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Abstract: In this work we demonstrate the role of grain boundaries and domain walls in the local
transport properties of n- and p-doped bismuth ferrites, including the influence of these singularities
on the space charge imbalance of the energy band structure. This is mainly due to the charge
accumulation at domain walls, which is recognized as the main mechanism responsible for the
electrical conductivity in polar thin films and single crystals, while there is an obvious gap in the
understanding of the precise mechanism of conductivity in ferroelectric ceramics. The conductivity
of the Bi0.95Ca0.05Fe1−xTixO3−δ (x = 0, 0.05, 0.1; δ = (0.05 − x)/2) samples was studied using a
scanning probe microscopy approach at the nanoscale level as a function of bias voltage and chemical
composition. The obtained results reveal a distinct correlation between electrical properties and the
type of charged defects when the anion-deficient (x = 0) compound exhibits a three order of magnitude
increase in conductivity as compared with the charge-balanced (x = 0.05) and cation-deficient (x = 0.1)
samples, which is well described within the band diagram representation. The data provide an
approach to control the transport properties of multiferroic bismuth ferrites through aliovalent
chemical substitution.

Keywords: BiFeO3; scanning probe microscopy; grain boundaries; domain walls; n- and
p-type conductivity

1. Introduction

The study of electronic states and energy band diagrams in relation to the crystal structure,
ferroelectric, and magnetic properties remains one of the crucial tasks of condensed matter physics
considering the interactions between the lattice, charge, and spin degrees of freedom [1–5]. There is
a limited number of materials allowing such correlations to be simultaneously revealed. A model
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example is perovskite-type (ABO3) multiferroics exhibiting a coupling between the ferroelectric, elastic,
and magnetic order parameters [6,7]. Among the known multiferroic perovskites, bismuth ferrite,
BiFeO3, (BFO) is distinguished by the exceptionally high transition temperatures and large electric
polarization, making it one of the most popular objects of magnetoelectric research [6,7]. The functional
properties of BFO can be strongly affected by chemical substitution. For instance, doping of the
material with Ca2+ yields: (i) ferroelectric state with spontaneous magnetization (the parent compound
is an antiferromagnet) [8]; (ii) enhanced electromechanical response [9]; (iii) prominent electrochromic
effect [10]; and (iv) modulation of electric conductivity arising due to the naturally produced oxygen
vacancies [11,12]. The latter are known to largely determine the ferroelectric domain structure and
electrical properties of BFO-based multiferroics [2,3,13–16].

In the last decade, the reasons underlying the phenomenon of increased conductivity at interfaces
and domain walls (DW) in thin films of BiFeO3 [14,16], Pb (Zr, Ti) O3 [17–20], LiNbO3 [21], and hexagonal
rare-earth manganites [22] have attracted immense interest. These investigations demonstrate that
both positively and negatively charged defects are attracted to the DW region due to polarization
divergence appearing between neighboring domains [2,11,14,23] which is also confirmed to be the main
reason of conductivity in ‘improper’ ferroelectrics [22]. Despite the fact that ferroelectric ceramics are
widely used in technological applications nowadays, the conductance of the polycrystalline materials
is not well studied yet. There are several important findings reported for BFO-family compounds.
In particular, it was found that all possible types of DW (71◦, 109◦, and 180◦) in BFO ceramics are
conductive at room-temperature [14,16,24–28]. Depending on the defect structure, both p- and n-type
conductivity associated with the DW were found [16,29,30]. The p-type conductivity is due to charge
transfer between Fe4+ and Fe3+ [2,16,25–34], while the n-type conductivity is linked to the formation of
oxygen vacancies [16,25–34]. Some alternative mechanisms of conductivity in polycrystalline BFO
suggesting the reduction of local bandgap at the boundaries [13,26] were also considered. Although
the local conduction at DW is proven to be related to the internal domain structure: polarization state
and tilting angle, the understanding of local conductivity variation at grain boundaries (GB) remains
challenging. This results in an intensive debate regarding the general scenario describing the local and
macroscopic conductivity in the polar polycrystalline perovskites.

The current work aims to disclose the mechanisms of conductivity in BFO-based multiferroics
depending on the defect structure introduced by aliovalent chemical substitution. To do this,
conventional and conductive atomic force microscopy (AFM/c-AFM) as well as piezoresponse force
microscopy (PFM) measurements of the mechanically-polished Bi0.95Ca0.05Fe1−xTixO3−δ ceramics have
been performed.

2. Experimental

Polycrystalline samples of Bi0.95Ca0.05Fe1−xTixO3−δ (x = 0, 0.05, 0.1; δ = (0.05 − x)/2) were
prepared by a conventional solid-state reaction method using the high-purity reagents Bi2O3 (99.9%,
Sigma-Aldrich, St. Louis, MO, U.S.), CaCO3 (99%, Sigma-Aldrich, St. Louis, MO, U.S), Fe2O3 (99%,
Sigma-Aldrich, St. Louis, MO, U.S), and TiO2 (99%, Sigma-Aldrich, St. Louis, MO, U.S). The starting
materials taken in the stoichiometric cation ratio were mixed and pressed into pellets. The synthesis
was carried out in air at 900 ◦C for 20 h. Further details of these materials’ synthesis and structural
study are described in [35].

A commercial scanning probe microscope NTEGRA Prima (NT-MDT Spectrum Instruments,
Moscow, Russia) equipped with stiff NSG30 probes (resonance frequency f = 300 kHz, force constant
N = 40 N/m, tip curvature radius ~ 35 nm, conductive coating—PtIr (25 nm), Cr adhesion layer (25 Å))
were used. The ferroelectric domain visualization was performed under an applied AC voltage with
VAC = 5 V and f = 100 kHz, while the c-AFM measurements were done by applying a DC voltage of
±5 V (x = 0 and x = 0.05) and ±10 V (x = 0.1). Current-voltage dependences were obtained within the
DC bias voltage range from −15 to +15 V. In order to avoid the corrupted data related to the AFM probe
fatigue during the scans, fresh tips for every new set of the c-AFM/PFM measurements were used.
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Furthermore, numerous iterations of scanning have been performed for different areas to properly
analyze the conductivity of the samples.

3. Results and Discussion

Our previous structural study of these Ca, Ti-doped samples confirmed that the materials are
single-phase and possess a noncentrosymmetric rhombohedral structure (space group R3c) specific to
the pure bismuth ferrite [35]. It has been found that the pattern of changes in the lattice parameters
of the Bi0.95Ca0.05Fe1−xTixO3−δ compounds can be interpreted as suggesting the doping-induced
elimination of oxygen vacancies at x ≤ 0.05 and the formation of cation vacancies at x > 0.05 [35]. It has
also been shown that the readjustment of the defect structure associated with the mechanism of charge
compensation in the aliovalent-doped BFO is accompanied by correlated changes in the morphology,
ferroelectric/ferroelastic domain structure, and magnetic properties [35,36].

Figure 1 shows the results of the combined c-AFM/PFM measurements obtained for the
Bi0.95Ca0.05FeO2.975 ceramics whose crystal structure and multiferroic properties have been described
in Ref. [35]. The morphology of the sample is described as a conglomeration of micrometer-sized
crystal grains (Figure 1a) demonstrating periodic changes in PFM signals which form complex patterns
of ferroelectric domains (Figure 1b,c). The current detected during the c-AFM scanning reaches
relatively large values of ~10 nA at the positive bias of 5 V (Figure 1d), thus suggesting that the
main carrier type underlying the observed transport behavior must be electronic rather than ionic
in nature [11]. The conductivity is of n-type. The scanning at negative bias voltage gives a very
low signal with some local enhancements (Figure 1e,f) corresponding to local signal decays on the
positive bias scan (Figure 1d). This might be indicative of the inhomogeneous distribution of chemical
composition and related positively-charged defects. The dominant n-type conduction should originate
from electron hopping between oxygen-vacancy-related defects [12]. The c-AFM signal distribution
indicates an almost equipotential signal inside the grains with distinct changes only at GBs (Figure 1d).
The conduction measurements performed within one grain reveal no difference between the domains
and DWs (Figure 1g,i). In contrast, the grain boundaries conduction can be apparently distinguished
via the cross-section profile lines overlaying the C-AFM and topography scan images (Figure 1g,h).
The latter is consistent with the observation of the n-type conductivity in pure BFO, where the
conduction is supported by thermally activated electrons from defect (oxygen vacancies) states [25–34].
It is worth noting that the conductivity of Ca/Ti-doped BFO can change from n- to p-type depending
on defect structure and synthesis conditions [37].

In the Bi0.95Ca0.05Fe0.95Ti0.05O3 compound, a deficit of positive charge introduced by the aliovalent
replacement of Bi3+ with Ca2+ is expected to be fully compensated by Ti4+ ions and the oxygen content
corresponds to the stoichiometric one. The charge balance-provided substitution favours the crystal
grain growth [35,38], so the typical grain size increases up to 5–10 µm (Figure 2a). Consistent with
the suggestion that the reduction of substitution-related lattice defects should increase the electrical
resistivity, the material demonstrates at least a three order of magnitude lower conductivity (a few pA
both at 5 V and −5 V) as compared with the Bi0.95Ca0.05FeO2.975 compound (Figure 2d–f). Scanning at
the positive bias voltage reveals local areas (corresponding to grain boundaries, domain walls and
some domains within a grain) (Figure 2a–c) with a slightly enhanced signal (~10 pA at 5 V) (Figure 2d,e)
characteristic of oxygen vacancies-assistant conductivity observed at the DW of pure BFO [25,26].
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Figure 1. Scanning probe microscopy (SPM) measurements of the Bi0.95Ca0.05FeO2.975 sample: (a) surface 
topography, (b) out-of-plane (OOP) PFM response, (c) in-plane (IP) PFM response, (d) c-AFM 
response at positive DC bias voltage of 5 V, (e) c-AFM response at negative DC bias voltage of −5 V, 
(f) magnified c-AFM image of the area marked by the red dotted square in (e). Cross-section profiles 
for (g) topography, (h) c-AFM, and (i) OOP PFM. The arrows indicate the position of grain boundaries 
(GB) and domain walls (DW) on the corresponding cross-section profiles. 
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Figure 1. Scanning probe microscopy (SPM) measurements of the Bi0.95Ca0.05FeO2.975 sample:
(a) surface topography, (b) out-of-plane (OOP) PFM response, (c) in-plane (IP) PFM response, (d) c-AFM
response at positive DC bias voltage of 5 V, (e) c-AFM response at negative DC bias voltage of −5 V,
(f) magnified c-AFM image of the area marked by the red dotted square in (e). Cross-section profiles
for (g) topography, (h) c-AFM, and (i) OOP PFM. The arrows indicate the position of grain boundaries
(GB) and domain walls (DW) on the corresponding cross-section profiles.
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PFM response, (c) IP PFM response, (d) c-AFM response at positive DC bias voltage of 5 V, (e) 
magnified c-AFM image of the area marked by the red dotted square in (d), (f) c-AFM response at 
negative DC bias voltage of −5 V. 

Above the threshold concentration (x = 0.05) corresponding to the compound with fully 
occupied oxygen sites (δ = 0), charge compensation is achieved through the creation of cation 
vacancies (which are proven to form extended lattice defects) [39,40]. The over-compensatory Ti4+ 
doping results in a dramatic decrease of both the average grain size and typical ferroelectric domain 
width (Figure 3a–c) as previously observed [35]. The c-AFM scanning reveals very weak response at 
positive bias voltage of up to 50 V (Figure 3d), while the application of negative bias can result in the 
local signal enhancement (about −20 pA at −10 V) randomly appearing over the sample surface 
(Figure 3e,f). The regions with increased p-type conductivity should be attributed to grains enriched 
by Ti doping-induced lattice defects. The related defect structure suggests the formation of highly-
strained nanorod precipitates and antiphase boundaries exhibiting a drastic deviation from the 
average crystal structure and chemical composition [39,40]. Such nanoscale defects’ segregation [41] 
seems to prevent the formation of conductive pathways and conductivity of the 
Bi0.95Ca0.05Fe0.9Ti0.1O3.025 compound remains as low as that of Bi0.95Ca0.05Fe0.95Ti0.05O3. 

Figure 2. SPM measurements of the Bi0.95Ca0.05Fe0.95Ti0.05O3 sample: (a) surface topography, (b) OOP
PFM response, (c) IP PFM response, (d) c-AFM response at positive DC bias voltage of 5 V, (e) magnified
c-AFM image of the area marked by the red dotted square in (d), (f) c-AFM response at negative DC
bias voltage of −5 V.
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Above the threshold concentration (x = 0.05) corresponding to the compound with fully occupied
oxygen sites (δ = 0), charge compensation is achieved through the creation of cation vacancies (which
are proven to form extended lattice defects) [39,40]. The over-compensatory Ti4+ doping results in a
dramatic decrease of both the average grain size and typical ferroelectric domain width (Figure 3a–c) as
previously observed [35]. The c-AFM scanning reveals very weak response at positive bias voltage of
up to 50 V (Figure 3d), while the application of negative bias can result in the local signal enhancement
(about −20 pA at −10 V) randomly appearing over the sample surface (Figure 3e,f). The regions with
increased p-type conductivity should be attributed to grains enriched by Ti doping-induced lattice
defects. The related defect structure suggests the formation of highly-strained nanorod precipitates and
antiphase boundaries exhibiting a drastic deviation from the average crystal structure and chemical
composition [39,40]. Such nanoscale defects’ segregation [41] seems to prevent the formation of
conductive pathways and conductivity of the Bi0.95Ca0.05Fe0.9Ti0.1O3.025 compound remains as low as
that of Bi0.95Ca0.05Fe0.95Ti0.05O3.Nanomaterials 2020, 10, x FOR PEER REVIEW 6 of 10 
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Figure 3. SPM measurements of the Bi0.95Ca0.05Fe0.9Ti0.1O3.025 sample: (a) surface topography, (b) OOP
PFM response, (c) IP PFM response, (d) c-AFM response at positive DC bias voltage of 10 V, (e) c-AFM
response at negative DC bias voltage of −10 V, (f) magnified c-AFM image of the area marked by the
red dotted square in (e).

In order to demonstrate the proper conductivity of each sample, the local current-voltage curves
were measured inside the merged grain/domain area possessing maximum c-AFM signal (Figure 4a–c).
The obtained I-V dependences demonstrate the rectifying diode behavior, as was previously reported
for pure and doped BFO [3,16,26]. The data obtained for the sample with x = 0 indicate that the forward
diode direction coincides with that of the electrical polarization, thus confirming that carriers are
n-type (Figure 4a). The anion/cation balanced sample (x = 0.05) shows the forward and backward diode
current-voltage characteristic specific to p-n junction (Figure 4b). The oxygen-enriched sample (x = 0.1)
exhibits the backward diode behavior indicating that carriers are of p-type. It also demonstrates a
drastic increase of the reverse current which can be associated with electrostatic forces caused by
Schottky emission from the tip (Figure 4c).
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Figure 4. Local current-voltage dependencies for the Bi0.95Ca0.05Fe1−xTixO3−δ samples, as measured
within conductive areas: (a) x = 0, (b) x = 0.05, (c) x = 0.1. The inset shows the dependence characteristic
of insulating regions (the vertical scale is in pA). (d) The band diagram representation considering
the influence of grain boundaries and domain walls on the energy band bending depending on the
chemical composition. The values representing the Fermi level (1.4 eV), bandgap (2.8 eV), and the
electron affinity (3.3 eV) of BFO were taken from Refs. [13,15,42].

The c-AFM and I-V measurements suggest that the aliovalent substitution in the
Bi0.95Ca0.05Fe1−xTixO3−δ series gives rise to the mechanisms of conductivity being largely similar to
those of donor/acceptor-doped semiconductors. To illustrate that, the band diagram approach can be
proposed. The chemical substitution affects the energy band diagram adding the donor level (vo) at
x = 0 and acceptor level (v//

M ) at x = 0.1, while the Fermi energy (EF) of the charge-balanced sample
(x = 0.05) maintains at equilibrium state (Figure 4d). It is important to mention that the local changes
in the energy offset at DW and GB represent different influence on energy states inducing the band
bending. This is mainly due to the difference in space charge distribution, namely a local imbalance in
charge neutrality between electrons/electron holes and ionized defects [11,19,42]. GB can be presented
as a junction determining the perovskite’s work function with respect to the vacuum electrostatic
potential (Figure 4d). DW joins the areas with different polarizations (similar to p-n-p or n-p-n junctions
in a semiconductor) in which the bands vary continuously since the polarization gradient associated
with DW is spatially distributed and only perturbs the system changing the Schottky barrier due to the
defect surface states (Figure 4d). This approach describes well the increased conductivity along the GB
in the x = 0 sample (Figure 1d), where the effect of the inverted population of mobile charge carriers is
expected (the additional electrons at the grain boundary drawn in Figure 4d).

4. Conclusions

To sum up, the study of conductivity in the Bi0.95Ca0.05Fe1−xTixO3−δ (x = 0, 0.05, 0.1) ceramics as a
function of the defect and ferroelectric domain structure has been performed. The obtained results
demonstrate how the chemical modification changes the local transport behavior associated with grain
boundaries, domains, and domain walls depending on the type of mobile defects. The band diagram
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approach properly supports the experimental data, confirming that the conductivity of the doped BFO
can be mediated by charge carriers induced by the chemical substitution. The results shed light on
the mechanism of the substitution-driven conductivity in polycrystalline BFO, which is particularly
important for the development of nanoelectronic devices based on multiferroic ceramic materials.
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