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Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease or Charcot disease, is a fatal neurodegenerative disease that
affects motor neurons (MNs) and leads to death within 2–5 years of diagnosis, without any effective therapy available. Although the
pathological mechanisms leading to ALS are still unknown, a wealth of evidence indicates that an excessive reactive oxygen species
(ROS) production associated with an inefficient antioxidant defense represents an important pathological feature in ALS.
Substantial evidence indicates that oxidative stress (OS) is implicated in the loss of MNs and in mitochondrial dysfunction,
contributing decisively to neurodegeneration in ALS. Although the modulation of OS represents a promising approach to protect
MNs from degeneration, the fact that several antioxidants with beneficial effects in animal models failed to show any therapeutic
benefit in patients raises several questions that should be analyzed. Using specific queries for literature search on PubMed, we
review here the role of OS-related mechanisms in ALS, including the involvement of altered mitochondrial function with
repercussions in neurodegeneration. We also describe antioxidant compounds that have been mostly tested in preclinical and
clinical trials of ALS, also describing their respective mechanisms of action. While the description of OS mechanism in the
different mutations identified in ALS has as principal objective to clarify the contribution of OS in ALS, the description of positive
and negative outcomes for each antioxidant is aimed at paving the way for novel opportunities for intervention. In conclusion,
although antioxidant strategies represent a very promising approach to slow the progression of the disease, it is of utmost need to
invest on the characterization of OS profiles representative of each subtype of patient, in order to develop personalized therapies,
allowing to understand the characteristics of antioxidants that have beneficial effects on different subtypes of patients.

1. Introduction

Amyotrophic lateral sclerosis (ALS), also known as Lou Geh-
rig’s disease or Charcot disease, is the most common fatal
motor neuron disorder. This neurodegenerative disease is
characterized by the progressive loss of upper motor neurons
in the cerebral cortex and lower motor neurons in the brain

stem and spinal cord, leading to muscle weakness, and pro-
gressing into muscle atrophy and paralysis, which culminates
in respiratory failure and death [1, 2]. On average, ALS
patients have a survival of about 2-3 years from diagnosis,
being estimated that only 5-10% of patients survive more
than 10 years after diagnosis [3]. So far, no disease-
modifying treatment modality has been found for ALS.
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Currently, there are only two drugs approved by the US
Food and Drug Administration for ALS treatment, riluzole,
which is a neuroprotective agent that only extends the ALS
life expectancy about 3 months, and edaravone, which is
an antioxidant that only delays ALS development [4] in
some patients [5], as detailed in Section 3.9. This fatal neuro-
degenerative disease has a worldwide prevalence of 4-6 cases
in 100,000 and typically has a late-onset with symptoms aris-
ing between 55 and 65 years of age, on average [3]. Gener-
ally, men present with an earlier age of onset compared to
women, and they are more prone to spinal-onset, whereas
bulbar-onset is more frequent in women [6]. The most com-
mon form of ALS is sporadic (sALS), with no known etiol-
ogy, accounting for nearly 90-95% of all the cases, while
the remaining 5–10% of the cases are inherited (Familial
ALS-fALS), and frequently associated with an earlier age of
onset [2, 7].

Although the causes of sALS are still unknown, the dis-
ease has been associated with different risk factors, includ-
ing age, smoking, body mass index, level of physical
fitness, and occupational and environmental risk factors,
such as exposure to chemicals, pesticides, metals, and elec-
tromagnetic fields [8]. However, as none of these external
parameters are considered as direct factors triggering the
development of this disease, it is believed that there are
some individual susceptibility factors that coupled to exter-
nal exposure to environmental factors lead to the develop-
ment of ALS [9–11]. Over 50 disease-modifying genes
have been described in ALS [12]; mutations in chromosome
9 open reading frame 72 (C9orf72) [13, 14], Cu2+/Zn2+

superoxide dismutase type-1 (SOD1) [15–18], TAR DNA-
Binding (TARDBP) [19], and fused in sarcoma (FUS) [20,
21] are among the most prevalent ones. As neither the
mutations nor the environmental risk factors completely
describe the etiopathogenesis of this disease, a gene-time-
environment model has arisen to explain the development
of this disease, considering the development of ALS as a
multistep process in which genetic background is one of
the several triggering factors [10, 22].

Although the precise pathological mechanisms of ALS
are still unknown, it is assumed that fALS and sALS share
at least some pathological mechanisms, since they present
similar clinical pictures [3, 23]. Many molecular mecha-
nisms have been suggested, including glutamate excitotoxi-
city, altered RNA metabolism, defective axonal transport,
protein misfolding and aggregation, endoplasmic reticulum
stress, disrupted protein trafficking, oxidative stress (OS),
inflammation, and mitochondrial dysfunction [3, 24, 25].

In this review, we provide an update on the role of OS
in ALS that accelerates mitochondrial dysfunction and cell
damage. Considering that OS decisively contributes to neu-
rodegeneration in ALS, we also describe antioxidant-based
therapeutic strategies that have been suggested for ALS
management. Several antioxidant agents have failed to
show any meaningful therapeutic benefit or were not suffi-
ciently examined. In this regard, we try to sum up the
evidence on the positive and negative outcomes for each
drug with the aim of achieving novel opportunities for
intervention.

2. Evidence on the Involvement of Oxidative
Stress in ALS

Reactive oxygen species (ROS) are radical or nonradical
oxygen species formed by the partial reduction of oxygen,
such as superoxide radical anion (O2

•-), hydrogen peroxide
(H2O2), and hydroxyl radical (HO•), which are generated as
cellular metabolic by-products through enzymatic and non-
enzymatic reactions [26]. Mitochondria are one of the most
important sites of intracellular ROS production due to their
main role in oxidative ATP production, in which molecular
oxygen is reduced to water in the electron transport chain
[27, 28]. The O2

•- is produced at a number of sites in mito-
chondria, including complexes I and III of the electron
transport chain [27, 29], pyruvate dehydrogenase [30], and
2-oxoglutarate dehydrogenase [31, 32], all directing ROS
towards the mitochondrial matrix (MM), glycerol 3-
phosphate dehydrogenase [33] that produces ROS towards
the intermembrane mitochondrial space (IMS) [27], and
complex III that can leak electrons to oxygen on both sides
of the inner mitochondrial membrane (IMM) [34]. Other
proteins involved in mitochondrial ROS generation include
cytochrome P450 (CYP) enzymes [35], dihydroorotate dehy-
drogenase [36, 37], complex II [38], and monoamine
oxidases [39] which can also contribute to mitochondrial
ROS production. Outside mitochondria, several enzymes
have also been identified as major sources of ROS, including
the nicotinamide adenine dinucleotide phosphate oxidase
(NOX), xanthine oxidase, cycloxygenases, CYP450, and
lipoxygenases [40]. Under normal conditions, the production
and the clearance of ROS are balanced [41]. OS arises when
the capability of the organism to maintain the balance is
compromised by an excess amount of ROS or by defective
antioxidant defense and can be manifested in multiple ways,
including modifications of the redox state of critical proteins,
and hence of their activity [42, 43]. The cellular antioxidant
defense is composed of enzymatic and nonenzymatic antiox-
idants [44]. Superoxide dismutases, catalase (CAT), glutathi-
one peroxidase (GPx), glutathione reductase (GR), and
thioredoxin (Trx) are the major enzymatic antioxidants with
an important role in the catalytic removal of ROS, while
nonenzymatic antioxidants include low molecular weight
compounds, as glutathione (GSH), vitamins A, C, and E, fla-
vonoids, and proteins (e.g., albumin, ceruloplasmin, and
metallothionein) [45]. An excessive ROS production associ-
ated with an inefficient antioxidant defense represents an
important pathological feature in ALS [46].

A large number of studies have reported increased levels
of oxidative damage in proteins, lipids, and DNA of postmor-
tem neuronal tissue [47–49], as well as in cerebrospinal fluid
(CSF) [50–53], plasma [54], and urine [55] samples collected
from ALS patients, suggesting the involvement of OS mech-
anisms in the central nervous system (CNS) as well as other
tissues. However, it is difficult to determine if oxidative dam-
age represents the primary cause or a secondary consequence
of this disease [56, 57] and whether oxidative damage appears
early or late in the course of the disease. The impossibility of
evaluating OS markers in humans at an early stage of the
disease constitutes an obstacle to resolve this riddle, since
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the initial phase of the disease progresses in a subclinical
manner and thus years can pass before the diagnosis. There
is no current way to predict which individuals will develop
this neurodegenerative disease. On the other hand, the
patients’ life expectancy is usually very short, and it is not
possible to follow OS markers during a long period of time.
Nevertheless, animal models can bring some insights. For
example, it was described in mutant SOD1 (mutSOD1)
mice that the activation of the nuclear factor erythroid-2-
related factor 2 (Nrf2)- antioxidant response element
(ARE) OS-responsive system occurred in distal muscles
before the disease onset [58], supporting the hypothesis that
augmented OS in the muscles is implicated in an initial
phase of this disease that eventually leads to axonal “dying
back” and culminates with motor neurons (MNs) loss.
However, it is noted that the studies with animal models
that correlate different OS markers with the disease pro-
gression only refer to the mutSOD1 model of the disease,
which does not represent the majority of patients. For sALS,
which represents the highest number of patients, evidence
of oxidative damage includes the increase in protein car-
bonyls [48, 49, 59, 60], 8-hydroxy-2′-deoxyguanosine (8-
OHdG) [48, 61], malondialdehyde-modified proteins [48],
4-hydroxynonenal (4-HNE) protein conjugates [61, 62],
and nitrotyrosine products [63–65] in spinal cord tissue.
Moreover, in erythrocytes from sALS patients, an increase
in lipid peroxidation associated with a decrease in CAT,
GR, and glucose-6-phosphate dehydrogenase activities and
a decrease in GSH, especially in cases with longer disease
duration times were measured [66]. The fact that some of
the environmental risk factors of ALS, including exposure
to agricultural chemicals, heavy metals, excessive physical
exertion, chronic head trauma, and smoking, share OS
mechanisms as a possible common factor suggests that the
appearance of ALS can be facilitated by any factor that
favors the prooxidative state [67]. However, the exact oxi-
dative mechanism involved in ALS progression remains to
be determined, as well as the real involvement of mitochon-
dria in this process. To clarify this question, Walczak et al.
[68] analyzed different parameters of mitochondrial func-
tion and antioxidant enzymes to compare sALS patients
with fALS patients and controls. Decreased expression of
complexes I, II, III, and IV protein subunits was observed
in fibroblasts from practically all sALS patients, which also
presented lower mitochondrial membrane potential and
decreased protein expression of two different antioxidant
enzymes: SOD1 and CAT (Figure 1). Principal component
analysis allowed a clear separation between 3 classes, corre-
sponding to controls, sALS, and fALS. Controls were mainly
characterized by a high expression of SOD1 protein, whereas
sALS samples were characterized by high Ci for complexes I
and IV (a coefficient that represents the control of metabolic
fluxes by a given enzyme), and fALS samples were character-
ized by a high rate of maximal respiration with substrates
for complexes I and II and a high level of the complex I
NDUFB8 subunit. These results suggest distinct mecha-
nisms of mitochondrial dysfunction in sALS patients that
can lead to chronic mitochondrial stress [68], which should
be further clarified in the future.

2.1. Association of SOD-1 Mutations with Oxidative Stress in
ALS. MutSOD1, accounting for approximately 20% of ALS
cases, is one of the most studied causes of ALS, involving
OS mechanisms and disruption of mitochondrial function
observed in cultured cells [69–71] and in animal models
[72–74]. SOD1 is a Cu-Zn metalloprotein responsible for
the conversion of O2

•- into O2 and H2O2 and is localized
mainly in the cytosol, being also present in the nucleus, per-
oxisomes, and mitochondria. This enzyme plays a key role in
the antioxidant defense of the cell [75], also regulating cellu-
lar respiration and energy metabolism [76]. In ALS patients,
there are more than 180 mutations identified across the cod-
ing region of the SOD1 gene as well as several others in the
noncoding regions [77, 78]. The influence of these mutations
on dismutase activity is considerably variable, and they may
be associated with a decrease [52], maintenance [79, 80], or
increase [52, 81] in the activity compared to wild-type
SOD1. Because SOD1 knockout mice do not develop ALS
per se [82], and due to the lack of correlation between
SOD1 dismutase activity and aggressiveness of clinical phe-
notypes [83], it has been suggested that mutSOD1 exerts its
deleterious effect by a toxic gain of function rather than by
altered SOD1 activity [84].

The mechanism of this toxic gain is currently unknown.
A number of hypotheses regarding this toxic property have
been proposed, none of them being proven so far: (1) mut-
SOD1 could act as a peroxidase by using as a substrate the
H2O2 produced through ordinary dismutase reaction [80,
85]; (2) mutSOD1 could react with peroxynitrite to cause
tyrosine nitration [42, 86]; and (3) formation of aggregates
due to a decrease in the stability of SOD1 monomer/dimers
[87]. As a peroxidase, it has been proposed that SOD1 cata-
lyzes the reverse of its normal dismutase reaction or uses
the H2O2 produced in the dismutation as a substrate to pro-
duce HO• through the Fenton reaction [88, 89]. It has also
been suggested that mutSOD1 causes elevated oxidative
damage through the dissociation of zinc from the enzyme
[90] or exposure to toxic copper at the active site, promoting
reverse O2

•- production [91]. On the other hand, O2
•- also

reacts with nitric oxide which is generated by nitric oxide
synthase, more rapidly than it does with native SOD1, pro-
ducing peroxynitrite, with consequent tyrosine nitration of
cellular proteins [42, 86] (Figure 2).

Notwithstanding, it has also been proposed that the mat-
uration of SOD1 is a complex multistep process, which eas-
ily predisposes SOD1 to misfolding or/and polymerization
and aggregation [92–94]. In fact, the SOD1 enzyme can
itself be a target for OS, leading to possible folding and
aggregation defects [95], which remains controversial in
ALS pathogenesis. While a correlation was found between
the accumulation of SOD1 aggregates and the disease pro-
gression in cervical, thoracic, and lumbar spinal cord tissues
of B6-SJL-Tg (SOD1G93A) mice, it was also suggested that an
enhanced capacity of drawing the misfolded SOD1 into
aggregates may confer resistance against its own toxicity
[96]. Similarly, Zhu et al. [92] showed that low molecular
weight nonnative SOD1 trimers were cytotoxic in neuro-
blastoma cells, while SOD1 aggregates did not affect cell via-
bility. Together, these studies suggest that misfolded SOD1

3Oxidative Medicine and Cellular Longevity



can be a disease driver, especially for the spinal cord, while
SOD1 aggregates are considered benign or protective agents
against the disease progression. Indeed, misfolded SOD1
identified in spinal cord mitochondria from both SOD1G93A

rats and SOD1G37R mice was associated with an increased
susceptibility to OS and mitochondrial damage [72]. More-
over, in the mouse motoneuronal NSC-34 cell line, the mut-
SOD1 proteins were found to associate with mitochondria
due to the oxidation of cysteine residues, which causes mut-
SOD1 to accumulate in an oxidized, aggregated state. Conse-
quently, the presence of mutSOD1 leads to the impairment of
the respiratory chain and a shift in the mitochondrial redox
balance (GSH/GSSG ratio) towards a higher level of OS
[69] (Table 1). Similarly, Liying et al. [70] reported reduced
levels of GSH and enhanced levels of GSSG in NSC34 motor
neuron-like cells and lumbar tissues of the spinal cord of
mutant SODG93A mice, suggesting that the decrease in GSH
and a higher oxidative state in cells promote apoptotic cell
death that contributes, at least partially, to motor neuron
degeneration in ALS. Additionally, it was also found that
the expression of mutSOD1 in SH-SY5Y human neuroblas-
toma cells induces the activation of p66Shc, a protein
involved in controlling mitochondrial redox homeostasis in
neuronal-like cells [71].

The overexpression of mitochondria-targeted CAT
improved mitochondrial antioxidant defenses and mito-
chondrial function in SOD1G93A astrocyte primary cultures,
however SOD1G93A mice treated with this antioxidant did
not develop the disease later or survive longer, suggesting
that preventing peroxide-mediated mitochondrial damage
alone is not sufficient to delay the disease [97]. In mutSOD1
ALS models (H46R/G93A rats and G1H/G1L-G93A mice),
certain residual motor neurons showed the overexpression
of peroxiredoxin-l and glutathione peroxidase-l (Prxl/GPxl)
during their clinical courses, while at the terminal stage of
ALS, a disruption of this common Prxl/GPxl-overexpression
mechanism was observed in neurons, suggesting that the
breakdown of this redox system at the advanced disease stage
probably accelerates neuronal degeneration and neuronal
death [98] (Table 1). Indeed, decreased GSH levels caused
motor neuron degeneration in the SOD1wt mice model [99]
and accelerated motor neuron death in SOD1G93A mice, by
aggravating mitochondrial pathology [73].

Protein cysteine residues are crucial in the regulation of
cellular redox balance, due to their thiol groups that can
form covalent disulfide bonds, which are critical for correct
protein folding, function, and stability [100]. The tripeptide
GSH, which contains cysteine, is the major thiol antioxidant
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Figure 1: Mitochondrial dysfunction in sporadic forms of ALS. Mitochondrial bioenergetics is driven by the oxidation of different substrates
and is stimulated by calcium. Flux of electrons through the electron transport chain creates a transmembrane proton gradient of about
160mV in the resting state (negative inside), which fuels ATP synthesis in the mitochondrial matrix. Leak of electrons in some of the
bioenergetic reactions generates reactive oxygen species (ROS) that are involved in important cellular signaling processes but that, when in
excess, may also lead to cellular dysfunction and death. Fibroblasts from sALS patients showed markers of mitochondrial dysfunction,
compared to control fibroblasts, including decreased activity of metabolic dehydrogenases, increased ROS levels, increased intracellular
calcium levels, decreased expression of components of the oxidative phosphorylation system, decreased mitochondrial potential, oxygen
consumption, and ATP levels [68]. Abbreviations: NAD: β-Nicotinamide adenine dinucleotide; NADH: β-Nicotinamide adenine
dinucleotide 2′-phosphate reduced form; FAD: Flavin Adenine Dinucleotide; CI: Complex I; CII: Complex II; CIII: Complex III; CIV:
Complex IV; Cyt c: Cytochrome c; ETF: electron transfer flavoprotein; ROS: reactive oxygen species; DH: dehydrogenase; MCU:
mitochondrial calcium uniporter; MPC: mitochondrial pyruvate carrier; ΔΨm: mitochondrial transmembrane electric potential; ATP:
adenosine triphosphate; ADP: adenosine diphosphate; IMM: inner mitochondrial membrane
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and can act as an electron donor to reduce disulfide bonds in
proteins. Cysteine thiols are critical for several cellular func-
tions, including signal transduction and DNA binding of
redox-responsive transcription factors, such as Nrf2 and
nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-kB) [101]. SOD1 has four cysteine residues (Cys
5, 57, 111, and 146), and its oligomerization may involve
covalent disulfide cross-linking mediated by Cys 111, which
is relatively exposed on the protein surface [102], with Cys 6
also playing a possible role [103]. However, this cannot
completely explain SOD1 aggregation in ALS because all
SOD1 cysteine residues have been found to be mutated in
ALS and, therefore, are not present in some patients that
present SOD1 aggregates [104].

SOD1 has a tight connection with the Nrf2 pathway,
which is a major regulator of the phase II antioxidant response
and respective antioxidant elements, including GPx, CAT, GR,
and enzymes involved in GSH synthesis and nicotinamide
adenine dinucleotide phosphate (NADPH)- regenerating
enzymes [105–107]. Nrf2 usually resides in the cytosol bound
to Keap1 (Kelch ECH-associating protein 1; the cytoplasmic
Nrf2 regulator). Oxidative modification of cysteine residues
on Keap1 leads to the release of Nrf2, which in turn translo-
cates to the nucleus upregulating the expression of genes
with an ARE in their promoter [108, 109]. Nrf2 expression
was found to be decreased in NSC-34 cells expressing mut-
SOD1, in MNs isolated from familial SOD1-associated ALS
patients [110], and in primary motor cortex and spinal cord
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responsible for the conversion of O2•- into O2 and H2O2, which is mainly localized in the cytosol. SOD1 mutations are one of the most
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aggregates due to lower stability of mutSOD1 monomers/dimers.mutSOD1 may also cause elevated oxidative damage through the
dissociation of zinc from the enzyme or exposure to toxic copper at the active site, promoting reverse O2•- production. O2•- reacts with
nitric oxide generated by nitric oxide synthase, more rapidly than it does with SOD1, producing peroxynitrite, with consequent tyrosine
nitration of cellular proteins. mutSOD1 may also act as a peroxidase by using H2O2 as a substrate, or the H2O2 produced in the
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derived O2•-. ApoSOD1: metal-deficient Cu,Zn-superoxide dismutase; NADP: β-Nicotinamide adenine dinucleotide 2′-phosphate;
NADPH: β-Nicotinamide adenine dinucleotide 2′-phosphate reduced form; NAD: β-Nicotinamide adenine dinucleotide; NADH: β-
Nicotinamide adenine dinucleotide 2′-phosphate reduced form; GSH: reduced glutathione; GSSG: oxidized glutathione; Trxred: reduced
Thioredoxin; Trxox: oxidized Thioredoxin; Trx: Thioredoxin, NMT: N-myristoyltransferase; Prx: peroxiredoxin; GPx: glutathione
peroxidase; GR: glutathione reductase; PDH: pyruvate dehydrogenase; KGDH: alpha-ketoglutarate dehydrogenase; CxI: complex I; CxIII:
complex III.
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Table 1: Representative studies that demonstrate the association of specific genetic alterations with oxidative stress in ALS.

Altered
gene

Genetic alterations Experimental model Observed effects on oxidative stress makers Reference

SOD1 Mutation: G93A (i) Transgenic mice

(i) Reduced GSH in the spinal cord and motor
neuron cells that correlates with apoptosis-
inducing factor translocation, caspase 3

activation, and motor neuron degeneration
during ALS-like disease onset and progression

[70]

SOD1

Mutations: A4V, G37R,
H48Q, H80R, G85R, D90A,
G93A, D124V, D125H,

E138Δ,
S134N, H46R

(i) NSC-34 motor neuron-like
cell line

(i) MutSOD1s lowered the GSH/GSSG ratio
in mitochondria of cells

[69]

SOD1
Mutations: G1H, G1L, A4V,
H46R, G93A, frame-shift

126 mutation

(i) Motor neurons from 40 sALS
and 5 mutated SOD1 sALS patients
(frame-shift 126 mutation and A4V)
(ii) Transgenic rats (H46R/G93A)
(iii) Transgenic mice (G1H/G1L-

G93A)

(i) The number of motor neurons with
negative expression of antioxidant enzymes
(Prxll and GPxl) increased with ALS disease

(ii) Neurons with higher expression of Prxll and
GPxl were less susceptible to oxidative stress

[98]

TDP-43 Mutations: M33V, Q331K

(i) TDP-43Q331K mice
(ii) Primary astrocyte cultures
from TDP-43Q331K mice

(iii) Fibroblasts from pre- and
postsymptomatic ALS patient
fibroblasts harboring a TDP-

43M337V mutation

(i) Increased transcript expression of Nrf2
signaling-related genes (NFE2L2, HMOX1,
GCLM, and NQO1) in the spinal cord of

transgenic mice
(ii) No change in protein expression levels of
HO-1, GCLM, GPx1, and NQO1 antioxidant
proteins in transgenic mice (impaired protein

translation of antioxidants)
(iii) Decreased total GSH levels in fibroblasts
from pre- and postsymptomatic patients
(iv) Decreased total GSH levels in primary

astrocytes from transgenic mice

[116]

TDP-43 Mutation: M337V
(i) NSC-34 motor neuron-like

cell line

(i) Decreased nuclear translocation of Nrf2,
total Nrf2, cytoplasmic Nrf2, and downstream

phase II detoxifying enzyme (NQO1)
(ii) Increased lipid peroxidation products

[115]

TDP-43 Mutations: Q331K, M337V
(i) NSC-34 motor neuron-like

cell line

(i) Mitochondrial dysfunction, oxidative
damage, and nuclear accumulation of

Nrf2 in cells
(ii) Downregulation of HO-1, that could

not be restored by sulforaphane
(iii) Reduction of LDH and lipid peroxidation

products by sulforaphane

[117]

C9orf72
GGGGCC hexanucleotide

repeat expansion in
noncoding region

(i) iPSC-derived astrocytes from
C9orf72-mutated fALS patients

and nonaffected donors

(i) Decreased secretion of antioxidant
proteins (SOD1, SOD2, and GSH) in

mutant C9orf72 astrocytes
(ii) Increased ROS levels in mutant

C9orf72 astrocytes
(iii) Conditioned media of mutant

C9orf72 astrocytes increased ROS levels
in wild type motor neurons

(iv) Oxidative stress was increased in an
age-dependent manner

(v) poly(GR) in C9orf72 neurons compromises
mitochondrial function and causes DNA

damage in part by increasing oxidative stress

[129]
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postmortem tissue samples from ALS patients [111], which
suggested that increasing neuronal Nrf2 activity may repre-
sent a novel therapeutic target. The endogenous activation
of the Nrf2-ARE system during the development of pathol-
ogy in the SOD1G93A mouse model of ALS showed that the
early Nrf2-ARE activation occurs in muscle tissue and that
eventually, it progresses in a retrograde manner leading to
MN loss [58], as previously described. However, the fact that
Nrf2-ARE activation may occur in sALS patients, as well as
in those carrying mutSOD1, led these authors to speculate
that this pathway is probably independent of mutSOD1 [58].

Nicotinamide adenine dinucleotide phosphate oxidase-
dependent redox stress is another mechanism described to
be related to mutSOD1. In fact, it has been demonstrated that
the deletion of NOX2, and to a lesser extent NOX1, in
SOD1G93A transgenic mice, slows down disease progression
and improves survival [112, 113]. Accordingly, it was also
presumed that SOD1 can regulate NOX2-dependent O2

•-

production by binding to Rac1, also known as Ras-related
C3 botulinum toxin substrate 1, leading to the inhibition of
its GTPase activity [114]. These authors suggested that in
physiological conditions, SOD1 efficiently binds to Rac-
GTP and inhibits its GTPase activity, increasing NOX2 activ-
ity in reducing conditions, whereas the accumulation of
H2O2 leads to the dissociation of SOD1 from Rac-GTP, pro-
moting the inactivation of Rac through GTP hydrolysis, with
consequent NOX2 inactivation and decrease in ROS produc-
tion. In ALS, mutSOD1 associates more strongly with Rac1
compared to the wild type form of SOD1 (SOD1G93A vs.
SOD1WT transgenic mice), being less sensitive to redox
uncoupling, consequently leading to the hyperactivation of
NOX-derived O2

•- by endomembranes [114] (Figure 2).

2.2. Association of TDP-43 Mutations with Oxidative Stress in
ALS. Other less characterized mutated genes linked to ALS
have also been associated with OS mechanisms. Mutant
TAR DNA-Binding Protein 43 (TDP-43), which has several
interactions with the members of the family of heterogeneous
nuclear ribonucleoproteins (hnRNPs), has also been reported
to affect the Nrf2 pathway [115–117]. Supporting this idea,

Moujalled et al. [116] suggested an association between the
TDP-43 protein and Nrf2, mediated by the third partner
hnRNP K. The same authors showed that fibroblasts from
TDP-43M337V patients and astrocyte cultures from TDP-
43Q331K mice both displayed impaired levels of GSH (down-
stream Nrf2 antioxidant), indicating an increase in OS
dependent on a disruption of the Nrf2 pathway. The idea of
an impairment in the Nrf2/ARE pathway has also been evi-
denced in studies with TDP43 mutations in NSC-34 cells
[115, 117]. NSC-34 cells overexpressing TDP-43M337V

showed increased values of intracellular lipid peroxidation,
lower cell viability, nuclear accumulation of Nrf2, and
decreased protein expression of NAD(P)H quinone dehydro-
genase 1 (NQO1, downstream Nrf2 antioxidant), suggesting
that TDP-43M337V weakened cellular antioxidant defenses,
which turned the cells more susceptible to the increase of
OS [115]. Similar results were also described by Duan et al.
[117] in NSC-34 cells overexpressing TDP-43M337V/Q331K

that showed nuclear accumulation of Nrf2, as well as
decreased heme oxygenase (HO-1) protein levels, which is
also a phase II detoxification enzyme regulated by the Nrf2
pathway (Table 1).

Similarly to SOD1, cysteine residues are candidates for
the mediation of TDP-43 aggregation, although the mecha-
nisms are still not completely explained [118]. TDP-43 has
six cysteine residues, four located in RNA recognition motifs
(Cys 173, 175, 198, and 244) and two in the N-terminal
domain (Cys 39 and 50) [119], with no mutations found so
far in ALS [104]. In fact, oxidation of cysteine residues in
the RNA recognition motifs was shown to decrease protein
solubility and lead to the formation of intra- and intermolec-
ular disulfide bridges [120, 121].

2.3. Association of FUS Mutations with Oxidative Stress in
ALS. Fus, a hnRNP (hnRNP P2) [122], is involved in DNA
damage response induced by DNA-double strand breaks
[123, 124], among other pathways, although its role has not
been completely clarified. Wang et al. [124] showed that the
loss of nuclear FUS in fibroblasts obtained from fALS
patients with the R521H and P525L FUS mutations, and in

Table 1: Continued.

Altered
gene

Genetic alterations Experimental model Observed effects on oxidative stress makers Reference

C9orf72
GGGGCC hexanucleotide

repeat expansion in
noncoding region

(i) iPSCs-derived motor neurons
isolated from C9orf72-mutated fALS

patients
(ii) iPSC-derived control neurons
expressing (GR)80 and dipeptide

repeat (DPR) protein

(i) Increased mitochondrial ROS levels cause
DNA damage in both models

(ii) Prevention of DNA damage by an
antioxidant (Trolox)

[128]

ANG
Human wild type ANG
(wANG) and its variant

K40I (mANG)

(i) SH-SY5Y neuroblastoma cells and
NSC-34 motor neuron-like cell line

(i) wANG prevented cell death under H2O2-
induced oxidative stress

(ii) Increased hydrogen peroxide-induced cell
damage in mutant ANG motor NSC-34

neuron-like cell line

[131]

fALS: familial ALS; GCLM: glutamate-cysteine ligase modifier subunit; GPX1: glutathione peroxidase-l: HMOX1: heme oxygenase-1; iPS: induced pluripotent
stem cell; LDH: lactate dehydrogenase; NQO1: NAD(P)H quinone dehydrogenase 1; PrxII: peroxiredoxin-ll; sALS: sporadic ALS.
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induced pluripotent stem cells (iPSCs)/MNs derived from
these fibroblasts, caused the accumulation of unrepaired
DNA strand breaks, which culminated in an increased
vulnerability to OS, suggesting a protective effect of FUS
against OS [124].

2.4. Association of C9orf72 Mutations with Oxidative Stress in
ALS. Concerning C9orf72, the most prevalent mutation in
ALS, few studies have related this mutation with OS mecha-
nisms. In C9orf72-related ALS, the expansion of GGGGCC
(G4C2) hexanucleotide is found repeated in the first intron
of the C9orf72 gene at least thirty times [125]. The expres-
sion of expanded G4C2 repeats results in the production of
5 dipeptide repeat (DPR) proteins: poly-glycine-alanine
(poly-GA), poly-glycine-proline (poly-GP), poly-glycine-
arginine (poly-GR), poly-proline-alanine (poly-PA), and
poly-proline-arginine (poly-PR), which still have an unknown
role in ALS progression and OS mechanisms [126, 127].
C9orf72 motor neurons derived from iPSC presented an
overexpression of the poly-GR protein and DNA damage
that increased gradually with the time of cell culture, possibly
due to poly-GR-induced OS [128]. Additionally, these
authors reported that poly-GR preferentially binds to mito-
chondrial ribosomal proteins, compromising mitochondrial
function by increasing mitochondrial membrane potential
and ROS production, revealing the importance of mitochon-
drial OS mechanisms in C9orf72-related ALS [128]. Another
study with astrocytes derived frommutant C9orf72 iPSC also
reported a reduced secretion of several antioxidant proteins
by astrocytes, and wild type MNs exposed to media condi-
tioned by these C9orf72-astrocytes showed increased OS
[129], suggesting that dysfunction of C9orf72-astrocytes also
leads to OS in MNs, contributing to neurodegeneration
(Table 1).

2.5. Association of Other Less Frequent Mutations with
Oxidative Stress in ALS. Mutations in angiogenin (ANG)
may occur in 1-2% of fALS patients [130], and there is evi-
dence that it may be involved in OS associated with ALS
[67, 131, 132] (Table 1). ANG is a secreted ribonuclease that
can cleave some tRNAs and modulate protein translation in
neurons. A study in murine astrocytes has shown that ANG
activates the Nrf-2 pathway in these cells, and the condi-
tioned medium of these astrocytes protects neuronal cells
against H2O2-induced oxidative damage [133].

Paraoxonases (PONs including PON1, PON-2, and PON-
3) are enzymes involved in the neutralization of highly toxic
organophosphates, and their polymorphisms have been
reported in ALS patients [134–136]. Their antioxidant role
has been well studied in cardiovascular diseases [137]; how-
ever, PON genetic alterations may also be associated with OS
in ALS, especially in the context of organophosphate poison-
ing, which is one of the well-established ALS risk factors [67].

3. Preclinical and Clinical
Studies with Antioxidants

Although evidence of oxidative damage in ALS pathogenesis
has been largely described in the literature, all antioxidants

tested in patients have so far failed, remaining unclear
whether any antioxidant therapies might be effective for
treating ALS. In this section, we describe various preclinical
and clinical trials with antioxidants that have already been
completed or are ongoing.

3.1. Vitamin E. Vitamin E (alpha-tocopherol) is the most
active natural lipophilic antioxidant that protects cell mem-
branes from lipid peroxidation [138, 139] and has been
extensively tested in the context of ALS (Figure 3). A preclin-
ical study in SOD1G93A transgenic mice showed that dietary
supplementation with vitamin E (200 UI/kg) slowed the dis-
ease progression and delayed the onset, but did not affect the
survival time [140] (Table 2). Although vitamin E deficiency
is not consistently present in ALS patients [141–143], a
reduced risk for ALS was described in patients with higher
vitamin E levels [141], or in those with low baseline vitamin
E levels who were supplemented with vitamin E [144–146].
Despite these positive results, three double-blind, placebo-
controlled, clinical trials on ALS patients using oral adminis-
tration of vitamin E (in a range from 500 mg twice a day to
5000 mg/day) until 18 months of treatment did not affect
the quality of life neither the survival of the patients, although
ALS progression was slowed [147–149] (Table 2). Although
vitamin E did not appear to affect the survival in ALS,
patients receiving riluzole plus alpha-tocopherol remained
longer in the milder states of ALS, and after 3 months of
treatment, they presented an increase in plasma GSH levels
and a decrease in plasma thiobarbituric acid reactive species
levels [147]. The negative results in human studies may be
justified in part by the effect that vitamin E does not readily
penetrate the blood-brain barrier (BBB) and does not reach
the CNS in sufficient concentration to be efficient. In fact,
the mean ventricular CSF concentration of vitamin E was
0.114μM after an increased monthly dosage (400, 800,
1,600, 3,200, and 4,000 IU/day) over 5 months [150], while
its IC50 (concentration at which a 50% inhibitory effect is
observed) in a variety of in vitro radical scavenging assays
was between 1.5 and 59μM [151].

Based on the assumption that supplementation with
vitamin E may reduce the risk of ALS and moderately slow
ALS progression, a randomized crossover clinical trial in
phase III to test the effect of vitamin E on treatment of
muscular cramps in ALS patients was initiated in 2006
(NCT00372879); however, the results have not yet been pub-
lished. A pilot randomized, double-blind, placebo-controlled
clinical trial in phase II (NCT04140136) was also initiated in
2019 to investigate the effects of vitamin Emixed tocotrienols
in patients with ALS, particularly in delaying disease progres-
sion, as well as to assess its safety profile in this group of
patients. A Cochrane systematic review found that the
evidences on the beneficial effect of vitamin E and other
treatment strategies on muscle cramps were not conclusive
to support the use of these agents in ALS patients [152].

3.2. N-Acetyl-L-Cysteine (NAC). N-acetyl-L-cysteine (NAC)
is a membrane-permeable antioxidant molecule that allevi-
ates free radical damage [153] and replenishes the plasma
levels of cysteine, as well as the depleted GSH pools
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(Figure 3), when administered orally [154]. A preclinical
study showed that NAC (1mM and 24h) lowered mito-
chondrial ROS production, returned MTT reduction rate
to control levels, and also increased ATP levels in human
neuroblastoma SH-SY5Y cell lines carrying G93A SOD1
mutation [155]. Additionally, the administration of NAC
(2.0mg/Kg/day) in SOD1G93A transgenic mice significantly
extended survival and improved motor performance [153].
However, in a double-blind placebo-controlled clinical trial
on 110 ALS patients, a subcutaneous infusion of NAC
(50mg/kg daily) did not result in a major increase in a 12-
month survival or in a reduction of disease progression
[156] (Table 2); therefore, the beneficial effects of NAC in
ALS remain questionable.

3.3. Coenzyme Q10. Coenzyme Q10 (CoQ10), also known as
ubiquinone, is a lipophilic antioxidant, as well as an essential
mitochondrial cofactor that mediates electron transfer in the
respiratory chain [157, 158]. It has been described that
CoQ10 exerts beneficial effects in ALS by scavenging free
radicals, protecting against OS (Figure 3). The administra-
tion of CoQ10 (200mg/kg daily) significantly increased the
mitochondrial concentrations of coenzyme Q10 in the cere-
bral cortex and prolonged the survival of SOD1G93A trans-

genic mice when the administration started at 50 days after
birth [159]. However, another study showed that the admin-
istration of CoQ10 (800mg/kg/day orally) was unable to
prolong the survival of SOD1G93A mice when it started from
the onset of disease until death [160]. Controversial results
were also found for the serum or plasma CoQ10 concentra-
tions in ALS patients (Table 2). While an increase in the
oxidized form of CoQ10 was found in 20 sALS patients com-
pared to controls [161], another study described similar
serum concentrations of CoQ10 in 30 ALS patients and
controls [162]. CoQ10 has subsequently been shown to be
well-tolerated in 31 ALS patients at doses up to 3000mg/day
for 8 months [163]. However, a phase II randomized,
placebo-controlled, double-blind, multicenter clinical trial
(NCT00243932) with the administration of CoQ10
(2700mg/day) in ALS patients concluded that the difference
between the CoQ10 group and the placebo group was not
large enough to justify continuing to a phase III trial [164,
165] (Table 2). The limited pharmacological effect of
CoQ10 could be justified by its poor CNS availability after
an oral administration [160].

3.4. Nrf2/ARE Modulators. The protective role of Nrf2
against neurodegenerative diseases is well described in the

NOX

AEOL 10150

AEOL 10150

Mitochondiral
biogenesis

Phase II antioxidant genes
HO-1, NQO-1, GPx, GCL, GST, PRX, SRXN, TRX...

ARE

Vitamin E

Melatonin

NACCoQ10
MitoQ
Mito-CP
SS-31
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Curcumin
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Figure 3: Mitochondrial effects of different antioxidant agents in ALS. The scheme represents the main molecular targets of antioxidants used
in ALS, as discussed in the main text. HO-1: heme oxygenase 1; NQO-1: NADPH quinine oxidoreductase 1; GPx: glutathione peroxidase;
GCL: γ-glutamylcysteine synthetase; GST: glutathione S-transferase; PRX: peroxiredoxin; SRXN: sulfiredoxin; TRX: Thioredoxin; GR:
glutathione reductase; CAT: catalase; SOD: superoxide dismutase; NAMPT: nicotinamide phosphoribosyltransferase; NMNAT2:
nicotinamide/nicotinic acid mononucleotide adenylyltransferase 2; NRK1/2: nicotinamide riboside kinase 1/2; CoQ10: coenzyme Q10;
RPPX: dexpramipexole; NAC:N-acetyl cysteine; CDDO: 2-cyano-3,12-dioxooleana-1,9,-dien-28-oic acid; EGCG: epigallocatechin gallate;
ROS: reactive oxygen species.
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literature and may represent a therapeutic target for ALS and
other neurological disorders [166]. In fact, the overexpres-
sion of Nrf2 in astrocytes in coculture protects motor neu-
rons from SOD1G93A toxicity, increasing the amount of
GSH secreted by astrocytes [167]. Crossing SOD1G93A mice
with mice overexpressing Nrf2 selectively in astrocytes signif-
icantly delayed disease onset and extended survival of
SOD1G93A transgenic mice [167], making Nrf2 a possible
therapeutic target in ALS. However, contrary to what was
expected, Guo et al. [168] reported a slight impact of the
Nrf2 knockout on the course of disease in SOD1G93A mice.
These authors also demonstrated that the elimination of
Nrf2 only affected NQO1, among different Nrf2-regulated
phase II enzymes, leaving it an open question whether
Nrf2-mediated neuroprotection is a key mechanism to pre-
vent ALS neurodegeneration [168].

Pharmacological targeting of Nrf2/ARE pathways has
been proposed as a therapeutic strategy against neurodegen-
erative disorders, including ALS, since it helps neuronal
cells to cope with OS [169]. One example is the case of
the novel acylaminoimidazole derivative, 2-[mesityl(methy-
l)amino]-N-[4-(pyridin-2-yl)-1H-imidazol-2-yl] acetamide
trihydrochloride (WN1316) that proved to upregulate
Nrf2 and regulate GSH, protecting motor neurons against
OS [170] (Figure 3). The oral administration of WN1316
(1-100μg/kg/day) improved mice motor function and
extended the survival of SOD1H46R and SOD1G93A mice
[170] (Table 2). Additionally, transgenic mice treated with
WN1316 showed reduced oxidative damage to neuronal
cells and preserved integrity of the skeletal muscle together
with the suppression of astrocytosis and microgliosis in
the spinal cord [170]. Although the molecular mechanism
of WN1316 is not yet completely understood, the activa-
tion of the Nrf2 signaling pathway is thought to take part
in this process. Phase I clinical trials of WN1316
(UMIN000015054) were completed in early 2015, but
results were not published so far (https://upload.umin.ac
.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000017516;
accessed on 23 July 2020).

Curcumin, a natural and liposoluble dye obtained from
turmeric is another compound that modulates the Nrf2 path-
way [166] (Figure 3). Curcumin was shown to activate the
Nrf2 pathway in primary spinal cord astrocytes, attenuating
oxidative damage and mitochondrial dysfunction [171].
Additionally, to these beneficial effects, curcumin was also
shown to bind to the prefibrillar aggregates of SOD1 and alter
their amyloidogenic pathway, alleviating cytotoxicity [172].
Dimethoxy curcumin improved mitochondrial dysfunction
in NSC-34 cell line transfected with human M337V or
Q331K mutant TDP-43, suggesting that this compound can
be useful to treat neurodegenerative diseases linked with
mutated TDP-43 [173]. The oral administration of 80mg/day
nanocurcumin (SinaCurcumin) in a pilot randomized clinical
trial using 54 sALS patients during 12 months showed a gen-
eral improvement in the survival of ALS patients, especially
those with bulbar involvement (https://en.irct.ir/trial/11697)
[174]. Moreover, in a double-blind clinical trial, curcumin oral
supplementation (600mg/day, Brainoil) in 42 ALS patients
during 6 months resulted in a decrease in ALS progression,

improvement of aerobic metabolism, and a reduction of
oxidative damage [175] (Table 2). Despite these beneficial
effects, curcumin chemical instability, low oral bioavailabil-
ity, and low water solubility constitute an obstacle that has
to be overcome during the development of drug delivery sys-
tems based on this compound [176, 177].

Adding to the list of Nrf2 modulators, two triterpenoids,
CDDO (2-cyano-3, 12-dioxooleana-1,9-dien-28-oic acid)
ethylamide (CDDO-EA) and CDDO-trifluoroethylamide
(CDDO-TFEA), were also described to activate Nrf2/ARE
in SOD1G93A mouse model as well as in a cell culture model
of ALS [178]. The treatment of NSC-34 cells with CDDO-
TFEA upregulated Nrf2 and resulted in translocation of
Nrf2 into the nucleus (Figure 3). The administration of
CDDO-EA and CDDO-TFEA at a presymptomatic age
enhanced motor performance and extended the survival of
SOD1G93A mice, while at a symptomatic age, it only slowed
disease progression [178] (Table 2), suggesting that the acti-
vation of the Nrf2/ARE signaling pathway may be a useful
strategy in the treatment of ALS especially when adminis-
tered early in the course of the disease.

Another relevant compound is S(+9)-apomorphine, a
nonselective dopamine agonist and an activator of the
Nrf2/ARE pathway, which has shown the capacity to reduce
pathological OS and to improve survival following an oxida-
tive insult in fibroblasts from ALS patients [179]. S(+9)-apo-
morphine also attenuated motor dysfunction and slowed
disease progression in SOD1G93A mice, when administered
at 5mg/kg/day (Table 2) [179]. Another candidate is the
green tea polyphenol epigallocatechin-3-gallate (EGCG), a
known Nrf2 inducer [180] (Figure 3), that crosses the BBB
[181] and that partially protected a motor neuronal cell line
expressing SOD1G93A from H2O2-induced cell death [182].
Oral administration of EGCG (2.9-10mg/Kg/day) from a
presymptomatic stage significantly delayed the onset of
disease and extended life span in SOD1G93A mice (Table 2)
[183, 184].

3.5. Dexpramipexole. Dexpramipexole (RPPX) is the R(+)
enantiomer of pramipexole, used in Parkinson’s disease,
also tested in ALS patients [185, 186]. Dexpramipexole is
a lipophilic cation that concentrates into mitochondria,
scavenging reactive oxygen and nitrogen species (Figure 3).
It was shown to prevent cell death in glutathione-depleted
neuroblastoma cells [187, 188] and to block caspase activation
in SH-SY5Y neuroblastoma cells treated with methylpyridi-
nium ion (MPP+), which induces Parkinson’s disease-like
neurodegeneration [189]. Treatment with RPPX (100mg/Kg)
in SOD1G93A transgenic mice was shown to prolong survival
and preserve motor function [187]. Two-phase I clinical
studies in 54 healthy volunteers found that RPPX was safe
and well-tolerated in doses up to 150mg twice a day for 4.5
days [190]. Dexpramipexole (300mg/day or 50mg/day for
24 weeks) showed beneficial effects on functional decline
and survival in a phase II study in 102 subjects with ALS
[191] making it an interesting candidate to include in a mul-
tidrug approach for the treatment of ALS. However, in the
phase III trial (NCT01281189) with RPPX (150mg twice
daily) in 943 people with ALS, this compound failed to show
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any efficacy on functional and survival assessment, when
compared with placebo control (Table 2) [192]. Considering
the discrepant outcomes, Vieira et al. [193] reassessed the
effect of RPPX (200mg/kg) in SOD1G93A transgenic mice
but did not recognize any beneficial effects (Table 2). The
authors in the latter study argued the lack of balance for
sex, age, and weight could justify the previous discrepant
results with the same ALS mice model [193].

3.6. Melatonin. Melatonin (N-acetyl-5-methoxytryptamine)
is a neurohormone secreted by the pineal gland, which has
ROS scavenging activity, as well as amphiphilic properties
that allow its entrance into both lipophilic and hydrophilic
cellular environments [194] (Figure 3). Due to melatonin’s
antioxidant properties, it has been tested as an experimental
drug in different neurodegenerative diseases linked to exces-
sive ROS levels [195]. Besides being a potent free radical scav-
enger, melatonin also enhances cellular antioxidant potential
by stimulating the expression of antioxidant enzymes includ-
ing SOD, GPx, and GR and by augmenting GSH levels [196].
It was also described that melatonin preserves mitochondrial
homeostasis, attenuating free radical generation and promot-
ing mitochondrial ATP synthesis by stimulating the activity
of complexes I and IV [197].

In SOD1G93A-transgenic mice, the oral administration of
melatonin (57–88mg/kg/day) at a presymptomatic stage
delayed disease progression and extended survival [54]
(Table 2). The same authors also showed that the rectal
administration of 300mg/day melatonin to 31 sALS patients
was well tolerated during an observation period of up to 2
years, reducing circulating serum protein carbonyls, how-
ever, without showing any evidences of upregulation of genes
encoding antioxidant enzymes [54]. The attenuation of
oxidative damage in ALS upon melatonin treatment proved
to be safe in humans and suggested the need for further
clinical trials to clarify the neuroprotective effect of melato-
nin in ALS.

More recently, Zhang et al. [198] showed that the admin-
istration of melatonin (30mg/kg) to presymptomatic
SOD1G93A-transgenic mice significantly delayed disease
onset, neurological deterioration, and mortality, which were
associated to the inhibition of the caspase-1/cytochrome
c/caspase-3 pathways and to the reduction of melatonin
receptor 1A protein expression. In contrast, Dardiotis et al.
[199] showed that the intraperitoneal administration of
melatonin (0.5, 2.5, and 50mg/kg) to presymptomatic
SOD1G93A-transgenic mice reduced their survival. These
authors also reported that, compared to untreated animals,
mice treated with melatonin presented an increase in moto-
neuron loss and in the levels of 4-HNE, a marker of lipid per-
oxidation, as well as an upregulation of SOD1 expression,
suggesting that melatonin exacerbates the disease phenotype
in the SOD1G93A mouse ALS model (Table 2), by upregulat-
ing toxic SOD1, that overrides its antioxidant and antiapop-
totic effects [199]. The fact that the upregulation of mutSOD1
in the SOD1G93A ALS mouse model can influence the benefi-
cial effect of melatonin raises the possibility that this animal
model may not be ideal for assessing the neuroprotective
properties of melatonin or other molecules with complex

antioxidative properties because ALS progression does not
always involve SOD1 mutation. Further studies need to be
done to understand the mechanisms of action of melatonin
and if its antioxidant and antiapoptotic effects can be trans-
lated into beneficial effects at the clinical level.

3.7. NOX Inhibition. NOX is one of the most important
enzymes that regulate ROS production in the CNS, and
increasing evidence is showing that NOX inhibition improves
neurological disease conditions [200, 201]. In the particular
case of ALS, the inactivation of NOX in SOD1G93A transgenic
mice has shown to slow disease progression and improve
survival [112, 113]. Pharmacological inhibition of NOX
using apocynin, a natural organic compound also known as
acetovanillone [202] (Figure 3), decreased O2

•- levels and
increased cell viability in MO59J human glioblastoma cells
expressing mutSOD1 [114] and decreased ROS levels in pri-
mary astrocytes expressing mutSOD1, also restoring motor
neuron survival in cocultured hESC-derived motor neurons
with human primary astrocytes expressing SODG37R [203]
(Table 2). However, apocynin-mediated NOX inhibition is
indirect, involving the presence of myeloperoxidase (MPO)
together with H2O2. These two elements promote the dimer-
ization of apocynin that consequently oxidizes thiols in
NOX, being the formation of apocynin dimers necessary to
inhibit NOX activity, and not occurring in cells devoid of
MPO [204].

Similar to other neurodegenerative diseases, apocynin
has been tested in the ALS animal models. In the SOD1G93A

transgenic mice, apocynin (30, 150, and 300mg/kg/day)
blocked ROS production, increased the number of neurons
in the spinal cord, and prolonged life span compared to
wild-type mice [114]. However, Trumbull et al. [205] showed
that the administration of apocynin (300mg/kg/day) had a
limited benefit to SOD1G93A mice (Table 2). Although the
reasons for this discrepancy have not been clarified, these
authors suggested that it could be due to the interference of
antibiotics, gender, or the drift in the genetic background
resultant from breeding for multiple generations [205]. How-
ever, the fact that the treatments with apocynin in mice fre-
quently led to fatal eye infections [113, 114] points to some
safety issues regarding this NOX inhibitor. Treatments with
apocynin in humans have not been extensively studied; how-
ever, some studies were performed in asthmatics receiving
nebulized apocynin [206]. Further studies are needed to clar-
ify the functional specificity of apocynin on NOX isomers
and to determine a functional dose for therapeutic use. Tak-
ing into consideration that mitochondrial ROS and NOX-
derived ROS are interrelated, and that an increase in one
might lead to the increase in the other [207], the role of
NOX-derived ROS production in neurodegenerative diseases
needs to be further explored, as a possible strategy of treat-
ment in ALS.

3.8. AEOL 10150. AEOL 10150 (manganese [III] tetrakis[N-
N′-diethylimidazolium-2-yl]porphyrin) is a manganopor-
phyrin antioxidant developed by US Aeolus Pharmaceuticals
that possesses SOD- and CAT-like activity [208] (Figure 3),
being capable of neutralizing O2

.-, H2O2, and peroxynitrite,
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and inhibiting lipid peroxidation [209]. The administration
of AEOL-10150 at the onset of symptoms markedly pro-
longed survival in SOD1 transgenic mice [210, 211]. AEOL-
10150 decreased 3-nitrotyrosine (3-NT) and malondialde-
hyde levels in the spinal cord, extended animal survival, pro-
vided better preservation of motor neuron architecture, and
decreased the level of astrogliosis when administered to
ALS mice at symptom onset (at an initial dose of 5.0mg/kg
and a maintenance dose of 2.5mg/kg/day) [211]. In addition,
the use of AEOL-10150 (2.5mg/kg/day), alone or combined
with histone deacetylase inhibitor phenylbutyric acid, was
found to significantly enhance motor function and prolong
survival [210] (Table 2). Aeolus pharmaceuticals announced
that AEOL-10150 was safe and well tolerated in 40 ALS
patients and 9 healthy subjects (https://www.accesswire.
com/475614/AEOLUS-AEOL-10150-is-Safe-and-Well-Tol-
erated-in-Phase-1-Study-in-Healthy-Subjects, accessed on 23
July 2020). The same pharmaceutical company also reported
that multiple doses of AEOL 10150 up to 2mg/kg/day over a
period of 6.5 days were well tolerated by 12 ALS patients with
no serious or clinically significant adverse events (https://www
.businesswire.com/news/home/20070322005176/en/Aeolus-
Pharmaceuticals-Announces-Successful-Completion-Multi-
ple-Dose, accessed on 23 July 2020).

3.9. Edaravone. Edaravone, the active ingredient of Radicut®,
is a free radical scavenger widely used in the treatment of
cerebral ischemia in Japan [212–214]. Edaravone eliminates
lipid peroxides and hydroxyl radicals during cerebral ische-
mia and exerts a protective effect on the neurons of patients
[215, 216]. Although the detailed mechanism of edaravone
action is not known, it was proposed that besides its radical
scavenger effect, edaravone also inhibits the opening of mito-
chondrial permeability transition pore (mPTP) in the brain
(Figure 3), which may contribute to its neuroprotective effect
[217]. Other studies also showed that edaravone reversed the
cytotoxic effects of H2O2 in SH-SY5Y neuroblastoma cells,
increasing the expression of Prx2 [218], as an additional neu-
ronal protection mechanism in response to OS. Edaravone
also was also shown to promote the antioxidant defense
mechanisms by increasing Nrf2, GPx, SOD, HO-1, and
NQO1 protein contents (Figure 3), attenuating the effects
of traumatic brain injury [219]. In addition, part of the ben-
eficial effects of edaravone can be attributed to its anti-
inflammatory capacity [219], which adds to its protective
effects in neurons, microglia [220], astrocytes [221], and oli-
godendrocytes [222].

Preclinical studies demonstrated that edaravone (rang-
ing from 1.5 to 15mg/kg) improves motor function, slows
symptom progression, and attenuates motor neuron degen-
eration in transgenic SOD1 rodent models of ALS (Table 2)
[223, 224].

In an open-label phase II study of 20 patients with ALS,
the intravenous administration of edaravone (30mg or
60mg/day) was shown to be safe and well-tolerated, slowing
disease progression as measured by the revised ALS func-
tional rating scale (ALSFRS-R) score during the six-month
treatment period, compared with the six months before the
administration of edaravone [225]. Additionally, the same

clinical trial also showed that all patients presented a marked
reduction in 3-NT in CSF to almost undetectable values, at
the end of the six-month treatment period (Table 2) [225],
suggesting that the progression delay may be related to the
attenuation of OS in ALS patients. A confirmatory double-
blind, placebo-controlled study of edaravone in 206 ALS
patients (102 edaravone group and 104 placebo group)
demonstrated a nonsignificant reduction of ALSFRS-R score
in patients receiving edaravone over a 24-week treatment
period, and the efficacy of edaravone for the treatment of
ALS was not demonstrated (NCT00330681) [213]. How-
ever, when analyzing only a subgroup of ALS patients (137
patients: 68 edaravone group, 66 placebo group) with scores
of 2 or more on all items of ALSFRS-R, forced vital capacity
of 80% at baseline, and disease duration of 2 years or less,
significant differences were observed in the ALSFRS-R score
after treatment with edaravone (60mg intravenous) compared
with placebo, suggesting a potential benefit of edaravone in a
well-defined subset of ALS patients (NCT01492686, Table 2)
[5]. Additionally, in the open-label 24-week extension period,
edaravone maintained its beneficial effects throughout 48
weeks in ALS patients, with no new or cumulative safety con-
cerns (NCT01492686) [226].

Currently, edaravone is approved for use as a treatment
for ALS in Japan and South Korea, having been also
approved by the FDA in May 2017 [227], although its mech-
anism of action remains unclear. A phase I trial of an oral for-
mulation of edaravone (TW001) developed by the Treeway
company has returned positive results, proving to be safe
and well-tolerated with the oral formulation (http://www.
cphi-online.com/treeway-announces-positive-data-from-two-
separate-news038315.html, accessed on 23 July 2020). Two
recent clinical trials, sponsored by Mitsubishi Tanabe Pharma
Development America, Inc., are in progress to evaluate the
pharmacokinetics of single doses of edaravone oral suspension
in ALS patients with gastrostomy (NCT04254913, phase I), as
well as to evaluate the long-term safety and tolerability of
oral edaravone in subjects with ALS over 24 and 48 weeks
(NCT04165824, phase III).

3.10. Riluzole. Riluzole is a benzothiazole with antiglutami-
nergic properties which has shown a modest survival benefit
(about 3 months) in patients at a dosage of 100mg/day with-
out showing any effect in muscle strength [228, 229].
Although the precise neuroprotective mechanisms of riluzole
are not completely understood, it has been proposed that it
has multiple effects beyond the inhibition of glutamate
release in presynaptic terminals through the blockage of
voltage-gated sodium channels [230]. It has been demon-
strated that riluzole also affects the chloride, calcium, and
potassium channels and interferes with intracellular events
that follow transmitter binding at excitatory amino acid
receptors [230, 231], which can include OS [232]. However,
other studies have also evidenced some antioxidant proper-
ties of this compound, mediated by the inhibition of protein
kinase C [233] and phospholipase A activities [234] that con-
sequently attenuate a broad spectrum of oxidative damage.
Consistent with its antioxidative effects, it is also been shown
that riluzole also decreases methylmercury-induced OS by
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promoting the elevation of GSH synthesis through the activa-
tion of glutamate transporters and the increase of intracellu-
lar glutamate levels, which is a GSH precursor [123, 235].
Based on these different studies, it is possible that the benefi-
cial effect of riluzole may be due to a combined action on dif-
ferent targets that still remain largely unclear. Thus, although
riluzole treatment prevents cell death and controls increased
ROS levels in parental SH-SY5Y cells, it was shown to be
ineffective in reversing ROS effects in SH-SY5Y cells carrying
the G93A SOD1 mutation [236],suggesting that riluzole is
unable to reverse chronic oxidative damage. This situation
is in agreement with the fact that this compound does not
present significant benefit on lifespan and motor perfor-
mance in SOD1G93A transgenic mice [237]. The fact the rilu-
zole has a direct antioxidant effect against acute OS, but not
against RNS [236], also supports the hypothesis that com-
bined treatment with edaravone may be more effective in
treating ALS, since edaravone has the capacity to reduce
RNS [225, 238].

3.11. NAD+/SIRT1 Modulators. NAD+ plays a key role in
many redox reactions in the cells, being involved in many
processes including signaling pathways, gene expression,
DNA repair, and mitochondrial metabolism [239]. NAD+ is
also a cosubstrate for sirtuins (SIRTs), a family of signaling
proteins involved in the regulation of cellular metabolic sta-
tus, playing a key role in several processes such as mitochon-
drial function, DNA repair, and also activating metabolic
pathways responsible for the detoxification of ROS (e.g.,
SOD, CAT, and isocitrate dehydrogenase 1) [240]. Sirtuins
regulate peroxisome proliferator-activated receptor gamma
coactivator 1-alpha (PGC1α), which affects mitochondrial
biogenesis, activity, and dynamics [241, 242] and is consid-
ered a promising therapeutic target for ALS [243]. Decreased
SIRT1 levels have been found in postmortem tissues from
ALS patients [244] and intraperitoneal injection of the SIRT1
activator resveratrol resulted in a significant improvement in
both symptoms and survival of SOD1G93A mice [245]. In
addition, SIRT3 was reported to protect against mitochon-
drial fragmentation and neuronal cell death induced by
SOD1G93A overexpression in cultured rat spinal cord motor
neurons [246].

Therapeutic strategies based on NAD+ precursors,
including nicotinamide (NAM), nicotinic acid (NA), nicotin-
amide riboside (NR), and nicotinamide mononucleotide
(NMN), [247] have been proposed in ALS [248] (Figure 3).
NMN and NR (5mM for 24 h) were shown to increase total
and mitochondrial NAD+ content in astrocytes from
SODG93A mice, which was associated with an increase in
OS resistance and reversal of astrocyte toxicity towards co-
cultured motor neurons [248] (Table 2). The effects of mod-
ulation of NAD+ availability in SOD1G93A mice were also
tested, using two strategies: supplementation with NR and
ablation of a NAD+-consuming enzyme (CD38) [249]. NR
was found to delay motor neuron degeneration, whereas
CD38 ablation was not protective [249]. The same study also
found that the expression of NMNAT2 (nicotinamide mono-
nucleotide adenylyl transferase 2, involved in NAD+ synthe-
sis) and SIRT6 was decreased in the spinal cord of ALS

patients, suggesting a deficit of this neuroprotective pathway
in humans and highlighting the therapeutic potential of
increasing NAD+ levels in ALS [249]. Since NAD+ supple-
mentation is known to promote neural stem cells/neuronal
precursor cells (NSCs/NPCs) pool maintenance, another
study wanted to determine if the administration of NR could
enhance the proliferation and migration of NSCs/NPCs in
ALS [250]. SOD1G93A transgenic and wild-type mice were
treated with 400mg/kg/day, starting at 50 days of age, which
was found to improve the adult neurogenesis in the brain of
SOD1G93A mice [251]. This was associated with the activa-
tion of mitochondrial unfolded protein response (UPRmt)
signaling and modulation of mitochondrial proteostasis,
which can ameliorate misfolded protein accumulation.
Increasing total NAD+ content in astrocytes using NMN
(5mM and 24h) was reported to induce the activation of
Nrf2 and upregulation of the antioxidant proteins HO-1
and sulfiredoxin 1 (SRXN1), mediated by SIRT6 [252].

A clinical trial based on modulation of NAD+/sirtuins in
ALS used EH301, which is a combination of two active com-
pounds (1-(beta-D-ribofuranosyl)nicotinamide chloride and
3,5-dimethoxy-4′-hydroxy-trans-stilbene) from Elysium
Health, that were proposed to act synergistically to increase
NAD+ levels and support SIRT activity [253]. This was a sin-
gle-center, prospective, double-blind, randomized, placebo-
controlled pilot study (NCT03489200), in which the efficacy
of EH301 (1200mg) was tested in ALS patients. The results of
this trial showed that EH301 significantly slowed the pro-
gression of ALS compared to placebo, also showing improve-
ments in several key outcome measures compared with
baseline [253] (Table 2). A phase II clinical trial has been
planned to expand the scope of the original trial with
EH301, using over-the-counter antioxidants such as
CoQ10, vitamin E, NAC, and L-cystine at safe dosages
(NCT04244630). This study is expected to be completed in
December 2021.

3.12.Mitochondria-Targeted Antioxidants.Themitochondria-
targeted antioxidant 10-(60-ubiquinonyl) decyltriphenylpho-
sphonium (MitoQ) comprises a triphenylphosphonium
(TPP) functional group conjugated to an ubiquinone antiox-
idant moiety [254]. MitoQ crosses biological membranes,
accumulates inside mitochondria driven by the transmem-
brane electric potential [255], and effectively prevents mito-
chondrial oxidative damage [254, 256] (Figure 3). Within
mitochondria, the ubiquinone moiety of MitoQ is reduced
to its active ubiquinol form, protecting mitochondria against
oxidative damage that could be derived from the leakage of
electrons [256]. Reactions with a variety of oxidants readily
oxidize ubiquinol to ubiquinone, which is quickly reduced
back to ubiquinol by the respiratory chain [257] and is thus
continually recycled. A protective effect of MitoQ was
described in chronic hepatitis C patients, by decreasing liver
damage [258], as well as in some neurodegenerative diseases,
including Parkinson’s [259, 260] and Alzheimer’s [261, 262]
diseases, by decreasing the oxidative damage. However, very
disappointing results were obtained when MitoQ was used in
a phase II clinical trial for the treatment of Parkinson’s
disease (NCT00329056-Antipodean Pharmaceuticals, Inc.)
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[263]. Despite these negative results, MitoQ treatment
reduced nitroxidative stress and mitochondrial dysfunction
in SOD1G93A-expressing astrocytes, reducing the toxicity to
motor neurons in cocultures [264]. Also, the administration
of MitoQ (500μM) improved the ALS phenotype in the
SOD1G93A mice, slowing the decline of mitochondrial func-
tion in both the spinal cord and quadriceps muscle and
increasing the life span of affected animals [265]. Impor-
tantly, the same authors also described a marked reduction
of nitroxidative markers and pathological signs in the spinal
cord of MitoQ-treated animals, as well as the recovering of
the neuromuscular junctions associated with a significant
increase in hindlimb strength [265] (Table 2). These results,
associated to the fact that MitoQ rapidly crosses the BBB
[261] and is well-tolerated in both animals and humans
[258], with nauseas as the most common side effect [266],
pointed out mitochondria-directed antioxidants as a possible
strategy to delay ALS symptoms, that deserves to be further
developed.

Another mitochondria-targeted antioxidant tested in
ALS models was the mitochondria-targeted carboxy-proxyl
(Mito-CP), which also comprises TPP cation covalently
coupled to carboxy-proxyl nitroxide and, similarly to MitoQ,
accumulates into the mitochondria [267]. Low doses of Mito-
CP (1-10 nM) effectively prevented the death of motor neu-
rons expressing SOD1G93A induced by nerve growth factor
(NGF), which involved an increase in mitochondrial O2

•-

[268] (Figure 3), and also avoided mitochondrial dysfunction
in SOD1G93A astrocytes, decreasing O2

•- levels, and restoring
motor neuron survival [264] (Table 2). However, additional
studies should be performed with other types of mitochon-
driotropic compounds, with lower toxicity and higher thera-
peutic efficacy.

The cell-permeable antioxidant peptide SS31 (D-Arg-
Dmt-Lys-Phe-NH2), which targets the IMM and protects
against mitochondrial oxidative damage (Figure 3), was also
tested by Petri et al. [269] in in vitro and in vivo models of
ALS associated with SOD1G93A mutations. These authors
showed that SS-31 (1μM) protected cells against cell death
induced by H2O2 in N2a mouse neuroblastoma cells trans-
fected either with wild type or mutSOD1. The administration
of SS-31 (5mg/kg/day) to SOD1G93A mice at the presymp-
tomatic stage led to decreases in cell loss, lipid peroxidation
and protein nitration (4-HNE and 3-NT) markers in the
lumbar spinal cord. Moreover, it significantly improved the
survival and motor performance compared to controls
[269] (Table 2). The capacity of SS-31 to inhibit the mPTP
and cytochrome c release induced by the addition of calcium
in isolated liver mitochondria [270], and its ability to protect
against the loss of mitochondrial potential, and apoptosis
induced by tert-butyl hydroperoxide in N2A and SH-SY5Y
cells [271], suggests that this antioxidant can be a very inter-
esting therapeutic strategy to treat neuronal damage in ALS,
and this needs to be explored in the future.

4. Conclusions

Several studies have been adding strong evidence to the role
of OS mechanisms in ALS that culminate in mitochondrial

dysfunction and cell damage and contribute to neurodegen-
eration. If it is accepted that the excessive ROS production is
a common pathological feature in ALS patients, there are
doubts whether oxidative damage represents a primary
cause or a secondary consequence of this disease and what
is the real contribution of OS in ALS progression, consider-
ing the different subtypes of patients. Although the mecha-
nisms of OS and mitochondrial dysfunction represent
promising therapeutic targets to slow the disease progres-
sion, it is of utmost importance to characterize the different
OS profiles present in different types of patients (e.g., iden-
tify different OS mechanisms associated with different muta-
tions), in order to develop personalized therapies that allow
retarding the progression of the disease according to the OS
profiles of patients.

Although several antioxidants have shown beneficial
effects in ALS animal models, they have failed to show any
meaningful therapeutic benefit in ALS patients. There are
different reasons for the lack of beneficial effects of antioxi-
dant therapies in ALS patients that should be considered in
the future. Some reasons evidenced are the lack of proper
blinding measurements, uniform exclusion criteria, or statis-
tical power associated with the use of a small number of sam-
ples per group in animal assays that can lead to false-positive
results and confounding biological results [272]. These issues
should be avoided by following programmed experimental
designs based on the guidelines for preclinical animal
research in ALS [273]. Moreover, the low CNS bioavailability
of some of the antioxidants may limit their pharmacological
effects, being necessary to invest more in compounds that can
cross the BBB. Another reasonmay be the fact that most anti-
oxidants have been exclusively tested in mutSOD1 animal
models, being the mutSOD1 representative of a small per-
centage of patients [274, 275]. To overcome this issue, it is
necessary to invest more on the development of ALS models
that can be representative of the different subtypes of this dis-
ease, which can support preclinical trials before proceeding
to clinical trials. Preclinical trials using other animal models
of the disease should be done in parallel with the common
mutSOD1 models, including C9orf72 and TDP-43 mice
models that represent the most prevalent mutation in ALS
and the formation of ubiquitinated TDP-43 cytoplasmic
inclusions that are expressed in the majority of patients,
respectively [276, 277]. Although less characterized than the
mutSOD1 models and with some construct validity limita-
tions, both C9orf72 and TDP-43 mice models develop many
features of ALS [276, 277] that can be of extreme usefulness
in the future to complement the experiments with the tradi-
tional mutSOD1 models. Complementarily, the use of pre-
clinical assays that are not based on specific mutations
models should be considered, as for example the use of iPSCs
from sALS and fALS patients (with or without specific muta-
tions) that can be differentiated in MNs, astrocytes, and
microglial cells [278] and represent a valuable tool for screen-
ing different compounds [279]. Another reason that can also
explain this failure is the fact that these compounds have
been generally tested in animal models in presymptomatic
stages of the disease that do not represent the stage in which
patients are diagnosed [274]. It is necessary to establish limits
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of the disease progression, based on OS profiles, that allow
understanding until what stage of the disease a certain com-
pound may have any beneficial effect.

Among the different antioxidant strategies described in
Section 3, there are two that should be explored in the future
due to their capacity to control OS mechanisms and improve
the mitochondrial function. The first example is the case of
NAD+/SIRT1 modulators that have shown capacity to
increase mitochondrial OS resistance and protect against
mitochondrial dysfunction in ALS models, as well as to signif-
icantly slow the disease progression in ALS patients, tested in a
phase I clinical trial (NCT03489200) [253]. To confirm these
results, a clinical trial phase II is already planned, which is
expected to be complete by the end of 2021 (NCT04244630).
The second strategy of great importance is the development
of mitochondria-targeted antioxidants that have shown a
capacity to accumulate inside mitochondria, prevent mito-
chondrial oxidative damage, and attenuate mitochondrial
dysfunction. Although the administration of MitoQ has
shown very promising results in the SOD1G93A mice by slow-
ing the decline of mitochondrial function in both the spinal
cord and quadriceps muscle, by recovering the neuromuscu-
lar junctions associated with a significant increase in hindlimb
strength, and by increasing the life span of the affected animals
[265], its disappointing results in a phase II clinical trial for the
treatment of Parkinson’s disease (NCT00329056-Antipodean
Pharmaceuticals, Inc.) [263] evidenced also the necessity to
develop other types of mitochondriotropic compounds, with
lower toxicity and higher therapeutic efficacy that may after-
wards be tested in ALS models.

Altogether, the present review shows the need to invest
on the characterization of OS profiles which are representa-
tive of each subtype of patient, permitting the development
of personalized therapies based on the differential OS mech-
anisms that characterize different subtypes of patients. This
approach will allow understanding what are the characteris-
tics of certain antioxidants that can have beneficial effects
on different subtypes of patients and help to understand what
is the disease progression window at which a compound may
have beneficial effects.
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