
Ricardo Da Silva Carvalho Mendes

AUTOMATED PRIVACY PROTECTION 
FOR MOBILE DEVICES

Tese no âmbito do Doutoramento em Engenharia Informática, Especialidade em Arquiteturas,
Redes e Cibersegurança orientada pelo Professor Doutor João P. Vilela, e apresentada ao

Departamento de Engenharia Informática da Faculdade de Ciências e Tecnologia da Universidade
de Coimbra

Março de 2022





Department of Informatics Engineering
Faculty of Sciences and Technology

University of Coimbra

Automated Privacy Protection
For Mobile Devices

Ricardo Da Silva Carvalho Mendes

PhD in Informatics Engineering
PhD Thesis submitted to the University of Coimbra

Advised by Prof. Dr. João P. Vilela

March, 2022





Departamento de Engenharia Informática
Faculdade de Ciências e Tecnologia

Universidade de Coimbra

Protecção Da Privacidade
Automática Em Dispositivos

Móveis

Ricardo Da Silva Carvalho Mendes

Doutoramento em Engenharia Informática
Tese de Doutoramento apresentada à Universidade de Coimbra

Orientado pelo Prof. Dr. João P. Vilela

Março, 2022





This work was partially supported by the Portuguese Foundation for Science and
Technology (FCT) under the PhD grant SFRH/BD/128599/2017. Additionally,
through project: SWING2 (PTDC/EEI-TEL/3684/2014), funded by Fundos
Europeus Estruturais e de Investimento (FEEI) through Programa Operacional
Competitividade e Internacionalização - COMPETE 2020, by National Funds
from FCT - Fundação para a Ciência e a Tecnologia, through project POCI-
01-0145-FEDER-016753; MobiWise (P2020 SAICTPAC/001/2015) co-financed
by COMPETE 2020, Portugal 2020 - Operational Program for Competitiveness
and Internationalization (POCI), European Union’s ERDF (European Regional
Development Fund), and the Portuguese Foundation for Science and Technology
(FCT); COP-MODE, that has received funding from the European Union’s Ho-
rizon 2020 research and innovation programme under the NGI_TRUST grant
agreement no 825618; SNOB-5G with Nr. 045929 (CENTRO-01-0247-FEDER-
045929) supported by the European Regional Development Fund (FEDER),
through the Regional Operational Programme of Centre (CENTRO 2020) of
the Portugal 2020 framework and FCT under the MIT Portugal Program; Theia
with Nr. 047264 (POCI-01-0247-FEDER-047264) supported by the European
Structural and Investment Funds in the FEDER component, through the Opera-
tional Competitiveness and Internationalization Programme (COMPETE 2020)
and Portugal 2020.



viii



Acknowledgments

The first thing that I have to acknowledge is that it a huge pleasure to
write this section. I know that starting with such statement is uncon-
ventional, but reaching a state where the thesis is (almost) ready and

having nothing but thanks to write is a relief. Having taken that out of the way,
let me start with the proper acknowledgments.

I would like to start by deeply thanking my advisor Prof. João Paulo Vilela
without whom this thesis would not exist. From proposing this opportunity
to his full support at every stage of this work, I am forever grateful. You are,
without a doubt a great advisor and a mentor.

I extend my gratitude to Prof. Alastair Beresford, which not only enabled me to
visit Cambridge as a scholar, but also supported and integrated me throughout
the experience. During that time, which I will forever cherish, I met some
great friends: Jovan Powar, Stephan Kollmann, Jiexin “Stan” Zhang and Yuelin
“Evelyn” Zhou.

I would also like to thank everyone that directly or indirectly helped my thesis
or my well-being. First, I am grateful for the team behind the LCT laboratory,
particularly Prof. Marília Curado and Prof. Edmundo Monteiro, for fostering
a great environment that extends beyond work. Second, I thank my colleagues,
that I now have the pleasure to call friends, that directly collaborated with me.
Namely, Mariana Cunha and André Brandão. I hope that in the future we will
continue to work together. Finally, I thank the old friends (from “Maleita” and
Electrical and Computer Engineering) that I can always count on and the new
friends that I made along the way, particularly in the LCT. I refrain from listing
names in this later group as the size of it would put me at risk of forgetting
someone. However, I do need to shout-out two particular persons from this
latter group with whom I luckily shared most of this journey: David Abreu and
Karima Velasquez. You two are awesome people and I will always consider you
as brother and sister.

Finally, I would like to thank my family and Bruna for always being available,
supportive and loving. This adventure would not have been meaningful without
them, and I will always be grateful.

Thank you!

ix





Abstract

The pervasiveness of smart devices and the always connected paradigm
has fostered applications that benefit from sensing the environment to
provide contextualized services to users. This paradigm has undeniably

made lives easier by breaking language barriers, providing effective navigation
routing and constant communication and availability, to name a few. For all of
these services however, a significant amount of information is exchanged with
service providers, some of which can be considered private and sensitive. Fur-
thermore, after being collected, users have limited control over their data.

To preserve privacy before the data is sent to service providers, mobile devices
employ permission managers. These mechanisms allow users to control access
to sensitive resources and data by the installed applications. However, currently
deployed managers have been shown inefficient at both protecting and warning
users against the possible risks. Specifically, the main drawback of current sys-
tems lies in the number of permissions that are automatically accepted. After
being allowed once, applications can generally access the same resource at any
time, without user consent or even awareness. These automatically accepted
permissions can violate the privacy preferences of the user at each current con-
text, i.e., they violate privacy’s contextual integrity, and therefore contradict
users expectations.

Automation in permission managers is paramount as the number installed ap-
plications and respective permissions renders inefficient constantly asking the
user. In fact, it would lead users to became fatigued and therefore to promptly
dismiss the privacy notices. Hence, the automation must be smart by taking
into account the intrinsic nature of privacy, namely, privacy’s subjectiveness to
each individual and the contextual dependency of such preferences.

The main goal of this thesis is to improve the state-of-the-art in privacy for
mobile devices through personalized and context-aware automation. Towards
this end, we start by performing a field study to collect permission decisions,
their surrounding context and respective user expectations, a dataset that we
make available to the community. This data shows the ineffectiveness of current
permission managers based on runtime permissions, as this would have resul-
ted in a violation of privacy for 15% of requests. Additionally, almost 50%
of requests were unexpected to users, thus highlighting a strong misalignment
between apps’ practices and user expectations. Furthermore, privacy decisions
see the strongest correlation with user expectation, however, both the expecta-
tion and its importance in the decision is subjective to each individual.

Using the collected data, we train personalized and context-aware models for the
prediction of privacy decisions by taking into consideration user expectation and
the context of the user and of the phone. Our best model achieves an Area Under
the Receiving Operation Curve (ROC AUC) of 0.957 and an F1 score of 0.924.
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Furthermore, such model reduces the number of privacy violations by 59.5%,
when compared to a standard Android handset. Without user expectation, we
achieve a ROC AUC of 0.898 and an F1 score of 0.886, a model that reduces
the privacy violations by 27.9%.

Another crucial drawback of existing permission managers is the limited control
over the trade-off between privacy and utility. Specifically, the binary option
of allowing or denying permissions corresponds to extreme situations where the
user either has maximum utility and no privacy, or maximum privacy and no
utility, respectively. Obfuscation can be added to the permission manager to
provide users with a fine-grained control over this trade-off. Two challenges arise
in this subject: obfuscation techniques are data type dependent, and therefore
different techniques would be required for each sensitive permission; tuning the
obfuscation mechanism for each situation at each permission request, or using
static configurations could result in ineffective privacy and/or utility depending
on each situation/context.

Focusing on location data, a prevalent and sensitive type of data in mobile
devices, we performed an empirical evaluation on the effect of varying frequency
of reports on location privacy mechanisms based on differential privacy, the
de facto privacy standard. This empirical study reveals that under sporadic
release of location data, reports can be considered independent. However, under
continuous location sharing, correlations between successive reports degrade the
user privacy, thus requiring Location Privacy-Preserving Mechanisms (LPPMs)
that take this aspect into consideration. Another finding from this study is
that a poorly configured LPPM can result in no effective privacy. These two
results served as motivation to propose a novel formal notion for the continuous
release of location data based on differential privacy and termed Velocity-Aware
Geo-Indistinguishability (VA-GI).

A VA-GI LPPM is presented that automatically adjusts for privacy or utility
depending on the velocity of the user and frequency of reports. This automated
adjustment is essential for the integration of such mechanism in a permission
manager, while requiring minimal interaction from the user, e.g., for tuning
parameters. Furthermore, this proposal simplifies its configuration by requiring
only two user-set parameters, the privacy budget and a multiplier, and allows
for the personalization of the LPPM by using data from a specific driver or
from all drivers in a particular area, thus enabling personalization from a fine-
grained user-level up to more general region-level (e.g. city or district). Our
empirical simulations with real data show the effectiveness of the VA-GI LPPM
in automatically adjusting the privacy and utility, in fact outperforming existing
differentially private LPPMs.

Keywords: Mobile Devices, Permission Managers, Personalized
Privacy, Context-Awareness, Location Privacy, User Expecta-
tion.
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Resumo

Aadoção em massa de dispositivos móveis inteligentes e o paradigma da
conectividade permanente levaram ao desenvolvimento de aplicações
que oferecem serviços personalizados com base em informação que re-

colhem sobre o contexto do utilizador (p.e. localização). Este paradigma facilitou
o quotidiano dos utilizadores através de serviços como navegação e identificação
de pontos de interesse, bem como ao ajudar a quebrar barreiras linguísticas,
entre outros. No entanto, uma quantidade significativa de informação é enviada
para os fornecedores destes serviços, parte da qual pode ser considerada privada
e sensível. Além disso, os utilizadores têm, em geral, um controlo limitado sobre
os seus dados após estes serem recolhidos.

Para preservar a privacidade dos utilizadores antes de os dados serem enviados
para os fornecedores de serviços, os dispositivos móveis possuem gestores de
permissões que permitem ao utilizador controlar o acesso das aplicações aos re-
cursos e dados sensíveis. No entanto, os gestores de privacidade atuais são pouco
eficazes a proteger e a notificar os utilizadores sobre os potenciais riscos de pri-
vacidade. Existe um elevado número de permissões que são automaticamente
concedidas, em particular, após terem sido autorizadas uma primeira vez pelo
utilizador, as aplicações podem, em geral, aceder ao mesmo recurso a qualquer
momento, sem consentimento ou mesmo perceção por parte do utilizador. Estas
permissões automaticamente concedidas podem violar as preferências dos util-
izadores, contradizendo as suas expectativas que podem variar de acordo com o
contexto de utilização.

A automação dos gestores de permissões é fulcral, uma vez que o elevado número
de aplicações instaladas e respetivas permissões torna a sua gestão individual in-
viável, caso o utilizador tivesse que responder manualmente a todos os pedidos, o
que teria como consequência a dessensibilização do utilizador para com os avisos
de privacidade. Desta forma, a automação destes sistemas deve ser inteligente,
garantindo que as características intrínsecas à noção de privacidade sejam re-
speitadas, nomeadamente, a sua subjetividade em relação a cada indivíduo e a
sua dependência do contexto.

O objetivo principal desta dissertação é melhorar o estado-da-arte da privacid-
ade em dispositivos móveis, através de automação personalizada e ciente do
contexto. Para tal, começámos por realizar uma campanha de recolha de da-
dos para coletar informação acerca das decisões de acesso a permissões pelos
utilizadores, bem como o respetivo contexto e as expectativas dos utilizadores.
Devido à inexistência de um dataset público semelhante, disponibilizamos os da-
dos recolhidos à comunidade científica. O nosso dataset demonstra a ineficácia
dos atuais gestores de permissões baseados em runtime, i.e. que concede permis-
sões às aplicações da primeira vez que são pedidas, mantendo-as para futuras
utilizações. Este modo de gestão de permissões que é o gestor predefinido do
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Android resulta numa violação da privacidade em 15% das permissões respon-
didas pelos nossos participantes. Além disso, quase 50% de todos os pedidos
de permissões foram considerados como inesperados pelos utilizadores, eviden-
ciando uma forte divergência entre as práticas das aplicações e as expetativas
do utilizador. Adicionalmente, a feature da expectativa do utilizador foi iden-
tificada como aquela com a maior correlação com as decisões de privacidade
dos utilizadores, realçando a sua importância nas decisões de privacidade adot-
adas. No entanto, tanto a expectativa como a sua importância para a decisão
foi identificada como sendo subjetiva a cada indivíduo.

Com os dados recolhidos, treinámos modelos personalizados e cientes do con-
texto para previsão das decisões de privacidade (aceitar ou rejeitar acesso às
permissões), tendo em consideração features de expectativa e contexto do utiliz-
ador, bem como do contexto do dispositivo. O nosso melhor modelo de predição
atinge um área abaixo da curva Receiver Operator Characteristic (ROC AUC)
de 0.957 e um F1 score de 0.924. Mais ainda, este modelo reduz a quantidade de
violações de privacidade em 59.5% em comparação com o gestor de permissões
predefinido do Android baseado em permissões em runtime. Sem utilização da
feature da expectativa (que requer input do utilizador), o modelo atinge ainda
assim uma ROC AUC de 0.898, um F1 score de 0.886 e uma redução no número
de violações de privacidade de 27.9%.

Outra importante limitação dos gestores de privacidade existentes é o controlo
limitado sobre o compromisso entre a privacidade e a utilidade. Especificamente,
a opção binária de permitir ou negar permissões corresponde aos extremos onde o
utilizador tem máxima utilidade e nenhuma privacidade, ou máxima privacidade
e nenhuma utilidade, respetivamente. A ofuscação de dados é uma medida
válida para possibilitar aos utilizadores um controlo mais fino sobre este balanço.
Dois desafios aparecem neste contexto: as técnicas de ofuscação são tipicamente
específicas a cada tipo de dados e, portanto, técnicas diferentes são necessárias
para cada tipo de permissão/dados; a configuração das técnicas de ofuscação
para cada situação/contexto pode resultar num nível de proteção da privacidade
ou num ajuste da utilidade, ineficazes.

Focando nos dados de localização, face à sua prevalência em dispositivos mó-
veis e à sensibilidade dos mesmos, realizámos uma avaliação empírica do efeito
da variação da frequência da partilha de dados de localização na eficácia dos
mecanismos de proteção de privacidade de localização baseados em privacidade
diferencial, a atual noção de privacidade de informação dominante. Este estudo
revelou que a independência dos dados de localização pode ser efetivamente as-
sumida no caso da partilha esporádica. No entanto, sob a partilha contínua
da localização, a correlação entre localizações sucessivas degrada a privacidade
do utilizador, requerendo assim mecanismos de preservação da privacidade de
localização (LPPMs) que tenham em conta essa mesma correlação. A análise
demonstrou ainda que uma inadequada configuração de um LPPM pode resultar
numa perda significativa do nível de privacidade. Estes dois resultados serviram
de motivação para a proposta de um nova noção formal de privacidade para a
partilha contínua de dados de localização, baseada em privacidade diferencial,
designada Velocity-Aware Geo-Indistinguishability (VA-GI).
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Com base na análise referida, foi então desenvolvido o novo LPPM VA-GI que
ajusta automaticamente o nível de privacidade ou utilidade em função da velo-
cidade do utilizador e da frequência da partilha de dados de localização. Este
ajuste automático é essencial para a integração de um LPPM num gestor de
privacidade, para que a interação requerida ao utilizador, por exemplo para o
ajuste de parâmetros, seja mínima. Para além disso, esta proposta simplifica
a configuração do LPPM, requerendo apenas dois parâmetros: o orçamento de
privacidade e um multiplicador, que servem para definir os limites máximos e
mínimos do nível de privacidade e utilidade. Este LPPM permite ainda a per-
sonalização do mecanismo através do uso de dados de um único condutor ou
de todos os condutores de uma dada área geográfica (por exemplo, uma cidade
ou distrito). A avaliação com trajetórias reais demonstra a eficácia do VA-GI
LPPM no ajuste automático dos níveis de privacidade e utilidade, resultando
num desempenho superior face a outros LPPMs baseados em privacidade difer-
encial.

Palavras-chave: Dispositivos Móveis, Gestores de Privacidade,
Privacidade Personalizável, Ciente do Contexto, Privacidade de
Dados de Localização, Expectativa do Utilizador.
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CHAPTER 1. INTRODUCTION

The pervasiveness of smart devices and the always on and always connec-
ted paradigm has fostered applications that benefit from sensing the
environment to provide contextualized services to its users. However,

this constant collection and flow of information presents severe privacy and se-
curity risks, such as the possibility of disclosure through data breaches. This
calls for systems that empower users with control over their data, allowing them
to benefit from the technology and at the same time retain a certain degree
of privacy. This thesis tackles the development and enhancement of privacy
mechanisms through automation, personalization and context-awareness. This
chapter introduces this subject by presenting some background, motivation and
the objectives of this work, and enumerating the contributions.

1.1 Background and Motivation
Designing privacy-preserving mechanisms is challenging due to the non-existence
of a single universal privacy definition [Langheinrich, 2009] and its strong de-
pendence on people’s preferences, beliefs and on the context of privacy de-
cisions [Acquisti et al., 2015]. Often, users are unaware of data collection
risks [Felt et al., 2012] and intrusive practices [Balebako et al., 2013; Shklovski
et al., 2014], thus trading privacy for small benefits [Acquisti et al., 2015]. An
illustrative yet pervasive example is that of loyalty cards where users receive
monetary discounts at the expenses of revealing buying patterns [Acquisti and
Grossklags, 2008].

Due to their inherent capacity to collect high quantities of sensitive data, smart-
phones have implemented permission managers to give users control over which
applications can access certain device resources, including sensors and data.
While researchers have proposed several improvements, current industry pri-
vacy managers are still ineffective at protecting users’ privacy [Felt et al., 2012;
Wijesekera et al., 2015; Mendes et al., 2022a]. For example, permissions re-
quests are prompted at the first time an application requires such access. While
this allows to contextualize the request by the need for a certain functionality,
after being accepted once, applications can generally access the resources at
any time and for any purpose even without users noticing [Almuhimedi et al.,
2015; Wijesekera et al., 2015]. These subsequent automatically accepted per-
missions thus potentially violate the preferences of the user at these newer con-
texts [Mendes et al., 2022a].

A naive solution is to request permission access on every use. However, applica-
tions can make hundreds of permission requests per day [Wijesekera et al., 2015;
Mendes et al., 2022b], thus leading to warning fatigue and consequently, poor
privacy choices [Felt et al., 2012]. Towards solving this problem, researchers
proposed automated solutions through either personalization [Liu et al., 2016],
context-awareness [Zavala et al., 2011], and more recently both [Olejnik et al.,
2017]. Personalized permission managers take into consideration users’ personal
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preferences toward privacy. However, these approaches are often static and
do not take into account the user and device context, which has been shown
to greatly influence privacy decisions [Acquisti et al., 2015]. Personalized and
context-aware permission managers are thus required. Nevertheless, due to the
high context dynamism of mobile devices, precisely define context and sub-
sequently enforce personalized privacy is challenging.

The vast majority of research proposals in permission managers focus on either
allowing or denying access to resources. An essential problem arises from this
lack of control over the trade-off between privacy and utility. Denying per-
missions has maximum privacy but no utility, that is, it prevents users from
accessing functionality. Conversely, allowing access has maximum utility, but
no privacy, and after being collected, possibly untrustworthy data collectors
get full access and control over such data [Mendes and Vilela, 2017]. Towards
achieving a better trade-off between privacy and utility at collection time, that
is, before the data is sent to service providers, obfuscation techniques can be
used. Obfuscation is the purposefully degradation of data quality in order to
retain a certain degree of privacy, thus still allowing for some disclosure, and
consequently, benefit from the functionality.

Obfuscation is, however, highly data dependent [Cunha et al., 2021]. Specifically,
different types of data require different methods, and in the context of utility,
even applications using the same data type may have different data quality
requirements. In this thesis, a focus on location data is given due to the relevance
and sensitiveness of this type of data in mobile devices [Huang et al., 2018].

The attractiveness of sharing location data is related to Location-Based Services
(LBSs), which have proliferated with the pervasiveness of mobile devices [Huang
et al., 2018]. LBS providers rely on users’ current location to provide a geo-
temporal contextualized service. However, mobility traces are highly sensitive
as this type of information can disclose habits, social connections, points of
interest and even health conditions [Krumm, 2009]. In fact, it has been shown
that mobility traces are highly unique [De Montjoye et al., 2013], that Points-
of-Interests (PoIs) act as quasi-identifiers [Bettini et al., 2005; Primault et al.,
2014], and that individual’s traces are extremely predictable given past location
history [Song et al., 2010]. The sensitiveness of this type of data must thus be
taken into account when designing location privacy obfuscation techniques.

This thesis intends to contribute to the state of the art in privacy in mobile
devices by proposing privacy protection mechanisms that are automated, to
avoid warning fatigue and minimize user interaction, personalized, to take into
consideration users’ privacy preferences, and context-aware, to account for pri-
vacy’s context dependency. Such system shall also resort to obfuscation to
increase the control over the trade-off between privacy and utility. Since obfus-
cation is highly data dependent and disclosure (utility) is application specific,
a focus on an essential type of data in mobile devices will be given, namely,
location data. The integration of obfuscation in a permission manager fur-
ther requires simple and automatic configuration to varying situations, as to
avoid misconfigurations and poor privacy or utility depending on the context
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surrounding the data practice.

1.2 Objectives
The main objective of this research is to enhance privacy in mobile devices.
Towards this general goal, the following objectives have been established:

• Analyze privacy decisions in mobile devices within each surrounding con-
text. Validate the need and potential venues for the development of
smarter automated permission managers;

• Develop methods for an automated, personalized and context-aware per-
mission manager that improves on existing limitations;

• Analyze the characteristics of location data towards evaluating the po-
tential incorporation of location obfuscation in a permission manager.
Namely, measure the potential privacy disclosure that occurs in dy-
namic contexts, for instance, the difference between releasing location data
sporadically or continuously; and

• Develop a novel Location Privacy-Preserving Mechanism (LPPM) that
automatically adapts to varying contexts/situations at which the data is
collected.

The last two objectives focused on location data as each type of data requires
different obfuscation techniques, specially since their nature can impact the at-
tacks or the amount of data that is disclosed. However, similar methodology to
the one undertaken in this work can be followed to develop effective obfuscation
mechanisms for each of the sensitive data types that mobile devices collect.

1.3 Contributions
Taking into consideration the previously described goals, this thesis has pro-
duced the following contributions:

• Collected a dataset of permission decisions, surrounding context and re-
spective user expectations from 93 participants. We made this dataset
available to interested researchers [Mendes, 2021a]. This dataset validated
our premise that the permission manager in current Android devices (up
to Android 9) is ineffective at protecting user privacy. It further showed
a strong misalignment between user expectations and app practices.

• Development of personalized and context-aware predictive models that
automate privacy decisions with higher performance than the current An-
droid permission manager. Specifically, by taking into consideration the
expectation and the phone and user contexts we achieve a Area Under the
Receiving Operation Curve (ROC AUC) of 0.96 and an F1 score of 0.92.
Without user expectation, we achieve a ROC AUC of 0.9 and an F1 score
of 0.88. These two solutions achieve a reduction on the the number of
privacy violations of approximately 60% and 28%, respectively.

— 4 —



CHAPTER 1. INTRODUCTION

• We performed a study on the impact of the frequency of location reports on
the privacy-utility trade-off. To empirically motivate the need for auto-
matic dynamic adjustment of the privacy-utility trade-off in accordance
with varying frequency of location reports. Specifically, as the frequency
increases, so does the correlation between subsequent reports and, con-
sequently, the privacy loss. Furthermore, according to our analysis, a
misconfigured parameter can result in no effective privacy.

• We propose Velocity-Aware Geo-Indistinguishability (VA-GI), a general-
ization of geo-indistinguishability to location traces. VA-GI allows for the
development of LPPMs that automatically adjust their privacy and utility
in accordance with the frequency of reports and user velocity, thus using
these two variables as a metric for the correlation between points. Further-
more, we propose a VA-GI LPPM that requires only 2 user-set parameters,
the privacy budget and a multiplicative factor, as to facilitate tuning and
therefore mitigate misconfigurations. Our simulations with real data show
that the VA-GI LPPM outperforms existing geo-indistinguishable LPPMs
regarding the privacy-utility adaptability.

These contributions have been published in five international conference papers
and one journal papers as well as motivated further research that was supervised
by the candidate and culminated in two masters’ thesis and four cooperation
papers.

1.4 Bibliographic Note
The vast majority of the work detailed in this thesis has been published in
international conferences and journals as follows.

The literature review presented in Chapter 2 was based on the following public-
ations:

• Overview on privacy, privacy-preserving mechanisms in the data life-cycle,
and the trade-off between privacy and utility: Mendes, R. and Vilela, J. P.
(2017). Privacy-preserving data mining: Methods, metrics, and applica-
tions. IEEE Access, 5:10562–10582

• State of the art in permission managers, including context-awareness and
personalization:

– Mendes, R., Brandão, A., Vilela, J. P., and Beresford, A. R. (2022a).
Effect of user expectation on mobile app privacy: A field study. In
2022 IEEE international conference on pervasive computing and com-
munications (PerCom), pages 207–214. IEEE

– Mendes, R., Cunha, M., Vilela, J. P., and Beresford, A. R. (2022b).
Enhancing user privacy in mobile devices through prediction of
privacy preferences. In Computer Security–ESORICS 2022: 27th
European Symposium on Research in Computer Security, Copenha-
gen, Denmark, September 26–30, 2022, Proceedings, Part I, pages
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153–172. Springer

• State of the art in location privacy and respective privacy-preserving mech-
anisms:

– Mendes, R., Cunha, M., and Vilela, J. P. (2023). Velocity-aware
geo-indistinguishability. In Proceedings of the Thirteenth ACM Con-
ference on Data and Application Security and Privacy (CODASPY).
ACM. In press

– Mendes, R., Cunha, M., and Vilela, J. P. (2020). Impact of frequency
of location reports on the privacy level of geo-indistinguishability.
Proceedings on Privacy Enhancing Technologies, 2020(2):379 – 396

– Mendes, R. and Vilela, J. P. (2018). On the effect of update frequency
on geo-indistinguishability of mobility traces. In Proceedings of the
11th ACM Conference on Security & Privacy in Wireless and Mobile
Networks, WiSec ’18, page 271–276, New York, NY, USA. Association
for Computing Machinery

The contributions from Chapter 3 have been reported in the following publica-
tions:

• Presentation of the dataset and detailed analysis on the effect of user
expectation on privacy decisions: Mendes, R., Brandão, A., Vilela, J. P.,
and Beresford, A. R. (2022a). Effect of user expectation on mobile app
privacy: A field study. In 2022 IEEE international conference on pervasive
computing and communications (PerCom), pages 207–214. IEEE.

• Analysis on the impact of the context in privacy decisions and the de-
velopment of prediction models towards enhancing automated privacy in
mobile devices: Mendes, R., Cunha, M., Vilela, J. P., and Beresford, A. R.
(2022b). Enhancing user privacy in mobile devices through prediction of
privacy preferences. In Computer Security–ESORICS 2022: 27th European
Symposium on Research in Computer Security, Copenhagen, Denmark,
September 26–30, 2022, Proceedings, Part I, pages 153–172. Springer.

Additionally, the work in the referred chapter has sparked the idea of creating
privacy profiles and the prediction models with privacy guarantees, even against
the entity that trains these models. Tackling this problem, a master thesis was
supervised by the candidate, flourishing in the following two publications:

• Brandão, A., Mendes, R., and Vilela, J. P. (2021). Efficient Privacy Pre-
serving Distributed K-Means for Non-IID Data. In Advances in Intelligent
Data Analysis XIX, pages 439–451, Cham. Springer International Publish-
ing. This paper proposes a novel privacy-preserving clustering algorithm
that is efficient and robust to non-Independent and Identically Distrib-
uted (IID) Data. While the idea of building privacy profiles while retain-
ing the privacy of users was the source for this proposal, the technique
is generic in the sense that it can be applied to any use case. However,
the robustness to non-IID data is vital for the profiling use-case as the
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privacy preferences of each user is considered a single point in the clus-
tering (profiling) algorithm. Therefore, since privacy preferences vastly
diverge [Liu et al., 2014], the distribution of points (preferences) would
potentially result in an extreme non-IID case.

• Brandão, A., Mendes, R., and Vilela, J. P. (2022). Prediction of mobile
app privacy preferences with user profiles via federated learning. In Pro-
ceedings of the Twelfth ACM Conference on Data and Application Security
and Privacy. ACM. In press. This paper evaluates the feasibility of build-
ing privacy profiles with privacy guarantees using the proposed clustering
algorithm from the previous paper, and using federated learning to build
the prediction models with the profiles. This approach preserves privacy
even against the collecting entity, while achieving similar performance to
the non-private approach described in this chapter.

The work detailed in Chapter 4 originated the following publications:

• Mendes, R. and Vilela, J. P. (2018). On the effect of update frequency
on geo-indistinguishability of mobility traces. In Proceedings of the 11th
ACM Conference on Security & Privacy in Wireless and Mobile Networks,
WiSec ’18, page 271–276, New York, NY, USA. Association for Computing
Machinery

• Mendes, R., Cunha, M., and Vilela, J. P. (2020). Impact of frequency of
location reports on the privacy level of geo-indistinguishability. Proceedings
on Privacy Enhancing Technologies, 2020(2):379 – 396

It has additionally served as motivation for the LPPM proposed in Chapter 5
and for a master thesis entitled “Privacy-Preserving Mechanisms for Location
Traces” that was unofficially co-advised by the candidate and culminated in the
publication of the following paper: Cunha, M., Mendes, R., and Vilela, J. P.
(2019). Clustering geo-indistinguishability for privacy of continuous location
traces. In 2019 4th International Conference on Computing, Communications
and Security (ICCCS), pages 1–8. IEEE.

Finally, Chapter 5 culminated in the paper: Mendes, R., Cunha, M., and Vilela,
J. P. (2023). Velocity-aware geo-indistinguishability. In Proceedings of the Thir-
teenth ACM Conference on Data and Application Security and Privacy (CO-
DASPY). ACM. In press.

1.5 Outline of the Thesis
The remainder of this thesis is organized into five chapters. Chapter 2 contex-
tualizes this work in the current state-of-the-art in privacy in mobile devices,
focusing on automation, personalization, context-awareness and location pri-
vacy.

Chapter 3 details our field study, where we collect permission decisions, the sur-
rounding context and respective user expectations. Using the data we explore
the relation between context, user expectation and privacy decisions. Finally,
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we develop prediction models that use these features to automate privacy de-
cisions.

Chapter 4 presents an empirical analysis on the impact of the frequency of re-
ports on the privacy level of location traces. The obtain results then motivate
Chapter 5 which proposes a novel notion based on differential privacy towards
preserving privacy under continuous location reports. A comparative analysis
with other existing differentially private mechanisms is conducted and a gener-
alization of the mechanism that facilitates wide deployment is evaluated.

Chapter 6 concludes this thesis with a summary of the work and respective
contributions, and provides future work venues.
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CHAPTER 2. PRIVACY IN MOBILE DEVICES

The objective of this chapter is to provide a thorough literature review on
privacy in mobile devices. Throughout this work, a stronger focus in
these type of devices is given due to their pervasiveness, ubiquity and

rich sensory capabilities.

The remainder of this chapter is organized as follows. Section 2.1 presents back-
ground on privacy, including its (lack of a common) definition. Section 2.2
reviews existing permission managers, where Section 2.2.1 focus on current in-
dustry solutions, Section 2.2.2 on research proposals for better automation and
personalization, and Section 2.2.3 reports on proposals to enhance the man-
ager by adding obfuscation techniques, that is, methods where the quality of
the data is degraded in order to retain a certain degree of privacy. Section 2.3
expands the previous sections by describing context-aware techniques used for
both automation and privacy enhancement. Section 2.4 focuses on location pri-
vacy and presents obfuscation techniques used for this type of data. Finally,
Section 2.5 summarizes this chapter and presents open issues that are tackled
in this thesis.

2.1 Privacy
Although everyone has an idea of what is privacy, there is no universally ac-
cepted standard definition [Langheinrich, 2009]. Nertheless, privacy has been
recognized as a right in the Universal Declaration of Human Rights [United Na-
tion General Assembly, 1948] in 1948, however to a limited scope: the right to
privacy at home, with family, and in correspondence. The difficulty in defining
privacy comes as a consequence of the broadness of areas to which privacy ap-
plies [Yu, 2016; Acquisti et al., 2015]. The scope of privacy can be divided into
four categories [Banisar et al., 1999]: information, which concerns the handling
and collection of personal data; bodily, which relates to physical harms from in-
vasive procedures; communications, which refers to any form of communication;
territorial, which concerns the invasion of physical boundaries.

In the information scope, Westin defined privacy as “the claim of individuals,
groups, or institutions to determine for themselves when, how, and to what ex-
tent information about them is communicated to others” [Westin, 1968], or in
other words, as the right to control the handling of one’s information. Bertino
et al. gave a similar definition, in terms of the control of the data, but expli-
citly incorporate the risks of privacy violation. These authors define privacy as
“the right of an individual to be secure from unauthorised disclosure of inform-
ation about oneself that is contained in an electronic repository” [Bertino et al.,
2008]. Other definitions were proposed based on similar ideas of control and
security [Langheinrich, 2009].

The aforementioned definitions of information privacy allow one to conclude that
having control over the collection and handling of one’s personal data is having
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control over their privacy. This is fundamentally different from the definition of
security [Langheinrich, 2009]. Security deals with authenticity, confidentiality
and integrity of the data. However, it does not imply on how, when and by
whom such data is accessed.

Some benefits of the information technologies are only possible through the
collection and analysis of (sometimes sensitive) data. However, this may result
in unwanted privacy violations. To protect from information leakage, privacy
preservation methods have been developed to protect owner’s exposure or to
grant control over their data [Mendes and Vilela, 2017]. However, preserving
privacy incurs in challenging usability and data utility issues that can harm
the adoption and must therefore be addressed by researchers [Cranor et al.,
2015].

Numerous privacy-preserving mechanisms have been proposed and these can be
categorized based on the phase of the data lifecycle that they are applied [Mendes
and Vilela, 2017]. Specifically, privacy can be retained at collection time if the
mechanism acts before sending the data to the collector; at publishing time, when
entities publish or share the data while maintaining some privacy of the data
subjects; at the output of data mining models the models can be degraded in
order to avoid revealing sensitive results; and when joining distributed datasets
to extract global insights without revealing local information to other entities,
that is, at a data distribution. This work focus on mechanisms that act at
collection time, which empower users with control over their privacy even against
the collecting entity.

Since privacy has no single standard definition, quantifying privacy is quite
challenging and unfortunately, no single metric is enough as multiple parameters
may be evaluated [Mendes and Vilela, 2017]. Privacy-preserving techniques may
be evaluated in three fundamental aspects: privacy level metrics measure how
secure is the data from a disclosure point of view, data quality metrics quantify
the loss of information/utility and complexity metrics, which measure efficiency
and scalability of the different techniques.

Privacy level and data quality metrics can be further categorized into two sub-
sets [Bertino et al., 2008]: data metrics and result metrics. Data metrics evaluate
the privacy level/data quality by appraising the transformed data that resulted
from applying a privacy-preserving method (e.g. randomization or a privacy
model). Result metrics make a similar evaluation, but the assessment is done
to the results of the data mining (e.g. classifiers) that were developed with the
transformed data. Presenting a survey on privacy metrics is out of the scope
of this literature review, but more detail can be found in [Mendes and Vilela,
2017].

2.2 Privacy In Mobile Devices
Privacy in mobile devices is typically ensured by permission managers. Permis-
sion managers grant users the control to allow or deny application accesses to
sensitive resources or information, such as the the camera or the contacts list.
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In this section, we analyze permission managers of mobile devices, focusing on
smartphones due to their market penetration, mobile data collection capabil-
ities and relevance to this work. Within the smartphone industry, we mainly
consider Android, due to being open source and for having over 80% of the
market share [StatCounter, 2022]. Section 2.2.1 describes industry permission
managers and the respective shortfalls. Section 2.2.2 then presents research
proposals towards improving the status quo. Finally, Section 2.2.3 discusses ob-
fuscation approaches towards providing a finer grained trade-off between privacy
and utility that departs from the binary allow/deny that is currently employed
in permission managers.

2.2.1 Current Permission Managers
Smartphones have implemented permission managers to give users control over
the access to resources (data and sensors) and to warn about the associated risks.
However, current industry privacy managers have been shown to be ineffective
at protecting users’ privacy.

(a) Install time permissions. (b) Runtime permissions. Available since
Android 6.0 (Marshmallow).

Figure 2.1.: Permission managers in Android.

In earlier versions of Android (previous to Android 6.0), applications would
request access to all the needed resources at install time, as illustrated in Fig-
ure 2.1a. The user would either grant access to all permissions or cancel the
installation. This ask-on-install approach has been shown to be ineffective as
few users read the prompts and even fewer completely understand them [Felt
et al., 2012; Kelley et al., 2012] leading users to make uninformed privacy and
security choices.

To overcome the limitations of install time permissions, subsequent research pro-
posed fine-grained runtime permissions [Nauman et al., 2010; Conti et al., 2010].
With this approach applications prompt the permission requests at runtime, al-
lowing these prompts to be contextualized by the need for a certain functionality
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and allowing users to accept or deny each of the permissions independently (fine-
granularity). However, at the time, applications were not prepared to be denied
access to permissions and consequently, application failure was frequent [Horny-
ack et al., 2011].

Fine-grained runtime permissions has since been adopted in the smartphones’
industry and has been positively accepted by its users [Andriotis et al., 2018a;
Reinfelder et al., 2018; Bonné et al., 2017]. Android first introduced runtime
permissions with Android 6.0 (Marshmallow) in October 2015 [Rakowski, 2015],
while iOS had it implemented earlier. However, the Android adoption was quite
slow. In May 2018, almost 40% of current Android devices still ran earlier ver-
sions (c.f. Table 2.1), thus managing permissions at install time. At the time
of writing (September 2021), there are still over 15% of devices using install-
time permissions. Furthermore, even for devices with runtime permissions, if an
Application (app) targets an earlier version of Android, permissions will still be
prompt at install time. In this latter case, users can then go to device settings
and disable access to certain permissions at the risk of breaking applications’
execution [Hornyack et al., 2011]. However, it has been reported that users typ-
ically do no change their permission settings [Andriotis et al., 2018a]. Google
has recently made a policy to their application store that requires that applica-
tions to be submitted or updated must target a recent Application Programming
Interface (API) level [Google Developers, 2020], thus enforcing runtime permis-
sions for recent apps.

Following recent research on the importance of app visibility in users’ privacy
decisions [Wijesekera et al., 2018], released in late 2018, Android 9 is able to
restrict access to sensors, such as camera and microphone, when an app is idle
or running in the background. Furthermore, in 2019 Android 10 has introduced
a new permission which is required for apps to access location when the app
is in the background, thus enabling the user to allow access to the location
permission only while using the app. Finally, the latest Android version released
in 2020, Android 11, implements: one-time permissions, which grant an apps the
permission a single time; permissions auto-reset, in where granted permissions
from apps are automatically set to the denied state when the app is unused
for some time; and automatically blocked permissions, for permissions that are
always denied by the user for specific apps.

While the enumerated improvements greatly enhance the privacy in mobile
devices, the major drawback with current runtime fine-grained permissions and
similarly to install time permissions is that, in general, after being accepted
once, applications can access the resources at any time and for any purpose
even without users noticing [Almuhimedi et al., 2015; Wijesekera et al., 2015].
This is often referred as a violation of the contextual integrity [Wijesekera et al.,
2015; Tsai et al., 2017]. In fact, the comfort of users regarding apps requiring
certain permissions is highly related to their expectancies [Lin et al., 2012], and
therefore, users feel their personal space violated when confronted with apps’ in-
trusive practices [Almuhimedi et al., 2015; Shklovski et al., 2014]. Consequently,
industry permission managers found in Android (and iOS) still fail to convey
the privacy risks that arise from allowing these permissions [Bonné et al., 2017;
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Shen et al., 2021].

Towards improving privacy awareness, researchers have proposed using personal
examples to better convey the permission risks [Harbach et al., 2014], crowd-
sourcing the feelings of uneasiness regarding apps’ pratices [Lin et al., 2012],
and designing better permission warnings [Shih et al., 2015] or indicators of re-
source usage [Feng et al., 2021]. These type of warnings can show information
on how, how often and even for which purpose permissions are used in a non-
intrusive approach [Schaub et al., 2015a; Gluck et al., 2016], thus leading users
towards knowledgeable privacy decisions. However, the challenges here relate
to the decision on which information is relevant and how to clearly present this
information such that users understand and act upon these warnings [Schaub
et al., 2015a; Shen et al., 2021]. Furthermore, it has been reported that these
notices might “annoy” users when prompted at inconvenient times [Liu et al.,
2016; Almuhimedi et al., 2015]. Solutions to this latter problem include con-
figurable periodic nudges [Almuhimedi et al., 2015; Elbitar et al., 2021], and
contextualized notices [Schaub et al., 2015a], where the user is presented with
nudges which are relevant to the current context, such as upon occurrence of a
specific data practice.

Existing permission tools such as Privacy Guard [Holly, 2015] and XPri-
vacy [Bokhorst, 2013] slightly improve default permission managers by giving
finer grained permissions and by allowing an “always ask” option, similar to the
one-time permissions from Android 11. Nevertheless, this latter option greatly
increases the amount of user input required. In fact, applications can make
hundreds of permission requests per day [Wijesekera et al., 2015], leading users
towards the accept-once-use-everytime option. Indeed, constantly warning users
provides limited success due to warning fatigue [Felt et al., 2012], a state where
users become desensitize, and therefore solutions to set preferences automatic-
ally or with minimal user interaction are required.

Version Codename API Distribution Permission Manager2018-05-10 2021-09-21
2.3.3 - 2.3.7 Gingerbread 10 0.3% 0.2% Install Time
4.0.3 - 4.0.4 Ice Cream Sandwich 15 0.4% Install Time
4.1 - 4.4 Jelly Bean 16-19 14.6% 5.7% Install Time
5.0 - 5.1 Lollipop 21-22 22.4% 9.2% Runtime
6.0 Marshmallow 23 25.5% 11.2% Runtime
7.0 - 7.1 Nougat 24-25 31.1% 12.9% Runtime
8.0 - 8.1 Oreo 26-27 5.7% 21.3% Runtime
9.0 Pie 28 0% 31.3% Runtime
10 Android 10 29 0% 8.2% Runtime

Table 2.1.: Relative distribution of the number of devices running a given ver-
sion of Android in two different timestamps: 10th of May 2018, as
retrieved from [Android Developers, 2018] and 21st of September
2021 as retrieved from the Android Studio.
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2.2.2 Automation And Personalization
In order to avoid warning fatigue [Felt et al., 2012] and improve usability, re-
searchers have proposed solutions to define and/or enforce the permissions set-
tings automatically. However, automating privacy choices can be challenging
due to i) the always present trade-off between privacy and utility [Mendes and
Vilela, 2017], which is often not obvious even for the users which are led to poor
choices with respect to privacy [Acquisti et al., 2015]; ii) the subjectiveness of
the choices which is influenced by personal preferences and cultural differences
and beliefs [Acquisti et al., 2015]; iii) privacy’s context-dependence [Acquisti
et al., 2015]. This section focuses on the first two points, namely, automation
and personalization, leaving privacy’s context-dependence to Section 2.3.

An intuitive approach towards automated and personalized privacy protection
is to allow for the definition of rules/policies that are enforced automatically.
Such rules may be defined by either the end-users [Neisse et al., 2016] or by
system administrators to enforce enterprise policies [Wang et al., 2015b]. The
advantage of this approach is to allow for very specific and personalized rules as
these are created by the users themselves. However, this requires a high amount
of time and interaction to setup, and more importantly, expertise, which the
average user does not have [Felt et al., 2012; Kelley et al., 2012; Shen et al.,
2021].

The Android permission manager can be seen as an example of this rule cre-
ation approach, where the permissions are the rules. The drawback lies in the
number of available permissions and the fact that each permission is set on a
per-application and per-resource basis, and thus, customization/personalization
comes at the expense of user interaction. Specifically, Android 12, the latest
version at the time of writing, defines over 100 permissions, of which 34 require
user intervention on a per app basis, while the majority of users have more
than 50 installed apps [Andriotis et al., 2018a] that make hundreds of resource
accesses daily [Almuhimedi et al., 2015; Wijesekera et al., 2015; Mendes et al.,
2022a]. The framework proposed in [Neisse et al., 2016] improves this scen-
ario by allowing users to define higher level policies that abstract users from
lower level and more technical decisions. An example given by the authors
is a user wanting to restrict an Android application from accessing location.
Their framework then translates such rule to block all permissions that allow
for the extraction of location, including less obvious permissions such as AC-
CESS_NETWORK_STATE, the Android permission which grants access to
information about the mobile network, particularly the location as given by the
cell towers. Enterprise policy enforcement frameworks mitigate the expertise and
setup time drawback by having policies set by a system administrator [Wang
et al., 2015b]. However, less personalization is achieved, which might not be
critical for enterprise devices, and the effectiveness in protecting privacy and/or
security relies on the precision of the rules.

To tackle the previous drawback, researchers proposed assigning privacy profiles,
that is, a set of predefined rules that are defined according to the preferences of
the users [Lin et al., 2014; Liu et al., 2014]. This line of work showed that while
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people’s mobile app privacy preferences are diverse, a small number of privacy
profiles, which can be obtained through clustering techniques, can effectively
capture the vast majority of users’ preferences [Liu et al., 2014] and thus, min-
imize user interaction. A privacy manager implementing privacy profiles was
proposed in [Liu et al., 2016], where the authors showed, using data from real
users, that the generated privacy profiles can 1) effectively be assigned through
a small number of questions, therefore reducing the amount of required input
from users; 2) help users adopt the profile settings which better aligns with their
personal preferences.

The previously mentioned approaches, i.e. policy frameworks and privacy pro-
files, present an essential weakness with respect to effective privacy protection,
namely, the inability to evolve or adapt towards new situations. In fact, both
approaches are static in the sense that after the setup, either through building
the policies or adopting the privacy profile, no new settings are created without
user interaction. Towards tackling this issue, researchers proposed an alternative
approach based on privacy nudges [Almuhimedi et al., 2015], that is, informat-
ive warnings that are occasionally presented to the user in order to incentivize
reviewing privacy settings. While still requiring interaction, nudges can present
information on how, how often and even for which purpose permissions are used
in a non-intrusive approach [Schaub et al., 2015a]. However, the challenges
here relate to the decision on which information is relevant and how to clearly
present this information such that users understand and act upon these warn-
ings [Schaub et al., 2015a]. Furthermore, it has been reported that these notices
might “annoy” users when prompted at inconvenient times [Liu et al., 2016;
Almuhimedi et al., 2015]. Solutions to this latter problem include configurable
nudges [Almuhimedi et al., 2015], to allow for user set notice periodicity, and
contextualized notices [Schaub et al., 2015a], where the user is presented with
nudges which are relevant for the current context, such as upon occurrence of a
specific data practice.

Finally it should be pointed out that replicating user actions can also be imple-
mented towards achieving automated and personalized privacy. This approach
solves the problem of requiring expertise to set up, as a classifier can be trained
through user actions, while still requiring some interaction for training. An il-
lustrative example of this approach is found in [Olejnik et al., 2017], where the
authors propose a privacy protection mechanism for smartphones that correctly
automated 80% of user decisions (assessed in a field trial) using a Bayesian linear
regression. The problem with this approach based on replicating user behavior
is that users lack knowledge to make informed decisions [Felt et al., 2012; Kelley
et al., 2012; Shen et al., 2021] and do not act accordingly to their preferences,
and in fact, privacy choices have been shown to be malleable, that is, users often
act against their preferences/beliefs in exchange for some benefit [Acquisti et al.,
2015].

An under-looked aspect in the context of permission managers is the lack of fine
grained control over privacy. Specifically, permission managers allow to either
grant or deny a permission. This corresponds to either having maximum privacy
and no utility, for the deny case, or maximum utility and zero privacy, for the
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grant case. However, after being collected by a service provider, the data can be
shared with third-parties, sold and even sometimes published publicly [Mendes
and Vilela, 2017]. Therefore, simply allowing or denying access is a limited
approach towards privacy protection. Techniques to preserve privacy at data
collection such as obfuscation are required. The following section details this
type of techniques.

2.2.3 Obfuscation
Several works on privacy in mobile devices focus on limiting the control to either
allow or to deny exchange of information [Almuhimedi et al., 2015; Lin et al.,
2014; Liu et al., 2016; Conti et al., 2010; Shebaro et al., 2015]. Nevertheless,
when information is collected, data collectors have full access and control over
such data and are often allowed to publish the data for either public access or
for cloud distributed processing [Mendes and Vilela, 2017]. During this process,
sensitive information can be sold, “leaked” to third-parties [Shklovski et al.,
2014], or even exposed due to insufficiently anonymized datasets [Narayanan
and Shmatikov, 2008; Tsoukaneri et al., 2016].

In order to empower users with control over the collected data, privacy protec-
tion mechanisms must act at data collection time, that is, before the data reaches
the service providers. Obfuscation techniques, that is, techniques that purposely
degrade the quality of the data, can be used within this context towards retain-
ing a certain level of privacy. In Privacy-Preserving Data Mining (PPDM),
obfuscation techniques are referred to as data sanitizing operations [Mendes
and Vilela, 2017], and the most common techniques are:

• Generalization: replacement of a value for a more general one (parent).
Numerical data may be specified by intervals (e.g. an age of 53 may be
specified as an interval in the form of [50, 55]), whereas categorical attrib-
utes require the definition of a hierarchy. A good example of a hierarchy
could be the generalization of the values “engineer” and “artist” from an
occupation attribute to “professional”. Another possibility would be to
have the parent value of “student” to represent all types of student in the
same occupation attribute;

• Suppression: removal of some attribute values to prevent information dis-
closure. This operation can also be performed column wise in a data-set
(removes all values of an attribute) or row wise (removes an entry/record);

• Perturbation: replacement of the original data by synthetic values with
identical statistical information. Perturbation includes additive and mul-
tiplicative noise, data swapping and synthetic data generation. In data
swapping, sensitive attributes exchange between different entries of the
dataset in order to prevent the linkage of records to identities, whereas in
synthetic data generation, a statistical model is formed with the original
data, and then synthetic values are obtained from the model.

Current permission managers allow users to either grant or deny access to the
data, but fail to allow users to restrict the amount of information, or the quality
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of the data that is collected. Furthermore, denying access to certain resources
may render services inoperable. Obfuscation techniques such as perturbation,
synthetic data generation and generalization can be applied at data collection
to allow users to benefit from the services while restraining the quality of in-
formation that is collected, and thus, preserving a certain degree of privacy at
the expense of the quality/utility of the data [Mendes and Vilela, 2017].

Since denying access to resources may often cause application failures, earlier
work in obfuscation in permission managers focused in providing synthetic (false)
data [Bokhorst, 2013; Hornyack et al., 2011; Beresford et al., 2011] instead of the
real data. However, this approach still incurs in a great functionality loss and
can still lead to failures [Hornyack et al., 2011]. A different approach was pro-
posed more recently [Olejnik et al., 2017], where the authors trained a model to
replicate the user in either granting, denying or obfuscating the data for permis-
sion requests. Their system was able to apply obfuscation to location, contacts,
storage and camera data. While the authors suggest that better methods can be
used for obfuscation, an open problem that arises in this context is the hetero-
geneity of types of data that can be accessed [Cunha et al., 2021], how the data
is accessed by different types of applications, and how much data is “leaked”
through obfuscation. In Section 2.4, a focus is given on obfuscation of loca-
tion data, due to the relevance of this type of data in the context of mobile
devices.

An essential advantage of the replication of user actions towards automated
and personalized privacy is the trivial incorporation of new variables for the
purpose of privacy enforcement. For instance, adding context-awareness would
correspond to the addition of context features in a classifier and then training
through user interaction as new contexts appear. By contrast, for policy frame-
works this would require the creation of rules for uncountable new contexts/s-
ituations, whereas for privacy profiles would mean an increase in the number of
possible profiles and interaction for profile assignment, as these would require to
become context-aware. The following section focuses on this particular subject,
namely, context-awareness, and reviews automated and context-aware privacy
protection mechanisms.

2.3 Context-Awareness
In Ubiquitous Computing, context-awareness is a property of systems which
improve and facilitate user interaction by taking into account the dynamic con-
text, thus being useful for utility and possibly towards enhancing privacy. In
this section, a review on context-aware systems is given as follows. Section 2.3.1
provides some background and definitions on the fundamental concepts of Con-
text and Context-Awareness and Section 2.3.2 presents the state-of-the-art in
context-aware systems for privacy in mobile devices.
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2.3.1 Fundamental Concepts
The development of portable and always-connected devices has shifted comput-
ing systems from the static desktop to mobile devices that integrate seemingly
with the environment. Mark Weiser predicted this paradigm and defined it as
ubiquitous computing [Weiser, 1999]. Pervasive and Ubiquitous Computing has
allowed for better interaction and immersion with the technology, leading to the
development of emerging areas [Alegre et al., 2016] such as Intelligent Environ-
ments, Ambient Intelligence and even Internet of Things (IoT), in where the
recognition of context plays a critical role. While somehow intuitive, the defini-
tion of context has seen no consensus [Alegre et al., 2016] and has consequently
been subjective to specific concerns in different disciplinary areas [Sundmaeker
et al., 2010].

An early definition of context dates back to 1994 [Schilit and Theimer, 1994]
where the authors proposed a mobile application capable of reacting to changes
in its environment. This definition was tightly related to location and objects
within each location. Later in the same year, the authors highlighted three
key aspects of context, namely: “where you are, who you are with, and what
resources are nearby” [Schilit et al., 1994].

A broader and more recent definition was proposed in [Abowd et al., 1999] and
has since became the most acknowledged one. These authors defined context
as “any information that can be used to characterize the situation of an entity.
An entity is a person, place or object that is considered relevant to the inter-
action between a user and an application, including the user and applications
themselves.”. This definition allows for constraining what type of information is
meaningful and thus define context in the scope of the application. Following
this line of thought, the authors also define a context-aware system as a system
that “uses context to provide relevant information and/or services to the user,
where relevancy depends on the user’s task”.

The definitions of context and context-aware leave open the task of deciding
which information is relevant to model the situation of the involved entities.
Towards this end, the authors of [Abowd et al., 1999] referred to location, iden-
tity, time and activity as primary context types and every other context that
could be inferred from the primary type as secondary context. A finer-grained
approach was taken in [Perera et al., 2014] where primary context is used to
refer to any data extracted directly from sensors, without performing any data
fusion operations. By contrast, secondary context is any information that is
extractable using the primary context. This includes not only data fusion oper-
ations but also data retrieval operations. In this sense, location data can be both
primary context (e.g. the raw GPS data) and secondary context (e.g. semantic
location data extracted from the GPS data).

Collecting and processing the data are essential steps of context-aware systems.
In fact, the process of recognizing, handling and disseminate context information
is known as context life cycle [Perera et al., 2014; Alegre et al., 2016]. Different
context life cycles have been proposed, however [Perera et al., 2014] derived a
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minimal form containing the four essential steps:

Context Acquisition In the first step, the primary context is sensed directly
from the sensors. As multiple sensors are used and often distributed geo-
graphically, inaccuracies, missing data and jitter can pose a challenge [Bet-
tini et al., 2010].

Context Modeling The sensed data from the first step is translated into read-
able modeling constructs. These models represent and relate the contexts
with the different envolved entities, and must thus be simple, reusable, ex-
pandable and effective to allow to use the information at runtime [Bettini
et al., 2010]. Many context modeling techniques have been proposed, being
the most popular ones [Perera et al., 2014]: key-value, markup schemes,
graphical, object based, logic based, and ontology based modeling. A de-
tailed survey on these techniques is found in [Strang and Linnhoff-Popien,
2004].

Context Reasoning In the third phase, the modelled data is processed to de-
rive higher level context (secondary context) from the sensor data. This
includes pre-processing the primary context through data cleaning, sensor
data fusion and finally context inference, where higher level context is
derived.

Context Dissemination The final step concerns the method(s) for delivering
the context to the consumer. Optimally the dissemination should occur
in real-time.

The dissemination of context can have many forms. In fact, context-aware sys-
tems can be classified by the user interaction (or lack thereof). [Alegre et al.,
2016] makes a distinction between two modalities: execution and configuration.
The first one refers to systems that act automatically upon the arrival of spe-
cific situations, whereas the second one is related to the adjustment/settings of
actions that a system will exhibit in the future. Both execution and configur-
ation can further be classified as active, if the system can change its content
autonomously, or passive, if user involvement is explicitly necessary in the ac-
tions taken by the system. Due to their relevance in this work, it is presented
below a description of each of the four interaction types.

Active Execution In this modality, a system is able to respond autonomously
to changes to the environment and to the system itself.

Passive Execution User action is required towards the response of the system
to a change in the context. The system automatically presents options to
the users, but requires user permission/choice to take action.

Active Configuration After deployment, the system is able to learn user pref-
erences and autonomously evolve its rules for future behavior.

Passive Configuration Users manually configure their preferences and system
behavior for future context changes.

Other taxonomies and important aspects of context and context-awareness have

— 20 —



CHAPTER 2. PRIVACY IN MOBILE DEVICES

been researched, such as the features and requirements of a context-aware
system [Alegre et al., 2016] and context awareness management design prin-
ciples [Perera et al., 2014]. However, doing a complete survey on context-
awareness alone is outside the scope of this work. The next section focuses
on context-aware privacy protection.

2.3.2 Context-Aware Privacy
As introduced in the beginning of Section 2.2.2, privacy has a strong dependence
with context. In fact, [Acquisti et al., 2015] discusses on how individuals’ feeling
about privacy can range from complete apathy to extreme concern depending on
the situation. This dependency has led researchers to explore context-awareness
towards privacy [Schaub et al., 2015b].

Defining users’ context in mobile devices can be challenging [Abowd et al., 1999]
due to environment dynamism, missing information and inaccuracy of measure-
ments [Schaub et al., 2015a], thus leading to simplified approaches. One of the
earliest works on context-aware privacy [Conti et al., 2010] proposed user-set
context and privacy policies, in which context was limited to a mix of time and
location attributes, where location was defined statically by the user as a circu-
lar area (e.g. a work place). A more recent work [Shebaro et al., 2015] expanded
this approach by allowing more precise locations (sub-areas), such as rooms.
However, time and location are insufficient to precisely define context [Abowd
et al., 1999], thus limiting the effectiveness of the privacy regulation. Moreover,
user-defined context-policies may allow for better definition of context but are
not effective for personal devices because it requires user intervention and ex-
pertise to setup [Shebaro et al., 2015], which the average user does not have [Felt
et al., 2012; Kelley et al., 2012; Shen et al., 2021].

A better approach in defining context in mobile devices is taken in [Zavala
et al., 2011], in where geo-location is translated into semantic locations using
online services, which is then used to infer activities such as working, or walking.
However, results show that as the number of activities grow, the accuracy of the
inference drops greatly.

More recently, researchers have also been focusing in using the device context
towards improving permission managers [Wijesekera et al., 2015, 2018; Das et al.,
2016]. This type of context is defined by any piece of data that can define the
current status of the phone, including which applications are running on the
foreground and background, if there’s an ongoing call, if the phone is locked,
and others. Wijesekera et al. [Wijesekera et al., 2015] showed that permission
decisions are closely related to what users are doing at the time of the prompt,
showing that, for example, visibility of the application, that is, if the application
is visible to the user, is of critical importance in the decision to either allow or
deny a permission request.

The work in [Das et al., 2016] proposes a policy enforcement system, where per-
missions are either granted or denied depending on user defined policies that
take into consideration both user and device context. As aforementioned, user
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defined policies are not suitable for personal devices as they require user inter-
vention and expertise to setup [Shebaro et al., 2015], which the average user
does not have [Felt et al., 2012; Kelley et al., 2012; Shen et al., 2021].

A simple, yet generally more usable approach than defining policies, is to use
Machine Learning (ML) models trained with contextual features. The work
in [Wijesekera et al., 2018] is a field study to assess with real users and in
real conditions a machine learning (ML) technique to automate permission de-
cisions through contextual-awareness [Wijesekera et al., 2017] and their permis-
sion manager interface [Tsai et al., 2017]. This line of work is based on the
notion of contextual integrity, where accesses to sensitive resources should be
made as expected by the users. A previous work from these authors found that
applications often violate contextual integrity as accesses to sensitive resources
are often made when these apps are invisible (running in the background) to
the user [Wijesekera et al., 2015]. In fact, the authors found visibility of the
application to be one of the most if not the most important contextual feature
for users’ permission decisions [Wijesekera et al., 2015, 2017]. Thus, while their
ML proposal used 20 device contextual features [Wijesekera et al., 2017], includ-
ing both behavioral and runtime features, their follow up work focuses mostly
on visibility of the requesting app [Wijesekera et al., 2018; Tsai et al., 2017].
Similarly, in [Olejnik et al., 2017], the authors propose a permission manager
that learns from user behavior in order to predict users’ permission decisions.
This evolving system takes into consideration both user context, using time and
a semantic location obtained through user input, and the device context as fea-
tures for the predictor. While their approach is simplistic with respect to the
user context, they were able to correctly predict 80% of users’ decisions using a
Bayesian linear regression model.

Following the notion of contextual integrity and building on the importance
of visibility towards automation from [Wijesekera et al., 2018, 2015], the work
in [Fu et al., 2019] proposes a new contextually-aware permission manager. The
base idea is to extract contextual data from the UI presented to the users at
the time of the request. The contextual data collected intends to answer the
following three questions: 1) who initiated the request, which can give clues
for the purpose of the request; 2) when did it happen, which indicates whether
it resulted from user interaction; 3) what kind of environment, which encom-
passes the device context at the time of the permission access. Such data is
crucial to model and detect violations of contextual integrity. To collect the
data, the authors propose an hybrid approach composed of a static analysis to
locate code corresponding to foreground permission requests, followed by dy-
namic rendering to extract the contextual data from the UI (layout and widget
information).

Another type of information that has been attracting interest towards enhancing
permission systems is the permission request purpose. Recall from Section 2.2.1
that run-time permissions have been proposed to allow for prompting the per-
mission requests at the time the application requires access to the resource, thus
allowing these requests to be contextualized by the need for access. However,
after being accepted once applications can use the resource for any purpose and
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in fact, it has been shown that applications often access resources for other pur-
poses than their core functionality [Enck et al., 2014; Chitkara et al., 2017].

The authors of [Bonné et al., 2017] found that “one of the main reasons for grant-
ing or denying a permission request depends on users’ expectation on whether
or not an app should need a permission”. This goes in line with a survey result
from [Liu et al., 2016], where participants reported desire to be able to deny
certain permissions for specific purposes but that doing so would break func-
tionality. The authors of this latter study then conclude that purpose-centric
controls as opposed to resource-centric could be used towards better privacy
decision making.

With the current paradigm, there is no trivial way to obtain the purpose of
permission requests. Techniques towards inferring the purpose do exist and can
be categorized in three main approaches [Van Kleek et al., 2017]: (1) static ana-
lysis, where reverse engineering techniques are used towards analyzing the code
to identify data collection activities, (2) Operating System (OS) instrument-
ation, where data flow is monitored through the system to identify potential
misuses and unwanted transmissions of private information (e.g. using taint
techniques [Enck et al., 2014]), and (3) network traffic monitoring, in where
transmitted data is intercepted and analyzed.

The concept of privacy depends not only on the person and the context, but
also on the type of data itself, and different types of data require distinct obfus-
cation techniques [Cunha et al., 2021]. This poses a challenge as mobile devices
have rich and ever increasing sensory capabilities, thus throttling the adoption of
these obfuscation techniques in permission managers. For instance, considering
the case of location data, while obfuscation of a single location report can be
straightforward, as the frequency of reports increases the geo-temporal correla-
tion between points reduces the achievable privacy level (c.f. [Mendes and Vilela,
2018; Mendes et al., 2020]). In fact, location data is a prominent research area
in mobile devices [Huang et al., 2018] specially considering the potential sensit-
ivity of this information as not only it reveals whereabouts, but can also disclose
identity, habits, health conditions and social connections [Primault et al., 2019;
Krumm, 2009]. The following section delves into this subject through a detailed
literature review on location privacy.

2.4 Location Privacy
The pervasiveness of smart devices and the always on and always connected
paradigm has fostered applications that benefit from sensing the environment
to provide contextualized services to its users. One category that has recently
seen enormous growth in this space is the Location-Based Services (LBS) [Huang
et al., 2018], in where mobile devices, such as smartphones, share their current
position in order to obtain related information (e.g. finding the nearest restaur-
ants). However, LBS providers may be incentivized to publish their data or share
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with third-parties for financial or research purposes. However, poorly anonym-
ized datasets [Sweeney, 2002], disclosure of aggregated mobility data [Xu et al.,
2017] and even the publication of fully anonymized mobility datasets [Tsoukaneri
et al., 2016] can be leveraged by informed adversaries leading to the deanonym-
ization of individuals. This is due to the fact that human mobility traces are
highly unique [De Montjoye et al., 2013; Song et al., 2014; Zang and Bolot,
2011], that PoIs act as quasi-identifiers [Bettini et al., 2005; Primault et al.,
2014], that is, information that can be combined with data from other public
sources to de-anonymize the owner, and that individual’s traces are extremely
predictable given past location history [Song et al., 2010].

The intrinsic nature of location data difficults effective privacy protection. In
fact, location data can have different forms, depending on how the data is col-
lected. Specifically, LBSs have been classified based on the frequency of location
reports [Shokri et al., 2011; Liu et al., 2018a] as either sporadic, if the user makes
use of the service irregularly and therefore the data corresponds to single points
scattered in space and time, or continuous, if the user requires the service peri-
odically and therefore full geo-temporal trajectories are generated. In turn, the
amount of disclosed information shapes the possible attacks that can be carried
by an adversary [Wernke et al., 2014]. Consequently, several Location Privacy-
Preserving Mechanisms (LPPMs) have been proposed, fundamentally differing
on the protection objective (identity and/or location), the type (sporadic or con-
tinuous) and amount (single user or multiple users) of available data [Liu et al.,
2018a; Primault et al., 2019].

Privacy protection has originally and predominantly been employed by the ser-
vice providers after the data has been collected. However, this scenario requires
trust from the users that their data is handled properly, as after the data is
collected, the user has no (or limited) control over it [Mendes and Vilela, 2017].
More recently, mechanisms that protect privacy at data collection, that is, in an
online fashion before the data is sent to the provider, have been raising research
interest due to empowering users with control over their privacy. This is specially
true for LPPMs, where a great portion of the recent studies are mechanisms for
online privacy protection [Primault et al., 2019; Liu et al., 2018a].

A typical framework to evaluate an LPPM consists of a (or multiple) user(s)
reporting locations, an LPPM, an adversary, which is characterized by its attacks
and background knowledge, and a (or multiple) metric(s) [Shokri et al., 2011].
To understand the state of the art of LPPMs, a precise definition of employed
notation is required, as follows and summarized in Table 2.2. This notation is
valuable for describing relevant LPPMs (Section 2.4.2) and respective attacks
(Section 2.4.3) to evaluate LPPM efficacy.

2.4.1 Formalizing Location Privacy
As in previous relevant works [Chatzikokolakis et al., 2017; Mendes and Vilela,
2018; Shokri et al., 2011; Oya et al., 2019; Shokri, 2015], we shall consider a
user of an Location-Based Service (LBS) which reports his location to the LBS
provider to obtain information. We consider as adversary any entity with access
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Table 2.2.: Summary of notation

Symbol Description
xr rth location from X , with r ∈ {1, . . . , |X |}
xi Exact user location at timestamp i.
zi Obfuscated location at timestamp i.
x̂i Adversary’s estimated location at timestamp i.
ti Time at timestamp i.
x, z, x̂ Vector of all real, obfuscated or estimated locations, respectively.
xi, zi, x̂i Vector of real, obfuscated or estimated locations up to timestamp i.
X , Z, X̂ Set of all possible real/obfuscated/estimated locations.
∆t Minimum interval between consecutive reports.
f , p(zi|xi) Location Privacy-Preserving Mechanism (LPPM).
ϵ Geo-indistinguishability privacy parameter.
h, p(x̂i|zi) Adversary’s attack.
PAE(f, h,x, z) Mean adversary error of x̂ given z and h.
Q(f,x, z) Mean quality loss given the LPPM f and locations x.
d(·) Euclidean distance metric.
g(·) Great-circle distance.
oi Noisy GPS reading at timestamp i.
si,k kth candidate location for oi at timestamp i.
p(oi|si,k) Map-matching emission probability.
p(si,k|si−1,j) Map-matching transition probability
σ Standard deviation of the (GPS) measurement error.
λy Parameter for the exponential of the measure of circuitousness.
λz Parameter for the exponential of the measure of temporal plausibility.

to the location reports attempting to infer private information [Gambs et al.,
2010; Krumm, 2007], including the LBS provider or any passive eavesdropper.
Furthermore, the adversary can have arbitrary background information (prior)
and computational power. In order to protect his privacy, the user uses an LPPM
to report an obfuscated version of his exact location, consequently trading the
quality of the LBS response for privacy.

Formally, let xi ∈ X denote the exact user’s location at the report with
timestamp i ∈ {1, 2, . . . , T} and zi ∈ Z the reported obfuscated location at
the same i computed using the LPPM f . For convenience, we use ti to express
the real time of timestamp i. The adversary has access to zi and it is assumed to
know f and possibly have some a priori knowledge and thus computes x̂i ∈ X̂ ,
an estimation of xi at each timestamp i, using an attack h. We shall denote xi

and zi the vectors of real and obfuscated locations up to timestamp i, respect-
ively, that is, xi = {x1, . . . , xi} and zi = {z1, . . . , zi}. Unless otherwise stated,
let X , Z and X̂ to be in R2. In the context of frequency of reports, we define
∆t in seconds as the minimum interval between any two consecutive location
reports. Formally, ∆t = argmini (ti+1 − ti).

Generically [Oya et al., 2019], online user-centric obfuscation mechanisms can
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be described as a probability distribution in the form of equation (2.1).

p(zi|zi−1,xi) (2.1)

Intuitively, an LPPM maps the real location xi ∈ X with the knowledge of past
locations xi−1 and past reports zi−1 to a new report zi ∈ Z. In the context of
sporadic location privacy, existing LPPMs consider location reports to be inde-
pendent, and consequently, each obfuscated report zi is made only with respect
to the exact position xi at the same timestamp i. Therefore, equation (2.1) is
reduced to the form:

p(zi|zi−1,xi) = p(zi|xi) (2.2)
LPPMs of this form are referred to as memoryless [Oya et al., 2019].

In the context of localization attacks, the primary privacy metric is the correct-
ness of an adversary measured by the expected estimation error [Shokri et al.,
2012; Oya et al., 2017a] and modeled through a distance metric between the
exact locations and the adversary’s estimations. Given an LPPM f , an attack
h and observations z, the expected adversary estimation error (AE) is defined
by the following equation:

PAE(f, h,x, z) = E{d(xi, x̂i)} (2.3)

where the expected value is taken over xi and x̂i, and d(·) is a distance metric
which is typically the Euclidean distance [Shokri et al., 2012].

From the user perspective, the LPPM f introduces a quality loss due to reporting
the obfuscated location instead of the exact position [Shokri et al., 2011; Oya
et al., 2017a]. The average quality loss is therefore given by:

Q(f,x, z) = E{d(xi, zi)} (2.4)

The following sections provides an overview on existing LPPMs and location
attacks and detail the ones relevant for this thesis.

2.4.2 Location Privacy-Preserving Mechanisms (LPPMs)
To empower users with control over their privacy against untrustworthy pro-
viders, it is required to employ mechanisms that protect privacy at data collec-
tion, that is, in an online fashion before the data is sent to the provider. This is
specially true for LPPMs, where a great portion of the recent studies are mech-
anisms for online privacy protection [Primault et al., 2019]. However, due to the
aforementioned characteristics of location data, namely, its uniqueness, identifi-
ability and predictability, properly preserving privacy of individuals at collection
time while allowing for the use of this type of services is challenging.

Location privacy can be achieved through anonymity, to protect the ownership of
the data, application-specific queries, which can protect the identity or location
data, or through data obfuscation [Liu et al., 2018a], which protects the spatial
and temporal data. Anonymization requires either the use of a trusted third-
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party server (anonymizer) [Beresford and Stajano, 2003; Gruteser and Grunwald,
2003], which is arguably only a shift from trusting an LBS provider [Shokri
et al., 2014], or a Peer-to-Peer (P2P) collaboration between devices in the vicin-
ity [Chow et al., 2011], where this latter approach has other challenges such as
colluding malicious peers and non-ubiquitous connectivity [Hoh et al., 2010]. For
application-specific queries, there are cryptography-based approaches [Ghinita
et al., 2008], which can incur in high computational costs, making it unfeas-
ible for the majority of applications, and caching approaches [Meyerowitz and
Roy Choudhury, 2009], which for effectiveness require the use of an anonymizer
or P2P communications. Finally, obfuscation approaches degrade the quality of
the released information as to reduce the risk of disclosure [Krumm, 2009; Liu
et al., 2018a] and can therefore be generally applied. It should be noted that
these types of LPPM are not mutually exclusive and can therefore be combined
to protect both the identity and geo-spatial data [Liu et al., 2018a]. In this
work we focus on online obfuscation due to their general applicability and to
the fact that in the context of smartphones, LBSs typically require an account,
rendering anonymization approaches unusable.

Differential privacy has become the standard for privacy preservation, giving
rigorous and provable guarantees [Dwork, 2008]. This notion was first proposed
in the context of statistical databases towards protecting aggregated statistics.
Specifically, it bounds the information gain of an adversary regarding whether
a single user (record) is present or absent from that database, thus preserving
individual privacy. This concept has been generalized to location data under
the concept of geo-indistinguishability [Andrés et al., 2013], a notion to design
online LPPMs with the privacy guarantees inherited from differential privacy.
This thesis follows the lines of geo-indistinguishability and therefore the following
sections present a literature review on these type of mechanisms.

2.4.2.1 Geo-Indistinguishability And The Planar Laplace

Geo-indistinguishability [Andrés et al., 2013] has been proposed as a formal
notion based on differential privacy [Dwork, 2008] to design user-centric LPPMs,
that is, LPPMs that obfuscate the user data independently of other users [Shokri,
2015]. Geo-Indistinguishability (Geo-Ind) guarantees that the user location is
indistinguishable to any other location close to the user based on the observed
(obfuscated) report independently of an attacker’s background information. Or
in other words, the obfuscated report could have been generated with (almost)
the same probability from any location around the exact user location.

Geo-Ind is formally defined as follows [Mendes and Vilela, 2018]. Consider a
location privacy mechanism as a probabilistic function K(·) that assigns to each
location x ∈ X a probability distribution on Z, the set of all possible obfuscated
locations, where X and Z are assumed to be discrete to simplify notation. A
mechanism K satisfies ϵ-Geo-Indistinguishability iff:

dP (K(x), K(x′)) ≤ ϵdx(x, x′) ∀x, x′ ∈ X (2.5)

where dx(·) is any distance function and dP(·) is the multiplicative distance
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between two distributions, defined as dP(σ1, σ2) = supS∈S

∣∣∣log σ1(S)
σ2(S)

∣∣∣, where σ1
and σ2 are two distributions on some set S, with the convention that L =∣∣∣log σ1(S)

σ2(S)

∣∣∣ = 0 if σ1(S) = σ2(S) = 0 and L = ∞ if one of the two is 0.

Intuitively, equation (2.5) states that the probability of reporting location z while
standing in location x is similar to that of standing in any location x′. In fact,
both probabilities differ at most by the distance between x and x′ factored by a
small constant ϵ, where ϵ may be used to tune Geo-Indistinguishability. Com-
monly, and as specified in the seminal work [Andrés et al., 2013], this constant
is set to ϵ = l/r, such that for any x, x′ s.t. dx(x, x′) ≤ r, dP (K(x), K(x′)) ≤ l,
where dx is an arbitrary metric and l is a user defined parameter termed pri-
vacy loss. This enforces that any x′ within distance r of x discloses at most
l information. Consequently, the true location x is better concealed for closer
x′ locations, while allowing higher dissimilarity for distant locations, thus pre-
serving some degree of utility.

The Planar Laplace (PL) mechanism was the first proposed mechanism to
achieve the notion of Geo-Indistinguishability [Andrés et al., 2013] and con-
sists of adding 2-dimensional Laplacian noise centered at the exact user location
x and with PDF [Andrés et al., 2013]:

p(z|x) = ϵ2

2π
e−ϵdx(x,z) (2.6)

Obtaining z from x using equation (2.6) can be efficiently done by adding a ran-
domly drawn vector expressed as a radius r and angle Θ. Θ is uniformly chosen
from [0, 2π) and r is computed by drawing p uniformly from [0, 1) and feeding
it to the inverse planar Laplacian cumulative distribution function defined as
C−1(p) = −1

ϵ

(
W−1

(
p−1

e

)
+ 1

)
, where W−1 is the negative branch of the Lam-

bert W function. Finally, z = x + ⟨r cos Θ, r sin Θ⟩.

While Geo-Ind is promising due to giving strong and quantifiable privacy guar-
antees, problems arise from continuous disclosure of information, as each report
is treated independently of past locations. Namely, such approaches disregard
the potential threat that arises from exploring the correlation between reports,
which in turn can be used by an adversary to track users over time and even
predict future locations [Krumm, 2009; Liu et al., 2018a; Xiao and Xiong, 2015].
Furthermore, the authors show that the privacy degradation is linear with the
number of queries [Andrés et al., 2013], that is, a user performing n queries
through a ϵ-geo-indistinguishable mechanism enjoys nϵ-Geo-Indistinguishability,
which is only acceptable for a small n.

A later work from the original authors of Geo-Ind proposed a natural extension
to the case of location traces [Chatzikokolakis et al., 2014]. The base idea is to
use the metric d∞(x,x′), where x and x′ are two traces (instead of locations),
in equation (2.5). However, such approach is not ideal for an online LPPM at
data collection as it considers a report to contain a full trajectory as opposed to
a single point, that is, the secret is the full trajectory.

Depending on the LBS, location data can be reported either continuously or

— 28 —



CHAPTER 2. PRIVACY IN MOBILE DEVICES

rather sporadically [Shokri et al., 2011; Shokri et al., 2011]. This frequency
of reports directly impacts the temporal correlation between subsequent re-
ports which in turn can be used by an adversary to track users over time and
even predict future locations [Liu et al., 2018a; Krumm, 2009; Xiao and Xiong,
2015]. While geo-indistinguishability bounds the amount of disclosure, it con-
siders reports to be independent between each other. In fact, in the context
of sporadic release of data this consideration has been assumed when design-
ing LPPMs [Shokri et al., 2011; Oya et al., 2019]. Tackling this drawback, two
recent adaptations of geo-indistinguishability for online privacy protection were
proposed: Clustering Geo-Indistinguishability [Cunha et al., 2019] and Adaptive
Geo-Indistinguishability [Al-Dhubhani and Cazalas, 2018]. The base of Cluster-
ing Geo-Indistinguishability is to reduce the amount of privacy loss by reusing
previous obfuscation reports as a function of the past and current user loca-
tions, such that if the user at the current timestamp is still close to its previous
location, then the same obfuscated location is reported instead of generating a
newer one. By reporting a previously generated obfuscated location, the privacy
budget is preserved and, therefore, the privacy no longer degrades linear, but
as a function of the mobility of the user. A different approach is taken in the
Adaptive Geo-Indistinguishability, where a dynamic adjustment of the privacy
budget is made in order to increase privacy or utility according to the correlation
between past and current location. The following sections detail each of these
approaches.

2.4.2.2 Clustering Geo-Indistinguishability

The composability property of differential privacy states that the privacy loss
is linear with the number of reports. Specifically, reporting n locations un-
der Geo-Indistinguishability results in a privacy loss of n.ϵ [Andrés et al., 2013;
Chatzikokolakis et al., 2014]. Therefore, Geo-Indistinguishability is only ef-
fective for sporadic reports [Mendes et al., 2020]. Under continuous reports
however, the privacy loss becomes prohibitive and correlations between sub-
sequent reports can be used to improve the efficiency of potential attacks [Liu
et al., 2018a; Xiao and Xiong, 2015]. Clustering Geo-Indistinguishability [Cunha
et al., 2019] tackles this problem by reducing the number of reports by taking
into consideration the traveled distance. Namely, if the distance between the
current position and the previous position is smaller than some radius, then
instead of reporting a new obfuscation, the previous obfuscated report is used
instead.

Formally, let xc and r be the center and radius of an area, denoted cluster, xi

the user position at timestamp i and zi, the obfuscated report at timestamp i.
Then:

zi =

zi−1 if d2(xc, xi) ≤ r

planarLaplace(xi, ϵ) otherwise
(2.7)

Essentially, if the distance between the center of the cluster xc and the current
user position xi is higher than a radius r then a new obfuscation zi is generated
using the Planar Laplace as defined in equation (2.6). When this happens, a
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new cluster is created by setting the center of the cluster to the current user
position, that is, xc = xi.

In Clustering Geo-Indistinguishability, the privacy and utility level can be
tunned by the radius r. Increasing the radius results in an increased privacy at
the expense of the utility, and vice-versa for a decrease of the radius. To avoid
increasing the number of required parameters, the radius r can be set following
the approach from Geo-Indistinguishability ϵ = l/r ↔ r = l · ϵ. Therefore, only
two parameters are required, the privacy loss l and privacy budget ϵ.

The downside of Clustering Geo-Indistinguishability is the lack of adaptability to
the context, such as varying frequency of reports. After setting the radius r, by
tuning the privacy loss l and the budget ϵ, the obfuscated reports are generated
with the same Laplacian PDF from equation (2.6). This can result in cases where
an inefficient privacy-utility trade-off is achieved. The following section describes
a more dynamic geo-indistinguishable approach where the privacy and utility are
automatically adjusted as a function of the correlation between reports.

2.4.2.3 Adaptive Geo-Indistinguishability

Geo-Indistinguishability is only effective for the sporadic use of an LBS as the
privacy degrades linearly with the number of queries (c.f. [Andrés et al., 2013;
Chatzikokolakis et al., 2014]) and due to the fact that continuous location re-
ports are highly correlated [Chatzikokolakis et al., 2014; Wang et al., 2015c].
Towards tackling this disadvantage, the Adaptive Geo-Indistinguishability was
proposed [Al-Dhubhani and Cazalas, 2018], in where the privacy and utility is
adjusted depending on the correlation between past and current locations at
each report. Specifically, this notion dynamically increases privacy if the cor-
relation is high, signaling that the current location is highly predictable, or in-
creases utility if the correlation is low, signaling that sufficient privacy is already
achieved.

The Adaptive Geo-Indistinguishability uses the Planar Laplace mechanism de-
scribed in equation (2.6) as baseline, while providing the aforementioned adapt-
ability by dynamically adjusting the privacy budget ϵ according to the correl-
ation. For measuring the correlation, a linear regression is used to produce an
estimation x̂i of the real user location xi at each timestamp i using past locations
up to i. Depending on the Euclidean distance between the estimation and real
location d(xi, x̂i), the mechanism increases either privacy or utility by adjusting
the privacy budget as follows:

ϵi =


α · ϵ, for d(xi, x̂i) < ∆1

ϵ, for ∆1 ≤ d(xi, x̂i) < ∆2

β · ϵ, for d(xi, x̂i) ≥ ∆2

(2.8)

where ∆1 and ∆2 are thresholds and α and β two constants with the following
constraints: ∆2 > ∆1, 0 < α < 1 and β > 1. Fundamentally, if the the
distance between the estimation and the user location is lower than a threshold
∆1, then the correlation between past and current locations is high. Therefore,
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the mechanism decreases the privacy budget ϵi to increase privacy. If instead
the correlation is low, signaled by a distance between the real and estimated
locations higher than a threshold ∆2, then the mechanism adjust for increasing
utility.

As defined in equation (2.8) and in contrast with the Planar Laplace and Clus-
tering Geo-Indistinguishability, Adaptive Geo-Indistinguishability provides a dy-
namic adjustment of the privacy and utility by taking into account previous
reports. Note however, that this adjustment comes at the expense of usability.
Namely, in addition to setting ϵ, the user must also define four extra parameters:
∆1, ∆2, α and β. This is a crucial drawback on the usability of the LPPM, as a
misconfiguration may lead to an ineffective privacy/utility adjustment or even
no effective privacy as we demonstrate in Chapter 4.

2.4.3 Attacks on Location Data
Location privacy attacks are diverse with respect to both the objective and the
applied methods [Wernke et al., 2014; Liu et al., 2018a]. In this thesis we fo-
cused on the objective of locating the user at each timestamp. This objective
is general in the sense that it allows for the reconstruction of the true mobility
of the user and consequently, for posterior inference attacks, that is, attacks
which produce additional knowledge from the geolocation data [Gambs et al.,
2010] (e.g. extraction of user’s PoI). However, different LBSs require different
frequency of location reports. For example, finding the nearest PoI (e.g. res-
taurant) applications only require the location at the time of the query, so the
release is sporadic, whereas for navigation services the reports are continuous.
In this context, one must consider both tracking techniques, which consist in
following a user over time and space, and localization techniques, which have as
objective to localize the user at certain points in time [Shokri et al., 2011].

For localization attacks, we focus on the state-of-the-art by considering the
optimal attack given a mobility profile [Shokri et al., 2012] and an heuristic
which learns the mobility profile as locations are shared [Oya et al., 2019]. Sec-
tion 2.4.3.1 and 2.4.3.2 detail these attacks, respectively.

In tracking attacks, one can consider regression analysis, Kalman filtering,
particle filters and map-matching [Wernke et al., 2014; Krumm, 2009]. In a
previous work [Mendes and Vilela, 2018], regression analysis has been used to
produce simple estimators (such as linear and polynomial) as a tracking attack.
However, results showed that such solution generates a non-negligible amount
of outliers due to time-gaps in reports, which occur due to failures in the GPS or
in communications. Kalman filters have been used effectively in navigation to
reduce uncertainties arising from the noisy measurements. Particle filters can be
used for the same purpose incurring in higher computational complexity. How-
ever, these two techniques are oblivious of the underlying map and consequently
generate positions that are not physically possible (e.g. inside a building if the
user is driving). A knowledgeable adversary can make use of the map to reduce
this kind of uncertainties and thus locate the user with higher precision [Wernke
et al., 2014]. This process is known as map-matching and it is typically used to

— 31 —



CHAPTER 2. PRIVACY IN MOBILE DEVICES

locate vehicles on road-networks [Kubicka et al., 2018].

In Section 2.4.3.3 we detail a map-matching technique that is robust to noise
and to varying frequencies of location reports, that was used in this work for
the purpose of tracking users in Chapter 5. Even though map-matching has
been used as an attack, for instance, against area obfuscation [Wernke et al.,
2014], to the best of our knowledge, we are the first to consider road-network
map-matching as a tracking attack. We also note that this choice was fur-
ther supported by the fact that hidden Markov chains, which are used in map-
matching, have been shown effective in modeling the temporal correlations of
location traces [Xiao and Xiong, 2015; Murakami, 2017]. Finally, it should be
noted that the considered optimal localization attacks can also be used for tra-
jectories [Shokri et al., 2017]. However, these attacks require the discretization
of the space (and possibly time), which becomes computationally infeasible for
finer resolutions.

2.4.3.1 Optimal Localization Attack

As formalized, the adversary observes z, knows the used LPPM f and has some
priory knowledge in the form p(x). Consequently, it computes x̂ by means
of an attack h. We focus on the case that the adversary estimates xi using
only observed reports up to i, that is, zi. This case can be generalized to the
estimation of xi using zk with i ≤ k [Oya et al., 2019], however this is rarely
the case in tracking approaches. Following [Oya et al., 2019; Shokri et al.,
2012], the optimal localization attack minimizes the estimation error defined by
equation (2.3). Formally:

x̂i = argmin
x̂i

∑
xi∈X

p(xi|zi) · dP (xi, x̂i) (2.9)

where p(xi|zi) is the posterior probability of xi given all reports up to i:

p(xi|zi) = p(zi|xi) · p(xi)
p(zi)

=
∏i

l=1 p(zl|zl−1, xi) · p(xi)
p(zi)

(2.10)

Note that since zl is conditionally independent of xi for l ̸= i and since we are
considering only memoryless LPPMs, we have:p(zl|zl−1, xi) = p(zl|zl−1) if l ̸= i

p(zl|zl−1, xi) = p(zi|zi−1, xi) = p(zi|xi) if l = i

Furthermore, since equation (2.9) is a minimization, we can ignore the denom-
inator and thus reach the attackers objective function as:

x̂i = argmin
x̂i

∑
xi∈X

p(zi|xi) · p(xi) · dP (xi, x̂i) (2.11)

The final consideration of an attacker is the characterization of p(x). Tradi-
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tionally [Shokri et al., 2011; Shokri et al., 2012], p(x) is described by a mobility
profile π which is a probabilistic representation of the user mobility, where each
user location is considered an i.i.d. sample of π. Formally, let π(x) denote
the probability that the user is at x ∈ X given the mobility profile π, then
p(x) = ∏

i π(xi). Therefore, and in practice [Chatzikokolakis et al., 2017], a
realistic adversary would use a mobility profile built with training data, πtrain.
An omniscient adversary is sometimes considered as one who has access to the
test data and thus, builds the mobility profile from this data, πtest. This latter
adversarial consideration gives a lower bound for the expected privacy. We refer
to the optimal attack using πtrain as optHW and using πtest as omniHW.

Recently, Oya et al. [Oya et al., 2019] observed that building the mobility model
a priori with the training data might fail to capture the true mobility of the
users. The closer the model is to the real mobility, the better performant is the
attack1. Consequently, the authors propose a new approach towards building
mobility profiles which considers the true mobility to be unknown, and therefore
learned based on real user behavior in an a posteriori fashion. An attack using
this approach was proposed in [Oya et al., 2019] and results showed to have
better performance than the optimal attack using the a priori model. The attack
is denominated Profile-Estimation Based Attack (PEBA) and described in the
following section.

2.4.3.2 Profile-Estimation Based Attack (PEBA)

PEBA [Oya et al., 2019] is based on the idea that the real mobility profile is
unknown and consequently has to be learned/adapted after each query. Form-
ally, let p(π) be the probability of being assigned a profile π ∈ Fπ, then the real
locations are i.i.d samples of the distribution given by π, such that:

p(x) =
∑

π∈Fπ

p(π)p(x|π) =
∑

π∈Fπ

p(π)
∏

i

π(xi) (2.12)

This consideration creates a dependency between exact locations due to the fact
that a previous location gives information on the unknown profile π which in turn
affects the probability of the following locations. Therefore, the real locations
and obfuscated locations will also be dependent as a location at xj affects dis-
tribution of a location at xi with i > j which in turn affects zi. Consequently,
it becomes mathematically intractable to find the optimal attack considering
equation (2.12) [Oya et al., 2019]. Thus, PEBA is a sub-optimal attack.

Following [Oya et al., 2019], PEBA is decomposed in two sequential steps: 1)
estimation of the mobility profile using the observed obfuscated reports zi up
to the current timestamp, i. In the original proposal the Maximum Likelihood
(ML) estimator is used and thus, this mobility profile is denoted by π̂ML

i ; 2)
estimate the real location x̂i using zi and assuming that xi follows the estimated
mobility profile π̂ML

i . We skip the foundational details of the method and focus

1Note that the mobility profile might not only be used by an adversary in the attack but
also by the user in the LPPM [Shokri et al., 2017].
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on the implementation steps. The interested reader should refer to [Oya et al.,
2019].

The procedure of the steps is as follows. From the training data an initial average
mobility profile πavg is built from all the users. Then, this initial profile is used
to estimate π̂ML

i , through an iterative Expectation-Maximization method:

πr,t+1 = 1
i

i∑
l=1

p(xr
l |zl, πt) == 1

i

i∑
l=1

πr,t · f(zl|zl−1, xr
l )∑|X |

k=1 πk,t · f(zl|zl−1, xk
l )

where t is an iteration counter and πr ≡ p(x = xr) with xr ∈ X and r ∈
{1, . . . , |X |} denotes the probability mass function defined by π. Furthermore,
π0 = πavg. This step is repeated while the change from πt to πt+1 is significant.
Then, a normalization of the profile is made following equation (2.13). This
latter equation holds that for the initial queries, the initial mobility profile πavg

is dominant, and then fading out as the number of queries increase in favor of
the ML estimator.

π̂i = 1
i0.5 · πavg +

(
1 − 1

i0.5

)
· π̂ML

i (2.13)

The posterior is then computed as:

p(xi|zi, π̂i) = p(zi|xi, π̂i) · π̂i(xi)/p(zi) =
i∏

l=1
p(zl|zl−1, xi, π̂i)π̂i(xi)/p(zi) (2.14)

And finally, using the posterior, the PEBA estimation of the exact location of
the user is calculated as:

x̂i = argmin
x̂i

∑
xi∈X

p(xi|zi, π̂i) · dP (xi, x̂i) (2.15)

2.4.3.3 Map-Matching

The previous sections described attacks against sporadic reports, referred to as
localization attacks. This section focus on a tracking problem, known as map-
matching. Map-matching (MM) is the process of continuously identifying the
position of a vehicle on the road network given noisy location readings [Ku-
bicka et al., 2018]. However, map-matching can also be used as an adversary
tracking/locating a user as detailed in this section.

In the context of MM, it is typically considered high frequency of reports when
reports are made up to every 1 minute. Any value above this interval is con-
sidered low frequency of reports, and commonly, low frequency MM techniques
are evaluated up to a maximum of 5-6 minutes [Hashemi and Karimi, 2014].
In the context of LBSs however, 5 to 6 minutes is still considered continuous
reports. Nevertheless, using a MM technique allows to evaluate the impact of
frequency in highly continuous reports and consequently, assess the privacy level
under the full range of frequencies.
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Several map-matching techniques have been proposed following different ap-
proaches [Kubicka et al., 2018]. In this thesis we focus on MM techniques that
are robust to noise, as an LPPM can apply additive noise, and effective on low
frequency of reports, which results in sparse data. A seminal work fulfilling these
criteria is found in [Newson and Krumm, 2009], where their method is evalu-
ated over frequency of reports (referred to as sampling period) varying from 1
second to 600 seconds and over the addition random Gaussian noise to the GPS
readings with multiple standard deviation values. A follow up on this work was
made by Jagadeesh and Srikanthan [Jagadeesh and Srikanthan, 2017], where
locations were measured with cellular network positioning instead of the GPS.
The measurement error from the former positioning system is higher by almost
2 orders of magnitude and therefore the MM technique was adapted to be more
robust against noise.

Comparative results between [Jagadeesh and Srikanthan, 2017] and the seminal
work from [Newson and Krumm, 2009] showed the former technique to be more
robust to both low frequency of reports and noisy measurements. Consequently,
we have implemented the MM technique from [Jagadeesh and Srikanthan, 2017],
which we describe next. We refer the reader to [Jagadeesh and Srikanthan, 2017]
for a more detailed explanation of the original method.

Let us denote oi ∈ R2 as the location report (referred to as observation
in [Jagadeesh and Srikanthan, 2017]) at timestamp i. This report is not ob-
fuscated but it is assumed to be noisy due to measurement imprecision. The
road network is a direct graph G = (V, E), where V is a set of nodes repres-
enting intersections and endpoints of road segments and E is the set of these
segments. A path p between nodes u and v is a sequence of edges e1, . . . , en such
that u is the tail of e1 and v is the head of en. The objective of a MM algorithm
is to find a path p that corresponds to a sequence of T locations given noisy
observations o1, . . . , oT . Towards this goal, an Hidden Markov Model (HMM) is
used in [Jagadeesh and Srikanthan, 2017].

At each noisy observation oi, the HMM’s hidden states at time step i correspond
to potential locations on the road where the user can be. We denote the kth

potential location at time step i by si,k and the hidden true state by s∗
i = xi.

Given that the location measurement error can be assumed effectively to follow
a Gaussian distribution with zero mean [Newson and Krumm, 2009; Jagadeesh
and Srikanthan, 2017], the probability that the observation oi was generated
from state si,k, referred to as emission probability, is given by:

p(oi|si,k) = 1
σ

√
2π

e−
g(oi,si,k)2

2σ2 (2.16)

where σ is the standard deviation of the measurement error and g(oi, si,k) is the
great-circle distance, that is, the shortest distance along the surface of the earth,
between the observation oi and the state si,k. Note that from equation (2.16), it
is clear that closer states to the observation will have a higher probability than
farther states, as the denominator increases exponentially with the increase of
the distance g(·).
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The transition probability, that is, the probability that the vehicle moved from
state si−1,j to si,k depends on both the circuitousness of the path and on the
temporal plausibility, that is, if the travelled distance is plausible given the time
interval between timestamps (ti − ti−1). To measure the circuitousness of the
path, the authors of [Jagadeesh and Srikanthan, 2017] defined the following
equation:

y(si−1,j, si,k) = d(si−1,j, si,k) − g(si−1,j, si,k)
(ti − ti−1)

(2.17)

where g(si−1,j, si,k) is the great circle distance between the states and
d(si−1,j, si,k) the driving distance, calculated using Dijkstra’s shortest path al-
gorithm [Dijkstra, 1959]. For the temporal plausibility, the equation is given
as:

z(si−1,j, si,k) = max (f(si−1,j, si,k) − (ti − ti−1), 0)
(ti − ti−1)

(2.18)

where f(si−1,j, si,k) is the free-flow travel time, in seconds, of the optimal path
between the states si−1,j and si,k. Finally, the transition probability comes in
the form:

p(si,k|si−1,j) = λye−λyy(si−1,j ,si,k)λze−λzz(si−1,j ,si,k) (2.19)
where λy and λz are empirically determined parameters from equations (2.17)
and (2.18), respectively.

To compute the most likely path from the HMM, a Viterbi algorithm is used as
follows:

V1,k = p(o1|s1,k)
Vi,k = p(oi|si,k) max

j
(Vi−1,jp(si,k|si−1,j)) (2.20)

where Vi,k is the joint probability of the most likely state sequence ending at
state si,k based on the observations o1, . . . , oi. The index j that maximizes
Vi,k is stored for each potential location k as it points to the predecessor state
si−1,j that most likely lead to si,k. Consequently, the most likely sequence for
observations o1, . . . , oT is obtained by saving the indices j at each timestamp
that maximize Vi,k, starting in maxw VT,w. The path p is then obtained by
concatenating the optimal (shortest) paths between successive states in the most
likely sequence.

Using the shortest segments to connect the states might not be the optimal solu-
tion. Therefore, in [Jagadeesh and Srikanthan, 2017] is also presented an heur-
istic that uses features to take into consideration drivers’ preferences and thus
increase the likelihood of getting the right segment between states. However,
this additional heuristic achieves only marginal improvements (c.f. [Jagadeesh
and Srikanthan, 2017]) at the expense of computational power. Since we will be
computing map-matching under several configurations (see Section 4.1.2), we
did not implement the heuristic as to decrease execution time.

Returning to the problem defined in Section 2.4.1, MM is typically used as a pre-
processing phase of an LBS service in which the noisy locations are mapped to
the most likely position for xi. Therefore, in our problem the user is considered

— 36 —



CHAPTER 2. PRIVACY IN MOBILE DEVICES

to already have the real location xi, ∀i. Nevertheless, an adversary can use
MM to track/locate users in a road given obfuscated location/versions of xi.
In this latter scenario, the location readings (observations) are the obfuscated
locations.

As for measuring privacy, we can use the adversary error from equation (2.3)
using zi. However, a point-by-point metric would fail to assess the effectiveness
of the tracking, as the Adversary Error (AE) could be 0 and the estimated
trajectory be different from the true trajectory. This can occur for instance
when the true location is at a cross-road and the true path crosses the matched
path. In such case, the true position matches the MM estimation, but the paths
only overlap on that single point. Thus, we further consider a trajectory metric
from the original authors of the MM technique [Jagadeesh and Srikanthan, 2017],
the F1 score computed as:

precision = Lcorrect

Lmatched

recall = Lcorrect

Ltruth

F1 = 2 · precision · recall

precision + recall

(2.21)

where Lmatched is the length of the output path, Ltruth is the length of the
corresponding ground truth and Lcorrect is the length of the portions of the
output path that overlap with the ground truth path. Intuitively, the precision
and recall measure the length of the segments that were correctly matched as
a fraction of the map-matching output and the true path, respectively. The F1
score is then the harmonic mean between both metrics.

2.5 Discussion
Privacy in mobile devices sees several challenges arising from the inherent sens-
ory and connectivity capabilities. Permission managers arm the users of these
devices with control over the access to their resources. However, current per-
mission managers fail at both protecting and warning users about the risks thus
leading towards uninformed decisions [Bonné et al., 2017; Shen et al., 2021]. In
fact, users feel their personal space violated when confronted with apps’ intrusive
practices [Almuhimedi et al., 2015; Shklovski et al., 2014].

Despite being positively adopted by users [Bonné et al., 2017; Andriotis et al.,
2018b], runtime permissions have a major flaw in the number of permissions that
are allowed without user consent or even awareness [Almuhimedi et al., 2015;
Wijesekera et al., 2015; Calciati et al., 2020], due to the fact that after being
accepted once, subsequent requests are in general automatically granted. There-
fore, while prompting at runtime contextualizes the permission request by the
need of the application and therefore helps to make an informed decision [Bonné
et al., 2017; Andriotis et al., 2018a], automatically granted requests violate this
contextual integrity [Wijesekera et al., 2015].
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Expectation is important: if an app fully behaves as expected by the user then
fewer privacy problems would arise [Lin et al., 2012]. However, the users’
expectations and apps practices often diverge due to the lack of knowledge
by the user [Lin et al., 2012; Bonné et al., 2017] or by apps’ intrusive prac-
tices [Almuhimedi et al., 2015; Wijesekera et al., 2015]. No work has captured
the expectancy of users under runtime permissions and therefore the analysis of
the importance of the expectancy in privacy decisions and the respective dynam-
ism with changing contexts is yet to be done, that is, whether the expectancy
changes with changes in the context. To address this issue, in Chapter 3 we
perform a field study to collect privacy decisions, the surrounding context, and
respective expectations. With the collected data we identify which contextual
factors impact both privacy decisions and user expectations, and subjectivity of
such impact for each individual.

Towards improving privacy in mobile devices, researchers proposed context-
aware protection to account for privacy’s context-dependence [Acquisti et al.,
2015]. One of the main challenges here arises from the lack of precise definition
of context. While mobile devices have naturally rich sensory capabilities, the
device context is highly dynamic making its extraction and modeling a difficult
task. It is thus realistic that for dynamic devices an automatic extraction of
context is required as system designers will not be able to predict every possible
scenario. Moreover, these inference methods have to take into consideration
imprecision, noise and missing data [Abowd et al., 1999].

In context-aware privacy, the base idea is to leverage user and device context to-
wards privacy protection [Schaub et al., 2015a]. In this regard, the identification
of which and how much data is relevant not only for the context inference, but
also towards privacy preferences. In mobile devices, some works focus on user
context [Zavala et al., 2011], others on device context [Tsai et al., 2017], and
others on the combination of both [Olejnik et al., 2017]. However, a qualitative
evaluation on which context data is relevant towards privacy is yet to be made.
Such assessment is itself a relevant research problem as it is closely related to
how to measure the privacy level, as measuring privacy is an integral step of the
process. Furthermore, personalization approaches that resort to privacy profiles
lack contextual features, that is, the profiles are built without taking into con-
sideration different contexts. The open issue here is to evaluate whether privacy
profiles with contextual features could improve automated privacy decisions.
To tackle the evaluation of which contextual data is actually relevant towards
privacy decisions, we performed an exploratory data analysis on our collected
data in Chapter 3. Leveraging on such findings, in the same chapter we develop
personalized and contextually-aware predictive models, which we then compare
to the default Android permission manager.

Finally, the last identified issue in existing permission managers lies in the lim-
ited control over the trade-off between privacy and utility. Specifically, per-
mission managers allow to have maximum privacy and no utility, by denying a
permission, or zero privacy and maximum utility, by allowing the permission.
This poses a risk due to potentially non-trustworthy providers that can share the
data with other entities [Mendes and Vilela, 2017]. Olejnik et al. [Olejnik et al.,
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2017] proposed a simplistic approach that allowed for the obfuscation of four
data types: camera, location, microphone and storage. The authors reported
that users found obfuscation useful and noted that more complex obfuscation
techniques could be integrated. The challenge here however, is that apps can
access resources for different purposes, thus generating different types of data,
which in turn require distinct obfuscation techniques [Cunha et al., 2021]. For
example, finding the nearest restaurant requires sharing a single location, while
a navigation app would require continuous location reports. The use of the same
LPPM in this example, would result in ineffective privacy protection in at least
one of the apps, due to the correlations between reported locations. Due to the
relevance of this type of data in mobile devices, we focused our attention to
location privacy towards potentially obfuscating location reports before sending
the data to providers.

In Section 2.4 we have identified the privacy degradation that advents from con-
tinuous location reports. In fact, when designing LPPMs for the sporadic release
of data, reports have been assumed to be independent [Shokri et al., 2011; Oya
et al., 2019]. However, there is no formal nor quantitative distinction between
sporadic and continuous reports and thus, the distinction is often based on the
type of LBS application [Shokri et al., 2011]. In Chapter 4 we empirically evalu-
ate the effect of the frequency of updates in the privacy level of location traces.
The findings of this analysis motivate the development of online LPPMs that
consider the correlation between reports and that adapt to varying frequency
of reports. Unfortunately, few online Geo-Indinstinguishable LPPMs have been
proposed that consider the correlation between reports. An illustrative example
is the Adaptive Geo-Indistinguishability from Section 2.4.2.3 which measures the
correlation through simple linear regressions and increases (decreases) privacy
if the correlation is high (low). However, this automatic adjustment comes at
the expense of usability. Namely, in addition to setting the privacy budget ϵ,
the user must also define four extra parameters: ∆1, ∆2, α and β. This is a
crucial drawback on the usability of the LPPM, specially since fine-tunning the
privacy budget ϵ can be challenging on its own [Kaaniche et al., 2020; Clifton
and Tassa, 2013; Lee and Clifton, 2011; Hsu et al., 2014] and can even mislead
with respect to the privacy guarantees [Oya et al., 2017b]. For practical ap-
plicability and wide deployment of LPPMs, the automatic adaptability to the
varying correlation between reports must be considered, while minimizing the
required configuration. Such adaptability must additionally be robust to vary-
ing frequency of reports. To address challenge, in Chapter 5 we propose a novel
notion to design LPPMs that automatically adjust to varying frequency of up-
dates and user velocity, while requiring minimal configuration. Such proposal
can further be personalized to a single driver or for specific regions, and can be
generalized for wide deployment. In the referred chapter we provide an empirical
comparison with existing geo-indistinguishable LPPMs.

In summary, this thesis intents to improve privacy in mobile devices by fo-
cusing on automation, personalization and context-awareness. Additionally, to
empower users with control over the trade-off between privacy and utility, we
considered obfuscation techniques, particularly in the context of location pri-
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vacy, a prevalent type of data in ubiquitous computing. Towards this end, this
section identified open issues which are tackled in the following chapters.
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In the current age of information, the rich and pervasive data collection
sparks new applications that foster advances in our society. In this con-
text, smart and mobile devices are of paramount importance due to their

inherent sensory capacity, allowing for user-tailored and context-aware services.
However, this data exchange often weights on the privacy of each individual,
whose practiced trade-off is not often perceived or even understood.

To empower users with control over their privacy, smartphones have implemen-
ted permission managers that control, with user oversight, which resources, such
as sensors and data, can be accessed by each application. Under the runtime
permission system, the current mechanism employed in both Android and iOS,
applications must require user permission the first time they require access to
a sensitive resource. When presented with the prompt request, the user may
either deny or allow the request for this single time, which will enforce the app
to request the next time it needs the same access, or allow indefinitely, an op-
tion that can then be changed, but seldomly is [Andriotis et al., 2018a], in the
settings of the phone.

The runtime permission system has replaced the dated install-time permission
model, in where users either allowed all permissions or refuse to install an applic-
ation. This upgrade has allowed for fine-grained management and for permission
requests to be contextualized by the necessity of an app to access a functionality;
it has therefore been positively received by users [Bonné et al., 2017; Andriotis
et al., 2018a]. The problem with this model however, is that, after being allowed
once, the permission is typically automatically allowed on all subsequent occa-
sions, including when the user is unaware that the app is running [Almuhimedi
et al., 2015; Wijesekera et al., 2015], thus violating privacy’s contextual integ-
rity [Nissenbaum, 2004], or in other words, defying users’ expectations.

Privacy as contextual integrity is a model that binds privacy to the appropriate-
ness of gathering and disseminating data at each specific context [Nissenbaum,
2004]. In this model, context is not limited to time and location, but is instead
an abstract sphere that describes a situation and thus can encompass the activity
being performed, the roles and norms binding each involved entity, the cultural
and political ecosystem, and any other information that characterizes the cur-
rent status. In this regard, any given data practice might be both appropriate or
a violation of privacy depending on the context and on the expectations of the
user within that context [Nissenbaum, 2004]. In mobile devices, the expectation
of a user is their mental model that describes the functionality of an app [Lin
et al., 2012], i.e., what the app does and how it works.

Expectation is important: if an app fully behaves as expected by the user
then fewer privacy problems would arise [Lin et al., 2012]. However, users’
expectations and app practices often diverge due to the lack of knowledge
by the user [Lin et al., 2012; Bonné et al., 2017] or by apps’ intrusive prac-
tices [Almuhimedi et al., 2015; Wijesekera et al., 2015]. Expectations should
guide app design and support privacy-aware decisions [Lin et al., 2012; Bonné
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et al., 2017].

To summarize, automation is paramount as applications make hundreds of per-
mission checks per day [Mendes et al., 2022a; Almuhimedi et al., 2015], rendering
approaches that ask on every use unfeasible. However, for effective privacy pro-
tection, the automation must take into account user preferences at each context
surrounding the privacy decision [Acquisti et al., 2015], and ideally in accordance
with user expectation, such that contextual integrity is preserved. This chapter
presents our contribution to this subject, whose main goal is to enhance auto-
mated privacy protection through context-aware personalization and by taking
into account user expectation. Towards this objective, we started by collecting
data through a succession of campaigns with volunteers under real world condi-
tions as described in Section 3.1. In Section 3.2 we provide an exploratory data
analysis on the collected dataset, with a focus on the relation between privacy
decisions, their surrounding context and the user expectation. In Section 3.3, we
leverage such relations to propose automated, personalized and context-aware
privacy protection mechanisms. Finally, Section 3.4 presents the limitations and
future work remarks, and Section 3.5 concludes this chapter.

This chapter makes the following contributions:

• To the best of our knowledge, this is the first field study to capture the ex-
pectation of users regarding runtime permissions at scale and in-situ, thus
avoiding potentially aspirational responses that might not align with be-
havior [Acquisti et al., 2015]. We make this dataset available to interested
researchers.

• We uncover a strong misalignment between app practices and the expect-
ation of users. Specifically from the collected data, almost half of requests
are unexpected by users, a ratio that mostly varies with the requested
permission, category of the requesting app, the visibility of the requesting
app and, more importantly, the user.

• We empirically unveil an intrinsic relation between the pair category of the
requesting app – requested permission, and the context of the user. This
relation advents from the fact that different applications are used under
different contexts, therefore conditioning the permission requests that are
prompted to the user.

• Privacy decisions see the strongest correlation with expectation, mainly
due to the fact that 90% of expected requests are allowed by users. How-
ever, expectation greatly varies with each individual. Thus we conclude
that not only is expectation personal but so is the importance of it in
privacy decisions.

• We develop a personalized automated permission manager for prediction of
privacy decisions by taking into consideration the expectation and the con-
text of the user and the context of the phone, thus achieving a ROC AUC
of 0.96 and an F1 score of 0.92. Without user expectation, which is the
strongest correlated feature with privacy decisions but requires user input
which we seek to minimize, we achieve a ROC AUC of 0.9 and an F1 score
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of 0.88.

• Finally, our data shows that Android 9 default permission manager based
on runtime permissions would have resulted in 15% privacy violations, i.e.
allowed permission requests that were explicitly denied by our participants.
Our automated solution is able to reduce the number of privacy violations
by 60% when compared to a standard Android handset. Without using
the expectation as input feature for the prediction, these violations can
still be reduced by 28%.

3.1 Data Collection
Towards building personalized and context-aware prediction models, data about
privacy decisions and their surrounding context must be captured to train such
models. Privacy preferences have previously been collected from smartphones
in different studies. However, existing datasets present limitations with re-
spect to either the lack of contextual data [Liu et al., 2016] or runtime per-
missions [Wagner et al., 2013] or were simply not made available due to privacy
concerns [Wijesekera et al., 2017]. The SmarPer dataset [Olejnik et al., 2017]
contains both runtime permissions and contextual information collected by in-
strumenting Android, to intercept apps’ accesses to sensitive data and therefore
prompt the user for permission. In addition to collecting the permission re-
sponse, SmarPer also collects contextual information regarding device status,
foreground running application and semantic location of the user. This work
served as baseline for our data collection tool and therefore our dataset strongly
relates with the SmarPer dataset [Olejnik et al., 2017] with the following relev-
ant differences. The data collected in [Olejnik et al., 2017] might be sufficient to
support building machine learning models, however it is limited in the number of
data points. Furthermore, in order to reduce the dimensionality of the features,
the authors focused on a few popular applications and only in 4 permissions:
location, contacts, storage and camera. Our dataset makes no restrictions on
the apps and permissions, more than doubles the number of participants (93),
and contains over 7 times more permission requests answered by participants
(65261). Additionally, we collect more contextual features, such as whether the
user is in an event, and the expectation of the user for each permission request
that is prompted. Privacy as expectation has been previously framed in the con-
text of privacy decisions in mobile devices and even shown that the expectations
strongly vary with the conception (or misconception) about apps’ functional-
ity [Lin et al., 2012]. However, to the best of our knowledge, our dataset is the
only that captures in-situ user expectations regarding app permissions. Finally,
while the work in [Olejnik et al., 2017] contains static permission decisions, these
were collected through exit surveys. Instead, we collect static permissions from
the settings of the personal phones, thus translating real behavior instead of
potential aspirational responses [Norberg et al., 2007].

Our dataset was collected in a set of campaigns spawning from the 27th of July
2020 up to the 12th of May 2021, as illustrated in Figure 3.2 with a total of 93
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Figure 3.1.: Summarized diagram of a data collection campaign.

volunteers from Portugal. Participants were recruited through word-of-mouth,
university mailing lists and from oral presentations. This resulted in the par-
ticipation of 60 (64.5%) students, 11 (11.8%) researchers and the remaining 19
(20.4%) with diverse backgrounds. Some 66 (71%) participants were between
18-24 years old, 25 (26.9%) between 25 and 39 and 2 (2%) over 40 years old.
While most participants were students, the professional areas of occupation di-
verged: 53 (57%) participants were from informatics engineering or computer
science, 12 (12.9%) from other engineer fields, 8 (8.6%) from exact sciences other
than engineering and the remainder spread through other occupations, retired
or did not answer the question. Therefore, the dataset is skewed towards young
adults and slightly more than half with an IT background.

The data was collected in two phases that can be summarized in 5 steps, as
illustrated in Figure 3.1. In the first phase, the volunteer would sign-in to
a campaign by installing our app COP-MODE Apps Retriever (CM-AR)1. By
running CM-AR and consenting to the data collection, this app would collect the
list of installed applications and respective permissions, including their current
status (allowed or denied). This first set of data corresponds to our static
data.

The second phase corresponds to a campaign of at least 1 week, where the
participants used borrowed smartphones that came pre-installed with their per-
sonal apps, collected in the previous phase, along with Naive Permission Man-
ager (NPM), our data collection tool and permission manager. NPM inter-
cepts apps’ permission checks and escalates them to permission dialogs that are
prompted to the user, to collect the user decision and the surrounding context
at the time of the prompt. Therefore, this second set of data is referred to as
permission requests data. NPM and the collected data types are detailed in

1https://play.google.com/store/apps/details?id=pt.uc.dei.copmode.
appsretriever

— 45 —

https://play.google.com/store/apps/details?id=pt.uc.dei.copmode.appsretriever
https://play.google.com/store/apps/details?id=pt.uc.dei.copmode.appsretriever


CHAPTER 3. AUTOMATED PRIVACY PROTECTION THROUGH
PREDICTION OF PRIVACY PREFERENCES

2020 2021
July August September October November December January February March April May June

Campaign 1
Campaign 2
Campaign 3
Campaign 4
Campaign 5
Campaign 6
Campaign 7
COVID Restrictions Partial Remote Full Remote Confinement Full Remote
COVID University
Restrictions Partial Remote Confinement/Exams

Classes

Figure 3.2.: Timeline of the COP-MODE’s campaigns and the COVID-19 con-
finement periods. Partially remote periods correspond to when com-
panies could have a limited number of workers in the office, thus
scheduling remote or face-to-face work for teams in a phased fash-
ion. In full remote, work from home was mandatory, unless other-
wise unfeasible.

Section 3.1.2.

Participants that showed interested in continuing the experiments were some-
times allowed to continue using the phone for longer. Participation was rewar-
ded with a gift card with the requirement of using the campaign phone as the
main smartphone for the duration of the campaign. While this requirement was
explicitly announced, we gave the voucher to every participant as a minimum
acceptable number of requests (50) was answered by everyone – verified before
handing the voucher. However, we did implement a metric and feedback mechan-
ism to evaluate the phone activity. Simply, if the participant had not answered
at least 5 permissions in the last 24 hours, he would be notified of inactivity to
encourage engagement. After handing the voucher, we would send an email to
the participant asking to fill an optional, brief and anonymous questionnaire to
obtain some feedback. This questionnaire is presented in Appendix B.

3.1.1 Impact of the COVID19 on the Data Collection Campaigns
COP-MODE’s campaigns were impacted by the COVID-19 in two major ways.
First, from a participation point-of-view, as the amount of participants per
campaign was lower than anticipated due to the difficulty in exchanging the
campaign smartphones and concerns related to the potential of COVID-19 in-
fection. As a result, 7 campaigns were necessary to reach the goal of 90 parti-
cipants, instead of the 3 projected campaigns. Second, and more importantly,
the contextual environment of the participants was predominantly their home
due to partial or full quarantines, thus limiting the richness of the contextual
data. Section 3.2 empirically evaluates this latter limitation. Figure 3.2 presents
the timeline of the campaigns alongside with COVID-19 confinement periods.
Because some campaigns were directed towards college students, we also de-
pict COVID restrictions and teaching periods for context. From the timeline it
is clear that most campaigns operated during a partially remote period where
companies could have a limited number of workers in the office, thus scheduling
remote or face-to-face work for teams in a phased fashion. A fully remote period
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(a) WhatsApp requesting access to
contacts.

(b) Telegram FOSS requesting access
to storage.

Figure 3.3.: Examples of translated (from Portuguese) permission prompts is-
sued by Naive Permission Manager.

refers to a setting where workers could only go to the office in cases where remote
work was not possible.

3.1.2 Naive Permission Manager
To collect the data throughout the campaigns, the borrowed smartphone has
our Naive Permission Manager (NPM) pre-installed alongside the participant’s
personal apps. NPM is both a permission manager and our data collection
tool. Specifically, NPM intercepts permission checks performed by any app and
prompts the user to either accept or deny the permission. At the time of the
prompt, NPM further collects contextual data and additional information from
the user as follows [Mendes, 2021a]:

• Requesting Application: name, package name, version code, UID, flags
and app category from the Play Store.

• Permission: the name and group of the permission and the user response.

• Phone state: geolocation, plug, dock, call, screen and keyguard states,
network connection type, list of apps running in the foreground and in the
background. An application is in the foreground if it either has an activity
in the foreground (visible to the user) or a service with a foreground noti-
fication. Apps running in the foreground and background have the same
fields as the requesting application.

• User context: current time, semantic location, Bluetooth and WiFi devices
in vicinity and whether the user is or is not in an event, as returned by
their calendar. The semantic location was collected from user input, whose
possibilities were “home”, “work”, “travelling” or “other” as illustrated in
Figure 3.3.
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• Expectation: the participant has to answer the question (translated from
Portuguese) “For what you were doing with the phone, is this request
expected?” with: yes, no or do not know. See Figure 3.3 for an illustration
on how this data was asked to participants.

The permission dialog and context data are collected, stored locally and finally
sent opportunistically to our project server.

3.1.2.1 Implementation Details

To intercept permission requests we could have either changed the operating
system, use the accessibility features to read permission requests [Fu et al.,
2019] or to require root [Olejnik et al., 2017]. We chose the latter as it is easier
to setup and maintain and supports multiple operating system versions.

To intercept the operating system API calls, we implemented NPM as an EdX-
posed module [ElderDrivers, 2020]. EdXposed is a fork of the Xposed frame-
work [rovo89, 2012b] to support newer Android versions2. Xposed allows mod-
ules to change the behavior of other apps or the system itself without chan-
ging any APKs [rovo89, 2012b], by adding an additional library (Xposed) to
app_process, the process that spawns every application. Xposed then allows
modules to hook (intercept) API calls, including the OS, and therefore modify
the functionally before and after API execution [rovo89, 2012a].

The work in [Olejnik et al., 2017] focused on hooking API calls that collected
data. This approach worked well at the time as it targeted Android API versions
that were before Android supported runtime permissions. With runtime permis-
sions, apps need to check if they have a permission before executing the API call
that would collect the data. If the permission is denied (either previously denied
by the user, or never requested), the app may or may not request the permis-
sion [Developers, 2022b], as it can check whether it has the permission without
explicitly asking the user. This conditional execution led us to primarily hook
permission checks, escalating them to permission requests in the form of the
prompts illustrated in Figure 3.3, while intercepting permission requests only to
override the result with the participant input given to the prompt created by
NPM at the respective permission check. This latter interception allow us to
bypass the Android default permission manager. Note that while we collect the
data at permission checks, we refer to this data as permission requests.

In Android, permissions can have different protection levels and only danger-
ous permissions require an explicit request by applications [Developers, 2022b].
These permissions are considered “dangerous” because they allow apps to access
sensitive data or resources that can affect the system and/or the privacy of the
user. Therefore, NPM only handles, and therefore collects, permission requests
related to dangerous permissions. Furthermore, because the default Android
permission manager manages the permissions at a group level, a controversial

2The Xposed framework supports from Android 4.0.3 (API level 15) up to Android 8.1 (API
level 27) [rovo89, 2018], while EdXposed supports from Android 8.0 (API level 26) up to
Android 11 (API level 30) [ElderDrivers, 2020].
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implementation decision [Calciati et al., 2020], so does NPM. That is, by default,
if, for instance, a permission requires the read calendar permission and the user
grants it, the app will automatically be allowed the write calendar permission
on request. While one can argue about this feature from a privacy perspective,
NPM follows this behavior in order to replicate Android’s permission manager
from a data collection point of view.

When a dangerous permission check call is made by an app, NPM prompts
the user as illustrated in Figure 3.3a and collects the contextual data aforemen-
tioned. Similarly to the work in [Olejnik et al., 2017], we cache the answer for 30
minutes, thus returning the same answer for the given app and permission group
for this duration, in order to avoid warning fatigue [Felt et al., 2012]. The per-
mission icon and permission description are obtained directly from the Android
operating system, so as to not bias the response. To avoid breaking function-
ality, NPM does not handle permission requests from system apps, letting the
Android native permission manager handle those.

3.1.3 Dataset Sharing and Ethics
Due to the limitations in existing datasets, we make an anonymized version
of our dataset available to interested researchers [Mendes, 2021a]. All share-
able data is stripped of identifiable information. Specifically, application names
are removed and package names are one-way hashed with random salt, calen-
dar events are reduced to flags that indicate whether the user is at an event,
geographic location was removed (semantic location given by the user in the
prompt is kept), and information about devices in the neighborhood (wi-fi and
Bluetooth) were removed. Our data collection tool, Naive Permission Manager,
is open-sourced and freely available [Mendes, 2021b].

This research was approved by the Ethics Committee, Department of Computer
Science and Technology, University of Cambridge, and by the Ethics Commission
of the Faculty of Sciences and Technology of the University of Porto.

3.2 Exploratory Data Analysis
As described, our data falls in three different sets: static data, which contains
the application list of each participant, and the corresponding permission set-
tings; permission requests data, which is the runtime permission data and
respective context collected from the permission prompts; and the question-
naire data, the anonymous responses to the survey described in Appendix B.
The following sections provide a preliminary characterization of the dataset by
exploring each of these sets. Specifically, we start by analyzing the responses
to the questionnaire in Section 3.2.1, which serves as motivation for the devel-
opment of better automated and ideally context-aware approaches to privacy
enforcement. Section 3.2.2 describes the static data set. Finally, Section 3.2.3
provides an in-depth discussion on privacy decisions using the permission re-
quests data set, with a particular focus on the grant result, that is, whether the
user allows or denies permissions and user expectations.
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3.2.1 Questionnaire Data
As aforementioned, at the end of a campaign, and after handing the reward, an
email would be sent with a link to an optional and anonymous questionnaire to
collect some feedback on the experience of the campaign. Appendix B presents
these questions, and below we examine the answers.

From the 48 participants that answered the questionnaire, 11 (22.9%) considered
the default Android permission manager enough to manager permissions, 14
(29.2%) were on the fence and 23 (47.9%) said it was insufficient. Additionally,
38 (79.2%) were highly surprised (at least 4 on a scale from 0 to 5) with the
number of requests made from apps that were intercepted by our collection
tool, the NPM. Some of these participants (41 out of 48) expressed concerns
about specific apps requiring permissions such as access to the microphone and
location, potentially due to the misalignment between app functionality and the
requested permissions. Other participants thought it was strange that apps were
requesting permissions when they were not being used. However, apps requiring
permissions while running on the background can be a legitimate use case. For
instance, WhatsApp retrieves messages from the server in the background while
requiring the contacts permission to identify the senders of the messages based
on the local contacts. Unfortunately, such actions can be unexpected by users
and could therefore be improved with visual cues in the form of notifications,
for example. This is an example on the dichotomy between expectation and
legitimacy that sees roots in user’s lack of knowledge [Lin et al., 2012; Felt
et al., 2012].

Of these 41 participants that expressed concerns about permission requests, 16
(30%) mentioned the permission PHONE being requested by apps where this
need is not clear for these participants. Examples of these apps are YouTube,
WhatsApp, Instagram, Twitter, and other less known apps. We hypothesize
that most of these apps require the PHONE permission to have access to unique
identifiers, such as hardware identifiers (e.g. the International Mobile Equip-
ment Identity (IMEI)), to allow for cross-app tracking. This functionality is not
obvious to the users as the text in the request only mentions doing and man-
aging calls, but it is made possible by the access to this permission. Confirming
this hypothesis is out of the scope of this work as it would require code analysis.
Nevertheless, this result might be a good indication that Android should create
a new permission related to the access to unique identifiers. In this context it
should be noted that the Android API is making efforts to limit the access to
unique unchangeable identifiers [Developers, 2022a].

When asked about which contextual data was most important towards permis-
sion decisions the answers were varied. Some participants mention the request-
ing app as the most important information, hinting the relevance of trust in
the developers as discussed in [Bonné et al., 2017], others focused on particular
permissions, some mentioned the semantic location or the activity that they are
performing and one person mentioned the expectation. A common occurrence
however, was the purpose of the access to the resource, that is, the motive why
the app requires the access to the data/resource. This piece of information has
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Figure 3.4.: Relative histogram of the installed non-system apps per category.
The number of installed apps per category is denoted by N.

been shown to be critical in the context of privacy decisions [Shih et al., 2015;
Lin et al., 2014; Liu et al., 2016; Smullen et al., 2020] and for the expectation of
the user [Lin et al., 2012; Wijesekera et al., 2015]. Unfortunately, mobile devices
lack purpose-specific permission control and inferring the purpose is a challenge
in itself as it requires static analysis [Lin et al., 2014] and/or network traffic
analysis [Enck et al., 2014].

3.2.2 Static Data
The static data was collected directly from the participants’ personal phones
and consists in the list of installed apps and respective permissions. From the
93 participants, a total of 30768 applications were installed (3926 distinct), of
which only 5315 (17.27%) (1737 (44.24 %) distinct) are non-system apps. Par-
ticipants had in average 57.2 non-system applications installed, with a standard
deviation (std) of 29.5, and a maximum of 162. Figure 3.4 presents the num-
ber of installed non-system applications per app category, as retrieved from the
play store, and Table A.1 presents the top installed apps per each category. It
is observable from the histogram that TOOLS, PRODUCTIVITY and GAME
are the most predominant type of installed apps in our static data. This result
can a be a consequence of the biased sample of volunteers, in where the majority
of participants were young adult students.

From the non-system apps, an average of 18.23 permissions (std ≈ 16.83) are
declared per application, up to a maximum of 202. However, of the declared
permissions per app, only an average of ≈ 5.12 (std ≈ 3.76) are dangerous
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Figure 3.5.: Average permission status per dangerous permission group and app
category for the static data, showing only non-system applications
and permissions with at least 10 apps. The “N” in the axis labels
and the number in each cell are the number of permissions in the
dataset for the given permission group or app category and for the
pair permission–category, respectively.

permissions, as defined by Android [Developers, 2022b]. Figure 3.5 presents the
average permission status for each dangerous permission group and each app
category of the personal non-system applications. From this plot, it is clear
that most permission groups tend to be in a denied state, and the ones showing
mostly ALLOWED, have a low number of occurrences in the dataset. This is
potentially a consequence of the current Android permission system, in where
a dangerous permission is denied if either the user has explicitly denied it, or if
the permission was never asked [Developers, 2022b]. Therefore, from the static
dataset we cannot know with certainty whether the denies in the static data are
defaults or explicitly set. Additionally, these settings might misrepresent privacy
preferences as users are unaware of intrusive data collection practices [Felt et al.,
2012; Almuhimedi et al., 2015]. Consequently, this data has low utility with
respect to privacy preferences.

3.2.3 Permission Requests Data
From the 93 participants, we collected 2180302 permission requests at an average
of 836.85 requests per day and per participant with a standard deviation (std) of
19.15, or 34.87 (std = 0.8) per hour. These numbers prove that an ask-on-every-
time approach, the ideal privacy choice, is infeasible in practice. Note however,
that this number varies with general phone usage, including the type of installed
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apps. Of the total requests, 65261 (2.99%) were answered by participants, cor-
responding to an average of 25 (std = 0.42) answers per day, per participant.
Permissions not answered by the participant were either answered by the cache,
timeouts or dismissed. Section 3.2.3.1 and Section 3.2.3.2 thoroughly analyze
the grant rate and user expectancy, respectively.

3.2.3.1 Analysis of Grant Rate and Privacy Violations

From the 65261 answered requests, participants allowed 43263 (66%), while
denying the remaining 21998 (33%); that is, users grant 2 out of every 3 per-
mission requests. These results strongly contrast with the grant rate reported
in [Bonné et al., 2017], where participants allowed 86% of requests. This dis-
parity occurs due to the fact that the data in [Bonné et al., 2017] was collected
from Android’s runtime permission prompts, which only occur when apps have
their permissions denied and are running a foreground activity. However, after
being allowed once, applications can access the resource any time even without
the user being aware, until it is explicitly denied through the phone settings.
Our permission dialog, on the other hand, prompts users on every permission
check, unless the same permission has been answered in the last 30 minutes
as previously explained, including from background apps, regardless of whether
they previously had the permission allowed.

Figure 3.6 presents the distribution of the grant result per user. From the plot
we can already observe that there are widely distinct users regarding privacy
preferences. Namely, there are users that allow all permissions, which corres-
pond to users with only a green bar, and users that deny (almost) all requests,
thus having only a red bar. Finally, there are users in between, corresponding
to users with more selective privacy choices. This selectiveness can depend on
the category of the requesting app, the requested permission and even the cir-
cumstances (context) of the request. Below we explore the grant result under
these different aspects.
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Figure 3.7.: Average grant result for each pair of category-permission. The num-
ber in each cell is the number of requests for the respective pair
category-permission group, and GR is the grant rate for the re-
spective category or permission. Categories and permissions with
less than 10 requests were removed.

To have a holistic view on which permissions are allowed Figure 3.7 presents
the average grant rate, i.e. the percentage of allowed permissions, per category
(y axis) and per permission group (x axis), where dark green corresponds to all
permissions allowed and dark red to all permissions denied. From the plot we
can observe that the majority of categories have grant rates in the interval of
[45, 75]%. However some categories present grant rates of over 80% or closer to
0%, but the number of requests from these type of apps is rather small. The
exceptions to this observation with a considerable number of requests are the
WEATHER category, where 93% of the 370 requests were allowed, and GAME
(730) and VIDEO_PLAYERS (2413) where almost 80% of requests were denied.
It is possible that these latter categories see most of their requests denied be-
cause the permissions are not necessary for their primary functionality, which
typically leads users towards denying [Bonné et al., 2017]. For instance, some of
the requested permissions from apps in the GAME category, such as PHONE,
MICROPHONE and CONTACTS are not intuitive with respect to the function-
ality of this type of apps. This is also true for VIDEO_PLAYERS that request
access to the LOCATION or CONTACTS. As for the grant rate per permis-
sion group, the rate is near the interval of [45, 85]%. CAMERA, STORAGE
and CALENDAR permissions are allowed over 80% of the time, which might
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Figure 3.8.: Pearson correlation coefficient for the grant result and expectation
with all other features, where categorical features are one-hot en-
coded, requests with UNKNOWN expectation value removed and
coefficients in the interval of ]−0.1, 0.1[ are omitted.

indicate that when apps request these permissions, there are contextual cues or
a clear necessity that lead users to allow.

Changes in the context can also influence privacy decisions, due to privacy’s
contextual dependency [Acquisti et al., 2015]. To assess the importance of each
collected feature in the grant rate, we present the relevant Pearson correlation
coefficients in Figure 3.8 and the mutual information gain in Table C.1b between
the grant result and all other features. Categorical features were one-hot en-
coded, for this purpose. Both the correlation coefficient and information gain
appoint user expectation as having the strongest relation with privacy decisions.
Due to this relevance, the analysis of user expectation is given in Section 3.2.3.2
and in the reminder of this section we focus on the relation between the grant
result with the other features. After the expectation, the most importante fea-
tures according to the information gain and Person correlation coefficient are
some permissions and app categories, the visibility of the requesting app (is-
RequestingAppVisible), the location of the user (selectedSemanticLoc) and the
network status. The following subsections analyze the grant result with respect
to each of these latter three contextual features, and finally compare our users’
privacy decisions with the default Android 9 automated permissions.

Visibility of the Requesting Application Previous work [Wijesekera et al.,
2015] has identified the visibility of the requesting app has one of the most
important contextual feature guiding users towards allowing or denying a per-
mission request. Follow up work from the same authors [Wijesekera et al., 2017;
Tsai et al., 2017] focused on this feature towards predicting the grant result.
However, contrary to their conclusions, their feature analysis revealed that the
visibility of the application was the feature with the lowest information gain, as
can be seen in Appendix A and Appendix B of [Wijesekera et al., 2017]. In our
dataset the information gain is almost 8 times higher (c.f. Table C.1b). How-
ever, from the 65261 answered requests, users allowed 68% of requests coming
from visible apps and 62% of requests from background apps. This discrepancy
is lower than anticipated, which signals that the visibility of the requesting app
as a single feature has in fact a low impact in the grant result.
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Figure 3.9.: Grant rate for each permission and whether the requesting app was
foreground (visible) or background. The “N” is the number of re-
quests per permission and “FR” the foreground ratio, that is, the
percentage of requests that came from apps that were visible to the
user at the time of the request.

While the overall grant rate between foreground and background requests varies
little, this rate can strongly depend on the pairs visibility-category of the request-
ing app and visibility-requested permission. Figure 3.9 presents the grant rate
for each permission and each visibility of the requesting app. From this plot we
observe that CONTACTS, CALL_LOG and LOCATION requests are allowed
equally regardless of the visibility of the requesting app. STORAGE, SMS,
MICROPHONE, CAMERA and CALENDAR are more often allowed when re-
quested from the foreground than from the background. Finally, the PHONE
permission is the only permission that is more often allowed from the back-
ground. We have have no justification for this latter result as a limitation of the
dataset is not collecting the reasoning for some privacy choices [Mendes et al.,
2022a]. Similarly, figure 3.10 shows the grant rate per app category and per vis-
ibility requesting app, were one can observe the disparity depending the different
visibility values in most categories. Thus we conclude that while the visibility of
the requesting app alone has low impact on the privacy decision, which contrasts
previous findings [Wijesekera et al., 2015], the combination with other features
such as the permission and category might improve prediction performance. We
further examine this correlation in Section 3.3.1 when evaluating the relevancy
of each feature in the performance of a predictor of the grant result.

User Location and Network Status Contrary to the visibility of the re-
questing app, which describes the context of the phone, the location and net-
work status relates to the context of the user. We saw a strong variation in the
grant rate depending on these two latter contextual features. Below, we start
by analyzing each of the features separately and then join them as they are also
correlated.

According to the information gain in Table C.1b, user location has some impact
on the grant result. Looking at the grant rate, users allowed 65% of requests
while at home, 85% while traveling, 74% while at work and 57% in other loca-
tions. This variance is relevant, specially for when the user is traveling, where
they accept almost 9 out of 10 requests. There are two main reasons for the ob-
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Figure 3.10.: Grant rate for each category and visibility of the requesting app.
The “N” is the number of requests per permission and “FR” the
foreground ratio, that is, the percentage of requests that came from
apps that were visible to the user at the time of the request.

served variances in the grant rate for each location: privacy preferences vary with
the user location; and the application usage also varies with each location.

As shown in Figure 3.7, different app categories have varied grant rates. There-
fore, if the user uses different applications in different locations, it is expected
that the grant rate also varies implicitly. Figure 3.11a presents the relative ap-
plication usage in percentage given by the applications in the foreground, per
semantic location, for the full dataset. The relative usage is made per loca-
tion, such that a fair comparison between locations is achieved, as the dataset is
strongly skewed towards the home location. From the plot we can observe that
COMMUNICATION, SOCIAL and TOOLS are the most used apps regardless
of the location. Additionally, we can clearly see that there are some trends in
the type of application usage and the location of the user. Specifically, SOCIAL
and VIDEO_PLAYERS apps seem to be predominantly more used at home
than in other locations. TRAVEL_AND_LOCAL, PHOTOGRAPHY, PER-
SONALIZATION and MUSIC_AND_AUDIO are more used when travelling,
which is expected except for the PERSONALIZATION category, while TOOLS
are less used when travelling when compared to the other locations, which is
also intuitive. Finally, both MAPS_AND_NAVIGATION and LIFESTYLE
see a stronger usage when travelling. However, the use of this type of apps
was strongly impacted by the COVID19 mobility restrictions, thus presenting a
small overall usage. To conclude, the correlation between the location and the
grant result can be explained not only because of personal preferences in each
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Figure 3.11.: Relative app usage as measured by the relative number of requests
in where app from each category were in the foreground. Values
inferior to 0.1% were removed from the plot to simplify visualiza-
tion.

location but also due to the types of apps that are used in each context, which,
as we have seen in Figure 3.7, can have diverging overall grant rates.

Similar conclusions can be made for the network status. From the answered
permission requests, 1856 (2%) were captured while the phone was disconnec-
ted, 20591 (20%) while connected to a metered network and 80084 (78%) while
connected to a non-metered network. These numbers indicate that most people
are continuously connected to the Internet, although some impact of COVID19
travel restricts can influence this result. The user allows 77% of permission
when using a metered network, 64% when using a non-metered network and
only 47% when offline. Again, this discrepancy is relevant, as also highlighted
by the information gain from Table C.1b. However, and similarly to user loc-
ation, the network status is an indication of the context of the user, which in
turn influences the apps that are used.

Figure 3.11b presents the relative app usage per category given by apps
in the foreground for each of the network status. We can observe that
TOOLS and PRODUCTIVITY apps are mostly used while offline, while
COMMUNICATION and SOCIAL are mostly used online, which is expec-
ted. PHOTOGRAPHY, PERSONALIZATION, MUSIC_AND_AUDIO and
MAPS_AND_NAVIGATION are mostly used in a metered connection, which
as we have seen from Figure 3.11a, are typically used when travelling. Simil-
arly, TRAVEL_AND_LOCAL sees most use in this location, nevertheless it
also presents significant use when disconnected. From these observations we
conclude that user context, which is partially described by their location and
the network status, influences the type/category of applications that are used
and therefore the apps that request permissions at these times. In other words,
the category of the requested app and the required permission encapsulate con-
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Count Location Count (%) Grant Rate (%)
Location Network Status
Home DISCONNECTED 923 1.69 41.93

METERED 6600 12.11 74.71
NOT_METERED 46997 86.20 63.61

Other DISCONNECTED 129 5.81 51.16
METERED 1273 57.34 59.15
NOT_METERED 818 36.85 55.87

Travelling DISCONNECTED 128 3.12 68.75
METERED 3423 83.39 85.83
NOT_METERED 554 13.50 83.57

Work DISCONNECTED 126 2.85 59.52
METERED 2433 55.10 81.38
NOT_METERED 1857 42.05 66.34

Table 3.1.: Number, relative count and grant rate of permission requests per se-
mantic location and network status. The grant rate is the percentage
of permissions allowed for each pair of location–network status.

textual information that, while potentially insufficient to describe user context,
give clues about the state of the user.

As aforementioned, either location, network status or even both are insufficient
to effectively describe the variance in the grant rate. For instance, within a
single location, the grant rate varies for each network status and vice-versa.
Table 3.1 presents these values for each pair of location-network status. The first
observable result from this table is that the location of the user and the network
status are strongly correlated. Looking at the “Location Count (%)”, both
home and traveling locations have predominant network status. Specifically,
when the user is at home, unmetered connections are used over 86% of times,
while when traveling, metered connections are used 83% of times. At work
and other locations, the connection status is more balanced between metered
and unmetered connections. However, these latter ratios might vary greatly
with each individual. Finally, while some previously mentioned trends endure,
the grant rate strongly varies for each pair of location-network status. For
instance, the highest grant rate in any location is when the user is using metered
connections and the lowest is when the user is disconnected. However, under
metered networks for instance, if the user is travelling, over 86% of requests are
allowed, but if the user is at a location other than the specified three, the grant
rate lowers to 59%. These observations allow us to conclude that while location
and network status are related, both give contextual cues, even if in the form
of the apps that are used in such contexts. In turn, these cues can be leveraged
by a predictive model towards automating privacy decisions. Section 3.3 details
this endeavour.

Comparison with Android 9 Permission Manager It is possible to assess
the number of privacy violations of the default Android Permission system. Spe-
cifically, we can measure the number of requests that would have been allowed
by Android’s permission manager but instead were denied by the user, as after
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being accepted once the permission is generally allowed. We do so by counting
the number of requests for each pair of app–permission that were denied after
being accepted once. From the 65261 user answered permissions, 9950 (15%)
were denied by participants that would have otherwise been allowed by Android
9 permission manager. Note that while this number seems rather small, this
corresponds to privacy violations 15% of time. Additionally, due to the fact that
the default Android permission manager would prompt a request until the user
allows a permission for each specific app, achieving this violation rate with an
Android system would require users answering an average of 129.5 permission
prompts (median of 64). The privacy violation ratio is identical to the results
from [Wijesekera et al., 2017] (from their table III, 15.39% would be wrongly
allowed). However, the number of prompts is significantly different, as we saw
a median of 64 prompts per user, whereas [Wijesekera et al., 2017] reported
12.34. This disparity is justified by the fact that their work came before the
introduction of runtime permissions in Android, and therefore the set of dan-
gerous permissions that the authors considered differs from our set, the default
Android dangerous permissions.

3.2.3.2 Analysis of the Effect of User Expectation

The strongest correlation with the grant result, that is, the privacy decision to
either accept or deny the permission, is user expectation with a coefficient value
of 0.57, as evidenced in Figure 3.8. Similarly, the strongest information gain to
the grant result is the expectancy, as illustrated in Table C.1b. This relation can
be further analyzed by looking at the distribution of the grant result for each
expectation value, which can be EXPECTED, UNEXPECTED or UNKNOWN,
where this latter value corresponds to when the user was unsure whether the
request was expected or unexpected. Specifically, when users expect a request,
they allow it 92% of the time, while allowing only 38% of the requests that are
unexpected. When in doubt, the user accepts 2 out of 3 (≈ 67%) requests, which
is inline with the global grant rate. These results indicate that developers should
explain the rationale behind permission requests, a possibility implemented since
Android 6.0 and iOS6, that has been shown to help with privacy decisions [Tan
et al., 2014], yet it is still largely unused in practice [Liu et al., 2018b].

From the 65261 user answered requests, 52% were EXPECTED, 46% were UN-
EXPECTED and the remaining 2% were UNKNOWN, that is, the participant
was unsure whether the request was expected or unexpected. In other words, al-
most half of requests are unexpected. This result reveals a strong misalignment
between app practices and the expectation of users, and therefore calls for more
transparency from app developers, as an informed user is a comfortable user [Lin
et al., 2012], and endorses the use of the minimum required permissions for the
functionality of the app.

Similarly to the grant result, user expectation varies for each category and
each permission. Figure 3.12 presents the average expectation for each pair
of category-permission and the grant and expected ratios, where the latter is
the percentage of EXPECTED requests, for each category and permission. It is
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Figure 3.12.: Average expectation for each pair of category-permission, with re-
quests with UNKNOWN expectation removed. The number in
each cell is the number of requests for the respective pair category-
permission group and ER and GR are respectively the expected
ratio (percentage of requests that were expected) and grant rate
for the respective category/permission. Categories and permissions
with less than 10 requests were removed.

clear from the plot that some pairs of category-permission are often expected,
such COMMUNICATION-STORAGE, while others are often unexpected, such
as GAME-PHONE. In fact, the PHONE permission sees the lowest expected
ratio from all permissions at only 22.3%, closely followed by the CALL_LOG
permission with 23.6% of expected requests. Our reasoning for these low values
lies on their lack of understanding surrounding these two permission groups.
The CALL_LOG permission group was created in Android 9 by moving some
of the PHONE permission to the former group. At the time of the study it is
possible that some users did not have Android 9 in the personal phones and were
therefore first exposed to this permission group during the campaign. Further-
more, the PHONE permission allows not only checks on the phone state, but
also to make and manage calls and even access unique identifiers3, functional-
ities that might not be evident to the user. In fact, previous work [Felt et al.,
2012] showed that less than 5% of 85 respondents correctly identified the func-
tionality of READ_PHONE_STATE, a permission within the PHONE group.
Almost as low in the expectation ratio as the PHONE and CALL_LOG, comes

3Access to unique identifiers is now restricted since Android 10 [Android Developers, 2019].
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the SMS permission with less than 30% of requests expected, as illustrated in
Figure 3.12. Contrary to the other two permissions, the functionalities allowed
by the SMS group are arguably clearer [Felt et al., 2012]. A possible reason-
ing for this low expectation lies in the number of SMS requests that originate
from the background. Only 28% of these requests (c.f. in Figure 3.13) originate
from apps that are visible to the user, making the user unsure on the need for
these requests. It is possible that the functionality provided by this permis-
sion group is not worth for the user. Confirming this would require a survey.
However, the sensitivity of the SMS and CALL_LOG groups has led Google to
restrict their usage to the default SMS/Phone/Assistant handler or as core app
features [Google, 2018].

Finally, we should note that permission prompts from the Android system do
not allow the user to distinguish the different permissions within a given group.
That is, if an application requests a permission to read a resource such as the
SMSs, contacts or calendar or requests a permission to write the resource, the
same permission request would be prompted to the user. The read permission
can be more sensitive from a privacy perspective as it can allow for an app to
access all messages or contacts, but the write permission can for instance, incur
in costs, such as sending messages. Regardless of whether the user is aware of
these implications, a finer grained management over the permissions, instead of
only at the permission group level, would potentially improve the perception for
the requirement of the app and increase privacy controls. We leave for future
work the implementation and evaluation of such system.

In contrast with the limited influence of the visibility of the requesting app in
the grant result as discussed in Section 3.2.3.1, our data reveals that the ex-
pectation is influenced by it, as showcased by a correlation coefficient value of
0.24 in Figure 3.8. Particularly, approximately 60% of requests originating from
a foreground app are expected, whereas only ≈ 34% are expected from back-
ground apps, that is, 2 out of every 3 requests originating from background apps
are unexpected. This ratio greatly varies between the different categories and
permissions, were the values for the latter are illustrated in Figure 3.13. From
this plot we observe that for any permission, it is more likely to be expected
when requested from a foreground app than from a background app. Addition-
ally, most requests for both SMS and CALL_LOG permissions come from the
background, where in these situations, less than 20% are expected, while STOR-
AGE, MICROPHONE and CAMERA were requested from the foreground over
80% of times, where the expectation ratio in these cases was over 60%. It should
be noted that while visibility is important in user expectation, which in turn is
strongly related to the grant result, the effect of the visibility in the grant result
is low, as previously highlighted. The reason for this is that visibility has a 0.24
correlation coefficient with the expectation and the expectation has a correlation
of 0.57 with the grant result, of a maximum of 1. Therefore, these values justify
that the correlation of the visibility in user expectation is not transitive to the
grant result.

Privacy expectations can be highly subjective due to the imperfect mental model
(knowledge) that each individual has about the functionalities of apps [Lin et al.,
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Figure 3.13.: Expected ratio per permission group and visibility of the requesting
app. The “N” is the number of requests per group and “FR” the
foreground ratio, that is, the percentage of requests that came from
apps that were visible to the user at the time of the request.

2012]. An open question however, is how much influence does expectation have
on privacy decisions. Our results showed than in general expected requests are
allowed and unexpected requests are mostly denied. However, this can differ for
each participant. Figure 3.14 presents the average grant result per expectation
value, for each user. In this plot, users are represented by their ID on the x axis,
while the respective average grant result is presented as a colored bar for each
expectation value on the y axis. The color ranges from dark red, if the user denies
all requests, to dark green if the user allows all. For example, the user with ID 22
mostly rejects requests independently of whether they are expected or not, while
the user with ID 61 allows all expected and unknown requests, while denying all
unexpected ones. From this plot we observe that the importance of expectation
greatly varies with each individual. There are users whose privacy decisions are
uncorrelated with their expectations. In the plot, these are the users with similar
color bars for any expectation values, and we see examples of users that allow
all (all green), deny all (all red) or allow or deny selectively (all orange/yellow).
Then, there are people that deny most or all unexpected requests but allow
most or all expected, as can be seen by the green bar in expected requests and
red/orange in unexpected. These are individuals whose privacy decisions closely
follow their expectations and correspond to the majority. Finally, there are
participants in between the previous two extremes, which take into consideration
the expectation as well as other variables, such as the visibility, the category
or requested permission. In summary, while the importance of expectation in
privacy decisions varies for each user, the majority acts in accordance with their
expectations, as highlighted from the strong correlation in Figure 3.8 and now
confirmed in Figure 3.14.
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3.3 Automated, Personalized and Context-Aware Privacy

The exploratory data analysis in the previous section has confirmed existing
problems with current permission managers, and uncovered new findings. To
summarize the main insights, the number of hourly resource accesses made by
installed apps (an average of 35) proves the unfeasibility of asking the user on
every use, and thus motivates the need for automation. In fact, almost 80% of
our participants were surprised by the number of requests and only 23% of our
participants expressed that the Android 9 permission manager was sufficient to
effectively manage permissions. Moreover almost 50% of requests were unexpec-
ted by users, thus showing a strong misalignment between apps practices and
user expectations. Our analysis further showed that the Android permission
manager would incur in a violation of privacy in 15% of times. This is due to
the fact that privacy decisions vary with changes in context and with personal
preferences within each context, which the current permission manager is ob-
livious. These findings incite further research on smart automation of privacy
preferences, particularly through personalization and context-awareness.

In this section we leverage the previous analysis and conclusions towards devel-
oping a personalized and context-aware permission manager. Specifically, we
build on previous approaches on automated privacy enforcement by developing
machine learning models that are able to automate privacy decisions [Olejnik
et al., 2017; Liu et al., 2016]. However, we differentiate ourselves by considering
and evaluating the impact of contextual features and user expectation both on
the development of the privacy profiles, i.e., we develop context-aware profiles,
and on the prediction of privacy decisions. Section 3.3.1 details and evaluates
this endeavor. Finally, contrary to contextual features, such as the visibility of
the requesting app or the network status, user expectation is not available in
the prediction phase without asking for it to the user. As discussed, we seek to
minimize user input. Therefore, in Section 3.3.4 we propose a two step approach,
where we first estimate the expectation of the user, and then use such estimate
to predict the privacy decision.

3.3.1 Predicting Privacy Decisions
The methodology for training a classifier to predict the grant result is as follows.
From the collected permission decisions and respective contextual information,
we normalize all and one-hot encode the categorical features, such as the request
permission and category of the requesting app. We then start by analyzing the
performance of a global predictor in Section 3.3.2, that is, a predictor that uses
the input features to output the decision to allow or deny a request, while treat-
ing each user equally, i.e. without personalization. This evaluation is performed
by first selecting the best predictor (model) and respective parameters through
a cross-validated grid-search, followed by an evaluation of the best feature set
to use in the prediction. We resort to the F1 score metric to compare the per-
formance with previous works and to the Area Under the Receiving Operation
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Curve (ROC AUC) as performance indicator, as the F1 score presented some
misleading results as detailed in the referred section. The global predictor is
then used as baseline comparison to the personalized predictors in Section 3.3.3,
in where for the personalization we resort to the use of the privacy profiles as an
additional feature in the prediction. However, one can consider different feature
sets (tuples) for the creation of profiles and for predicting of the grant result
with the profiles. Therefore, to evaluate the combination that leads to the best
performance, Section 3.3.3 presents the results for all considered combinations
of feature sets for the creation of the profiles and all considered feature sets for
the prediction. All considered feature sets were based on their importance in the
grant result as analyzed in the previous section. Finally, Section 3.3.3 further
presents the privacy violations incurred by the best predictors, while contrasting
them with the violation rate achieved by the Android permission manager with
our dataset.

3.3.2 Global Prediction
Since there is no a priori best classifier to predict privacy decisions, we ex-
perimented using a grid-search with models from the literature. Specifically,
Support Vector Machines (SVM) with linear [Liu et al., 2016; Olejnik et al.,
2017; Wijesekera et al., 2018] and Radial Basis Function (RBF) kernels, de-
cision trees [Olejnik et al., 2017], bagging, ada boosting, random forest and a
neural network. Appendix D presents the parameters that were explored in the
grid-search. The best results from the grid-search were similar between the dif-
ferent classifiers, therefore the choice of classifier is not important. Nevertheless,
we picked the best performance: ada boost with a ROC AUC of 0.827 and a F1
score of 0.808, approximately. These results were achieved using 100 decision
trees with a max depth of 1 as base classifiers and with a learning rate of 0.5. The
following results use ada boost as classifier with the specified parameters. We
also focus on the ROC AUC, as the F1 score was misleading. Specifically, using
the mode as output resulted in an F1 score of 0.8 (close to the best performance)
but in a ROC AUC of 0.5, which is the same value as a random classifier would
achieve.

A 5-fold cross-validated feature forward selection by the ROC AUC with one-hot
encoding of the features selects the expectation as the most important feature,
followed by some permissions and categories. The performance plot as a func-
tion of the selected features is displayed in Figure 3.15. The visibility of the
requesting app is selected as the seventh most important feature. However, the
visibility is highly correlated with the expectation, as previously discussed, and
thus, this cumulative forward approach fails to account for individual feature
importance.

To better evaluate the importance of features, we have considered some feature
set variants based on the analysis provided in Section 3.2.3.1 and cross-validated
the performance of the classifier with each variant. Figure 3.16 presents the
obtained performances, in where it is clear that the expectation is the most
relevant feature. In fact, just using the expectation results in an F1 score and
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Figure 3.15.: 5-fold cross-validated feature forward selection, with all features in
the dataset, after one-hot encoding.

ROC AUC of over 0.8. Adding the category and permission to the expectation,
leads to the best ROC AUC (≈ 0.831), even slightly better than when using all
features. Contextual features such as the [V]isibility, [L]ocation and [N]etwork
status added very little or nothing to the category and permission (CP), as can
be seen from the similarity of scores between using CP or any combination of
V, L and N with CP. These results indicate a general lack of importance of the
considered contextual features in the performance of the classifier. However, we
believe that at least in part, this is due to the fact that the category of the
requesting app and requested permission already encode part of the context as
discussed in Section 3.2.3.1. Therefore, the additional information gain added
by the contextual features is either not sufficient, or the classifier fails to account
for them. Regardless, a ROC AUC of over 0.8 is already a good performance for
a classifier that treats all users equally, that is, it fails to account for privacy’s
personal preferences. The next section enhances this approach by providing
context-aware personalization.

3.3.3 Personalized Prediction
The previous prediction performance had no personalization, in the sense that a
single classifier was trained with no feature that indicates personal preferences,
thus treating each user equally. However, personalization has shown to increase
performance [Liu et al., 2016; Wijesekera et al., 2017]. Therefore, in this section
we build privacy profiles following a similar methodology from [Liu et al., 2016]
in order to create personalized and automatic privacy decisions.

Traditionally, privacy profiles are build by applying hierarchical clustering to
each user [Lin et al., 2014], where each user is represented as a tensor where each
cell is the tendency to allow or deny requests for a particular pair of category-
permission. However, our dataset contains additional features that capture the
similarity between user behavior in a more fine-grained way. Specifically, instead
of just using the pairs of category-permission (CP), we can additionally consider
the expectation (E), to form expectation-aware profiles, or other contextual
features such as the location (L) of the user, the visibility (V) of the requesting
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Figure 3.16.: 5-fold cross-validated performance of the ada boost classifier on the
different considered dataset variants. Each variant is a combina-
tion of the following features, which are identified by their first let-
ter: [E]xpectation, [C]ategory of the requesting app, [P]ermission
requested, [V]isibility of the requesting app, [L]ocation, and
[N]etwork status. “All” corresponds to using all features available
in the dataset and “All - E” is all features except the expectation.

app and the network status (N) to form context-aware privacy profiles. Towards
this end we consider the following feature variants for clustering: CP, CPV,
CPE, CPL, CPN, CPVLN and CPEVLN, where each letter corresponds to a
feature as previously described. Furthermore, regardless of how the profiles are
formed, we can use any combination of features in the prediction alongside the
profiles. Therefore, we performed all combinations of clustering with the feature
variants displayed above, with the same feature variants in the predictions plus
all features (“All”) and all features except the expectation (“All-E”). For each
combination of profiling and prediction, the number of profiles was varied from
1 to 9 and only the best results are displayed.

Figure 3.17 presents the obtained results, where the first observable result is
that any profiling with any prediction approach outperforms not using pro-
files, thus confirming previous findings that personalization improves perform-
ance [Wijesekera et al., 2017; Liu et al., 2016]. Secondly, the best overall
results are achieved by profiling only with the category and requested per-
mission (CP). This is partially due to the fact that using more features in
the profiling increases the amount of missing data that needs to be inputed,
therefore potentially biasing the data. Nevertheless, profiling with CPE, that
is, the tuple <category,permission,expectation>, followed by prediction with
all features achieves a ROC AUC of 0.956 or prediction with CPE achieves a
ROC AUC of 0.957, where this latter is the best performance. Similar results
are achieved by profiling with CP and predicting only with CPE, a ROC AUC
of 0.955, approximately. The advantage of this second best result is that less
data is required, specially for assigning the privacy profiles, a step that requires
asking questions to the user and therefore, should be minimized [Liu et al., 2016].
Finally, without the expectation, the best performance is achieved by clustering
and predicting with CP, a ROC AUC of approximately 0.9.
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Figure 3.17.: 5-fold cross-validated performance with privacy profiles built with
different feature sets, or no privacy profiles (“NoProfiles”), followed
by prediction with several other feature sets. The number of pro-
files was varied from 1 to 9 and only the best result is displayed for
each combination of inputs. Each feature set is identified by the
combination of the following features identified by their first cap-
italized letter: [C]ategory, [P]ermission, [E]xpectation, [V]isibility,
[L]ocation, and [N]etwork status. “All” and “All - E” corresponds
respectively to using all features and all features except user ex-
pectation.

The previous results are comparable to the state of the art [Liu et al.,
2016], whose reported F1 score was 0.9 with profiles built with the tuples
<category,permission,purpose>. Our best F1 score is approximately 0.924,
achieved through profiling and predicting with CPE, that is, with the expect-
ation instead of the purpose. Without the expectation, our best F1 score is
approximately 0.88, with profiles using only the pair category-permission and
predicting with the category, permission, visibility, semantic location and net-
work status (CPVLN). However, because the datasets are different, we cannot
say that taking into consideration the expectation results in a better perform-
ance than using the purpose. A natural departure from this work is to combine
both features.

An interesting, yet unexpected result that is also observable from Figure 3.17
is the rather low impact of the contextual features in the prediction. Specific-
ally, if the expectation is not considered, using just the category and permission
often results in the best performance, or very close to this value. This is par-
tially explained by the correlation between the context of the user and the pair
category-permission, as discussed in Section 3.2.3.1. However, we were expect-
ing a stronger influence, particularly the visibility of the requesting app, which
has been found to have a strong influence in privacy decisions [Wijesekera et al.,
2015]. The reason for the low impact of the visibility of the requesting app
is that users allow 68% of visible requests and 62% of background requests, as
aforementioned. This difference might be irrelevant to the classifier. A potential
reason for the low impact of the location is the fact that 84% of requests were
with users at home, owed to COVID19 travel restrictions that were in place at
the time of the campaigns. Due to this skewness, the importance of the location
might be mis-measured. Therefore, we repeated the previous methodology while
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subsampling the home requests to equal the number of work requests. The res-
ults with the subsampled data showed that without profiling, the location feature
slightly increased the performance, but with profiling the results were similar to
the ones obtained in Figure 3.17 and we therefore omit the plots. It is possible
that these contextual features, specially the visibility, have a varying import-
ance depending on the user as some users allow/deny everything regardless of
any feature, while others are more selective. However, profiling with these fea-
tures either failed to capture these personal preferences or the increase in the
missing data deteriorated the results, as increasing the number of features in the
profiling exponentially increases the amount of data that needs to be inputted
for the hierarchical clustering. Towards validating the potential bias introduced
by the inputted data, we build privacy profiles using the K-means clustering al-
gorithm [Sanchez et al., 2020; Ravichandran et al., 2009] instead of hierarchical
clustering, thus not requiring missing data inputation. The performances were
worse in all cases, and thus, we omit such results.

Finally, we can compare the number of privacy violations that these approaches
incur. Privacy violations are defined as permission requests that the user expli-
citly denied, but would otherwise be allowed. As previously mentioned, for the
collected dataset, the Android 9 default permission manager based on runtime
permissions would have violated the privacy in 15.25% of requests and would
have incurred a median of 64 prompts to the user in a period of approximately
a week. A personalized and automated prediction following the methodology
above would require only a few questions to assign the profile [Liu et al., 2016]
and it would result in 6.18% of privacy violations, a 59.5% reduction on An-
droid permission manager, as displayed in Figure 3.18b, where the green bars
present the violation ratio for the best personalized predictors and the dashed
red line is the Android system violation ratio. Without the expectation, the
lowest privacy violation ratio achieved is 11% when predicting with CP, which
is still a reduction of 27.9% when compared to the standard Android permission
manager. Looking at Figure 3.18a, it is interesting to note that automated solu-
tions without privacy profiles, which correspond to the global predictors from
Section 3.3.2, and without expectation, result in a higher amount of privacy
violations than the Android system.

In summary, it is possible to automate privacy decisions with high performance,
specially when taking into consideration user expectation. Contextual features
seem to have a low impact in the performance of the prediction, which we mostly
attribute to the fact that the pair category-permission already partially encode
the context. Furthermore, the achieved prediction model can reduce the privacy
violations in over 50% when compared to the current Android permission sys-
tem based on runtime permissions. However, such system requires knowing the
expectation of the user regarding every request, which we were unable to pre-
dict with sufficient accuracy and would therefore require user input, that should
optimally be minimized. Without the expectation, it is possible to automate
privacy decisions, while reducing the privacy violations by 27.9%. These results
indicate that permission systems can still be enhanced, specially by taking the
expectation of users into account.
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(a) Global Prediction (no profiles).
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(b) Profiles using CP.

Figure 3.18.: 5-fold cross-validated privacy violation ratio of the best perform-
ant predictors for the global predictors 3.18a and the personalized
predictors 3.18b. Each feature is a letter, where C is category, P
is the requested permission, V the visibility of the requesting app
and E is the expectation. The ratio of privacy violations that the
Android permission manager would have incurred is presented as
the red dashed horizontal line.

3.3.4 Predicting User Expectation
A natural improvement to the previous approach would be to predict user ex-
pectation such that we could either use it in the prediction without requiring
user input or to devise an approach that only requests permissions when these
are unexpected by the user. Towards this goal, we followed a similar approach
to the one taken to predict privacy decisions in Section 3.3.1. Specifically, we
experimented with the same combinations of data sets to first build the profiles,
which in this case we referred to them as expectation profiles, and then train a
classifier to predict the expectation with the profiles and every data set.

The best global classifier, that is, the non-personalized approach, for predicting
user expectation was the Random Forest with a ROC AUC of 0.746. With
the expectation profiles, the best achieved ROC AUC was 0.764, obtained with
profiles built with the pair category-permission and predicting with the same pair
of features plus the visibility of the requesting app. This result further confirms
the importance of the visibility of the requesting app in the expectation of the
user. Unfortunately, using this model’s output as an estimation of the user
expectation to then predict privacy decisions, resulted in a worse performance
than predicting the decisions using only the pair category-permission.

One hypothesis for the low performance in predicting expectations is that it can
be quite subjective and dynamically tied with the context, so it is difficult to
capture even when using profiles. Additionally, it is possible that the expectancy
of users varied throughout the campaign. To account for the potential variation
of user expectation, we attempted to predict the expectation using adaptive
learning, where the learning algorithms detect drifts in the classification error as
to retrain the classifier with newest incoming data in response. Towards this end,
we treated the permission request data as streaming data and fed it iteratively
to an incremental classifier, that is a classifier that trains in an online fashion as
more data is fed to it. To detect drifts in the classification performance, we used
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two classical algorithms: the Drift Detection Method (DDM) [Gama et al., 2004]
and the ADaptive WINdowing (ADWIN) [Bifet and Gavalda, 2007]. These two
algorithms are similar as both compute statistics over the stream using dynamic
windows to detect a drift. The major difference lies in ADWIN computing the
averages between every pair of windows up until the current value, while DDM
uses the average and standard deviation between an initial “training” window
and all values of the stream until the current value. The threshold to detect the
drift is statically defined in both cases.

Our results using adaptive learning with the DDM and ADWIN drift detection
methods were slightly inferior than the global prediction counterpart: an average
of 0.723 and 0.724 ROC AUC with the DDM and ADWIN, respectively, where
the global predictor achieved a ROC AUC of 0.746. Therefore, we were unable
to estimate user expectation with enough accuracy for it to be useful when
predicting privacy decisions.

3.4 Limitations and Future Work
The limitations and future work remarks regarding this chapter can be funda-
mentally divided in two distinct topics: the data collection field study, and the
mechanisms towards personalized and context-aware privacy enforcement. The
following two sections detail each of these topics respectively.

3.4.1 Field Study
The data was collected in a set of campaigns spawning from July 2020 up to
May 2021 in Portugal, as displayed in Figure 3.2. This period included periods
of mandatory confinement and recommended remote work, thus limiting the
data collected at each (semantic) location. In fact, both the collected context
and app usage might differ from normal conditions, as both of these aspects are
intertwined, as analyzed in Section 3.2.3. For instance, over 80% of requests
were prompted with the participant at home. We should note that we balanced
the dataset for each location and verified that the insights obtained in this work
hold. We leave as future work any analysis of the impact of the COVID19 in
the data.

Borrowing a campaign phone has the disadvantage of having to configure par-
ticipant applications on the phone. To ease transition and favor using the cam-
paign phone, we installed the participant’s personal apps on the campaign phone
before lending. The advantage, however, is that any person can participate in
our experiments. Using personal phones would be possible, but CM-NPM re-
quires administrator permissions (rooted Android device), which would reduce
the experiment population and bias the dataset towards more tech-savvy par-
ticipants. Unfortunately, due to the COVID19 related difficulties in recruiting
participants, our dataset is still biased towards young adults with technical
backgrounds. Therefore, collecting data from a more diverse population would
improve the data quality. Furthermore, participants were still required to con-
figure their accounts in each app. Due to the short duration of the campaigns,
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some participants might have not configured all apps, potentially limiting the
amount of data collected. Additionally, some sensitive apps, such as financial
apps, might detect that the phone is rooted and refuse to run due to perceived
security issues. We have analyzed the use of financial apps and noticed that 50%
of the users that had financial apps on the personal phone did not use financial
apps in the campaign phone through the campaign. In these cases, participants
might have used both phones, thus reducing the amount of collected data.

To enhance the overall quality of the dataset and ecological validity of the find-
ings we could have collected app usage from the personal phone, although doing
so would require rooted personal phones due to Android’s restrictions. We could
have additionally implement opportunistic surveys to further analyze the reas-
oning behind the expectation and respective privacy choices. We leave these
remarks as learnt lessons for future works.

Finally, a possible addition to our data collection would be to infer the purpose
of the permission request, that is, the functionality of the app that requires
the information that will be collected, should the permission be allowed. As
mentioned in Section 2.3.2, inferring the purpose is challenging, specially in
runtime [Van Kleek et al., 2017; Smullen et al., 2020]. However, the purpose
has been highlighted as a key feature in privacy decisions [Liu et al., 2016] and
could have therefore, complemented our expectation analysis. In fact, it has
previously showed how diverging personal expectations can be depending on
the knowledge about app functionality [Lin et al., 2012].

3.4.2 Personalized and Context-Aware Privacy
In Section 3.3.4 we report our attempts to predicting user expectation, whose
results were insufficient towards improving the prediction of privacy decisions
without expectations. This is an indicator that the expectation can be more
personal and dynamic than the respective privacy decisions. An interesting un-
explored venue is to use more complex learning paradigms, such as deep learn-
ing, that can potentially find more convoluted and/or more subtile relationships
between the features.

An additional enhancement could be to develop or integrate a context model-
ing/inference mechanism. With such approach, instead of using raw contextual
features, we could have a more rich and semantic description of the user context
that could potentially improve the context-awareness of the privacy mechanism.
Some existing approaches and respective limitations have been discussed in Sec-
tion 2.3.2. A potential arising challenge in this integration is the evaluation of
which contextual data type is actually relevant towards privacy decisions. For
instance, it might be irrelevant whether the user is cycling or running, but it is
relevant to know that the user is traveling, as identified in Section 3.2.

Collecting data regarding permission decisions and application usage towards
building automated privacy mechanisms raises privacy issues. Our approach
was centralized, in the sense that a single entity (in this case us) collected all
data, including sensitive values such as the user location or devices in vicinity.
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This requires users to trust the entity that builds these models. A different
approach is to use privacy-preserving distributed learning, in where the models
can be trained without revealing sensitive data even to the entity training the
models. In a master thesis supervised supervised in the scope of this work,
we have proposed a method to use privacy-preserving K-means clustering to
build the profiles, followed by federated learning towards training the prediction
models. Our proposal can be found in [Brandão et al., 2022]. In that line of
work, a natural departure is to develop a monitoring framework towards iterative
and online adaptation of the models and profiles as to continually improve and
further personalize the prediction of privacy decisions. The challenge however
is that such framework should also preserve the privacy of the users.

Finally, privacy decisions in permission managers are generally limited to either
allowing or denying access. This binary decision provides limited control over
the privacy and utility trade-off. The incorporation of obfuscation in permis-
sion managers is an interesting, yet challenging venue, due to the heterogeneity
of data types and corresponding specific obfuscation techniques [Cunha et al.,
2021]. However, these techniques could be integrated in permission managers
for each of the sensitive data types to allow for finer-grained control over the
referred trade-off. An additional challenge that advents from this integration is
to have privacy-preserving mechanisms that adapt to varying contexts. The fol-
lowing chapters delve into this subject focusing on location data, a particularly
relevant data type in the context of mobile devices.

3.5 Chapter Summary
The ever increasing complexity of smart and mobile devices require automation
for effective privacy protection. Replacing the install-time permission model, in
where all permissions were allowed at all times, the runtime permission brought
fine-grained control and in-context permission requests, thus being positively
received by users. However, after being allowed once, requests are in general,
successively allowed without user interaction or even awareness. This automa-
tion steams from the necessity to reduce the user input as to avoid warning
fatigue and or desensitization. Regrettably, the context at which successive re-
quests occur can vastly differ from the context at the time of the first allowed
request. These later accesses thus violate contextual integrity, i.e., they viol-
ate the privacy preferences and expectations of the user under the involving
context.

Automated privacy mechanisms should ideally take into consideration personal
privacy preferences and expectations under each surrounding context, such that
contextual integrity is upheld. This chapter reports our efforts towards such
main goal. We started by performing a field study with 93 participants to
collect permission decisions, the surrounding context and the expectation of
the user regarding each request at runtime. This is the first dataset to collect
user expectations in-situ, and, therefore, we made it available to the research
community.
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From the campaigns questionnaire, less than 23% of our participants repor-
ted the default Android permission manager as being sufficient for managing
permissions, while almost 80% were highly surprised by the number of requests
issued by apps. In fact, the collected data reveals a strong misalignment between
apps practices and user expectations, as almost half of requests are unexpected.
Furthermore, the default Android system would have violated user privacy in
15% of requests, that is, it would have allowed requests that our participants
explicitly denied. These results serve as motivation towards the development of
better privacy mechanisms, and therefore motivate this work.

Ours analysis on the collected data reveals that the visibility of the requesting
app, the location of the user and the network status are important contextual
cues that partially explain the variability of the grant result, i.e., the user de-
cision to allow or deny a permission. In addition, we find that the category of the
requesting app and the requested permission moderately encode user context,
as different apps are used under different contexts. Notwithstanding, privacy
decisions see the strongest correlation with user expectations. In particular,
9 out of 10 expected requests are allowed, while less than 40% of unexpected
requests are allowed. These ratios highlight the importance of explaining app
requirements to the user. However, both the expectation and the importance of
the expectation in the decision are highly personal and context dependent.

Leveraging on the relations between privacy decisions, user expectations and
the context, we develop automated, personalized and context-aware permission
mechanisms for prediction of the grant result. Our results show that by taking
into account the expectation of the user, one can reduce the number of privacy
violations by over 50% when compared to the Android 9 permission manager
based on runtime permissions. Without user expectation, it is still possible to
reduce the privacy violations by approximately 28%.

The automated solution presented in this chapter works with permission re-
quests for any type of data and at data collection (i.e. before the data leaves the
mobile device), thus preserving privacy even against untrustworthy providers.
However, it gives limited control over the trade-off between privacy and utility.
Particularly, allowing a permission request corresponds to having full utility,
but zero privacy. In contrast, denying a request corresponds to having max-
imum privacy, but no utility – assuming that the application does require the
requested permission for a given functionally, which should (but unfortunately
is not) true in all cases. This model prohibits users from using any functional-
ity without losing the maximum privacy and is therefore sub-optimal. Thus, a
natural departure from this work, as highlighted in Section 3.4, is to incorpor-
ate privacy-preserving mechanisms that retain a certain level of privacy, while
allowing the use of a (degraded) service. Regrettably, this type of mechanisms
are data type dependent [Cunha et al., 2021].

The following chapters focus on location data, a data type that is particularly
relevant in the context of mobile devices. Chapter 4 evaluates the privacy impact
of the frequency of location reports sent to a provider. In the use-case of the
smartphone, multiple apps can access the location at different times/contexts, or

— 76 —



CHAPTER 3. AUTOMATED PRIVACY PROTECTION THROUGH
PREDICTION OF PRIVACY PREFERENCES

the same app might have different frequency of reports – for example, retrieving
the closest restaurant might require a single position, while navigating to said
restaurant requires continuously sharing the location. The privacy loss in each
of these cases varies and therefore, the privacy mechanism must adapt to each
situation/context, ideally automatically. Therefore, in Chapter 5 we propose
a novel Location Privacy-Preserving Mechanism (LPPM) that automatically
adjusts privacy and utility as a function of the frequency of location reports
and the user velocity, thus adapting for example, to varying application usage
(device context), methods of transport and road typologies (user context). This
adaptability is paramount for the integration of such solution in a permission
manager, an endeavor that, due to time constraints, is left as future work.

— 77 —





Chapter 4.
Impact of the Frequency of
Reports on the Privacy Level of
Location Traces

Contents
4.1. Methodology . . . . . . . . . . . . . . . . . . . . . . . 82

4.1.1. Datasets Characterization . . . . . . . . . . . . . . 82
4.1.2. Experimental Setup . . . . . . . . . . . . . . . . . 85

4.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2.1. Geolife Results . . . . . . . . . . . . . . . . . . . 88
4.2.2. Cabspotting and Portocabs Results . . . . . . . . . 90

4.3. Limitations and Future Work . . . . . . . . . . . . . 92
4.4. Chapter Summary . . . . . . . . . . . . . . . . . . . . 93

— 79 —



CHAPTER 4. IMPACT OF THE FREQUENCY OF REPORTS ON THE
PRIVACY LEVEL OF LOCATION TRACES

Current permission managers implement binary access policies: the user
either allows or denies apps’ access to the resources. Allowing a per-
mission corresponds to having no privacy and maximum utility, as the

original data is sent to a potential untrustworthy service provider, while denying
corresponds to having maximum privacy and no utility, as the functionality is
lost. Towards improving the status quo, obfuscation techniques can be used in
permission managers to allow for fine-grained balance between privacy and util-
ity in an online fashion, that is, before the data is sent to the collecting entity.
However, and as identified in Section 2.2.3, obfuscation is data type dependent.
Therefore, this and the following chapter focus on location data, a prominent
type of data in the context of mobile devices [Huang et al., 2018].

Mobile devices and ubiquitous connectivity fostered services that take into con-
sideration users’ contextual information. One emergent category of these ser-
vices is the Location-Based Services (LBSs), in which users share their location
to obtain geographically and temporally related information (e.g. finding the
nearest open restaurant). While beneficial to the user, sharing location data
poses a threat to privacy that goes beyond physical safety. In fact, visited loc-
ations can reveal users’ identity, habits, addictions, health conditions and even
social connections [Krumm, 2009; Gambs et al., 2010].

Untrustworthy LBS providers, that may share or publish the data, passive eaves-
droppers and security breaches can cause disclosure of location data thus putting
at risk the privacy of its users. Preserving privacy against this range of attack
vectors requires Location Privacy-Preserving Mechanisms (LPPMs) at collec-
tion time, i.e. mechanisms that run in-device in an online scenario [Mendes and
Vilela, 2017]. LPPMs report an obfuscated version of the exact user location
as to preserve a certain level of privacy at the expense of a degraded quality of
service.

Geo-indistinguishability [Andrés et al., 2013], a formal notion based on differ-
ential privacy [Dwork, 2008] has seen increasing research interest due to its
simplicity of implementation, efficiency and effectiveness [Liu et al., 2018a;
Chatzikokolakis et al., 2017; Hsu et al., 2014]. Geo-indistinguishability guaran-
tees that any two points within a given radius around the user are statistically
indistinguishable independently of an adversary’s background information. Spe-
cifically, the reported (obfuscated) point is generated with (almost) the same
probability for any point within this circle, consequently concealing the exact
location of the user.

Depending on the LBS, location data can be reported either continuously or
rather sporadically [Shokri et al., 2011; Shokri et al., 2011]. This frequency
of reports directly impacts the temporal correlation between subsequent re-
ports which in turn can be used by an adversary to track users over time and
even predict future locations [Liu et al., 2018a; Krumm, 2009; Xiao and Xiong,
2015]. While geo-indistinguishability bounds the amount of disclosure, it con-
siders reports to be independent between each other. In fact, in the context
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of sporadic release of data this consideration has been assumed when designing
LPPMs [Shokri et al., 2011; Oya et al., 2019]. However, there is no formal nor
quantitative distinction between sporadic and continuous reports and thus, the
distinction is often based on the type of LBS application [Shokri et al., 2011].
In this chapter we argue that the consideration of independence depends on the
frequency of reports, even in the context of sporadic reports. Therefore and
to evaluate our premise, we quantitatively study the impact of the frequency
of reports on the achieved privacy level through geo-indistinguishability. The
contributions of this chapter are as follows.

• We evaluate the effect of the frequency of reports in the privacy level of
the Planar Laplace [Chatzikokolakis et al., 2017], a geo-indistinguishable
LPPM, using state-of-the-art localization attacks and a tracking attack
on real datasets. The variation of the frequency of reports is made such
that typical values for both continuous and sporadic are considered as
well as values in between both ends. Results showed that the privacy level
when considering localization attacks is roughly constant over the range
of tested frequencies of reports, while the effectiveness of tracking attacks
decays as the frequencies of reports lowers. These results suggest that the
consideration of independence between reports can be effectively assumed
in the sporadic scenario.

• We evaluate the effectiveness of several values of ϵ, the privacy budget,
in the privacy level of the Planar Laplace against the state-of-the-art
localization attacks. The choice of a privacy budget in differential pri-
vacy, and consequently based approaches such as geo-indistinguishability,
is still an open problem as it strongly depends on the application [Hsu
et al., 2014]. In fact, it has been discussed that the definition of ϵ in geo-
indistinguishability may be misleading in terms of the privacy level [Oya
et al., 2017b]. In contrast with [Oya et al., 2019], our results showed that
the relation between the average quality loss and average adversary error
is only linear after a non-negligible threshold. That is, there exists an
upper bound on the value of the privacy budget necessary to guarantee
relevant privacy protection, which in our setting was ϵ = 4 km−1.

• We assess the effects of the grid resolution, i.e., the size of cells in the space
discretization required by the optimal attacks, in the effectiveness of the
implemented localization attacks. These results show a linear correlation
between the cell width and the average adversary error, and thus sug-
gest that a powerful adversary (with infinite computational power) could
potentially defeat obfuscation. However, increasing the obfuscation (by
decreasing ϵ) decreases the slope of the linear correlation. Consequently,
by increasing the obfuscation, a higher decrease in cell width, and con-
sequently an increase in computational complexity, is required for the
same reduction in the average adversary error.

A previous work [Mendes and Vilela, 2018] has shown that the correlation
between subsequent reports can be explored by an adversary using simple regres-
sion models as estimators. From such results it was concluded that not only does
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the frequency of reports greatly impacts the temporal correlation but also that
the estimation function affects the results significantly. However, the privacy
level evaluation in that work was limited due to the use of simple regressions
as attacks. This work greatly expands those results by providing a quantitat-
ive privacy evaluation with state-of-the-art attacks under both continuous and
sporadic release of location data. While map-aware LPPMs have been proposed
in the literature (e.g. [Liu et al., 2017]) and map knowledge has been used to
reduce obfuscation areas (e.g. [Krumm, 2007]), to the best of our knowledge, we
are the first to consider road network map-matching as a tracking attack.

The remainder of this chapter is structured as follows. Section 4.1 describes the
empirical methodology whose results are displayed and discussed in Section 4.2.
Section 4.3 presents the limitations and future work remarks, and Section 4.4
concludes this chapter.

4.1 Methodology
The main objective of this work is to evaluate the impact of the frequency of loc-
ation reports on the privacy level of a Geo-indistinguishable LPPM, namely the
Planar Laplace (PL) [Chatzikokolakis et al., 2017] described in Section 2.4.2.1.
Towards this goal, we obfuscate the location reports using the PL mechanism
to several sub-samples of real datasets, where each sub-sample corresponds to a
different frequency of reports. Subsequently, we apply state-of-the-art localiza-
tion attacks as to measure the privacy level obtained through the PL mechanism
against possible adversaries. The following sections will describe the datasets
used in this work and detail the carried out methodology.

4.1.1 Datasets Characterization
To evaluate the impact of frequency one must consider both continuous and
sporadic release of data. As previously mentioned there is no formal nor quant-
itative boundary for the frequency of reports that defines what intervals belong
to the continuous or sporadic scenarios. In fact, this distinction is made based
on the type of LBS application [Shokri et al., 2011]. Therefore, and to allow
for tuning the frequency of reports from highly frequent to “sporadic” reports,
we selected three highly continuous datasets: the Cabspotting [Piorkowski
et al., 2009] and Portocabs [Moreira-Matias et al., 2013] datasets, which are
composed of taxi trajectories from the city of San Fracisco, USA, and Porto,
Portugal, respectively; and the Geolife dataset [Zheng et al., 2009], a dataset
of GPS data captured by handheld devices.

The Cabspotting dataset [Piorkowski et al., 2009] contains trajectories from
over 500 taxis navigating in San Francisco Bay Area in a period of 30 days. It
contains not only geo-location collected through a GPS at an average rate of 10
seconds, but also whether the cab is occupied or not. The Portocabs dataset is
composed of trajectories belonging to 441 taxis in the city of Porto, Portugal,
collected over a full year (from 2013/07/01 to 2014/06/30) with a sampling rate
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of 15 seconds [Moreira-Matias et al., 2013]. The Geolife dataset [Zheng et al.,
2009] is a well known repository of GPS traces collected from 182 worldwide
users in the period from April 2007 to August 2012. It contains a total of 18670
trajectories reflecting the movements under a variety of transportation means,
where 91% of these have a sampling rate of 1 to 5 seconds or 5 to 10 meters per
point. The majority of the trajectories lie in Beijing.

While the datasets of taxi mobility are highly continuous, these movements often
have a limited timespan. In fact, most of these trajectories present a timespan
under 1 hour. On the other hand, [Mendes and Vilela, 2018] shows that the
Geolife dataset contains a significant amount of time-gaps between reports, that
is, discontinuities in the frequency of reports. Furthermore, since our tracking
attack is a road network map-matching technique [Jagadeesh and Srikanthan,
2017], only vehicular trajectories can be considered. Consequently, we use the
Cabspotting and Portocabs datasets to evaluate highly continuous reports and
the Geolife dataset in a more sporadic scenario. It should be noted that while
the Geolife is not a sporadic dataset, the continuity of reports allows to fine-
tune the frequency of reports by periodically suppressing points to cover the
full spectrum. Intuitively, this subsampling can be perceived as users in their
quotidian trajectories making sporadic accesses to a LBS.

Our pre-processing for each dataset is as follows:

Geolife since in a sporadic scenario there are no trajectories, we first append
all traces of each user as a single array of locations and subsequently sort
by date. We then filter out locations that fall outside a bounding box
containing the 5th ring road of Beijing as illustrated in Figure 4.1a. This
filtering reduces the space of possible user locations (X ), which in turn
allows for a finer grid for the localization attacks. A total of 65.4% of
points belonging to 179 of the 182 initial users remained after this pre-
processing.

Cabspotting we first limit the trajectories to a bounding box within the San
Francisco peninsula as specified in Figure 4.1b. Then we consider only
trajectories with passenger as to remove cases where the taxi is stopped
waiting for a client. Finally, we select trajectories with a duration of at
least one hour, with intervals between reports of at most (approximately)
2 minutes as to avoid temporal discontinuities between reports. After this
pre-processing, 85 trajectories remained.

After manual inspection of some of these trajectories in the map we were
able to observe that the dataset contains noisy readings. For example,
some GPS locations are reported in the ocean instead of in a bridge. Thus,
to improve the original (noisy) data so as to build our ground-truth, we
apply the MM technique described in section 2.4.3.3 to the original dataset.
This way, we obtain a set of locations in the road network that serves
as our ground-truth to compare against the locations after obfuscation
and being subject to adversary attacks, as illustrated in the diagram of
Figure 4.2. For that, we use the parameters from [Goh et al., 2012], which
uses GPS data and is the work that served as baseline to the development
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(a) Bounding box over 5th ring road of
Beijing used for the Geolife data-
set. Approximately defined from
South and North by the latitudes
39.753, 40.026, and from West
and East by longitudes 116.199,
116.547.

(b) Bounding box over the peninsula
of San Francisco used for the Cab-
spotting dataset. Approximately
defined from South and North by
the latitudes 37.600, 37.811, and
from West and East by longitudes
−122.517, −122.354.

(c) Bounding box over the city of Porto, Portugal, used for the Portocabs dataset.
Approximately defined from South and North by the latitudes 41.0524, 41.257,
and from West and East by longitudes −8.727, −8.456.

Figure 4.1.: Bounding boxes used in this work for each of the three datasets.

of [Jagadeesh and Srikanthan, 2017]. In [Goh et al., 2012] the estimated
standard deviation was σ = 6.86m and they limited the potential locations
si,k to a circular radius of 50m from oi. This discards candidate locations
with low emission probability (c.f. equation (2.16)) and speeds up the
map-matching process. For the remaining parameters we used the original
values from [Jagadeesh and Srikanthan, 2017]: λy = 0.69 and λz = 13.35.
The restriction of the 50m radius around oi produced observations without
candidate points in some trajectories due to both the considered road
network (explained in the following section) and to the noisy dataset.
For these observations, we considered the nearest road network node as
candidate. Furthermore, after manual inspection of the 85 trajectories, we
observed that in some the taxi stays roughly in the same place to which
we attribute to heavy traffic. Consequently, we removed those trajectories
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Figure 4.2.: Diagram of the methodology conducted for the Map-Matching at-
tack.

and ran our tests for the 63 remaining trajectories.

Portocabs following a similar procedure to the one taken for the Cabspotting
dataset, we limit the selected trajectories to a bounding-box containing
the city of Porto, as illustrated in Figure 4.1c. From these trajectories,
we select only the ones that present no missing data, that is, there is
a location report every 15 seconds. Finally, we select the trajectories
with a duration of 1 hour and 1 hour and 15 seconds, as to increase the
number of trajectories. This resulted in 134 trajectories, which after some
manual inspection as performed for the Cabspotting dataset, reduced to
123. To these final trajectories, we perform the same procedure as in the
Cabspotting to obtain the ground-truth data.

The Geolife, Cabspotting and Portocabs datasets can be found in [Zheng et al.,
2012], [Piorkowski et al., 2009] and [Moreira-Matias et al., 2015], respect-
ively.

4.1.2 Experimental Setup
The methodology for the experiments consists in sub-sampling the datasets,
applying the Planar Laplace mechanism described in Section 2.4.2.1 and sub-
sequently apply the localization and tracking attacks from Section 2.4.3. As
explained in the dataset characterization, the Cabspotting and Portocabs data-
sets are more suitable for the map-matching attack due to being highly continu-
ous, present no temporal discontinuities between reports and for being vehicular
trajectories. Consequently, we only apply the localization attacks to the Geo-
life dataset, while executing both localization and map-matching attacks to the
Cabspotting dataset. We use the Portocabs dataset to further validate the map-
matching results.

4.1.2.1 Subsampling

To vary the frequency of reports we subsample the datasets by suppressing
reports such that the interval between consecutive points is at least ∆t. To
contemplate both continuous and sporadic scenarios, several values of ∆t are
considered. For the Cabspotting and Portocabs datasets, we set ∆t = [60, 120,
180, 240, 300, 360, 420, 480, 540, 600] seconds as our highly continuous reports.
Note that in the context of map-matching, the previous values of ∆t are already
considered low sampling rate [Newson and Krumm, 2009; Kubicka et al., 2018].
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For the Geolife dataset we consider a larger range of frequencies and thus set
∆t = [480, 540, 600, 1800, 5400, 16200, 48600, 145800, 437400, 1312200] seconds.
This interval goes from 8 minutes up to 15 days, and thus is comprehensive
enough to encompass both continuous and sporadic scenarios.

4.1.2.2 LPPM

To each dataset subsample we apply the Planar Laplace described in Sec-
tion 2.4.2.1 under multiple values of ϵ. Since map-matching is computa-
tionally expensive, we have used fewer ϵ values for the Cabspotting data-
set. Specifically, for the Cabspotting and Portocabs datasets we have used
ϵ = [16, 32, 64, 128] km−1 and for the Geolife dataset
ϵ = [1, 1.5, 2, 3, 4, 8, 12, 16, 24, 32, 48, 64] km−1. The average quality loss is meas-
ured using equation (2.4).

4.1.2.3 Localization Attacks

Following the methodology from previous literature [Oya et al., 2019;
Chatzikokolakis et al., 2017], we use part of the dataset for training and the
remainder for testing. Thus, and as described in Section 2.4.3, we consider
three types of attacks: optHW, the optimal attack using the training dataset
to build the mobility profile πtrain; omniHW, the optimal attack using the test
dataset to build the mobility profile πtest, which corresponds to an omniscient
adversary; and PEBA as described in Section 2.4.3.2 and using the parameters
from its original work [Oya et al., 2019], with πavg = πtrain. The adversary
error defined in equation (2.3) is used to measure the privacy level against these
attacks.

The considered localization attacks assume the space of exact user locations
X to be discrete. Therefore, and similarly to previous works [Chatzikokolakis
et al., 2017; Shokri et al., 2011; Murakami, 2017], we have discretized the space
for both datasets in a grid of equally spaced cells, where the center of the cell
corresponds to a locationstamp that is common to any GPS observation within
the cell. For the Geolife dataset, the 5th ring road of Beijing was partitioned in
cells of 2000×2000 meters for a total of 17×16 cells. For the Cabspotting dataset,
and for a fair comparison between MM and the localization attacks we measure
the adversary error not as the distance from the estimation x̂i to the center of
the grid xi (as in equation (2.3)), but instead from x̂i to the ground-truth point,
as the tracking attack would naturally consider it. Therefore, we also evaluate
the effect of the grid resolution in the adversary error. This evaluation is done
for the Cabspotting dataset using the subsample corresponding to ∆t = 300s,
to decrease execution time, and several grid sizes composed by squared cells of
[80, 90, 100, 125, 150, 175, 200, 250] m.

The selection of the train/test data partition for the Geolife dataset was done as
follows. We select the users with at least 20 points for ∆t = 1312200 seconds, our
highest ∆t. The test data for each ∆t is then the locations of these selected users.
Using these users ensures that the training data does not contain data pertaining
the victims of the attacks, the same users are present in all subsamples of the
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dataset, and that enough test data is present to allow for profile tuning in the
PEBA attack, even for the sparsest subsample (highest ∆t value). The training
data corresponds to using the locations of all users that were not selected as
testing data for ∆t = 480 seconds, the lowest ∆t. That is, the training data
is the same for all ∆t values. This avoids having poorer results for higher ∆t

due to the sparseness of the dataset. For the same reason, in the OmniHW
attack the mobility profile πtest is also constant for all values of ∆t and is built
with the testing data with ∆t = 480. The mobility profiles πtrain and πtest are
therefore built using respectively 73.4% and 26.6% of the ∆t = 480 subsampled
dataset.

For the Cabspotting dataset we use the 63 trajectories as test set and all remain-
ing trajectories contained within the bounding box from Figure 4.1b as training
data. To be precise, we use 905255 trajectories as training data. However, it
should be noted that, contrary to training a classifier, using all this data as train-
ing data does not lead to overfitting. In fact, this corresponds to an adversary
which has a very precise statistic model of the average mobility profile, or in
other words, a model of how a “normal” individual moves in this area.

4.1.2.4 Map-Matching

The diagram from Figure 4.2 illustrates the methodology taken when using the
MM technique. The “Pre-Processing MM” computes a ground-truth from the
noisy dataset as explained in Section 4.1.1 to which is then applied the sub-
sampling considering the aforementioned values of ∆t. To the subsampled loca-
tions is applied the Planar Laplace (PL) using the described values of ϵ to obtain
the obfuscated reports. Finally, MM is executed on the obfuscated locations to
obtain the adversary’s estimations. To assess the privacy level, we compare the
ground-truth against the adversary estimations using the adversary error from
equation (2.3) and the F1 score from equation (2.21). The parameters σ, λy and
λz for the MM attack were estimated following the original proposal [Jagadeesh
and Srikanthan, 2017]. For the Cabspotting data we used trajectories within
the bounding-box from Figure 4.1b with duration between 1 and 5 minutes with
at least 2km of travelled distance (a total of 6003 trajectories). Equivalently,
for the Portocabs dataset we selected trajectories within the bounding-box from
Figure 4.1c with a duration of 5 minutes and with at least 2.5 km travelled dis-
tance, resulting in 4598 trajectories. For efficiency, and similarly to [Goh et al.,
2012], we only consider candidates points within a radius r which we calculate
using the inverse cumulative distribution function of the Gaussian distribution.
The radius r is computed such that the circle centered at the observation con-
tains the exact location with 90% probability. When this circle contains no
candidates, which can happen due to the use of the LPPM and selected road
network, the nearest road network node is used as candidate. The road network
was obtained from OpenStreetMap using the OSMnx tool [Boeing, 2017] over
the area defined by the respective bounding boxes.
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(c) PEBA

Figure 4.3.: Geolife average adversary error and respective 95% confidence inter-
vals per ∆t for all values of ϵ for the three localization attacks. The
x axis is logarithmic and the y axis and legend are shared between
the three plots.

4.2 Results
This section details the obtained results. A separation based on the dataset is
made, such that Section 4.2.1 details the results using the Geolife dataset, which
focuses the sporadic scenario, and Section 4.2.2 describes the results using the
Cabspotting and Portocabs datasets, the continuous case.

4.2.1 Geolife Results
For the Geolife dataset, only the localization attacks were executed. Figure 4.3
shows the average adversary error per ∆t for all ϵ values and for each of the
three attacks. The first thing we can observe is that the adversary error is
roughly similar for any ∆t. This allows to conclude that the frequency of reports
has no significant impact on the privacy level. This is to be expected since
in contrast with the tracking attack, the selected localization attacks do not
take into account the temporal correlation. Consequently, the consideration of
independence between reports is valid for the sporadic case. We note that while
there are localization attacks which take into account the correlation between
reports, such as [Murakami and Watanabe, 2016], and thus our results with such
attacks could differ, the reported performance in [Murakami and Watanabe,
2016] is significantly lower to the attacks we consider.

Figure 4.3 also shows that omniHW performed better than the optHW attack,
which was to be expected as the test mobility profile is used in the former. At
the same time, the PEBA attack was even better than the omniHW for most
values of ∆t, thus confirming the results of the original work [Oya et al., 2019].
For the two highest values of ∆t this was not the case, which we justify with
the fact that not enough test data was present for PEBA to learn the mobility
profile. Consequently, the PEBA results for these higher ∆t are closer to the
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(c) PEBA

Figure 4.4.: Geolife privacy versus utility for all values of ∆t for the three local-
ization attacks. Each color represents a ∆t value, where the points
are the pair (PAE, Q), which is obtained for a particular value of ϵ.
Dashed vertical lines indicate the epsilon at the empirical quality
loss averaged over all values of ∆t. The solid line represents an ad-
versary using the report as the estimation, for reference. The y axis
and legend are shared between the three plots.

results of the optHW, which is in accordance with equation (2.13).

The last observation from Figure 4.3 is the amount of values of privacy budget
(ϵ) that resolve in near zero average adversary error. Only the lowest 5 of the
12 experimented values of ϵ produced a non-negligible adversary error. For
the setup we considered, values of ϵ ≥ 8 km−1 lead to basically no privacy
protection. Our results indicate that for this setup a maximum value of ϵ = 4
km−1 is needed for relevant privacy protection. As future work we intend to
formulate a relation between the effectiveness of the optimal attack (measured
by the adversary error) and the value of ϵ.

The last results for the Geolife dataset are displayed in Figure 4.4. These results
show the average adversary error PAE as a function of the average quality loss
Q, which corresponds to the performance of an LPPM , for all values of ∆t.
Each color represents a ∆t value, where the points are the pair (PAE, Q), which
is obtained for a particular ϵ. The dashed dark lines illustrate average quality
loss averaged over all values of ∆t for each specific ϵ. The results obtained
in [Oya et al., 2019] showed that the relation between PAE and Q is highly linear.
Looking at Figure 4.4, we observe this to be the case only when PAE > 0, which
as we have seen from Figure 4.3 occurs for ϵ < 8 km−1.

The second result observable from Figure 4.4 is the similarity of the curve for
the different ∆t, which proves again that the frequency of reports has no major
effect on the privacy level using these localization attacks. In fact, it is not
possible to identify a specific ∆t that has highest average adversary error for all
values of ϵ.
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(c) PEBA

Figure 4.5.: Effect of the grid resolution on the average adversary error (and
respective confidence intervals) for each localization attack using the
Cabspotting dataset with ∆t = 300 (to decrease execution time).

4.2.2 Cabspotting and Portocabs Results
The Cabspotting dataset is employed to assess the effect of attacks (both localiz-
ation attacks as well as MM) on the continuous scenario. Since the effectiveness
of the localization attacks is highly dependent on the grid resolution employed,
we start by evaluating the effect of the cell size on localization attacks, as depic-
ted in Figure 4.5. We can observe that for any epsilon and for any attack, there
is a linear correlation between the cell resolution and the adversary error. As the
cells get smaller, so does the average adversary error. Given these results, a re-
sourceful adversary can potentially defeat obfuscation by using a very small cell
resolution. However, it should be noted that as the privacy budget ϵ decreases
(i.e. the obfuscation increases) the slope of the linear regression diminishes. For
example, for the omniHW (Figure 4.5b), a grid of 100m squared cells is required
to get an adversary error of around 75m for ϵ = 16 km−1. For the remaining
values of ϵ (ϵ = [32, 64, 128]) however, a similar adversary error is achieved using
a cell resolution of 250m. That is, increasing the obfuscation also increases the
computational complexity required for an attack. From the user point of view,
the privacy budget ϵ thus additionally relates (with inverse proportionality) to
the computational power that an adversary must employ to compromise user
privacy. While the smallest average adversary error is achieved using the smal-
lest grid resolution (80m), to decrease execution time we opt to use squared cells
of 125 meters for the remainder of the results. This corresponds to a total of
189 × 115 cells over the peninsula of San Francisco.

Figure 4.6 shows the average adversary error per ∆t and for all ϵ values for
the MM and the localization attacks (optHW, omniHW and PEBA). Similarly
to the results obtained for the Geolife dataset, we can observe that the aver-
age adversary error is similar for any ∆t, which does not reveal the effect of
the frequency of reports. Another relevant result from Figure 4.6 is that the
adversary error in the map-matching is lower than the localization attacks in
all epsilon values. However, as the obfuscation increases the difference in the
adversary error between MM and the localization attacks diminishes. This is
due to the fact that the localization attacks take into consideration the use of
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Figure 4.6.: Cabspotting average adversary error and respective 95% confidence
intervals per ∆t for all values of ϵ for the MM technique and the
three localization attacks.

the LPPM and hence, the localization attacks surpass the MM performance for
higher obfuscation or for a smaller grid resolution. Notwithstanding note that
the adversary error is not an effective privacy metric for tracking attacks. In
fact, the adversary error can be close to or even zero and the F1 score can also be
zero. This extreme case occurs, for instance, when between two exact locations
the matched trajectory and the true trajectory only overlap in those two points,
that is, the trajectories are disjoint except in the end-points.

To assess the impact of the frequency of reports in the privacy level of geo-
indistinguishability, Figure 4.7a presents the effect of the privacy budget ϵ in
the F1 score. It is visible that varying the value of ϵ has more effect when
higher sampling rates (i.e. lower values of ∆t) are employed. As the frequency
becomes smaller (larger ∆t values), there is fewer correlation between points,
which naturally harms the efficacy of MM, irrespectively of the ϵ value employed.
This indicates a relevant trade-off between the value of the privacy budget ϵ
of geo-indistinguishability and the sampling frequency, in where lower values
of ϵ can cause more obfuscation, thus possibly compensating higher frequency
rates.

Comparing our results with those of the proposal of the MM tech-
nique [Jagadeesh and Srikanthan, 2017], it is clear that our F1 scores are signi-
ficantly lower. The two main differences that can be the source for this disparity
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(a) Cabspotting dataset.

60 12
0

18
0

24
0

30
0

36
0

42
0

48
0

54
0

60
0

t (s)

0.0

0.2

0.4

0.6

0.8

1.0

F 1
 S

co
re

= 16
= 32
= 64
= 128

(b) Portocabs dataset.

Figure 4.7.: Effect of the epsilon and frequency of reports (∆t) in the F1 score
of the MM technique for the Cabspotting and Portocabs datasets.
95% confidence intervals are represented as the vertical lines.

are the dataset and the road network. Our dataset is from San Francisco and
therefore requires the road network from San Francisco, which is significantly
denser than Singapure’s road network and, more importantly, highly symmetric.
Consequently, multiple optimal (shortest) paths might exist between states of
the map-matching leading to a F1 score of zero for these segments.

As aforementioned, to further validate our map-matching results we considered
Portocabs as an additional dataset of highly continuous location reports. Fig-
ure 4.7b presents the results obtained for this dataset. Comparing with the
results obtained for the Cabspotting dataset and illustrated in Figure 4.7a, it
is clear that the same conclusions can be drawn. Specifically, the degradation
of the F1 score with the increase in ∆t (decrease in frequency of reports) and
with the decrease in ϵ. It is observable that the F1 score for this third dataset
is slightly higher than for the Cabspotting case. This difference can be attrib-
uted to the already raised fact that the road network in San Francisco is highly
symmetric, which can produce a relevant number of equally optimal (shortest)
paths between nodes.

4.3 Limitations and Future Work
From the previous results it was possible to conclude that, given our setup, the
frequency of reports does not have a significant impact on the adversary error.
An inherent limitation of this finding is the limited number of attacks considered,
and specifically, tracking attacks. However, we do note that, the choice of this
specific attack was justified by the effectiveness in modelling temporal correla-
tions using hidden Markov models [Xiao and Xiong, 2015; Murakami, 2017]. As
future work, we would like to expand this work by considering other tracking at-
tacks, such as Kalman filtering. Similarly, we would like to consider the effects of
the frequency of reports in LPPMs which take into consideration the correlation
between reports (e.g. [Xiao and Xiong, 2015; Chatzikokolakis et al., 2014; Shokri

— 92 —



CHAPTER 4. IMPACT OF THE FREQUENCY OF REPORTS ON THE
PRIVACY LEVEL OF LOCATION TRACES

et al., 2017]). These type of LPPMs are often output-based as opposed to the
memoryless considered in this work, that is, the previous reports are considered
when reporting the new obfuscated location [Oya et al., 2019]. Consequently,
the frequency of reports should not only impact the attack success, but also the
effectiveness of the privacy-preserving mechanism.

The conducted methodology also had some limitations. For example, the data-
sets are not sporadic, and arguably, subsampling for different values of minimum
interval between reports (∆t) might not necessarily resemble a sporadic data-
set. Nonetheless, to allow for fine-tuning the frequency a continuous dataset is
required. Additionally, and similarly to [Chatzikokolakis et al., 2014], we argue
that such subsample can be perceived as users in their quotidian trajectories
making sporadic accesses to a LBS.

4.4 Chapter Summary
As users report even an obfuscated variant of their location to a Location-Based
Service (LBS), information is being disclosed. The amount of usage of these ser-
vices, or in other words, the frequency of reports directly impacts the correlation
between reports which in turn can be used by an adversary to further degrade
privacy. Geo-indistinguishability has been proposed as a formal notion based on
differential privacy to bound the amount of information released on independent
queries. However, the analysis on how the frequency of queries impacts the level
of privacy in geo-indistinguishability was yet to be made.

In this chapter we analyze the effects of the frequency of reports in the pri-
vacy level of geo-indistinguishability. We evaluate privacy and utility against
state-of-the-art localization attacks and a tracking attack. Results show that
the frequency of reports has low significance in the privacy level in the sporadic
release of data. These results provide practical evidence that the considera-
tion of independence between reports can effectively be assumed in the sporadic
scenario. However, in the continuous scenario, the frequency of reports directly
impacts the effectiveness of the attacks, with high frequencies leading to more
privacy disclosure. In such case, obfuscation degraded the correlation between
reports and consequently the effectiveness of the attack, thus acting as a coun-
termeasure to high report frequencies. Our experiments with several values of
the privacy budget reveal that there is an upper bound that is required for ef-
fective privacy protection, such that values above that threshold will result in
no effective privacy. Moreover, our evaluation depicts a trade-off between the
frequency of reports and the privacy budget of geo-indistinguishability, show-
ing that lowering the frequency or increasing the level of noise (i.e. decreasing
the privacy budget) are effective measures that can be applied independently
against continuous gathering of location data.

Based on these insights, in the following chapter we propose a novel notion
that generalizes geo-indistinguishability to location traces. This notion, termed
Velocity-Aware Geo-Indistinguishability (VA-GI), adjusts the privacy or utility
as a function of the user velocity and report frequency, thus effectively adapting

— 93 —



CHAPTER 4. IMPACT OF THE FREQUENCY OF REPORTS ON THE
PRIVACY LEVEL OF LOCATION TRACES

to varying density of reports, both in the time and space continua. Additionally,
this privacy and utility adjustment is automatic and requires only two user-
set parameters, thus mitigating misconfigurations that can lead to no effective
privacy. Finally, the mechanism can be personalized to a single user or a specific
region, such that the privacy and utility adaptability is tailored to specific driving
conditions and preferences. The described properties of VA-GI are paramount
to the integration of such mechanism in a permission manager as it is desirable
that the LPPM automatically adapts to varying conditions, such as multiple
apps accessing user location or different means of transportation, while requiring
minimal configuration, as a statically set parameter would result privacy or
utility levels depending on situation/context.
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Effective and practical privacy in mobile devices is challenging due to
the continuously changing privacy and utility requirements. The previ-
ous chapter has identified two crucial issues in the context of location

privacy and, particularly, in Geo-Indistinguishability. The first relates to how
the frequency of reports can impact privacy, in where as the frequency increases,
so does the correlation between successive reports that can be explored by an
adversary. In the context of a mobile device, these varying frequency of reports
can result from a single application with both sporadic and continuous modes,
or from all apps accessing location in an asynchronous manner. The second
identified issue is the tuning of privacy parameters in dynamic environments, in
this particular case, in the presence of varying frequency of reports. Specific-
ally, results showed that a poorly set privacy budget ϵ can result in no effective
privacy. These conclusions motivate not only the need for LPPMs that are ef-
fective under continuous reports, a line of research that has recently seen an
increase in interest [Liu et al., 2018a], but also LPPMs that dynamically adapt
to varying contexts, such as different frequencies of reports. This adaptability
should not come as a burden for users and, therefore, mechanisms for automated
configuration of privacy parameters are required.

Adaptations of Geo-Indistinguishability have been proposed to the scenario of
online continuous release of location data [Chatzikokolakis et al., 2014; Al-
Dhubhani and Cazalas, 2018; Cunha et al., 2019]. Such approaches resort to
estimations and distance metrics to evaluate the correlation between reports
and subsequently apply obfuscation accordingly. However, using simple estim-
ators such as linear regressions result in a non-negligible amount of outliers
due to time-gaps in reports, which occur due to failures in the GPS/commu-
nications [Mendes and Vilela, 2018]. Additionally, dynamically adapting the
obfuscation requires additional parameters that a user must configure. This is
often challenging [Kaaniche et al., 2020] and potentially misleading [Clifton and
Tassa, 2013; Lee and Clifton, 2011; Oya et al., 2017b], specially since users are
typically unaware of the privacy risks and privacy-utility trade-offs [Acquisti
et al., 2015]. Moreover, a misconfigured parameter can result in no relevant
privacy protection (c.f. Chapter 4). Therefore, for practical and wide adop-
tion, a largely under-developed aspect in this field, LPPMs should be designed
such that the required user-set parameters are minimal, and can be set in an
automated manner.

In this chapter we argue that the correlation between reports can be estimated
by the velocity of the user and the frequency of reports. Consider the following
example as an illustration of this argument: a user reporting his location every
30 seconds while walking (∼5 km/h) will have a point every ∼ 42 meters. If
the same user was driving in an highway at 120km/h, a point every 1000 meters
would be reported instead. Even though the frequency of reports is the same,
the correlation between points might be lower in the case of the highway, as the
speed of the user is higher and therefore, the points are sparser. A similar (yet
inverse) effect is observed for a constant user speed and varying frequency of
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Table 5.1.: Desired behavior of a velocity-aware LPPM as a function of the velo-
city of the user (vu) and of the velocity of reports (vr). The symbols
↑ and ↓ denote a high and a low value, respectively.

Velocity Desired Result
↑vu ↑vr Balance Privacy and Utility
↑vu ↓vr Favor Utility
↓vu ↑vr Favor Privacy
↓vu ↓vr Balance Privacy and Utility

reports. If the same user in the highway at 120km/h would instead report every
300 seconds (5 minutes), the distance between reports would increase to 10km.
In conclusion, the reports become sparser as the velocity of the user increases or
the frequency of reports decreases. Inversely, the reports become denser as the
user velocity decreases or the frequency increases.

The previous example paired with the degradation of privacy with the increase
in the correlation [Krumm, 2009; Liu et al., 2018a; Xiao and Xiong, 2015] and
frequency of reports from Chapter 4 lead us to the following conclusion. From
the point-of-view of a privacy-preserving mechanism, high frequency of reports
or a low user velocity should be met with an increase in obfuscation, to increase
privacy, and, a low frequency of reports or a high user velocity should be met
with a decrease in obfuscation, as to increase utility. Following these desired
properties, which are summarized in Table 5.1, this chapter proposes a general-
ization of Geo-Indistinguishability for effective and efficient privacy preservation
under online continuous reports. In this proposal, termed Velocity-Aware Geo-
Indistinguishability (VA-GI), the velocity of the user and the frequency of reports
are used to dynamically adapt the privacy and utility level. Building on this
notion, we present a VA-GI LPPM that requires only two user-set parameters,
thus simplifying usability and allowing for wide deployment.

The contributions of this chapter are as follows:

• We generalize Geo-Indistinguishability by taking into account the velocity
of the user and the frequency of reports in a novel notion termed Velocity-
Aware Geo-Indistinguishability (VA-GI).

• We devise a VA-GI LPPM that according to our empirically evaluation
with real trajectories, outperforms previous literature LPPMs regarding
the dynamic adaptability between privacy and utility under different scen-
arios. Moreover, by using mobility data in its parametrization, the pro-
posed LPPM requires only two user-set parameters, thus facilitating usab-
ility and mitigating misconfigurations that can lead to no effective privacy
(c.f. Chapter 4). Furthermore, the considered mobility data for parameter-
ization can be from a specific region or from a single person, thus providing
an adaptability to the environment in which it is applied or personalized
to the user.

• We generalize the VA-GI LPPM for wide deployment through an approx-
imation of the formula for setting privacy parameters using publicly avail-
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able data. We provide empirical evidence on the feasibility and effective-
ness of doing so. Specifically, by using data from one location to formu-
late the LPPM and evaluating such formulation on another dataset from
a different location results in relative differences of the configured privacy
parameters inferior to 10%.

The remainder of this chapter is structured as follows. Section 5.1 formally de-
scribes the notion of VA-GI and presents a VA-GI LPPM. Section 5.2 describes
the experimental setup, whose results are presented and discussed in Section 5.3.
Section 5.4 proposes and evaluates a generalization of the VA-GI LPPM for wide
deployment. Section 5.5 discusses limitations and future remarks and Section 5.6
concludes this chapter.

5.1 Velocity-Aware Geo-Indistinguishability
In differential privacy, the privacy budget ϵ is set in accordance to certain pri-
vacy and utility needs. Specifically, a decrease in the epsilon corresponds to
higher obfuscation, which increases privacy but reduces utility, and vice-versa
for an increase in epsilon. However, setting the value of ϵ is challenging as it
highly depends on the data (or dataset), specially in the presence of correlations
between the data [Clifton and Tassa, 2013; Lee and Clifton, 2011]. In fact, in
the context of location privacy it has been shown that there is an upper bound
on the value of the privacy budget necessary to guarantee relevant privacy pro-
tection [Mendes et al., 2020].

Geo-Indistinguishability, as detailed in Section 2.4.2.1, slightly improves the in-
terpretability and therefore ease the configuration by defining ϵ = l/r, where l
is the privacy loss and r is the radius within up to l privacy loss is achieved [An-
drés et al., 2013]. However, the value of l is still heuristically set and more
importantly, each report is considered independent. From the composability
properties of differential privacy, and hence in Geo-Indistinguishability, the pri-
vacy loss increases linearly with the number of reports. Therefore, this notion
is only suitable for sporadic reports, as previously mentioned.

To solve the privacy budgeting problem under continuous reports, we pro-
pose a generalization of Geo-Indistinguishability termed Velocity-Aware Geo-
Indistinguishability (VA-GI). VA-GI adjusts the privacy and utility as a func-
tion of the user’s velocity and the frequency of reports in accordance with the
desired behavior of a velocity-aware LPPM as described in Table 5.1. For this
dynamic adaptability, we set the privacy budget ϵ as a function of both velocit-
ies. Formally, for each timestamp i, ϵ is set dynamically as:

ϵi := ϵi(vu,i, vr,i) (5.1)

where vu,i and vr,i are the velocity of the user and the velocity (or frequency)
of the reports at timestamp i, respectively. This formulation lead us to defini-
tion 1.
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Definition 1. An obfuscation mechanism K(·) is Velocity-Aware Geo-
Indistinguishable iff for any timestamp i:

dP (K(xi), K(x′
i)) ≤ ϵi(vu,i, vr,i) · d(xi, x′

i), ∀xi, x′
i ∈ X

Definition 1 states that the difference in the output of a VA-GI mechanism
K(·) with input location xi or x′

i at timestamp i differs at most by the distance
between both locations multiplied by a variable privacy budget that is function
of the user and frequency velocities at the same timestamp i. Note, however that
contrary to Geo-Indistinguishability, the privacy bound depends the bounds of
the function ϵi(·), which we discuss next.

In order to achieve the desired behavior for a velocity-aware LPPM as described
in Table 5.1, ϵi must increase with an increase in the velocity of the user or a
decrease in the frequency of reports and decrease with the decrease of the user
velocity or an increase in the frequency of reports. Formally, we can describe
this requirement as:

ϵi(vu,i, vr,i) ∝ vu,i ∧ ϵi(vu,i, vr,i) ∝ 1
vr,i

(5.2)

that is, ϵi is directly proportional to the user velocity and inversely proportional
to the frequency of reports. Towards this goal, we depart from the standard
Geo-Indistinguishability where ϵ = l/r [Andrés et al., 2013], and set the privacy
budget as:

ϵi = ϵ

m
· m(2·f(vu,i,vr,i)) (5.3)

where m is a privacy and utility multiplier (as further discussed below) with
m ∈ [1, ∞[, vu,i and vr,i are the user and report velocities at timestamp i,
and f(·) is any function of vu,i and vr,i, that holds the proportionality from
equation (5.2) and with f(·) ∈ [0, 1].

Equation (5.3) corresponds to the exponential regression on f(·) such that the
following bounds for ϵi are achieved:

ϵ

m
≤ ϵi ≤ m · ϵ ⇔ l

m
≤ r · ϵi ≤ m · l, ∀i (5.4)

where the multiplier m is used to adjust the privacy and utility bounds. Equa-
tions (5.3) and (5.4) provide a dynamic balance in where the privacy and utility
levels can be increased or decreased up to m times the initial ϵ value, depending
on the velocity of the user and frequency of reports. As long as f(·) provides
the proportionality from (5.2), an increase in the user velocity (vu,i) and/or a
decrease in the frequency of reports (vr,i) is met with an increase in the pri-
vacy budget ϵi, and vice-versa for a decrease in ϵi. Therefore, we refer to this
VA-GI formulation as (m, ϵ)-VA-GI. Finally note that if m = 1, (1, ϵ)-VA-GI
becomes Geo-Indistinguishability as ϵi = ϵ, ∀i. Therefore, (m, ϵ)-VA-GI can
be seen as a generalization of Geo-Indistinguishability. This result leads us to
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Theorem 1.

Theorem 1. (m, ϵ)-VA-GI satisfies mϵ-Geo-Indistinguishability and guarantees a
maximum privacy loss of m · l within a radius r. Namely, for any timestamp:

dP (K(xi), K(x′
i)) ≤ m · l, ∀xi, x′

i ∈ X s.t. dx(xi, x′
i) ≤ r

Proof. The proof results from the proof of Geo-Indistinguishability for the
Planar Laplace, with the difference being the privacy bounds due to the changes
in ϵ. Without loss of generality and to simplify notation, the timestamp i is
dropped from the proof. From equation (2.6) we have:

Dx(z)
Dx′(z)

= e−ϵ(dx(x,z)−dx(x′,z))

And from triangular inequality we obtain:

Dx(z) ≤ eϵdx(x,x′)Dx′(z)

Through integration we reach:∫
Z

Dx(z) ≤ eϵdx(x,x′)
∫

Z
Dx′(z) ⇔

⇔ K(x)(Z) ≤ eϵdx(x,x′)K(x′)(Z) (5.5)

This equation proves the Geo-Indistinguishability of the Planar Laplace and can
be re-written as:

dP (K(x), K(x′)) ≤ ϵdx(x, x′) ∀x, x′ ∈ X (5.6)

where dP(·) is the multiplicative distance between two distributions, defined as
dP(σ1, σ2) = supS∈S

∣∣∣log σ1(S)
σ2(S)

∣∣∣, where σ1 and σ2 are two distributions on some
set S, with the convention that L =

∣∣∣log σ1(S)
σ2(S)

∣∣∣ = 0 if σ1(S) = σ2(S) = 0 and
L = ∞ if one of the two is 0.

Now we must prove the (m, ϵ)-VA-GI privacy bound within r, which differs from
the standard Planar Laplace (PL) due to the changes to ϵ. From equation (5.4)
we have:

l

m
≤ r · ϵi ≤ m · l, ∀i

Consequently, from equation (5.6) and for any two x, x′ such that dx(x, x′) ≤ r:

dP (K(x), K(x′)) ≤ m · l (5.7)

■
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5.1.1 A (m, ϵ)-VA-GI LPPM
Equation (5.3) defines the generic formula to achieve (m, ϵ)-VA-GI, in where
any definition of the function f(·) ∈ [0, 1] that respects the proportionalities
from (5.2) can be used. However, for an effective privacy and utility balance,
the function should respect the nature of the velocities, specifically their distri-
butions. Unfortunately, the velocities do not follow any unimodal distribution
and in fact depend on the underlying road features and drivers [Tonguz et al.,
2009]. Therefore, to design a (m, ϵ)-VA-GI LPPM one can approximate or es-
timate the distributions by using available data. This section describes such
methodology.

Since there is no a priori best choice, we leave the comparison between VA-GI
LPPMs for future work and instead choose a simple velocity function f(·) defined
as the average between a function of the user velocity fu(vu,i) and a function of
the report velocities fr(vr,i):

f(vu,i, vr,i) = 1
2

· (fu(vu,i) + fr(vr,i)) (5.8)

Where fu(·), fr(·) ∈ [0, 1]. To take into consideration the distributions of vu,i

and vr,i and to favor the variance of fu and fv near the typical values of vu,i and
vr,i, we set:

fu(vu,i) = cdf(vu,i)
fr(vr,i) = 1 − cdf(vr,i) (5.9)

where cdf(·) stands for the CDF. With equation (5.9) we guarantee that the
codomain of f(vu,i, vr,i) as defined in equation (5.8) is in the interval [0, 1] and
that the proportionality of a VA-GI LPPM from equation (5.2) is respected.
Additionally, because the slope of the CDF is higher in the typical values, smaller
deviations from these will have a steeper privacy/utility adjustment. Combining
equation (5.8) and (5.9) in equation (5.3), we reach:

ϵi = ϵ · m(cdf(vu,i)−cdf(vr,i)) (5.10)

The advantage of using the cdf(·) functions of the user velocities and frequency
of reports relates to the minimization of the required parameters. Effectively
setting privacy parameters can be challenging [Kaaniche et al., 2020; Clifton
and Tassa, 2013; Lee and Clifton, 2011] and in fact, misconfigured parameters
can result in no relevant privacy [Mendes et al., 2020]. By using equations (5.9)
in the (m, ϵ)-VA-GI privacy budget equation (5.3), we limit the LPPM to 2
parameters: the initial ϵ value and the multiplier m. This is in contrast with
other LPPMs for continuous report, that either require several parameters to
provide the dynamic adaptability, such as the Adaptive Geo-Indistinguishability,
or that have few parameters but do not adapt to the dynamics of the movement
(e.g. Clustering Geo-Indistinguishability and the Planar Laplace). Sections 5.2.2
and 5.3 demonstrate these disadvantages of previous works.
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One of the disadvantages of this approach is that the distribution of the velocities
is unknown. To solve this issue, one can use data to estimate the CDFs using
non-parametric density estimation. From the point of view of the LPPM, this
data can belong to all drivers in a specific city, global or even be personalized to
the user, by using their past data. Regardless of the data used, a better CDF
fit will favor the privacy and utility trade-off. Nevertheless, to faithfully fit a
CDF, a decent amount of data is required. In Section 5.4 we provide empirical
evidence on the effectiveness of generalizing the CDFs to Gaussian distributions
in the context of (m, ϵ)-VA-GI.

Since positional data often lacks the velocities, these can be estimated by using
a window of previous reports with size ws as follows:

vu,i = dws
i

∆tws
i

vr,i = ws − 1
∆tws

i

(5.11)

where dws
i is the sum of distances between reports in ws and ∆tws

i
the time

difference between the current report of timestamp i and the last in the window
of size ws, i − ws + 1. Formally:

dws
i =

i∑
j=i−ws+1

d(xj−1, xj)

∆tws
i

= ti − ti−ws+1 (5.12)

Finally note that with these definitions we have that vu,i and vr,i are average
velocities between points in ws. Within this context, the velocities will be most
accurate when the time interval tends to 0, that is ∆tws

i
→ 0 [Petovello, 2015].

Since the frequency of reports is application/device specific, using the minimum
window size (ws = 2) will result in the best velocities estimation.

In summary, the (m, ϵ)-VA-GI LPPM consists of using the PL mechanism from
equation (2.6) with the epsilon definition from equation (5.10).

5.1.2 Setting LPPM Parameters
One of the challenges in the wide deployment of privacy mechanisms is the con-
figuration parameters. In differential privacy, for instance, setting the value of
ϵ depends on the dataset and must take into account the presence of correla-
tions [Clifton and Tassa, 2013; Lee and Clifton, 2011]. Additionally, the privacy
guarantees can be misleading [Clifton and Tassa, 2013; Oya et al., 2017b]. This is
specially true for mechanisms that act at collection time, where the responsibil-
ity to properly tune the mechanism lies on the user. However, it has been shown
that the users are typically unaware of the privacy risks and trade-offs [Acquisti
et al., 2015].

In Geo-Indistinguishability, as inherited from differential privacy, the privacy
budget ϵ is the only parameter needed to set. To help the user choosing this
value, the original authors suggested using ϵ = l/r, where l is the maximum
privacy loss achieved within the radius r [Andrés et al., 2013], as detailed in Sec-
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Figure 5.1.: Diagram of the followed methodology. The LPPM step is repeated
for each of the LPPMs and the Attack step is repeated for each
combination of LPPM/Attack.

tion 2.4.2.1. The Clustering Geo-Indistinguishability described in Section 2.4.2.2
re-uses the same variables by setting r = l/ϵ. However, these two LPPMs are
static with respect to the privacy and utility trade-off, as the parameters are con-
stants, thus failing at providing effective privacy against correlated reports.

To solve this issue, the Adaptive Geo-Indistinguishability mechanism described
in Section 2.4.2.3 uses a linear estimator to measure the correlation between
past and current locations, thus dynamically adapting the privacy and utility.
However, to do so, it introduces four parameters: the two thresholds ∆1 and
∆2 and the two multiplicative constants α and β. Without having data to
empirically evaluate the effects of these parameters it is an impossible task to
achieve an effective privacy/utility trade-off (c.f. Section 5.2.2). Furthermore,
misconfigured parameters can result in no effective privacy as demonstrated in
the previous chapter. In contrast, the (m, ϵ)-VA-GI LPPM only requires the
initial ϵ value and a straightforward privacy/utility multiplier m. Therefore, to
set the ϵ and m, one can, for instance, see the typical range of values from the
literature and set ϵ to the mid value of such range and then set m such that
ϵi automatically adjusts within the range, so as to either favor privacy or favor
utility, as required by the context at hand.

5.2 Experimental Setup
This section describes the conducted simulations by detailing the datasets and
experimental setup. To evaluate the effectiveness of (m, ϵ)-VA-GI, our meth-
odology consisted in applying the LPPMs detailed in Section 2.4.2 to the data,
namely, the Planar Laplace, Clustering and Adaptive Geo-Indistinguishability,
followed by each of the attacks. The results are compared between the output
of the attacks and the original dataset, along with the comparison between the
different LPPMs and respective configurations. The diagram in Figure 5.1 sum-
marizes the methodology, which is repeated (except the preprocessing MM) for
each pair of LPPM/Attack. The following subsections detail the dataset and
respective preprocessing, and the configurations/parameters of the LPPMs and
attacks.

5.2.1 Dataset Characterization and Preprocessing
The dataset used in our experiments was the Cabspotting, a dataset of taxi
trajectories over the city of San Francisco, California, USA. The trajectories
belong to 536 taxis and were collected over a period of 30 days, containing not
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only the GPS position and timestamp, but also whether the cab had a costumer
at each time [Piorkowski et al., 2009].

To preprocess the dataset, we first filtered out trajectories with points outside
the bounding-box defined from South and North by the latitudes 37.600, 37.811,
and from West and East by longitudes −122.517, −122.354 . We additionally
removed trajectories without occupancy, as to avoid trajectories were the cab is
still waiting for a client. Finally, to remove spurious trajectories, we applied the
data cleaning procedure from [Wang et al., 2015a]. Specifically, we discarded
1) trips with duration lower than 1 minute and higher than 3 hours; 2) trips
with total displacement over 100 km; 3) trips with average velocity lower than 5
km/h or over 120 km/h; 4) non-smooth trips. Non-smooth trips were removed
by using a filter with a sliding window that detects whether the average velocity
between points is within normal intervals. If more than a defined percentage of
points in each trajectory has abnormal average velocities, then the trajectory is
rejected. The original default parameters were used for this filter [Wang et al.,
2015a]. After this preprocessing, 307983 trajectories remained from the original
dataset.

Because we apply four LPPMs under different configurations and multiple at-
tacks, we further subsampled the dataset as to reduce the number of trajectories.
In order to evaluate the adaptability of the LPPMs under continuous reports,
we divide the trajectories in four different sets depending on the average user
velocity vu and average report velocity vr:

1. Balance Privacy/Utility 1 (↓vu ↓vr): trajectories with average user velocity
vu ≤ 20 km/h and velocity of reports vr ≤ 45 reports/h;

2. Favor Privacy (↓vu ↑vr): trajectories with average user velocity vu ≤ 20
km/h and velocity of reports vr ≥ 100 reports/h. This is the worst case
with respect to privacy, as it has the largest density of reports per dis-
tance traveled. Therefore, and according with the desirable properties
from Table 5.1, LPPMs should ideally adjust for privacy to account for
the higher correlation between reports;

3. Favor Utility (↑vu ↓vr): trajectories with average user velocity vu ≥ 100
km/h and velocity of reports vr ≤ 45 reports/h. This scenario has the
lowest density of reports per distance traveled and hence, the lowest cor-
relation between reports. Therefore, the LPPMs should ideally adjust to
improve utility;

4. Balance Privacy/Utility 2 (↑vu ↑vr): trajectories with average user velocity
vu ≥ 100 km/h and velocity of reports vr ≥ 100 reports/h. This scenario
is similar to the “Balance Privacy/Utility 1 (↓vu ↓vr)” with respect to the
density of reports and therefore to the desired response.

The threshold values were chosen by looking at the speed limits1 and empirical
distributions. Specifically, speed limits in alleys and residential areas are 24 and
40 km/h, respectively, and therefore, a vast number of trajectories will have an

1https://data.sfgov.org/Transportation/Map-of-Speed-Limits/ttcm-fwt2
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average speed lower to 20 (c.f. Figure 5.3a). The high user velocity trajectories,
with average over 100 km/h, will correspond to trajectories in highways, where
the speed limit is 105 km/h. For the frequency of reports, we picked intervals
directly from the empirical distribution, illustrated in Figure 5.3b.

From the four data set divisions, we picked the 100 trajectories from each par-
tition with lowest standard deviation, as to select trajectories where the instant
velocities (velocities in each report) are closest to the filtered mean values. This
selection was made as to have a strong diversity of trajectories, encompassing
scenarios with a high, medium and low density of reports per trajectory. In turn,
this density relates directly to the difficulty of an adversary in reconstructing the
real trajectory, which is the most general type of attack [Shokri et al., 2011] that
then allows for further specific inference attacks [Gambs et al., 2010; Primault
et al., 2014]. For the remainder of this work, we refer to the selected 400 tra-
jectories as test data (or ground-truth) and the remaining cleaned trajectories
(307583) as training data.

To the test data, we apply the map-matching technique detailed in Sec-
tion 2.4.3.3 as to position each location report on the road network. This
preprocessing step cleans these trajectories from noisy reports, thus forming
our ground-truth. For the standard deviation of the measurement error σ,
we used a typical value for GPS readings of σ = 6.86 m [Goh et al., 2012].
The parameters λy and λz were estimated following the original map-matching
proposal [Jagadeesh and Srikanthan, 2017]. Namely, using trajectories from
the training data with duration between 1 and 6 minutes with at least 2km of
traveled distance (for a total of 4963 trajectories). This resulted in the values
λy = 0.69 and λz = 13.35.

5.2.2 LPPMs
For the LPPMs, we compare the (m, ϵ)-VA-GI LPPM from Section 5.1.1, which
we simple refer to as VA-GI, with the geo-indistinguishable LPPMs described
in Section 2.4.2, that is, the Planar Laplace [Andrés et al., 2013], which we
refer to as Geo-Ind, the Clustering Geo-Ind [Cunha et al., 2019], referred to
as Clustering, and the adaptive Geo-Ind [Al-Dhubhani and Cazalas, 2018], or
Adaptive.

For the privacy budget, and for all LPPMs, we used multiple values in the
typical ranges of LPPMs for continuous reports [Al-Dhubhani and Cazalas, 2018;
Mendes et al., 2020], specifically ϵ = [16, 32, 64, 128] km−1. For the Geo-Ind
LPPM, this corresponds to an average obfuscation of [125, 62.5, 31.25, 15.625] m,
respectively. These values of obfuscation range from city block level distances to
parallel streets. For the remaining parameters we attempted to use the proposed
values from the original respective papers, but we found some problems in the
Adaptive as follows.

In the Adaptive mechanism, the privacy budget ϵ is adjusted for privacy or
utility depending on the error in estimating the current location, as described
in Section 2.4.2.3. In accordance with equation (2.8), if the estimation error is
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Figure 5.2.: Boxplot of the Adaptive estimation errors and the ∆1 and ∆2 ori-
ginal thresholds.

smaller than ∆1, then privacy is increased by reducing ϵ by a factor of α. If
the estimation error is higher than ∆2 the utility is increased by increasing ϵ
by a factor of β. The authors heuristically proposed setting ∆1 = 0.96/ϵ and
∆2 = 2.7/ϵ. However, for the ϵ values used in our work, we found that these
thresholds result in a poor privacy and utility adaptability. Figure 5.2 illustrates
this problem by plotting a boxplot of the estimation errors (d2(x, x̂)) for all points
in the training data and the thresholds for ϵ = 16 km−1. From this plot it is clear
that for almost 75% of location reports, the adaptive would adjust for utility, and
only for less than approximately 15% of cases, it would adjust for privacy. This
unbalance is even worse for higher ϵ values, as the estimation errors are the same,
but the thresholds would be lower. In order to have a proper privacy/utility
dynamic, we set the ∆1 and ∆2 thresholds to the first (∆1 ≈ 124.29) and
third quartile (∆2 ≈ 428.56) of the boxplot. We refer to this tuned LPPM to as
Adaptive* and only present the results for this optimized variant of the original
adaptive mechanism. This example illustrates the difficulty in setting the proper
parameters, as discussed in Section 5.1.2, a problem that VA-GI solves by using
the cumulative density functions, as previously discussed.

As for the VA-GI, and following the description from Section 5.1.1, we use a
non-parametric estimation of the Cummulative Density Function (CDF) using
the training data, specifically, a Kernel Density Estimation (KDE). Figures 5.3a
and 5.3b present the histograms of the user velocities and report velocities, re-
spectively, and the respective KDE Probability Density Function (PDF). From
these images it is clear that both velocities do not follow a Gaussian distribu-
tion and the Kolmogorov-Smirnoff tests reject such hypothesis at any significance
level. For the KDE we used Guassian kernels and let Matlab find the optimal
bandwidth. We can clearly see from the plots that while the KDE for the user
velocities strongly fits, the KDE for the report velocities is more inconsistent.
This is not problematic from the point-of-view of the VA-GI, as what is import-
ant are the CDF functions. Figures 5.3c and 5.3d present the empirical and
KDE CDF for the user and report velocities, respectively. We can clearly see
that the lines are mostly coincident in both cases, thus confirming that the KDE
is a good estimator for the CDF. In summary, for VA-GI, at each timestamp i
we compute ϵi as defined in equation (5.10) with the KDE CDFs.

One can plot equation (5.10) as a function of the velocities of the users and
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Figure 5.3.: Empirical and kernel density estimation probability density func-
tions and cumulative density functions of the reports’ velocities for
the training data.

Figure 5.4.: 3-dimensional plot of the value of ϵi as given by equation (5.10) as
a function of vu,i and vr,i, with ϵ = 16 km−1 and m = 10.

reports. Figure 5.4 presents this plot with ϵ = 16 km−1 and m = 10. We
can observe that as the velocity of the user increases, the value of ϵi increases
as to reduce the obfuscation and therefore increase utility, and vice-versa for a
decrease in the velocity as to increase privacy. The velocity of reports as the
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inverse effect, which is in accordance with Table 5.1.

For the remainder of the paper, the results for the VA-GI mechanism were
obtained with m = 10. This value was chosen such that typical epsilon values
(c.f. [Andrés et al., 2013; Al-Dhubhani and Cazalas, 2018; Mendes et al., 2020])
were contained within the ϵi bounds defined in equation (5.4).

5.2.3 Attacks
For the attacks we consider the optimal localization attack from Section 2.4.3.1
and the map-matching attack from Section 2.4.3.3. For the map-matching, while
the original authors presented a complex route choice model, the increase in the
accuracy was marginal when compared to using the shortest path [Jagadeesh
and Srikanthan, 2017]. Therefore, in this work we opted for the simple shortest
path to reduce computational complexity. For efficiency, and similarly to [Goh
et al., 2012], we only consider candidates nodes within a radius r which we calcu-
late using the inverse cumulative distribution function of the Gaussian distribu-
tion. The radius r is computed such that the circle centered at the observation
contains the exact location with 90% probability given a geo-indistinguishable
obfuscation. When this circle contains no candidates, which can happen due
to the use of the LPPM and selected road network, the nearest road network
node is used as candidate. The road network was obtained from OpenStreetMap
using the OSMnx tool [Boeing, 2017] over the San Francisco bay area.

5.3 Results
This section presents the results obtained following the presented methodology.
Because the findings endure for all epsilon values, we present the results only
for ϵ = 16 km−1.

Figure 5.5 shows the adversary error for the map-matching and optimal localiz-
ation attack. From this figure we can observe that Geo-Ind and Clustering have
similar adversary error (privacy level) for the different dataset divisions and for
both attacks. However, the Adaptive* and VA-GI largely vary. Specifically, for
the “Favor Privacy (↓vu ↑vr)” division these two LPPMs have greater adversary
errors and for “Favor Utility (↑vu ↓vr)” the lowest. These results indicate that
both the Adaptive* and the VA-GI properly adapt in accordance with the de-
sired properties of a velocity-aware LPPM, as described in Table 5.1. However,
the large increase in the adversary error comes with the consequence of a high
quality loss, as displayed in Figure 5.6. This is the natural and ever present
trade-off between privacy and utility [Cranor et al., 2015].

According to Figures 5.5 and 5.6, the VA-GI had the strongest privacy (highest
adversary error) for the “Favor Privacy (↓vu ↑vr)” scenario, while the Adaptive*
had the best utility (lowest quality loss) for the “Favor Utility (↑vu ↓vr)” division.
However, due to the fact that the quality loss and adversary error metrics do not
take into consideration the continuous nature of the trajectories, these results
can be inconclusive. Therefore, in the following discussion we focus on the
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Figure 5.5.: Boxplot of the adversary errors for the Map-matching and optimal
localization attack for ϵ = 16 km−1.
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Figure 5.6.: Boxplot of the quality loss for each dataset division and LPPM,
with ϵ = 16 km−1.

F1-score metric as it considers not only the user individual reports but every
traversed segment between each location, as described in Section 2.4.3.3.

Figure 5.7 shows the F1-score for each dataset division and each LPPM. From
the plot it is clear that the Adaptive* and VA-GI adapt to both the user and
report velocities in accordance with the desirable properties of a velocity-aware
LPPM, thus confirming the previous results. This is observable from the fact
that for the “Favor Utility (↑vu ↓vr)” division these two LPPMs present the
highest F1-scores, meaning that both LPPMs adjusted for utility, and the low-
est F1-scores for “Favor Privacy (↓vu ↑vr)”, signaling an adjustment for pri-
vacy. However, the VA-GI outperformed the Adaptive* in both cases, presenting
higher score for the “Favor Utility (↑vu ↓vr)” and lower for the “Favor Privacy
(↓vu ↑vr)”, as desired. Furthermore, it should be noted that the displayed res-
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Figure 5.7.: Boxplot of the F1-score for each dataset division and LPPM, with
ϵ = 16 km−1.

ults for the adaptive mechanism were obtained with an improved selection of
parameters, the Adaptive* - the default values would have lead to an ineffective
privacy-utility adaptability, as depicted in Fig. 5.2. Figure 5.7 also shows that
Geo-Ind and Clustering present similar yet smaller fluctuations in the F1-score
for the different dataset divisions. This is due to the underlying selection of
trajectories for the division. Specifically, the selected traces with high user ve-
locity correspond to movements in highways, in where there is less entropy in
finding the right trajectory with the map-matching, thus resulting in a higher
F1-score. As for lower vu trajectories, these correspond to alleys and residential
areas, in where the density of the road network is higher and, therefore resulting
in a lower F1-score. Nevertheless, these fluctuations in the scores for the differ-
ent divisions are inferior to the ones obtained with the Adaptive* and VA-GI,
signaling that the latter two LPPMs effectively adapt to the velocities.

The variations in the F1-score for the Adaptive* and VA-GI originate from the
dynamic adaptability of the ϵi value according to the velocities as in equa-
tion (5.10). Therefore, it is useful to look at the distribution of these values
to confirm the aforementioned findings. Figure 5.8 presents the distributions
of the ϵi values for each dataset and LPPM, with ϵ = 16 km−1. Note that
Geo-Ind and Clustering are a single scatter point as the ϵ is constant, while
the Adaptive* presents three possible values as per equation (2.8). Results for
VA-GI are presented as a boxplot, due to the continuous nature of the epsilon
values obtained. These plots firmly agree with F1-score results. Namely, both
the Adaptive* and VA-GI adapt for privacy for the “Favor Privacy (↓vu ↑vr)”
by decreasing ϵi and for utility for the “Favor Utility (↑vu ↓vr)” by increasing
ϵi. Notice however, that while the VA-GI has continuous spectrum of values
for ϵi, the Adaptive* mechanism considers only three values, resulting from the
application of formula (2.8). Therefore, the VA-GI is able to provide a more fine
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Figure 5.8.: Distribution of the ϵi values for each dataset division and LPPM,
with ϵ = 16 km−1 in the form of a scatter plot for Geo-Ind, Adapt-
ive* and Clustering and a boxplot for VA-GI. The size of the scatter
points is the absolute frequency of the corresponding ϵ value. Note
that Geo-Ind and Clustering are a single scatter point as the ϵ is
constant, while the Adaptive* presents three possible values as per
equation (2.8). Results for VA-GI are presented as a boxplot, due
to the continuous nature of the epsilon values obtained.

grained privacy/utility adaptability. This is relevant as the Adaptive* might
erroneously not adapt for privacy or utility in cases where it should, which is
further aggravated by possibly misconfigured threshold values ∆1 and ∆2 (c.f.
Figure 5.2). The VA-GI mitigates this problem by using the CDF of the velo-
cities for defining the system parameters, as previously discussed.

In summary, both the VA-GI and Adaptive* adapt in accordance to the desired
properties of a velocity-aware LPPM. Specifically, an increase in the density
of reports per distance traveled is met with higher obfuscation (i.e. lower ϵi) to
improve privacy and a decrease in the density of reports is met with a smaller
obfuscation (higher ϵi) as to increase data quality. For this dynamic adjust-
ment, the VA-GI outperfoms all other tested LPPMs from both privacy and
utility metrics. Additionally, and in contrast with the Adaptive, it provides
finer grained and continuous adaptability, while requiring fewer parameters and
therefore mitigating misconfiguration issues that can lead to no privacy [Mendes
et al., 2020]. However, unlike the Geo-Ind and the Clustering LPPMs, the VA-GI
LPPM requires data to estimate the CDFs of the velocities, which can limit the
wide deployment of such mechanism. From the CDFs of the user and report ve-
locities plotted in Figure 5.3, we observed that these might be approximated to
a Gaussian distribution. Taking advantage of this fact, in the following section,
we propose a methodology to generalize the VA-GI LPPM by using data from
one location to model the CDF of velocities of another location.
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5.4 Generalizing the VA-GI LPPM
In order to use the CDF of the velocities for the definition of the function f(·)
in (5.8), real mobility data is required, thus posing a limitation on the practicab-
ility of the VA-GI. However, from the plots of the CDFs for the Cabspotting data
illustrated in Figure 5.3, we can observe that an approximation to a Gaussian
distribution might fit as an estimation. In this section we do such evaluation,
specifically, we use publicly available data to generate a CDF and then measure
the fitness of this approximation to a new dataset. Without loss of generality, we
focus on fitting the CDF of the user velocity, since the same methodology could
be used to approximate the CDF of the report velocity, with the difference that
different applications might use different sampling frequencies. To solve such
dissimilarity, a normalization of the distribution would suffice.

Vehicular velocities have been previously shown to follow Guassian distribu-
tions in highway scenarios [Boban et al., 2011]. However, urban traffic is more
complex due to intersections, traffic lights and signals, congestions and other
factors [Tonguz et al., 2009]. Therefore, in order to visually compare the good-
ness of fit of the Gaussian distribution, we use the Cabspotting dataset as pub-
licly available data to form the CDFs and a second dataset from a different
geographic location to evaluate the goodness of fit. This second dataset is
also composed of vehicular trajectories belonging to 441 taxis in the city of
Porto, Portugal, with a sampling rate of 15 seconds and collected over a full
year [Moreira-Matias et al., 2013].

Figure 5.9 shows the obtained CDFs for a subsample of 10000 velocities from
the Cabspotting and Porto datasets. From Figure 5.9a it can be seen that for
the Cabspotting dataset, the distributions differ considerably. However, for the
Porto dataset, Figure 5.9 reveals a high similarity between the empirical and
Guassian distributions. A Kolmogorov-Smirnov normality test confirms that
both velocity sets do not follow a Gaussian distribution for any confidence level
(p-value is 0). Additionally, a two-sample Kolmogorov-Smirnov goodness-of-fit
hypothesis test also discards the possibility of both velocities following the same
distribution (p-value is also 0). Finally, a Wilcoxon rank sum test and a Mood’s
median test reject the hypothesis that both velocities have the same mean and
median, respectively.

Despite the fact that the velocities follow an unknown seemingly multimodal
distribution, the use of the Guassian distribution as an approximation might
suffice for the purpose of the function of the user velocities f(vu,i). We can see
this effect by observing Figure 5.9c, where the Gaussian CDF for both datasets
is similar, even though both cities have different speed limits, and hence different
velocity distributions. In fact, in Figure 5.9d, the Gaussian CDF obtained from
the Cabspotting dataset is similar to the Porto empirical CDF. This suggests
that using publicly available data, even from different geo-locations might result
in effective approximations. Note, however, that the training data must be
diverse, as training with data from a rural area and applying it to a metropolitan
area might result in poor results.
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Figure 5.9.: CDF and PDF for the user velocities of the Cabspotting and Porto
datasets.

From the point of view of VA-GI, an approximation of the definition of f(·) will
result in sub-optimal velocity awareness, which can cause the LPPM to overshoot
the privacy or utility in certain cases. In order to measure this unbalance, we
use a subsample of the velocities from the Porto dataset and plot the differences
between the ϵi values obtained using the Cabspotting approximations and the
Porto KDE CDF, which is the baseline reference. Recall that the KDE (Kernel
Density Estimation) smoothly describes the empirical CDF, as illustrated in
Figure 5.3. In other words, we use the Cabspotting dataset as public available
data, from which we extract the KDE and Gaussian CDFs and then we apply
these distributions in the form of equation (5.10) to a subsample of the Porto
dataset. To focus on user velocity, without loss of generality, we set the value
of cdf(vr,i) = k, ∀i with k = 0.5, such that equation (5.10) becomes ϵi =
ϵ.m(cdf(vu,i)−0.5), with the bounds ϵ · m−0.5 ≤ ϵi ≤ ϵ · m0.5, ∀i and m = 10, as
defined previously.

Figure 5.10a presents the differences between the epsilons obtained with the
Cabspotting KDE and the Porto KDE, while Figure 5.10b shows the differences
between the epsilons obtained with the Cabspotting Gaussian and the Porto
KDE, with an initial ϵ value of 16km−1. A negative value in these plots corres-
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Figure 5.10.: Relative differences for the ϵi values between each pair of distribu-
tions, with initial ϵ = 16.

ponds to an overshoot in the privacy adjustment, as the ϵi in the Porto KDE
is higher than the same ϵi for the Cabspotting estimation, and vice-versa for
a positive value, thus corresponding to an overshoot in the utility adjustment.
From these plots we can clearly see that even though the velocity distributions
might differ, the ϵi obtained using equation (5.10) are similar. Specifically, the
ϵi values differed less than 10% when using the Cabspotting KDE and up to
approximately 5% when using the Gaussian approximation, for both privacy
and utility adjustments. Nevertheless, these results confirm that it is possible
to use publicly available data, even from a different geo-location and even with
different speed limits, to approximate the function f(·) of VA-GI. Furthermore,
from a practitioner perspective, the Gaussian distribution as an estimator can be
used in production by simply setting the mean and standard deviation paramet-
ers, thus giving a practical benefit over the KDE. Under these configurations,
the user just has to provide the parameters ϵ and m as previously discussed,
where m can be used to adjust VA-GI for more privacy or utility, as desired.
By configuring two parameters alone, our proposed scheme enables adaptation
of the privacy and utility levels according to the user and report velocities. To
the best of our knowledge, our proposal is the first to consider adaptation of
privacy and utility levels according to user and report velocity.

5.5 Limitations and Future work
The use of correlations between subsequent requests is an important venue for
LPPMs. In this paper we have used the velocity of the user and the frequency
of reports as metric for the correlation between reports and proposed partic-
ular instance of a VA-GI LPPM. While our results have shown an effective
adaptability we leave for future work the comparison between different VA-GI
formulations. Furthermore, the use of the velocity of the user and the frequency
of reports might not be an efficient proxy for the correlation between reports in
some cases. For instance, in a highway, the density of reports can be low, but the
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correlation might be high due to the lack of intersections/exits. As future work,
we intend to consider the underlying map in the design of the LPPM, similarly
to the work in [Wang et al., 2015c] but in the context of differential privacy.
For example, the consideration of the road-network in vehicular trajectories or
the density of buildings, can allow for a metric on the adversary confusion, thus
potentially resulting in a more effective privacy and utility adjustment.

For a practical implementation of VA-GI, one has to consider its impact from
both the user and application perspective. Considering a service for the continu-
ous scenario, VA-GI can incur in significant quality loss, for instance, due to the
creation of spurious routes in a navigation service. In this regard, the system
would need to consider filtering out the obfuscation on the side of the user, po-
tentially through the incorporation of local and offline processing. To be more
concrete, in the context of a navigation system, the routing system could use
the true location of the user locally, while updating the necessary information
with every obfuscated report (e.g. the traffic conditions and estimated time of
arrival). These online updates would have a precision loss as a function of the
obfuscation radius, which in turn depends on the privacy parameters, velocity
of the user and frequency of reports.

Our scheme requires access to user velocity data that may not always be avail-
able. We have shown in Section 5.4 how to generalize VA-GI through approx-
imation to known CDFs, whereby the Gaussian CDF generalized better than
the KDE CDF. However, further validation using other datasets is required to
confirm these results.

Inherited from differential privacy, the repeated use of any geo-indistinguishable
LPPM, including VA-GI, results in increasing and unbounded information leak-
age, which can be measured through the composition properties Dwork [2008].
In practice, one can define a maximum privacy budget, such that after exhaust-
ing it, no more data is sent to the service provider. Unfortunately, this would
result in not having access to the service. Practical implementations of differen-
tial privacy incur in a trade-off where the privacy budget is reset after a certain
amount of time, thus limiting exposure within a given time frame, while (mis-
leadingly) considering contributions between periods independent [Tang et al.,
2017]. This is an active line of research that could spark future work in LPPMs
at data collection.

Finally, location data has been considered personal data under privacy laws
such as the General Data Protection Regulation (GDPR) [Union, 2016] and the
California Consumer Privacy Act (CCPA) [of California, 2018]. VA-GI preserves
location privacy even against the service provider, thus providing some degree
of anonymity. In practice, however, LBSs require an account, thus identify-
ing even obfuscated reports. Therefore, VA-GI provides location privacy, but
not necessarily anonymity. Regardless, the legal requirement to anonymize the
data lies on the service provider, which becomes the data owner/controller, and
therefore, further anonymization might be required from the service provider
before sharing/storing the data. Related, but from a reverse perspective, one
should consider the impact of such obfuscation in existing business models and
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data ecosystems. The degradation of the quality of data not only directly im-
pacts the user due to the service quality loss, but also indirectly. For example,
the reported location data might be further used for traffic analysis or for pay-
as-you-go insurance companies, in turn resulting in potential suboptimal traffic
routing and more expensive insurance, respectively.

5.6 Chapter Summary
The widespread of mobile and connected devices has lead to the pervasiveness
of LBSs. While vast, the research on location privacy has fallen behind this de-
velopment, specially in Location Privacy-Preserving Mechanisms (LPPMs) that
act at collection time. In this context, for effective privacy protection, LPPMs
must take into consideration the potential threat that arises from the correlation
of reports. In this chapter we adopted the velocity of the user and the frequency
of reports as metric for the correlation and proposed a generalization of Geo-
Indistinguishability termed Velocity-Aware Geo-Indistinguishability (VA-GI).
Under such notion, we design a VA-GI LPPM that according to our results,
outperforms previous LPPMs in adapting the privacy and utility under differ-
ent dynamic scenarios. The proposed LPPM adapts as a function of the user and
report velocities, while requiring only two user-set parameters, thus mitigating
misconfigurations that can lead to no effective privacy. This adaptability can
be tuned for general use, by using city or country-wide data, or for specific user
profiles, thus warranting fine-grained tuning for users. Finally, we generalized
our proposed VA-GI LPPM by using publicly available data for defining system
parameters, thus facilitating effective wide deployment. Results show that the
generalization produces a privacy and utility variance that differs by at most
10% from the non-generalized counter-part.

In the context of permission managers, we argue that the proposed VA-GI LPPM
could be effectively deployed towards the obfuscation of location data in mobile
devices. Particularly, the frequency of reports could be measured either as the
frequency of calls to the location APIs across all apps, thus granting protection
even against potentially colluding providers at the expense of a more degraded
data quality, or on a per-app basis. Regardless, the automatic adjustment avoids
the otherwise mandatory constant tuning, for instance in the form of a prompt,
that would result in significant user burden. Furthermore, the automatic ad-
aptability could additionally be personalized to the specific user, as the driver
velocities could be used to form the CDF, or to specific regions, by using data
from drivers in these areas.

We leave for future work the integration of this LPPM in a permission manager
and the respective evaluation, which requires a field-study under real world
conditions. Related, the consideration of multiple means of transportation could
potentially warrant the need for multiple configurations of the LPPM, such that
the adaptability is properly tuned. Furthermore, either the user would have to
input the means of transportation, or an automatic detection would be required,
which could be a challenge on itself.
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Advances in mobile devices and communication infrastructure fostered
the proliferation of applications capable of providing localized and
user-tailored services. The benefits of these technologies are undeni-

able as society strongly embraces its presence in the daily lives. However, the
drawback of this paradigm, which is not always perceived by individuals, is
the digital trail that continuously grows as companies harvest the necessary, or
even the unnecessary, data to provide the referred services. Despite advances in
privacy regulations, such as the General Data Protection Regulation (GDPR),
after being collected, users have limited control over their data. In fact, most
control is waived under complicated and often unread privacy policies or service
terms and conditions.

To empower users with control over their data, mobile devices have implemen-
ted permission managers. This mechanism allows users to control application
access to sensitive data, thus protecting privacy before the data is sent to the
service providers. Unfortunately, in the context of mobile devices the highly
dynamic environment and continuously growing services has led to a trade-off
that focus on usability in detriment of privacy, as to simplify configurations
and alleviate user-burden. However, in this thesis we argue and prove that it
is possible to improve both usability and privacy control through automation,
personalization, context-awareness and obfuscation. This chapter summarizes
this thesis, respective contributions and present future work remarks.

6.1 Synthesis of the Thesis
This thesis focuses on improving privacy in mobile devices, while keeping or
even increasing the usability of privacy-preserving mechanisms. Towards this
challenging objective we strongly focused on automation, for either privacy en-
forcement or for auto-configuration of the privacy-preserving mechanisms. Such
automation was supported through personalization and/or context-awareness,
as to account for privacy subjectiveness and context dependency.

The focus of this thesis was motivated in Chapter 2, where limitations on ex-
isting privacy mechanisms for mobile devices are identified. Of particular relev-
ance, we highlight the amount of automatically allowed permissions that defy
contextual-integrity and user expectation, the lack of personalization and the
poor controls over the privacy-utility trade-off. To tackle this latter aspect, we
focus on obfuscation to increase the control and note that such techniques are
data type specific.

In the road to automated privacy protection, we started with a field study
to collect privacy decisions and user expectations in-situ in Chapter 3. The
collected data served as motivation for enhancing privacy managers, as almost
half of requests are unexpected and the default permission manager incurred
in privacy violations 15% of times. In fact, our analysis revealed a strong,
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yet subjective impact of user expectations in privacy decisions, and uncovered
an intrinsic relation between application usage, and therefore the permission
requests that are made to the user, and the surrounding context.

With the collected data, we developed predictive models to automate privacy de-
cisions, which we also present in Chapter 3. These models build up on previous
works by using privacy profiles towards personalization, and by considering con-
textual features towards context-awareness. We innovate by incorporating user
expectations and by considering contextually-aware privacy profiles. Our auto-
mated, personalized and context-aware approach is able to reduce the amount
of privacy violations by almost 60% when compared to the Android permission
manager based on runtime permissions. Without using the expectation as input
feature for the prediction, as this requires getting input from the user, these
violations can still be reduced by 28% under our approach.

In an effort to increase user control over the trade-off between privacy and utility
in the permission manager, we focused on obfuscation. The advantage of ob-
fuscation is that it can be effectively applied at data collection, thus preserving
privacy even against a potentially untrustworthy service provider. Unfortu-
nately, this type of privacy-preserving mechanisms is data type dependent and
we therefore, focused on location data, a prevalent and critical data type in
mobile devices.

Location data has particular privacy considerations which steam from the nature
of this type of data. Specifically, the frequency of reports directly impacts the
temporal correlations between user locations. In Chapter 4 we evaluate the im-
pact of the frequency of reports on the privacy level of location traces, with a
particular focus on geo-indistinguishability, a differentially-private formal notion.
We have empirically validated the consideration of independence between reports
under sporadic release of location updates, while reaffirming the need for better
mechanisms under continuous reports. Additionally, we show that a miscon-
figured privacy parameter can result in no effective privacy. These two main find-
ings from Chapter 4 served as motivation to a novel Location Privacy-Preserving
Mechanism (LPPM) termed Velocity-Aware Geo-Indistinguishability (VA-GI)
which we propose in Chapter 5.

VA-GI is a generalization of geo-indistinguishability to provide automatic
privacy and utility adjustment, while minimizing the amount of user-set
parameters that can result in misconfigurations. VA-GI thus provides geo-
indistinguishability with a variable privacy budget, that is automatically ad-
justed based on situation/context of the user, as measured by its velocity and
frequency of location reports. It can additionally be personalized to specific
drivers or regions/road networks, and effectively generalized for wide deploy-
ment. These usability properties are crucial towards the implementation of
VA-GI in a permission manager as to minimize user-burden and to mitigate
potential misconfigurations. Our empirical results prove the desired adapta-
tion of VA-GI to both privacy and utility, in fact outperforming previous geo-
indistinguishable LPPMs.
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6.2 Contributions
This research has made several contributions that were enumerated in the pre-
vious chapters. In this section we highlight the main contributions:

• A dataset of over 65000 user-answered privacy decisions and
the respective user expectations and surrounding context. This
dataset was collected from 93 participants and we make it available to
the research community [Mendes, 2021a], alongside our data collection
tool [Mendes, 2021b]. This dataset served as motivation for this work, as
it showed how current permission managers are insufficient to effectively
control privacy. Specifically, a runtime permission manager such as the
one used in Android 9 would have in incurred in a violation of privacy
in 15% of all user-answered permissions, that is, it would have allowed
permissions that our users explicitly denied. Furthermore, it uncovered
a strong misalignment between apps practices and user expectations, as
almost 50% of permission requests were unexpected.

• An automated, personalized and context-aware permission man-
ager that achieves a ROC AUC of 0.96 and an F1 score of 0.92.
This mechanism reduces the amount of privacy violations by 60% when
compared to the standard android permission manager. However, this
value is only possible when knowing the user expectation regarding each
permission request. Without this piece of information, we are still able to
reduce the number of privacy violations by 28%, with a prediction model
that achieves a ROC AUC of 0.9 and an F1 score of 0.88.

• An empirical analysis that evidences the need for the minimiza-
tion of the number of user-set parameters in LPPMs and for their
automatic and dynamic adjustment in accordance with varying
frequency of updates. Our experiments evidence how a misconfigured
parameter can result in no effective privacy and how a strong attacker can
potentially defeat obfuscation.

• We propose VA-GI, a generalization of geo-indistinguishability
to location traces that allows for the automatic adjustment of
the privacy budget in accordance with varying velocity of the
user and frequency of reports, while reducing the amount of
required user-set parameters. Our experiments show how a VA-GI
LPPM outperforms previous geo-indistinguishable LPPMs in the privacy-
utility adaptability, and how it can be personalized to specific drivers or
areas, or generalized for wide deployment.

These proposals, as well as the literature review performed, are published in five
international conference papers and one journal article. Additionally, they have
sparked further research that was supervised by the candidate and culminated
in two masters’ thesis and four cooperation papers.
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6.3 Future Work
Each chapter in this thesis has provided future work remarks, contextualized by
the respective detailed subject. In this section we focus only on the main future
research paths.

A possible improvement to automated privacy enforcement is to incorporate
a richer contextual model, one that could semantically describe the user and
device situation. Examples include inferring the semantic location of the user,
the activity being practiced and the people in vicinity. Towards achieving this
goal, additional data sources could be considered, such as activity recognition
models that are based on motion sensor data. In this subject, it would be
interesting to evaluate which situations warrant changes in privacy preferences,
as the consideration of an ever increasing number of contexts also increases the
amount of data required to train the predictive model.

Collecting data regarding permission decisions and application usage towards
building automated privacy mechanisms, as described in this thesis, also raises
privacy issues. In a master thesis supervised by the candidate it was explored the
possibility of creating the privacy profiles and prediction models while preserving
privacy even against the entity that performs this task. An unexplored venue
in that line of work would be to develop a monitoring framework that would
be able to update both the profiles and predictions models in real time, while
maintaining the same privacy guarantees.

Our collected data revealed a strong misalignment between apps’ practices and
user expectations as nearly half of requests were unexpected. This value mo-
tivates the need for raising privacy awareness, potentially through better pri-
vacy indicators, such as, the camera and microphone in-use indicators; privacy
nudges, that not only incentivize reviewing permission but also educate on apps’
practices; and educational applications that can convey the risks using examples
from installed applications.

In the context of location privacy, the VA-GI proposal uses the velocity of the
user and frequency of reports as a metric for the correlation between user loc-
ations, which might be inaccurate by not considering the map of possible loc-
ations. A potential enhancement is to use the underlying map as a metric of
entropy or confusion of the adversary in pin-pointing the user-location.

Finally, a natural departure of this work would be the incorporation of obfusca-
tion in the permission manager, such as using the VA-GI for location data and
similar techniques for the other data types. Two different evaluation studies
would be required in this line of work. The first would be the measurement
of the adoption and user perceived utility of the obfuscation techniques. The
second would be to evaluate the performance w.r.t. privacy and utility, of the
techniques, including their adaptability to different contexts, such as, in the case
of location data, varying frequency of location updates. Similar methodology to
the one taken in this thesis could be conducted for other data types.
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Appendix A.
Top Installed Applications

Table A.1 presents the top 2 installed applications per category and respective
install/user count.
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APPENDIX A. TOP INSTALLED APPLICATIONS

Category Application Count

WEATHER Meteo@IPMA 5
AccuWeather: Weather alerts & live forecast info 3

VIDEO_PLAYERS Google Play Movies & TV 38
VLC for Android 8

UNIDENTIFIED cn.wps.xiaomi.abroad.lite 20
com.micredit.in 17

TRAVEL_AND_LOCAL Booking.com: Hotels, Apartments & Accommodation 14
Tripadvisor Hotel, Flight & Restaurant Bookings 13

TOOLS Google Translate 26
Samsung Calculator 23

SPORTS FlashScore - resultados desportivos 11
Placard 8

SOCIAL Instagram 68
Facebook 44

SHOPPING Cartão Continente 22
OLX - Compras Online de Artigos Novos e Usados 21

PRODUCTIVITY Google Drive 45
Google Docs 38

PHOTOGRAPHY Google Photos 41
Adobe Lightroom - Photo Editor & Pro Camera 5

PERSONALIZATION Mi Wallpaper Carousel 20
Nova Launcher 4

NEWS_AND_MAGAZINES Google News - Top world & local news headlines 12
Quora — Ask Questions, Get Answers 4

MUSIC_AND_AUDIO Spotify: Listen to podcasts & find music you love 74
YouTube Music - Stream Songs & Music Videos 34

MEDICAL Lady Pill Reminder ® 2
Medscape 2

MAPS_AND_NAVIGATION Uber - Request a ride 50
Waze - GPS, Maps, Traffic Alerts & Live Navigation 24

LIFESTYLE Glovo: Order Anything. Food Delivery and Much More 26
Google Home 17

LIBRARIES_AND_DEMO Pydroid repository plugin 1

HOUSE_AND_HOME Imovirtual Real Estate Portal 2
idealista 2

HEALTH_AND_FITNESS STAYAWAY COVID 28
Samsung Health 20

GAME Among Us 26
Pokémon GO 11

FOOD_AND_DRINK Uber Eats: Food Delivery 47
McDonald’s 27

FINANCE MB WAY 65
Revolut 30

EVENTS RHI Think 1
Viral Agenda - Event Guide 1

ENTERTAINMENT Google Play Games 55
Netflix 40

EDUCATION Photomath 19
uni - A FEUP no teu bolso 13

COMMUNICATION WhatsApp Messenger 86
Messenger – Text and Video Chat for Free 73

COMICS ComicScreen - ComicViewer 2
WEBTOON 1

BUSINESS ZOOM Cloud Meetings 38
LinkedIn: Jobs, Business News & Social Networking 28

BOOKS_AND_REFERENCE Amazon Kindle 7
Google Play Books - Ebooks, Audiobooks, and Comics 7

BEAUTY Barbearia Asgard 1

AUTO_AND_VEHICLES Standvirtual Carros: Comprar melhor, vender melhor 3
Fuelio: gas log, costs, car management, GPS routes 2

ART_AND_DESIGN PENUP - Share your drawings 2
Canva: Graphic Design, Video Collage, Logo Maker 1

Table A.1.: Top 2 installed applications per category and respective install count
in the static data.

— 138 —



Appendix B.
Feedback Questionnaire

At the end of the data collection campaigns and after handing the reward
voucher, we would email to the participant a link with an optional questionnaire.
This survey was completely anonymous and all questions were optional. What
follows is some of the translated questions present in the questionnaire.

• After your participation, do you consider the default Android permission
manager sufficient? {Yes, No, Maybe}

• On a scale of 0 (nothing) to 5 (a lot), how much were you surprised by
the number of permission requests made by the applications during the
campaign?

• Was there any permission request that concerned you? For instance, be-
cause you were not expecting it? Which app or apps and respective re-
quested permissions did concern you? (Open question)

• Was there any behavior, configuration or application that you have
changed or will change as a result of the campaign? Could you detail
what you will change or have changed? (Open question)

• Which information of the context do you consider more important when
deciding whether to allow or deny a permission? (Open question)
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Appendix C.
Information Gain

Tables C.1a and C.1b show the information gain for the expectation and grant
result with each other feature, respectively.
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APPENDIX C. INFORMATION GAIN

wasRequestExpected
grantResult 0.174932
isRequestingAppVisible 0.034572
permission_PHONE 0.026482
isTopAppRequestingApp 0.017188
permission_STORAGE 0.014735
category_VIDEO_PLAYERS 0.013996
selectedSemanticLoc_Home 0.013355
networkStatus_NOT_METERED 0.009829
category_COMMUNICATION 0.009160
permission_CAMERA 0.008898
category_HEALTH_AND_FITNESS 0.005937
category_PRODUCTIVITY 0.005420
category_LIFESTYLE 0.005284
permission_CALL_LOG 0.005077
category_PHOTOGRAPHY 0.004513
category_SOCIAL 0.003996
networkStatus_METERED 0.002889
category_EDUCATION 0.002439
category_NEWS_AND_MAGAZINES 0.002396
selectedSemanticLoc_Travelling 0.002374
category_GAME 0.002355
hour 0.001745
callState 0.001625
category_AUTO_AND_VEHICLES 0.001536
permission_SMS 0.001520
category_SHOPPING 0.001340
category_COMICS 0.001339
category_BOOKS_AND_REFERENCE 0.001272
networkStatus_DISCONNECTED 0.000925
isWeekend 0.000287
category_EVENTS 0.000282
category_WEATHER 0.000075

(a) User Expectation

grantResult
wasRequestExpected 0.182551
permission_STORAGE 0.018125
category_VIDEO_PLAYERS 0.016729
category_COMMUNICATION 0.013858
permission_PHONE 0.013843
selectedSemanticLoc_Home 0.011375
networkStatus_METERED 0.008086
isRequestingAppVisible 0.007845
networkStatus_NOT_METERED 0.007624
permission_CAMERA 0.006610
permission_CONTACTS 0.005629
selectedSemanticLoc_Travelling 0.005558
category_GAME 0.005136
category_TRAVEL_AND_LOCAL 0.004675
plugState 0.003084
category_WEATHER 0.002793
isTopAppRequestingApp 0.002483
category_TOOLS 0.002355
category_MUSIC_AND_AUDIO 0.002348
permission_LOCATION 0.002234
hour 0.002170
permission_CALL_LOG 0.001951
category_PERSONALIZATION 0.001940
selectedSemanticLoc_Work 0.001710
permission_SENSORS 0.001467
category_BUSINESS 0.001452
category_SOCIAL 0.001350
category_SPORTS 0.000973
category_SHOPPING 0.000963
category_HEALTH_AND_FITNESS 0.000801
isWeekend 0.000623
category_MEDICAL 0.000485
callState 0.000389
category_LIFESTYLE 0.000265
category_ENTERTAINMENT 0.000156
category_FOOD_AND_DRINK 0.000122
networkStatus_DISCONNECTED 0.000103

(b) Grant Result

Table C.1.: Information Gain for the expectation and grant result with every
other feature. Showing only values greater than 0.
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Appendix D.
Grid-Search For The Best Global
Predictor

To evaluate the best model for predicting privacy decisions, a 5-fold cross-
validated grid-search was implemented for each of the experimented parameters.
What follows is a list of parameters that were experimented in the grid-search,
whose meaning and implementation details can be consulted in the SciKit doc-
umentation [Pedregosa et al., 2011]. Unmentioned parameters were used with
the default values.

• Linear SVM:

– C: 16 values evenly spaced on a log scale from 10−8 to 103. This
range extends the ones used in [Liu et al., 2016], as the performance
was increasing for lower values.

– Maximum number of iterations: 500000.

• RBF SVM:

– C: 8 values evenly spaced on a log scale from 10−5 to 108

– Gamma: [scale, auto, 10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103]

• Decision tree:

– Criterion: [giny, entropy]

– Splitter: [best, random]

• Bagging:

– Boostrap classifiers: [True, False]

– Boostrap features: [True, False]

– Number of estimators: [5, 10, 15, 30, 50]

– Maximum number of samples: [0.6, 0.8, 1.0]

• Ada Boosting:

– Number of estimators: [10, 20, 30, 50, 100, 150]
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– Learning rate: [0.01, 0.05, 0.1, 0.2, 0.5]

• Random Forest:

– Boostrap: [True, False]

– Number of estimators: [5, 10, 15, 30, 50]

– Maximum Features: [sqrt, log2]

• Neural Network:

– Hidden Layer Sizes: 7 topologies of equally spaced number of neut-
rons ranging from 1 neutron to the number of input features

– Maximum number of iterations: 500000.
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