

45◦ 17.9 1.46 40.3

NaOH
0◦

30
19.9 1.31 33.7

30◦ 18.9 1.13 37.0

45◦ 17.4 1.10 42.0

In terms of solutions, both were responsible for higher relaxations, but the highest stress relaxations
were achieved in alkaline environments, with values 3.3 times higher for laminates with fibres at 0◦ and
around 1.2 times higher for 45◦. The lower mechanical properties that were conveniently discussed
above explain this behaviour. In fact, exposure to corrosive fluids significantly compromises the load
carrying capacity, due to the lower mechanical properties of the matrix and the lower fibre/matrix
bond strength [11,13,53]. Studies developed by Hirai et al. [56] showed, for example, that PA6 is easily
plasticized when subjected to wet conditions, which significantly affects its mechanical performance.
Other evidence from Table 3 and Figure 3 is the higher effect of the hostile environments on the
laminates with fibres at 0◦ (74.8% for HCl and 227.2% for NaCl solutions) than in the other orientations.
This is a consequence of the physical and/or chemical reactions between fibres and matrix [19], which
affect the interfacial fibre/matrix bond strength and, consequently, higher stress relaxations. When
solutions penetrate through microcracks or interface fibre/matrix, they react with the resin/fibre
interface, promoting its debonding [18,19,21,22]. However, although this phenomenon also occurred
in the other orientations, it was more evident in laminates with fibres of 0◦ due to the higher load
carrying capacity.

In order to predict the stress relaxation response, the literature reports several models based
on spring-dashpot systems or on more complex formulations. While the first ones failed, because
the data were not fitted by a linear function, the Kohlrausch–Williams–Watts (KWW) function has
been suggested in many studies to obtain more accurate predictions [26,40,45,57–62]. This relaxation
function, ∅, is time dependent and is given by Equation (3):

∅(t) =
σ(t)
σ0

= e−(
t
τ )
β

(3)

where σ(t) and σ0 are the stress at time t and at t = 0, respectively, β is a fractional power exponent
(known as non-exponential factor) and τ is the KWW relaxation time.

The average experimental curves and theoretical ones obtained with the KWW model are compared
in Figure 4, which is representative of the results of laminates with fibres at 0◦, but it is also illustrative
of comparisons for all fibre orientations. The final bands represent the maximum and minimum
experimental values obtained. Table 4 presents all parameters of the KWW model and respective error
obtained after 7200 s, between both curves (experimental and theoretical curves). It is possible to
conclude that the Kohlrausch–Williams–Watts function fits the data successfully, because the maximum
error obtained in all conditions is 2.93%.



Polymers 2020, 12, 20 8 of 12

Polymers 2019, 11, x FOR PEER REVIEW 14 of 14 

 

 

Figure 4. Comparison between the experimental average curve and theoretical curve obtained with 
the Kohlrausch–Williams–Watts (KWW) model for laminates with fibres at 45° exposed to acid 
solutions (HCl). 

Table 4. Parameters of the KWW model for stress relaxation. 

Fibre Orientation Solution β τ 
Bending Stress after 3 h (MPa) 

Exp. Value KWW Value Error (%) 

0° 

Control 0.173419 5,451,440,860 26.98 26.79 0.71 

HCl 0.210335 17,397,543 24.61 24.38 0.94 

NaOH 0.245194 254,842 19.87 19.71 0.81 

30° 

Control 0.214439 891,560 20.98 20,7 1.35 

HCl 0.221025 381,474 19.76 19.37 2.01 

NaOH 0.22324 245,827 18.92 18.58 1.83 

45° 

Control 0.224938 304,551 19.30 18.88 2.22 

HCl 0.247563 124,048 17.92 17.41 2.93 

NaOH 0.252633 116,068 17.58 17.24 1.97 

4. Conclusions 

This work intended to study the stress relaxation behaviour of glass/polyamide 6 composites, 
and for this purpose, different fibre directions and exposition to different hostile environments were 
analysed. NaOH and HCl solutions were selected to understand the effect of alkaline and acidic 
environments on the long-term behaviour of such materials. 

From the static bending tests, it was concluded that the flexural strength and modulus decreased 
by increasing the fibre orientation angle. Compared with the laminates with fibres at 0°, flexural 
strength decreased around 32.9% and 49.7%, respectively, for the orientations of 30° and 45°. 
However, exposure to hostile solutions promoted significant decreases. 

Regardless of fibre orientation, stress decreased over time, but laminates with higher angles 
were more prone to stress relaxation. While the difference between initial and final stress was around 
10.3% for laminates with fibres at 0°, this value increased to 35.7% for laminates with fibres at 45%. 
However, these values increased to 18% and 40.3% for HCl solutions and 33.7% and 42% for alkaline 
solutions, respectively. Finally, the Kohlrausch–Williams–Watts equation was used to predict the 

Figure 4. Comparison between the experimental average curve and theoretical curve obtained with the
Kohlrausch–Williams–Watts (KWW) model for laminates with fibres at 45◦ exposed to acid solutions
(HCl).

Table 4. Parameters of the KWW model for stress relaxation.

Fibre
Orientation

Solution β τ
Bending Stress after 3 h (MPa)

Exp. Value KWW Value Error (%)

0◦
Control 0.173419 5,451,440,860 26.98 26.79 0.71

HCl 0.210335 17,397,543 24.61 24.38 0.94
NaOH 0.245194 254,842 19.87 19.71 0.81

30◦
Control 0.214439 891,560 20.98 20,7 1.35

HCl 0.221025 381,474 19.76 19.37 2.01
NaOH 0.22324 245,827 18.92 18.58 1.83

45◦
Control 0.224938 304,551 19.30 18.88 2.22

HCl 0.247563 124,048 17.92 17.41 2.93
NaOH 0.252633 116,068 17.58 17.24 1.97

4. Conclusions

This work intended to study the stress relaxation behaviour of glass/polyamide 6 composites,
and for this purpose, different fibre directions and exposition to different hostile environments were
analysed. NaOH and HCl solutions were selected to understand the effect of alkaline and acidic
environments on the long-term behaviour of such materials.

From the static bending tests, it was concluded that the flexural strength and modulus decreased
by increasing the fibre orientation angle. Compared with the laminates with fibres at 0◦, flexural
strength decreased around 32.9% and 49.7%, respectively, for the orientations of 30◦ and 45◦. However,
exposure to hostile solutions promoted significant decreases.

Regardless of fibre orientation, stress decreased over time, but laminates with higher angles were
more prone to stress relaxation. While the difference between initial and final stress was around 10.3%
for laminates with fibres at 0◦, this value increased to 35.7% for laminates with fibres at 45%. However,
these values increased to 18% and 40.3% for HCl solutions and 33.7% and 42% for alkaline solutions,
respectively. Finally, the Kohlrausch–Williams–Watts equation was used to predict the stress relaxation
time, and good accuracy was obtained between the experimental and theoretical results.
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Nomenclature

b Width of the specimen (mm)
h Thickness of the specimen (mm)
I Moment of inertia of the cross-section (mm4)
L Spam length (mm)
P Load (N)
t Time (seconds)
β Fractional power exponent (known as non-exponential factor)
∆P Load range in the middle span for an interval in the linear region (N)
∆u Flexural displacement range in the middle span for an interval in the linear region (mm)
∆σ Difference between initial and final stress divided by the initial stress
σ0 Stress at t = 0; initial bending stress
σ(t) Stress at time t
σ Bending stress at any given moment of the test
τ KWW relaxation time
∅ Relaxation function

Abbreviations

ASTM American Society for Testing and Materials
GFRP Glass fibre-reinforced polymer
GRP Glass-reinforced pipes
H+ Hydrogen ions
H2O Water molecule
HCl Hydrochloric acid
HNO3 Nitric acid
H3PO4 Phosphoric acid
H2SO4 Sulfuric acid
NaCl Sodium chloride
NaOH Sodium hydroxide
PA6 Polyamide 6
KWW Kohlrausch–Williams–Watts function
SR Stress relaxation
Std Dev Standard deviation
3PB Three-point bending static tests
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