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Abstract: Photodynamic therapy (PDT) is a promising cancer treatment which involves a
photosensitizer (PS), light at a specific wavelength for PS activation and oxygen, which combine
to elicit cell death. While the illumination required to activate a PS imparts a certain amount of
selectivity to PDT treatments, poor tumor accumulation and cell internalization are still inherent
properties of most intravenously administered PSs. As a result, common consequences of PDT include
skin photosensitivity. To overcome the mentioned issues, PSs may be tailored to specifically target
overexpressed biomarkers of tumors. This active targeting can be achieved by direct conjugation
of the PS to a ligand with enhanced affinity for a target overexpressed on cancer cells and/or other
cells of the tumor microenvironment. Alternatively, PSs may be incorporated into ligand-targeted
nanocarriers, which may also encompass multi-functionalities, including diagnosis and therapy.
In this review, we highlight the major advances in active targeting of PSs, either by means of
ligand-derived bioconjugates or by exploiting ligand-targeting nanocarriers.
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1. Introduction

A critical limiting factor of cancer treatment’s success is the lack of specificity associated with
many traditional cancer therapeutics. Moreover, most anti-cancer drugs accumulate in normal and
cancer tissues indiscriminately. Damage is instigated in proportion to the sensitivity of the tissue
exposed [1]. This not only leads to significant, often debilitating side effects, but also to a decreased
therapeutic efficacy [2]. Due to these obstacles, intense research is focused on the development of
strategies to deliver effective therapeutic concentrations of anti-cancer agents specifically to the tumor,
thereby increasing their therapeutic efficacy while reducing toxicity [3,4].

Targeted drug delivery in the context of cancer is mainly achieved by two approaches: passive and
active targeting. The first is highly dependent on the physicochemical properties of drugs/nanocarriers
and the pathophysiological features of the tumors [5]. It is proposed that the leaky and discontinuous
tumor endothelium, in conjunction with poor tumor lymphatic drainage, naturally favors the
accumulation of drugs/nanocarriers in tumors, a phenomenon known as the enhanced permeability and
retention (EPR) effect [6]. In contrast, active targeting refers to the specific interactions, at a molecular
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level, between a drug or its delivery system and the target cells (e.g., cancer cells), usually due to specific
ligand–receptor interactions [7]. Extensive genome sequencing and proteomic exploration have caused
a large number of biomarkers overexpressed in cancer cells to be discovered as suitable receptors for
active targeting [8]. Active targeting intends not only to enhance tumor accumulation but also to increase
intracellular delivery of the drugs through exploitation of receptor mediated endocytosis [9]. Although
major improvements for the internalization of drugs or their delivery systems (e.g., nanocarriers) by
cancer cells have been shown in vitro by means of different targeting moieties, limited success has
been observed with in vivo cancer mouse models. Some studies have shown that upon systemic
administration, targeted and non-targeted drugs/nanocarriers unexpectedly exhibited similar tumor
accumulation. This clearly indicates that tumor accumulation of both targeted and non-targeted
drugs/nanocarriers is highly dependent on the tumor pathophysiology, and therefore, on the EPR
effect, rather than solely the presence of a ligand targeting the cancer cells [10,11]. Even targeted
radiotherapy which utilizes high binding affinity antibody ligands only achieves below 0.01% of dose
administered localized in the tumor [12,13]. Nevertheless, at the tumor level, the presence of the
targeting ligand is crucial to enhance drug/nanocarrier internalization by the cancer cells. This is
expected to correlate with improved therapeutic outcomes when compared with the non-targeted
controls [10,11]. In addition, other cell populations of the tumor microenvironment (TME) rather than
cancer cells have received great attention. For instance, targeting tumor endothelial cells is becoming
popular, as they are considered important for angiogenesis, subsequent tumor growth and metastasis
formation. Additionally, endothelial cells are readily accessible to any drug/nanocarriers injected in
the vascular compartment, while cancer cell targeting is dependent on the drug extravasation from
tumor vasculature [14].

Photodynamic therapy (PDT) is a promising and non-invasive anti-cancer treatment that may be
potentiated by ligand-targeted strategies [15]. It relies on the interaction between light, a photosensitizer
(PS) pro-drug and ground state molecular oxygen, which combine to provide a therapeutic effect
mediated by singlet oxygen and/or other reactive oxygen species (ROS) [16,17]. Photodynamic action
may proceed via two known principal paths of reaction, both very dependent on the oxygen content
present in cells [18]. Absorption of a photon by the PS at a specific wavelength causes activation from
the ground state to a short-lived excited state. The excited PS may decay—emitting fluorescence—and
return to the ground state, or it can undergo intersystem crossing to form a relatively long-lived triplet
state. The triplet state may also decay radiatively, emitting phosphorescence. This is a spin forbidden
process, and thus, occurs slowly. Crucially, however, it may interact with molecular oxygen in a type I
reaction to transfer an electron to surrounding biomolecules to produce ROS [15,19]. Alternatively, in a
type II reaction, energy of the excited PS may be directly transferred to ground-state molecular oxygen,
producing singlet oxygen, 1O2 [15,16,18,19].

An ideal PS for the treatment of solid tumors should absorb light, with a high molar absorptivity,
at a wavelength between 650 and 850 nm. high light penetration through human tissues is achieved
while activation of biomolecules, for example, hemoglobin, is avoided. At the clinical level, most
PSs are administered systemically. Following a certain interval of time, the drug to light interval
(DLI), the tumor is illuminated, causing the photo-activation of the PS accumulated in the tumor
microenvironment [19]. Tumor destruction is attained via a number of downstream targets, including
cancer cells, tumor vasculature and the immune host system [20]. The primary site of damage
is generally considered to coincide with the site of PS accumulation due to the short lifetime of
ROS [21,22]. The accumulation of the PS in the tumor is highly dependent on the DLI. Prolonged DLI
aims for the optimal distribution of the compound in cellular compartments (cellular-PDT), while the
tumor vasculature tends to be targeted by PDT using shorter DLI (vascular PDT) [19]. In addition to
irreversible damage to the cancer cells and tumor microvasculature, PDT may also activate the immune
system against tumor antigens, which can lead to the induction of anti-tumor immunity [22,23].

Despite extensive research, PDT has yet to gain clinical acceptance as a first line
anti-cancer therapy [20]. Porfimer sodium (Photofrin, “haematoporphyrin derivative”), temoporfin
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(Foscan, 5,10,15,20-tetrakis(3-hydroxyphenyl)chlorin), 5-aminolevulinic acid (5-ALA) and talaporfin
(Laserphyrin, “mono-L-aspartyl chlorin e6”) are the PSs already in clinical practice for cancer
treatment [24]. Formulation problems and difficulties in planning and monitoring the clinical
administration have been significant challenges [19,25].

PDT treatments already offer some tumor selectivity and specificity as a function of the illumination
region. Additionally, PSs (namely amphiphilic and lipophilic PSs) are known to have preferential
accumulation at tumor sites due to their interaction with low density lipoproteins (LDL), which
have overexpressed receptors on cancer cells [26]. Despite this, significant improvements for PDT
treatment might be achieved by means of ligand-targeted strategies. Higher and more specific PS tumor
accumulation is expected to enhance tumor destruction while avoiding skin photosensitivity [19,25,27]
(Figure 1).

Molecules 2020, 25, x FOR PEER REVIEW 3 of 57 

 

Despite extensive research, PDT has yet to gain clinical acceptance as a first line anti-cancer 
therapy [20]. Porfimer sodium (Photofrin, “haematoporphyrin derivative”), temoporfin (Foscan, 
5,10,15,20-tetrakis(3-hydroxyphenyl)chlorin), 5-aminolevulinic acid (5-ALA) and talaporfin 
(Laserphyrin, “mono-L-aspartyl chlorin e6”) are the PSs already in clinical practice for cancer 
treatment [24]. Formulation problems and difficulties in planning and monitoring the clinical 
administration have been significant challenges [19,25]. 

PDT treatments already offer some tumor selectivity and specificity as a function of the 
illumination region. Additionally, PSs (namely amphiphilic and lipophilic PSs) are known to have 
preferential accumulation at tumor sites due to their interaction with low density lipoproteins (LDL), 
which have overexpressed receptors on cancer cells [26]. Despite this, significant improvements for 
PDT treatment might be achieved by means of ligand-targeted strategies. Higher and more specific 
PS tumor accumulation is expected to enhance tumor destruction while avoiding skin 
photosensitivity [19,25,27] (Figure 1). 

In this review, the major advances regarding active targeting delivery of PSs, either by means of 
ligand-derived PS bioconjugates or by taking advantage of ligand-targeting nanocarriers, will be 
discussed in the context of cellular-PDT for cancer treatment. 

 
Figure 1. Ligand-targeted strategies may ensure effective delivery of IV-administered 
photosensitizers (PSs) to cells of the tumor microenvironment. Upon intravenous administration, a 
ligand-targeted PS is expected to be in circulation for adequate time to allow extravasation through 
endothelial fenestrations of the angiogenic tumor blood vessels into the tumor mass. Upon tumor 
accumulation, the targeting moiety attached to the PS is recognized by receptors overexpressed on 
the surfaces of cancer or other stromal cells, leading to endocytosis-mediated internalization of the 
PS. When the targeting-ligand and/or drug delivery carrier exhibits fusogenic properties that can 
destabilize the endocytic vesicles, the PS is released into the cell cytosol with further accumulation in 
different organelles. However, the PS may remain entrapped at the endocytic compartment until the 
illumination time. After a certain time (drug-to-light interval, DLI) which typically corresponds to the 
time that allows the highest tumor accumulation, illumination of tumors is performed with a laser at 
an appropriate wavelength. Photons are then absorbed by the PS which interact with molecular 
oxygen in type I and/or II reactions. Local generation of singlet oxygen, 1O2, and/or different reactive 

Figure 1. Ligand-targeted strategies may ensure effective delivery of IV-administered photosensitizers
(PSs) to cells of the tumor microenvironment. Upon intravenous administration, a ligand-targeted PS is
expected to be in circulation for adequate time to allow extravasation through endothelial fenestrations
of the angiogenic tumor blood vessels into the tumor mass. Upon tumor accumulation, the targeting
moiety attached to the PS is recognized by receptors overexpressed on the surfaces of cancer or other
stromal cells, leading to endocytosis-mediated internalization of the PS. When the targeting-ligand
and/or drug delivery carrier exhibits fusogenic properties that can destabilize the endocytic vesicles,
the PS is released into the cell cytosol with further accumulation in different organelles. However, the
PS may remain entrapped at the endocytic compartment until the illumination time. After a certain
time (drug-to-light interval, DLI) which typically corresponds to the time that allows the highest tumor
accumulation, illumination of tumors is performed with a laser at an appropriate wavelength. Photons
are then absorbed by the PS which interact with molecular oxygen in type I and/or II reactions. Local
generation of singlet oxygen, 1O2, and/or different reactive oxygen species (ROS) oxidizes biomolecules
in their vicinity. Finally, the generated oxidative stress and associated damage culminate in cancer cell
death via different mechanisms.
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In this review, the major advances regarding active targeting delivery of PSs, either by means
of ligand-derived PS bioconjugates or by taking advantage of ligand-targeting nanocarriers, will be
discussed in the context of cellular-PDT for cancer treatment.

2. Targeting Approaches in the Context of Cancer

2.1. Targeting Different Populations of the Tumor Microenvironment

A tumor is not only a group of cancer cells proliferating in an uncontrolled manner but rather a
complex tissue composed of different types of cells. These cells include cancer cells, cancer stem cells,
endothelial cells, pericytes, cancer-associated fibroblasts and different types of immune infiltrating
cells [28]. Collaborative interactions between cancer cells, associated stroma cells and the extracellular
matrix form the tumor microenvironment, which governs disease initiation, progression and metastasis
formation [29]. An awareness of the complexity of the tumor microenvironment is gaining acceptance
as a necessary consideration for the design of novel cancer therapies. Indeed, a successful therapeutic
approach should take into consideration the tumor microenvironment dynamics, and potentially,
strategies that target different tumor cell populations may enhance therapeutic outcomes [29].

2.1.1. Targeting Cancer Cells and Cancer Stem Cells (CSCs)

The majority of the targeting approaches investigated to date are aimed at targeting cancer cells.
Cancer cells express a large number of cell-surface receptors, often overexpressed, to fulfil the needs
of tumor growth, migration, invasion and metastasis. Hence, these receptors can serve as suitable
candidates for ligand-targeted cancer therapy.

Growth factor receptors, such as folate (FA) and transferrin (Tf) receptors, are regularly probed
cancer cell targets owing to their overexpression in cancers of different histological origin. Different
isoforms of the FA receptor (FR) exist with the α form present in several types of cancer cells, while the
β form is mainly found on tumor-associated macrophages and monocytes [30]. FRα confers advantages
for tumor growth, even in microenvironments with limited folate availability [31]. Similarly, the human
Tf receptor 1 (TfR1) is an example of a transmembrane glycoprotein receptor often overexpressed on
the surfaces of cancer cells [32], which ensures iron uptake by cancer cells, thereby playing a crucial
role in cell growth [33]. FA and Tf targeting have proved to significantly enhance internalization in
cancer cells. However, a certain degree of non-specificity may arise, as expression of those receptors in
healthy tissues also occurs. Moreover, folate from diet can also be found in significant levels in body
fluids, which will compete with the targeting therapy [34].

Other approaches based on the recent advances in antibody engineering and phage-display
technology have been used to achieve targeting strategies with higher selectivity and specificity. For
instance, monoclonal antibodies (mAbs), antibody fragments and nanobodies have been used to target
cancer cell receptors with higher specificity. In this regard, the epidermal growth factor receptor
(EGFR) is one of the most studied. EGFR is a receptor tyrosine kinase (RTK) expressed on normal
human cells; however, significantly higher levels of expression are correlated with malignancy in a
variety of epithelial cancers [35,36]. Its activation stimulates key processes for tumor growth, such
as proliferation, angiogenesis, invasion and metastasis formation [36]. Targeting of EGFR has been
achieved successfully with the mAb cetuximab [35] and by means of different peptides, such as the
GE11 peptide [37–40]. Human epidermal receptor-2 (HER-2), another RTK, also represents a relevant
therapeutic target as it is the most common overexpressed receptor in breast cancers, while it is
minimally expressed in normal tissues [35,40]. Targeted therapy using clinically approved, anti-HER-2
mAb trastuzumab is widely used for the treatment of HER-2 breast cancer [41].

Within tumors, CSCs are a small subpopulation of cells which are capable of self-renewal and
differentiation into multiple cell types. CSC are highly tumorigenic and are also referred to as
tumor-initiating cells. For instance, as few as 100 CSCs (isolated and identified as CD44+ CD24-) were
able to induce tumor growth in non-obese diabetic/severe combined immuno-deficient (NOD/SCID)
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mice [42], while in a humanized mouse model (NSGTM), injection of 1000 melanoma CD71+ cells
resulted in successful tumor induction [43]. The CSC tumor subpopulation is very challenging to
eliminate, as they are often resistant to therapies, including chemotherapy and radiotherapy [44].
Despite this, CSC targeting presents an opportunity to fight cancer at the root by avoiding tumor
relapse and metastasis formation [45].

The most common CSCs surface markers include CD44, CD133, ALDH1A1, CD34, CD24 and
epithelial cell adhesion molecule (EpCAM). Among them, CD44 and CD133 are found overexpressed
in different types of cancer. They are transmembrane glycoproteins with different functions that
promote tumorigenesis. Targeting of CD44 may be achieved through the use of its endogenous ligand,
hyaluronic acid (HA) [46], and by means of antibodies [46,47]. Other prominent markers of CSCs may
be also targeted by monoclonal antibodies [48].

2.1.2. Targeting Endothelial Cells from Tumor Angiogenic Blood Vessels

The tumor microenvironment offers alternative targets for tumor delivery, including endothelial
cells of the tumor blood and lymphatic vessels [49]. Cancer growth relies on an ability to induce
the formation of new capillaries from pre-existing vessels, a process termed angiogenesis [12]. Thus,
vascular endothelial cells are an important target for cancer treatment, as impeding angiogenesis
is expected to cause tumor cell death due to reduced oxygen and nutrient supply [36]. Inhibition
of angiogenesis may itself be a selective process. It occurs with a limited number of physiological
processes, including wound healing, ovulation and pregnancy [50]. From a practical perspective,
vascular endothelial cells are more directly accessible following systemic administration, and therefore,
long circulation half-lives of the targeting therapeutics might not be necessary. Slower mutation
rate and reduced risk of acquired drug resistance are additional advantages of targeting endothelial
cells [14,51].

The unique features of the tumor vasculature have allowed the identification of several molecular
targets that can be exploited to deliver therapeutics to the vasculature. The vascular endothelial growth
factor receptors (VEGFR) are a family of glycoprotein receptors with vital functions for tumor vessel
angiogenesis and neovascularization. VEGF overexpression has been associated with advanced tumor
progression. Thus, the VEGF/VEGFR signaling blockade is of great interest as a targeted therapy.
This may be achieved through mAbs (e.g., ramacirumab and tanibirumab) for colorectal, breast and
lung cancers [52].

Integrins serve as another potential target of the tumor endothelial cells. Integrins are a family of
cell surface transmembrane receptors that mediate interactions between the cell cytoskeleton and the
extracellular microenvironment [53]. For instance, the αvβ3 integrin is highly expressed on neovascular
endothelial cells and tumor cells, while lower expression is found in resting endothelial cells and
most healthy tissues [36]. With regard to targeting αvβ3 integrins, cyclic or linear derivatives of
RGD (Arg–Gly–Asp) oligopeptides have been the most studied ligands [36]. Other ligands have
included mAbs such as abituzumab, an anti-αv class integrin inhibitor [54]. Abituzumab has presented
a typical profile of integrin-targeting therapeutic development with promising preclinical in vivo
results that demonstrated tumor growth blockade. However, late phase clinical trial outcomes were
very disappointing [53,55]. In a phase 1/2 trial, combination of abituzumab with standard therapy
of cetuximab plus irinotecan for the treatment of wild-type metastatic colorectal cancer compared
to standard therapy alone demonstrated a lack of improvement [56]. The lack of success of integrin
targeted therapies may be attributed to the potential drawback of animal models as misleading
guides [57].

Vascular cell adhesion molecule-1 (VCAM-1) is a transmembrane immunoglobulin found expressed
on the surfaces of tumor endothelial cells [58]. It is an optimal target due to its virtual absence from
normal human vasculature [59]. VCAM-1 expression is induced by several inflammatory cytokines
and plays a significant role in leukocyte recruitment to sites of tissue inflammation [60]. Additionally,
during tumor migration and angiogenesis, integrins on the surfaces of tumor endothelial cells bind
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to VCAM-1 [59]. This binding promotes cell-to-cell adhesion and potentially extravasation of cancer
cells, and therefore, metastasis formation. VCAM-1 is aberrantly expressed in breast, gastric, renal,
melanoma, ovarian and colorectal cancers [58,61]. VCAM-1 may be targeted in drug delivery through
the use of anti-VCAM-1 mAbs, which have been shown to enhance vascular tumor accumulation [14].

Finally, matrix metalloproteinases (MMP) are also promising targets of the tumor
microenvironment. MMPs are a family of zinc-dependent endopeptidases mainly responsible for the
turnover and degradation of the extracellular matrix [59]. MMPs are present in nearly all human
cancer cells and their expression is correlated with metastatic potential and patient prognosis [62,63].
As an example, the MMP aminopeptidase N (APN), also known as CD13, is overexpressed on the
endothelial cell surfaces of almost all major tumor forms. It has important roles in angiogenesis and
tumor cell invasion. It is the receptor of the NGR peptide (Asp-Gly-Arg) and of its cyclic form. Both
are widely used to target drugs towards tumor vessels [62,64].

2.1.3. Simultaneous Targeting of Different Cell Populations of the Tumor Microenvironment

The targeting of a marker present on multiple tumor cell types may offer the possibility of
simultaneously targeting different cells that contribute to tumor progression (Table 1).

Significant progress was achieved with the discovery of the Lyp-1 peptide by Laakkonen et al. [65],
which specifically binds to p32 receptors. These are overexpressed on tumor cells, tumor-associated
macrophages and tumor associated lymphatics [66]. Targeting of tumor lymphatics vessels, in addition
to cancer cells, could improve significantly therapeutic effects. This is due to metastasis formation
often occurring upon cancer cells’ migration through the tumor lymphatic vessels [67,68]. Lyp-1 is a
cyclic, 9-amino acid peptide that co-localizes with three different lymphatic endothelial cell markers,
including lymphatic vessel endothelial hyaluronic acid receptor-1 (LYVE-1), podoplanin and VEGFR3.
Importantly, it does not colocalize with lymphatic vessels of normal tissue. In addition to its targeting
abilities, Lyp-1 has been demonstrated to have intrinsic therapeutic activity with inhibition of breast
tumor growth in vivo [69]. Based on the success obtained with Lyp-1, the p32 receptor continues to be
used as part of the screening process for ligands capable of lymphatic targeting [70].

Nucleolin is an intracellular protein overexpressed on both tumor endothelial cells and cancer
cells of different histological origin [71]. Recently, it was also shown as a marker of breast CSCs [72].
Thus, nucleolin targeting enables simultaneous tackling of different tumor cell populations, which is
expected to bring important therapeutic benefits. Major achievements have been revealed with the F3
peptide, a synthetic 31 amino acid peptide, which is a specific ligand for nucleolin [72–76].

In addition to enhanced cellular internalization, both the F3 and the Lyp-1 peptides can act
as tumor-penetrating peptides due to the presence of “C-end rule” (CendR) motifs within their
sequences [77]. Peptides with one arginine (R) (or rarely a lysine (K)) in the C terminus with the
sequence R/K/XXR/K can be recognized and internalized by neuropilin-1, which is overexpressed on
tumor endothelial and cancer cells. This activates a trans-tissue transport pathway which is mediated
by endocytosis and exocytosis of the targeting therapeutics through endothelial and cancer cells,
thereby allowing vascular extravasation and penetration across the tumor mass. F3 and Lyp-1 peptides
are expected to be cleaved by endogenous proteases, exposing their internal CendR at the C-terminus,
which improves tumor penetration [78]. Other examples of peptides with multi-targeting abilities are
presented in Table 1.
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Table 1. Examples of peptides for simultaneous targeting.

Peptide Receptor Target Cells of TME Ref.

Lyp-1 p32, NRP Cancer cells, tumor lymphatic endothelial cells and tumor
associated macrophages [65,79]

F3 Nucleolin Cancer cells, CSCs and tumor endothelial cells [71–73,80,81]

iRGD αvβ3, αvβ5
NRP Cancer cells and tumor endothelial cells [77,82]

T1 p32, NRP Cancer cells, tumor lymphatic endothelial cells and tumor
associated macrophages [70,83]

F56 VEGFR1 Cancer cells, tumor endothelial cells, fibroblasts and tumor
associated macrophages [84]

2.2. Ligands for Active Targeting

Specific delivery of anti-cancer drugs to solid tumors, at relevant therapeutic doses, is still
an unmet goal. One promising strategy to overcome this problem relies on the use of targeting
ligands that are specifically recognized and internalized by cancer cells and/or other cells of the
tumor microenvironment while avoiding healthy cells. Ligands of diverse nature (proteins, peptides,
antibodies, nanobodies, etc.) have been used. Advantages and disadvantages of different classes of
ligands are presented in Table 2.
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Table 2. Ligands for active targeting.

Ligand Type Examples Characteristics Advantages Disadvantages Ref.

Proteins Transferrin Glycoprotein
Aids iron transport via TfR1

High affinity/specificity of TfR1
interaction

Potential off-target toxicity with
high doses

Potential competitive binding to
malignant cell receptors

[33,34,85–88]

Peptides RGD, Lyp-1, GE11, F3 Low molecular weight
Typically <50 aas

High target receptor
affinity/specificity

Enhanced tumor diffusion
Biocompatibility

Low manufacture costs
Ease of conjugation

Slow receptor identification
Low stability in vivo which may

be improved by chemical
modifications.

[27,89–95]

Antibodies Trastuzumab, Cetuximab Y shaped macromolecules
High receptor target

affinity/specificity
Stability in vivo

Potential immunogenicity
Heterogenous tumor antigen

expression
High cost/resource intensive

production
Large size limits tumor

penetration

[7,30,96–100]

Nanobodies 7D12, 7D12-9G8 Small/fully functional
antibody fragment

High receptor target
affinity/specificity

High tissue penetration
High thermal and chemical

stability
Reduced immunogenicity

relative to mAbs

Small size can lead to
unfavorably high blood clearance

rate which may be avoided by
chemical modification

[97,101–105]

Non-protein
Folate, Polysaccharides–

Hyaluronic acid (HA)
Bile acids (BAs)

Folate is used for purine and
pyrimidine biosynthesis

HA is a component of the
extracellular matrix

BAs facilitate targeting of
apical sodium dependent bile

acid transporter (ASB)

High affinity
Minimal immunogenicity

Folate conjugates may undergo
slow release

HA may cause off-target effects
[35,106–111]
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Table 2. Cont.

Ligand Type Examples Characteristics Advantages Disadvantages Ref.

Aptamers A10 PSMA
AS1411

ss-DNA/RNA
Fold into distinct

secondary/tertiary structures.

High target receptor affinity
Minimal immunogenicity
Low manufacturing cost
Suitable for large scale

production
High thermal and chemical

stability

Off-target effects may result in
toxicity

Susceptible to nuclease
degradation in vivo if

unmodified

[112–115]
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2.3. Strategies to Identify New Ligands

The identification of new targeting moieties with higher specificity for tumors is still required for
the development of targeting strategies with minimal normal tissue interaction. In the context of PDT,
improved specificity is expected to significantly reduce skin sensitivity. This sensitivity is still one of
the most limiting PDT side effects. Additionally, new ligands with multi-targeting abilities are also
highly desirable in order to tackle the complexity and aggressiveness of the tumor microenvironment.

Phage display technology is an effective means of identifying new antibodies and peptides
that can target a certain receptor. It was developed in 1985 and regained popularity with the
award of half of the 2018 Nobel Prize in Chemistry to Smith and Sir Gregory Winter [116,117].
This method takes advantage of bacteriophage (viruses that infect bacteria) machinery to synthesize
and display different sequences of foreign peptides or antibodies at their surfaces. Phage display
screenings can be performed in situ (e.g., with a recombinant form of the target receptor), in vitro
using whole cells and even in vivo. In situ phage display studies include what was reported by Li
et al. over a decade ago and allowed the discovery of the GE11 peptide (YHWYGYTPQNVI) [39],
still largely used to target EGFR [118–120]. The EGFR mimotopes, P26 (VPGWSQAFMALA) and P19
(DTDWVRMRDSAR), were also recently identified [121]. Other examples include the LS-7 (LQNAPRS)
peptide which targets the CSC-associated marker CD133 [122] and the new nanobody VUN100
for targeting the G-protein coupled receptor homolog US28 that is found to be overexpressed in
glioblastoma [123]. Antibodies with inhibitory activity towards integrin α11/β1 were also identified in
situ [124]. Recently, in vitro phage display using gastric cancer cells allowed the identification of DE532
(VETSQYFRGTLS) and GP-5 (IHKDKNAPSLVP) peptides, and specific antibodies to target gastric
cancer [125]. The RKOpep (CPKSNNGVC) peptide was selected for colorectal cancer targeting [126].
In vivo phage display was first described by Ruoslahti and co-workers in 1996 principally to identify
new peptides to target brain blood vessels [127]. Later, the same group discovered the tumor-homing
peptides F3 (KDEPQRRSARLSAKPAPPKPEPKPKKAPAKK) [73], LyP-1 (cCGNKRTRC) [65] and TT1
(AKRGARSTA) [83], which have multi-targeting abilities. Lately, the CSP-GD (GDALFSVPLEVY)
and CSP-KQ (KQNLAEG) peptides have also been recognized by in vivo phage display as potential
ligands to target human cervical cancer [128].

Additionally, computer-aided drug discovery (CADD) methods have become important tools,
as they permit the simulation and/or prediction of drug-target binding, by structure or ligand-based
strategies [129]. When the structure of a certain cancer target/receptor is readily available,
structure-based techniques can predict possible interactions between the target and different known
ligands using data-mining. On the other hand, if there is no available information on the structure
of the cancer target/receptor, new ligands can be designed using available ligands as references for
that target.

The work of Hidayat et al. is an example of structure-based identification of new ligands [130].
With the aim of targeting the integrin αvβ3 receptor, complexes of integrin αvβ3 receptor-peptidomimetic
(RGD) were used to reveal the structure of the integrin binding site. Three pharmacophores were
identified, which further guided the design of a new ligand. Molecular docking confirmed the
interaction of the new ligand with the integrin αvβ3 receptor, and molecular dynamics studies
predicted a good stability of the new ligand when bound to the integrin αvβ3 receptor and a good
inhibitory activity. However, this ligand was never validated with in vitro or in vivo studies.

3. Ligand-Targeted Photosensitizers

The covalent binding of PSs to ligands, specifically recognized and internalized by cancer cells
and/or other cells from the tumor microenvironment, is an approach that has been explored to enhance
the selectivity and efficacy of PDT [131]. The following section highlights some of the most promising
targeted PS bioconjugates.



Molecules 2020, 25, 5317 11 of 54

3.1. Folate and Transferrin-Targeted PS

FA and Tf are among the most often used targeting ligands, included in PDT. Although more
frequently explored in nanocarriers for the targeted delivery of PSs, a few works have reported
the synthesis of bioconjugates with improved selectivity for cancer cells [132]. Condensation of a
carboxyl group with an amino group was used by Stallivieri et al. [133] and Suvorov et al. [134] for the
conjugation of different PSs (e.g., 5,10,15,20-tetraphenylporphyrin (TPP), protoporphyrin IX (Pp IX),
5,10,15,20-tetraphenylchlorin (TPC), chlorin e6, pheophorbide-a and zinc(II) phthalocyanines) to FA.
Although lacking studies which demonstrate enhanced internalization by cancer cells, this work can
serve as guideline for the synthesis of novel FA-targeted PS conjugates. Yang et al. [108] reported the
conjugation of FA to a platinum porphyrin complex through an ethylenediamine linker. The activation
of carboxylic acids from both FA and the platinum porphyrin complex allowed the formation of
amide bonds with the linker (first the FA, followed by the PS), yielding a new FA-targeted PS selective
for FRα-positive cell lines (HeLa cells). Confocal microscopy studies confirmed the endocytosis of
the targeted-PS by HeLa cells, as opposed to the FRα-negative cell line (A549 cells). Phototoxicity
assays showed further evidence of the PS’s selectivity, with a decrease of 78% of the viability of
the FRα-positive cell line when compared to 25% of the FRα-negative line. Similarly, FA-targeted
π-extended diketopyrrolopyrrole-porphyrin was also shown to be selective for FRα-positive HeLa
cells [135]. The work of Liu et al. provides an important validation of the in vivo benefits of
FA-targeting [136]. In a mouse model of nasopharyngeal epidermoid carcinoma, the conjugation
of pyropheophorbide a with FA, using a 1 kDa polyethylene glycol (PEG) spacer, showed superior
tumor accumulation and PDT efficacy when compared with the free or the non-targeted controls.
Improvements were also noted when directly compared with the targeted-PS without the spacer
PEG, highlighting the importance of the long blood circulation times needed to take advantage of
the EPR effect. The PEGylated FA-targeted PS was able to eradicate subcutaneous KB tumors in
BALB/c nude mice, at a considerably reduced dose (i.e., 60 nmol/mouse, DLI = 4 h, DL = 180 J/cm2 at
670 nm). No recurrence occurred in the 90 days following treatment, unlike the non-targeted PS and
the non-PEGylated targeted PS cases [136].

In 1994, Hamblin and Newman [137] were the first to report the conjugation of Tf to a
PS, namely, hematoporphyrin. Their studies showed improved internalization of Tf-targeted
hematoporphyrin by cancer cells (HT29 cells) and normal fibroblast (3T3), which increased the
phototoxicity of hematoporphyrin. However, the uptake was only improved in an iron-deficient
environment (which upregulates Tf receptors) and in medium supplemented with polycations
(to increase binding to cell membranes). With this knowledge, it was anticipated that the in vivo
translation of this targeting approach would be challenged by competition with the native form
of Tf. Later, Cavanaugh [86] renewed attention on TfR1 as a PDT target and developed a method
for the conjugation of chlorin e6 to Tf, which involved the preliminary binding of the protein to
quaternary amino ethyl-sephadex. After saturating the sephadex with Tf, the solution of chlorin e6

with its activated carboxylic acid, was added. The Tf-targeted chlorin e6 had the ability to kill in vitro
breast cancer cells at concentrations 10–40-fold lower than the ones used with the free chlorin e6.
More recently, Kaspler et al. [138] reported the conjugation of a ruthenium (II)-based photosensitizer
(Ru(II)(4,4′-dimethyl-2,2′-bipyridine(dmb))2(2-(2′,2′′:5′′,2′′′-terthiophene)-imidazo[4,5-f]-[1,10]
phenanthroline)]Cl2, known as TLD1433) with Tf. The Tf-targeted conjugate was associated with
enhanced internalization and phototoxicity in rat bladder cancer cells when compared with the
non-targeted counterpart. In vivo studies with mice bearing the highly immunogenic CT26.CL25
tumors revealed approximately 70% of overall survival with the Tf-targeted conjugate (50 mg/kg,
600 J/cm2 at 808 nm), whereas only ≈30% was attained with the ruthenium complex alone [139–141].

3.2. Antibody and Nanobody-Targeted PSs

Antibodies and their fragments constitute another class of moieties commonly used for PS delivery
which has increased in popularity with the progression of personalized medicine. Conjugation
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through lysine (amide and isothiocyante conjugation) or cysteine (maleimide conjugation), SNAP-Tag
conjugation and “click” chemistry (copper-catalyzed alkyne-azide cycloaddition and copper-free
strain-promoted alkyne-azide cycloaddition) are the most common synthetic strategies for the
development of tetrapyrrole-based antibody-PS conjugates. This has been recently discussed in
great detail by Sandland and Boyle [99].

One of the most promising examples of antibody-targeted PS relies on the water-soluble silica
phthalocyanine-based PS IRDye700DX (IR700), which has been conjugated to different mAbs. Initially,
studies performed with trastuzumab or panitumumab (anti-EGFR mAb)-targeted IR700 showed a
preferential accumulation of the PS at the A31 cell membrane, inducing necrotic cell death upon
illumination at 690 nm. In vivo specific A431 (epidermoid) and 3T3/HER2 (breast) tumor accumulation
and shrinkage were initially reported (300 µg/mouse, DLI = 24 h, DL = 30 J/cm2) [142]. This strategy was
further investigated for bladder cancer treatment, either in monotherapy with panitumumab-targeted
IR700 [143] or upon combination of the latter with trastuzumab (anti-HER2)-targeted IR700 [144].
Additional works have demonstrated that this strategy can be effective for tumors of different
histological origin by using antibodies against relevant targets. Examples include prostate cancer
(prostate-specific membrane antigen, known as PSMA) [145,146]; oral cancer (CD44); lung cancer
(delta-like protein 3) [147,148]; glioblastoma (CD133) [149]; and melanoma (CD146) [150].

Overall, mAb-IR700 has the ability to induce specific cell death of cancer cells while sparing
adjacent healthy tissue, tumor vessels and infiltrating-immune cells [142–150]. The mechanism
triggering necrotic cell death was recently highlighted by Sato et al. [151]. By using trastuzumab,
panitumumab or cetuximab-targeted IR700, the authors showed that a light-induced ligand-release
reaction occurs upon illumination at 690 nm. The latter affects the physical properties of the conjugate,
inducing physical stress, which, in turn, leads to the disruption of the cell membrane, cell swelling
and blebbing followed by bursting of the membrane. Importantly, this enables the release of the
intracellular content (including danger associated molecular patterns, DAMPS), thereby triggering the
activation of the host immune system. This systemic response contributes to the long-term control
of the disease and further therapeutic improvements can be achieved through inhibition of immune
checkpoint blockers. For instance, combination of cetuximab-targeted IR700 with blockade of the
PD1/PLL1 axis was shown. This resulted in complete rejection of MC38 tumors and inhibition of distant
(and not illuminated) metastasis [152]. Phase 1/2 clinical trials (NCT02422979) of cetuximab-IR700
(RM1929) in patients with recurrent and advanced head and neck squamous cell cancer demonstrated
encouraging results with several cases of partial remissions and others of complete remission [153,154].
Currently, the phase 3 clinical trial (NCT03769506) is ongoing [155].

Work continues to explore antibody-IR700 conjugates, such as the case-study reported by
Isobe et al., wherein this PS was conjugated with an antibody targeting delta-like protein 3 (a specific
biomarker of small-cell lung cancer) [148]. PDT resulted in reduced growth in tumor size of small cell
lung cancer (i.e., SBC3 and SBC5 cell lines) xenografts in mice. Other examples of antibody-targeted
PS are revealed in the works of Aung et al. and Darwish et al. using 1849-indocyanine green and a
phthalocyaninato zinc(II) (ZnPc), respectively [156,157]. Aung et al. conjugated the PS with an antibody
targeting tissue factor (TF) which is overexpressed in pancreatic cells [156]. Selectivity for pancreatic
tumors in vitro and in vivo, and reduced tumor growth in xenografts, were shown. Darwish et al.
targeted the CD38 glycoprotein which is overexpressed in myeloma and confirmed their hypothesis of
increased selectivity and phototoxicity in vivo with their novel conjugate [157].

IR700 has also been successfully targeted to different types of cancer cells by means of nanobodies.
Nanobodies are small but fully-functional fragments of the classical antibodies, each consisting of only
a single variable heavy chain. The single domain structure leads to not only reduced immunogenicity
in targeting but enhanced tumor diffusion and a more homogenous tissue distribution in comparison to
intact mAbs. Driel et al. demonstrated that EGFR nanobody-IR700 conjugate selectively accumulated,
at a time point as short as 1 h, in orthotopic OSC head and neck tumors, leading to ≈90% tumor necrosis
while sparing adjacent healthy tissues [105]. Heukers et al. recently published the use of a nanobody to
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target IR700 to cancer cells overexpressing c-Met, a receptor tyrosine kinase also known as hepatocyte
growth factor receptor [158]. The nanobody-PS conjugate specifically killed gastric MK45N cancer cells
in the nanomolar range. De Groof et al. reported a nanobody-IR700 conjugate to target cells expressing
US28, a viral G protein-coupled receptor (GPCR) that has an oncomodulatory effect in the progression
of glioblastoma [123]. The nanobody-targeted IR700 selectively destroyed glioblastoma cells in 2D
and 3D in vitro cultures, showing potential for in vivo PDT. Notably, better tumor penetration and
faster clearance was achieved in comparison to an anti-US28 antibody-targeted IR700 conjugate.
This demonstrated the binding superiority of the nanobody in comparison to previously reported
antibody [159].

Lastly, affibodies are another interesting class of targeting moieties. Affibodies are synthesized
peptide mimetics of antibodies that have high specificity towards specific proteins. Owing to their
small size (6–7 kDa), they exhibit better tissue penetration. Yamaguchi et al. reported the conjugation
of IR700 to an affibody targeting HER2 [160]. The results pointed to a clear selectivity of the conjugate
for HER2-overexpressing breast cancer cells, and a strong phototoxic effect mirrored in the low cell
viability measured. The cell death mechanism observed with this affibody-PS conjugate was similar to
the one proposed by Sato et al. [151].

3.3. Peptides-Targeted PS

The use of small peptides for the delivery of PS generally improves solubility in aqueous solutions,
leading to higher phototoxicity and therapeutic efficacy [161]. Solution- or solid-phase strategies,
involving carboxylic acid activations, Michael additions and Huisgen cycloadditions, have been used
for conjugation of peptides to PSs and are discussed in detail by Williams et al. [162].

The peptide GE11 [39], discovered through phage display against EGFR, has attracted the interest
of several researchers. Yu et al. reported the synthesis, characterization and in vitro phototoxicity of a
GE11-targeted 1,4-bis(triethylene glycol)-substituted carboxyl ZnPc [161]. Enhanced internalization
and phototoxicity of the GE11-PS conjugate was observed in EGFR-positive cells (A431 cells) but
not in low-EGFR-expressing cells (MCF7). Biodistribution studies through in vivo fluorescence
imaging revealed enhanced accumulation of the GE11-PS conjugate in A431 tumors in comparison
to the PS attached to a control peptide. However, PDT efficacy in a cancer mouse model was not
investigated. More recently, Kim et al. have also reported a GE11-chlorin(e4) conjugate (RedoxT)
for theranostics [163,164]. The in vitro assays using HCC70 cells showed specific EGFR-mediated
uptake and enhanced phototoxic effect of the conjugate [163]. Triple-negative breast cancer cells
overexpressing EGFR (e.g., MDA-MB-231 and MDA-MB-468 cells) also benefited from this targeting
approach, which was shown to be useful for in vivo near infrared (NIR) fluorescence imaging on
xenograft mouse models [164]. With the aim of targeting sex-hormone-dependent tumors (namely
breast cancers), a mono-substituted β-carboxyl ZnPc was targeted to gonadotropin-releasing hormone
receptors (GnRHRs) upon conjugation with two GnRH peptide analogues. This included a native
GnRH peptide which was directly conjugated to the PS, and an optimized form with a D-Lys as an
anchoring point for the lysosomally cleavable hexapeptidic spacer (GGGFLG) which connects to the
ZnPc. For the two conjugates, the selectivity and phototoxicity was higher in comparison to the free
ZnPc, both in vitro and in vivo, in breast cancer models. Of note, the optimized analogue inhibits the
blood–brain barrier crossing which is typically observed in GnRHR targeting. It also exhibited less
skin accumulation. Thus, it might constitute a valuable targeting approach for breast cancer [165].
A correlation between higher GnRHRs expression and worse prognosis for head and neck squamous
cell carcinoma (HNSCC) was also recently established, suggesting GnRHRs as potential targets for this
type of cancer. In accordance, the conjugation of GnRH peptides to protoporphyrin IX was shown to
effectively inhibit the viability of Detroit-562 pharyngeal carcinoma cells when compared to the free
PS [166].

Recently, Zhang et al. developed an approach which envisages the targeting of the cell membrane
of cancer cells without promoting cellular internalization [167]. To achieve this goal, the authors
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attached Pp IX to the K-Ras-derived peptide, KKKKKKSKTKC-OMe, which has the ability to target
the plasma membrane. The bioconjugate was able to destroy the cellular membrane of 4T1 cells at
low concentrations, allowing a fast release of DAMPs, and therefore, immunogenic cell death. Both
in vitro (4T1 cell line) and in vivo (4T1 tumor-bearing mice) assays showed an increased anti-tumoral
effect of the bioconjugate when compared with the non-targeted counterpart. The triggered anti-tumor
immunity was strong enough to inhibit the growth of contra-lateral (and non-illuminated) tumors and
was potentiated upon combination with programmed cell death receptor 1 (PD1) blockade [167].

3.4. Other Targeting Strategies

While the abovementioned targeting strategies are the most used, additional approaches have
been investigated for the development of targeted-PS conjugates (Table 3). Along with FA and
Trf, other endogenous ligands have been investigated for anticancer targeted-PDT. For instance,
biotin receptors have been shown to be more overexpressed than FRα in several cancer cell lines
of different histological origin (e.g., colon, breast, renal, lung and leukemia) [168]. Biotin-targeted
PSs were demonstrated to promote specific and enhanced accumulation in cancer cells, which was
correlated with improved phototoxicity compared to what was obtained with free forms [168–171].
The synthesis of steroid-targeted PS is also a relatively common strategy, especially when targeting
hormone-dependent tumors such as breast or ovarian cancers [172–174].

The metabolic changes of tumors may be explored as another approach to develop targeting
strategies for cancer. Due to the high demand for glucose (Warburg effect) and cholesterol by the cancer
cells, conjugation of PS with sugar molecules or lipoproteins (LDL, HDL) is being successfully used to
improve the selectivity and phototoxicity of PDT [131,175,176]. Lastly, aptamer-targeted strategies have
shown specificity similar to that obtained with the antibodies [114,177,178]. The low immunogenicity,
longer shelf-life and low production costs constitute important advantages over antibodies.
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Table 3. Examples of ligand-targeted tetrapyrrole PSs.

Strategy PS Ligand Target Application Ref.

Endogenous ligand Chlorin derivatives Biotin Biotin receptor In vitro: CT26 cells [168]
Endogenous ligand (Phthalocyaninato)zinc(II) Biotin Biotin receptor In vitro: HeLa and HuH-7 cells [169]

Endogenous ligand Ruthenium (II)
polypyridyl complex Biotin Biotin receptor In vitro: A549R cells [170]

Endogenous ligand Silicon (IV)
phthalocyanine Biotin Biotin receptor In vivo: mice bearing HeLa tumors [171]

Endogenous ligand Pyropheophorbide a
17-substituted

testosterone and
epitestosterone

Androgen receptor In vitro: LNCaP and PC-3 cells [174]

Carbohydrate H2TFPC (chlorin) d-glucose Glucose transporter

In vitro: MKN28, MKN45, HT29 and
HCT116 cells;

In vivo: mice bearing HT29 or HCT116
tumors

[175]

Carbohydrate H2TFPC (chlorin) d-mannose CD206 (mannose
receptor)

In vitro: MKN28, MKN45, HT29, HCT116
and M1- and M2-polarized THP-1

macrophages;
In vivo: mice bearing CT26 tumors

[179]

Aptamer Chlorin e6 free acid AIR-3A (RNA aptamer) Interleukin-6 receptor In vitro: BaF3/gp130/IL6R/TNF cells
expressing interleukin-6 receptor [177]

Aptamer Chlorin e6 free acid AS1411 (DNA aptamer) Nucleolin In vitro: MCF-7, HCT 116 and SKOV-3 cells;
Ex vivo: MCF-7 and HCT 116 tumours [114]
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4. Ligand-Targeted Nanocarriers for the Delivery of Photosensitizers

The development of delivery formulations that enable the systemic administration of a hydrophobic
PS is an important aspect for its clinical translation. One promising strategy relies on the use of
nanotechnology to create new drug delivery strategies [180]. The use of nanocarriers in the PDT field
might not only improve PS solubility but also allow better pharmacokinetic and pharmacodynamic
profiles, which would be expected to result in higher PS accumulations in tumors (either by passive or
active targeting) while avoiding healthy tissues [181]. Overall, NPs have becoming increasingly popular
within cancer PDT therapy as an effective means for PS delivery. Moreover, nanoparticles (NPs) can be
prepared with different degrees of sophistication, allowing multifunctionality in a single system. In this
regard, nanoplatforms which combine different therapeutic modalities (e.g., PDT + chemotherapy) or
permit simultaneous diagnostic imaging and therapy functions (known as theranostics) have become
very common.

The attachment of targeting moieties to the NPs’ surfaces is a strategy widely used to enhance
tumor accumulation and the treatment specificity. However, with regard to tumor accumulation,
the success of a targeted system is not straightforward, as many factors come into play. Indeed,
the nanocarrier’s physicochemical properties (size, shape, charge, etc.), the type of ligand (proteins,
peptides, antibodies, nanobodies, etc.), the target receptor (level of expression and ability to be
internalized) and the pathophysiology of tumor (namely the blood and lymphatic vessels network)
strongly impact tumor accumulation and cellular internalization [7]. For instance, Shmidt et al.
developed a mechanistic model which suggests that active targeting of nanoparticles ≥50 nm does not
improve tumor accumulation when compared with the non-targeted controls [182]. In accordance, a few
works have demonstrated that targeted nanoparticles do not necessarily increase tumor accumulation,
but instead cellular internalization [10,11].

To date, many types of organic and inorganic nanoplatforms have been developed for delivery of
PSs (Figure 2). Typically, organic NPs are composed of lipids or polymers with the advantages of high
biocompatibility and increased PS solubility. Inorganic NPs are metallic, metal oxide and metal salt in
composition and have favorable optical properties that might enhance PDT properties. In the next
section, ligand-targeted NPs aimed at systemic delivery of PSs (principally tetrapyrrole PSs) for cancer
treatment will be briefly discussed.
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Figure 2. Types of nanoparticles (NPs) that have been used to improve PS (depicted by green)
solubility, bioavailability and tumor targeting: (A) lipid-based NPs (liposomes and solid lipid NPs),
(B) polymer-based NPs (hydrogel and PNPs), (C) cyclodextrin NPs, (D) inorganic NPs (Au, Fe and
Si-NPs), (E) carbon nanomaterials (carbon nanotubes and fullerene) and (F) metal organic frameworks.
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4.1. Ligand-Targeted Lipid-Based NPs

Lipids offer significant potential as natural and biocompatible materials for drug delivery [183].
Due to the hydrophobic nature of several PSs, lipid-based formulations have been considered as ideal
carriers, which can be confirmed by the clinically approved liposomal formulation of verteporfin
(known as Visudyne®) which is used for the treatment of age-related macular degeneration [184,185].

Liposomes are currently the most promising lipid-based NPs. Due to the development of liposomes
by Bangham in 1965 [186] and thanks to evaluations of their biochemical properties over decades,
liposomes have become a pioneer’s choice for drug delivery. Liposomes are typically composed of
phospholipids but may also include other lipids, such as cholesterol. Typically, they can be defined
as spherical vesicles having at least one (unilamellar lipid vehicles, SUV) or more (multilamellar
lipid vehicles, MLV) lipid bilayers. Their structure contains two regions—hydrophilic, composed of
the aqueous core, and hydrophobic, composed of lipids chains, meaning that they can be used as a
drug carries for lipophilic or hydrophilic molecules [187]. Further improvements can be mediated by
the functionalization of their surfaces through the chemical conjugation of targeting ligands. This is
often attained via amide, disulphide or thioether bonds [188]. A variety of molecules, including
mAbs (cetuximab [189], anti-HER2 [190]), peptides (cRGD [93], APRPG [191]), vitamins (biotin [192],
FA [193]) and polymers (HA [194]) (Table 4) have been explored to improve liposome selectivity and
cellular internalization. For instance, Kato et al. attached FA moieties to the porphyrin-conjugated
lipid NPs (known as porphysomes) [195–197]. The presence of FA has improved the targeting ability
of the formulation, resulting in enhanced cell death of lung cancer cells when compared with the
non-targeted control (72% vs. 17% and 76% vs. 1% cell death in A549 and SBC5 cells, respectively).
Moreover, in vivo fluorescence imaging showed specific accumulation of the Fa-targeted liposomes
in A549 tumors. This correlated with a reduction of the tumor growth, a decrease of the Ki-67 cell
proliferation index and enhanced cell apoptosis.

Nanocarriers offer the possibility of combining multiple therapeutic agents (PSs, chemotherapy,
etc.) and other functions (ligand-targeting, imaging-mediated diagnosis, etc.) within the same
system, which helps to tackle different aspects related to cancer treatment. For instance, liposomes
composed of thermosensitive lipids were used to simultaneously encapsulate the chemotherapeutic
drug doxorubicin (DOX) and the near-infrared photothermal (PTT) and PDT agent indocyanine green
(ICG). FA and gadolinium chelates were further attached to the liposomal surface. The developed
multifunctional liposomes allowed in vivo imaging by fluorescence, photoacoustic spectroscopy and
magnetic resonance while tumor eradication was mediated by the combination of chemotherapy,
PTT and PDT. Indeed, the FA-targeted nanoplatform caused effective phototoxicity in vitro against
HeLa cells and site-specific accumulation of the FA-targeted formulation in HeLa tumors after systemic
administration, which was correlated with tumor eradication for at least 2 weeks following tumor
illumination [198].

An analogous approach was evaluated for a liposomal formulation combining chlorin e6 as PS,
ICG as a PTT agent, and the hypoxia activated prodrug tirapazamine (TPZ) as a cytotoxic agent. Surface
modification was employed with cRGD and conjugation of gadolinium chelates. The targeting ability of
the formulation to the αvβ3 integrin receptor was confirmed via intracellular fluorescence of the chlorin
e6. Measurements confirmed enhanced cRGD-mediated endocytosis and distribution of the targeted-PS
in the cytoplasm; no fluorescence signal was detected for the ligand-free formulation. Phototoxicity
studies carried out in A549 lung cancer cells resulted in 97% cell death after illumination at 808/660 nm
(PTT and PDT effects), and only 75% cell death was caused by illumination specifically at 808 nm
(exclusively PTT effect). Further studies in A549 tumor-bearing mice revealed 5.63-fold enhanced tumor
accumulation of the cRGD-targeted PS in comparison with the non-targeted control 8 h post-injection.
No tumor was observed for at least 2 weeks post-treatment with the cRGD-targeted formulation and
the dual-illumination at 808/660 nm, and tumor regrowth was observed for single illuminations at
808 nm. In addition, the combination of chlorin e6, gadolinium and ICG permitted a theranostic use
of the formulation, by allowing in vivo fluorescence/photoacoustic/MRI imaging [93]. HA-targeted
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liposomes were also used for the encapsulation of ICG aimed at treated glioblastoma cancer. In vitro
studies using U-87MG cells showed 65% of cancer cell death after laser radiation at 808 nm. Additional
studies using nude mice bearing U-87MG tumors confirmed site-specific accumulation of the developed
HA-targeted liposomes treatment was correlated with effective inhibition of tumor growth (to just
12.7% of the control group tumor size) and a decrease of the cell proliferation marker Ki-67 [199].
Despite promise, this study lacks the non-targeted control which is important to address the real impact
of the HA-targeting strategy used herein. Multifunctional platforms, including those just mentioned,
are attracting increasing attention, although, it is expected that this high level of sophistication may
cause their clinical translation to be more challenging.

Although liposomes are the best-known lipid-based NPs, new delivery strategies based on lipids
other than phospholipids have emerged in recent years. Solid lipid NPs (SLNs) are usually composed
of a crystal lipophilic core (triglycerides, glyceride or waxes) which is solid at room and physiological
temperatures, in which hydrophobic drugs can be encapsulated. The lipid matrix is composed of
physiological lipids. Their preparation does not require the use of organic solvents and is easily
scaled-up. As drug mobility decreases in the solid lipid state, drug release can be tuned by the
adjustment of the composition of the solid matrix, allowing sustained release [197]. Improvements
of the SLNs led to the development of nanostructured lipid carriers (NLCs), which unlike their
predecessors, are formed by mixing solid and liquid lipids (oils). This results in an imperfect crystal
lipid matrix that enables enhanced drug loading capacity [200]. Only a limited number of studies
describing SLN/NLCs for the targeted delivery of PSs have been published. Ding et al. developed
a multifunctional FA-targeted PEGylated NLC platform for chemo-PDT by combining paclitaxel
(PTX) and ICG [201]. In vitro studies in human liver carcinoma cancer cells (HepG2) exhibited
dose-dependent synergistic effect of PDT and chemotherapy reaching nearly 80% cell death for the
highest drug concentration (2 µg/mL), while not exceeding 60% cell death for the individual ICG and
PTX treatments. Treatment of HepG2 spheroids with FA-targeted formulation containing both ICG
and PTX impaired their growth (<200 nm) better than NPs containing only ICG or PTX (spheroids >

300 nm). In vivo studies revealed site-specific tumor accumulation just 2 h after systemic administration.
FA-targeted PEGylated NLC enabled 28.48-fold higher ICG tumor accumulation when compared to
its free form and optimal ICG tumor accumulation was observed at 12 h post-injection. Other recent
studies using targeted lipid-based NPs for the delivery of PSs are summarized in Table 4.
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Table 4. Examples of ligand-targeted lipid-based NPs for photodynamic therapy (PDT).

Nanocomposition PS Ligand Target Extra Features Application Ref.

Liposomes Erythrosine-decyl ester Biotin Biotin receptor _ In vitro: ATCC® CCL1.3™
cells

[192]

Liposomes ICG FA FR DOX, Gadolinium
(III)

In vitro: HeLa, NIH-3T3 cells;
In vivo: mice bearing HeLa

tumors
[198]

Liposomes Pyropheophorbide a-lipid FA FR _

In vitro: A549, H647, H460,
SBC5 and DFC1024 cell lines;
In vivo: mice bearing A549

tumors

[196]

Liposomes (5,10,15,20-Tetraporphyrinato)zinc(II) FA FR _ In vitro: HeLa cells [202]

Liposomes Temoporfin FA FR PEG In vitro: A549, KB and HeLa
cells [193]

Liposomes Verteporfin Anti-EGFR antibody
(Cetuximab) EGFR _ In vitro: Ovcar-5, CAMA-1

and A431 cells [189]

Liposomes Verteporfin Anti-EGFR antibody
(Cetuximab) EGFR Irinotecan In vitro: OVCAR-5, U87 and

J774 cells [203]

Liposomes Pheophorbide a derivative Anti-EGFR antibody
(Cetuximab) EGFR DOX In vitro: A-431 SK-BR-3 cells;

In vivo: A-431 tumors [204]

Liposomes
Hydrophobically modified ICG with

octadecylamine
(ODA)

Anti-Her2 antibodies Her2 DOX

In vitro: MCF7, SKOV3,
A549 and S180 cells;

In vivo: mice bearing SKOV3,
A549 and MCF7 tumors

[190]

Liposomes Chlorin e6 free acid cRGD αvβ3 integrin
receptor

TPZ, Gadolinium (III),
ICG

In vitro: A549 cells
In vivo: mice bearing A549

tumors
[93]

Liposomes Verteporfin Factor VII (fVII)
protein VEGFR _

In vitro: CHO-K1, EMT6,
HEK 293, MDA-MB-231 and

HUVEC cells;
In vivo: mice bearing EMT6

tumors

[205]
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Table 4. Cont.

Nanocomposition PS Ligand Target Extra Features Application Ref.

Liposomes ICG HA CD44 PEG
In vitro: U-87MG;

In vivo: mice bearing
U87MG tumors

[199]

Liposomes

Porphyrin derivatives:
5,10,15,20-tetrakis(4-aminophenyl)

porphyrin,
5, 10,15,20-tetrakis(4-hydroxyphenyl)

porphyrin,
5, 10,15,20-tetraphenyl porphyrin,

5,10,15,20-tetra(4-pyridyl) porphyrin

HA CD44 Rhodamine In vitro: MDA-MB-231 cells [194]

NLC ICG FA FR Paclitaxel, PEG

In vitro: HepG2 and NIH3T3
cells;

In vivo: mice bearing HepG2
tumors

[201]

NLC 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-
hexadecafluoro-29H,31H-phthalocyanine FA FR _ In vitro: MCF-7 cells [206]
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4.2. Ligand-Targeted Polymer-Based NPs and Hydrogels

Polymeric NPs can be prepared from naturally occurring (HA [207]) or synthetic (poly
lactic-co-glycolic acid (PLGA) [208], PEG [209]) polymers that exhibit good biocompatibility profiles.
In polymeric NPs, depending on the preparation method, the drug can be linked to the structure
in various ways, such as encapsulation, adsorption, dispersion or covalent attachment. Numerous
ligand-targeted NPs of different types have been developed to improve PDT for cancer treatment
and are summarized in Table 5. The most promising works with in vivo validations are discussed
further herein.

PLGA is a co-polymer thermo-responsive polyester used in approved therapeutic devices and
widely explored in NPs for drug delivery. It is synthesized upon ring-opening copolymerization of lactic
acid (LA) and glycolic acid (GA). This has been the most popular, widely studied and most improved
method for NP production over the past few decades. It allows control over the polymerization
process while special attention is paid to the LA/GA ratio. The latter has a tuning impact on the
hydrophobic properties of the formulation, thereby controlling the drug release kinetics [210]. Many
attempts have been made to modify the surfaces of PGLA-based particles with targeting moieties to
increase their specificity for cancer cells or other cells from the tumor microenvironment. Recently, two
very promising approaches were reported in the literature, emphasizing their application in the field
of PDT. Zhang et al. developed PGLA-based NPs that simultaneously incorporated chlorin e6 and
DOX [211]. The Ns surface was modified with methoxy-PEG and red-blood cell (RBC) membranes
to avoid immune responses, while FA was added to increase the specificity towards cancer cells.
This multifunctional system resulted in 25% more HepG2 tumor accumulation and 1.3-fold higher
apoptotic rates in comparison with the non-targeted formulation. Treatments with the targeted NP
enabled effective suppression of tumor growth, achieving a tumor weight that was 0.51 ± 0.17 g lower
when compared with tumors treated with the non-targeted approach. Of note, no pathological changes
in the surrounding tissues were observed.

Chen et al. proposed cRGDfK-targeted PLGA-based NPs, aiming specifically at targeting
glioblastoma cells [212]. In order to overcome the hypoxic conditions often found in the tumor site,
a H2O2-activatable catalase was incorporated in the NPs. Cellular selectivity of the formulation
toward αvβ3 integrin was tested by comparing cellular uptake of the targeted and non-targeted
formulation on αvβ3 integrin overexpressed U87-MG cells. After 3 h of incubation, strong fluorescence
was detected, but only for the targeted formulation, while remaining low for the control group.
Phototoxicity experiments resulted in 98% cancer cell death, while only 15% was reached with the
catalase-free NPs. The benefit of the cRGDfK moieties was demonstrated in mice bearing U87-MG
tumors. Higher tumor accumulation and complete inhibition of tumor growth was observed for the
catalase and targeting moiety containing formulation, while other approaches led to tumor growth
within 8 days post-treatment.

Another promising example relies on the use of GE11-targeted PEG-polycaprolactone (PCL) NPs
containing HOSiPcOSi(CH3)2-(CH2)3N(CH3)2, (Pc4, silicon phthalocyanine 4). The GE11-targeted NPs
exhibited 15% more internalization in SCC-15 human squamous cell carcinoma cells compared to the
non-targeted control. Phototoxicity in the range of 95% and reduced clonogenicity were attained with
low doses of the PS (400 nM). It is important to point out that the in vivo study carried out with SCC-15
tumor bearing mice resulted in comparable tumor regression within the first 30 days of treatment for
both approaches. However, unlike the GE11-targeted formulation, after that time tumor regrowth was
observed in the non-targeted nanoplatform treated group [213].

Recently, hydrogels, cross-linked three-dimensional scaffolds of hydrophilic polymers with the
ability to swell in aqueous media, have been gaining attention in pharmaceutical engineering [214].
Common hydrogel formulations used for drug delivery can be composed of natural (chitosan, agarose,
alginates, hyaluronic acid) or synthetic (PEG, poly(N-isopropylacrylamide)) polymers. Hydrogels,
due to their ability to swell in aqueous media, have been used in the PDT field to overcome the low
solubility of PSs in polar media, while preventing the premature release of the PS without affecting
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its photophysical properties [215]. Moreover, depending on their composition, type of cross-linking
and route of administration, hydrogels can tune the pharmacokinetic profile and biodistribution of
the PS. However, it is important to note that the distinction between hydrogels and nanogels is not
uniform and clearly defined. Very often the term nanogel is used to define nanosized hydrophilic
polymeric materials, referring mainly to their ability to exhibit the EPR effect. Extensive research
led to the development of site-specific smart gels that can be tuned to respond to physiological
fluctuations (e.g., thermoresponsive hydrogels) [216] or actively target overexpressed receptors on
cancer cells due to the attachment of specific ligands, such as polysaccharides [217] and antibodies [218],
to the polymer surface. In the context of PDT, most of the developed hydrogels are intended for
local administration followed by sustained released of the PS, which might allow one to perform
multi-illumination procedures. Only a few examples of hydrogel-based NPs with proper features for
systemic administration have been published.

Belali et al. developed a FA-targeted and pH-sensitive chitosan-based hydrogel conjugated with
5,10,15,20-tetrakis(4-aminophenyl)porphyrin (NH2-TPP) [219]. With the highest tested concentration,
about 80% MCF7 human breast cancer cell death was attained, which represented an increase
of two times when compared with the non-targeted formulation (40% cancer cell death). Hah
et al. prepared polyacrylamide (PAA)-based hydrogel conjugated to methylene blue (MB) as
the PS, and PEG chains aimed at prolonged NPs circulation in plasma [220]. The surface of
the hydrogel was further decorated with the F3 peptide, which can selectively target tumor
vasculature and cancer cells. Phototoxicity experiments carried out on MDA-MB-435 cells resulted
in 90% cell death for the F3-targeted formulation, while the non-targeted particles only reached
about 30% cell death. An analogous system was later studied using 2-devinyl-2-(1-hexyloxyethyl)
pyropheophorbide (HPPH) as a PS, expanding the possible application as a theragnostic tool in cancer
treatment [221]. Chitosan/alginate-based hydrogel nanoparticles were developed to improve the
uptake of 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin tetratosylate (TMP), a highly hydrophilic
PS with limited ability to be internalized by cells. Antibodies targeting the death receptor 5
(DR5), which is upregulated in several types of cancer, were conjugated onto the NPs’ surfaces.
In vitro studies conducted in HCT116 colorectal carcinoma cells showed two-times more cellular
uptake and phototoxicity than the non-targeted control [218]. Similarly to NPs, multifunctional
and stimuli-responsive hydrogels have been developed. Enzymatic-responsive hydrogels, with
synergistic photodynamic (ICG) and chemotherapeutic (DOX) mechanisms of action exhibiting
enhanced activity, were recently reported for head and neck cancer. Nanoparticles containing ICG or
DOX were incorporated in hyaluronic acid-acrylate-based hydrogels, which were further conjugated
to MMP [222]. Mice bearing SCC-15 tumors submitted to intratumoral injection of the developed
multifunctional hydrogel exhibited strong tumor regression that was significantly higher than the
one attained with hydrogels containing only ICG or DOX. However, the real contribution of MMP
targeting is difficult to assess, as MPP free hydrogels were not tested. Despite them being encouraging,
most of the described research with hydrogels lacks in vivo study, which makes an assessment of their
real potential as novel pharmaceutical formulations difficult.
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Table 5. Examples of ligand-targeted polymer-based NPs for PDT.

Nanocomposition PS Ligand Target Extra Features Application Ref.

Methoxy-PEG-PLGA-
based PNP Chlorin e6 free acid FA FR PEG, RBC

membranes, DOX
In vitro: HepG2 cells; In vivo:
mice bearing HepG2 tumors [211]

PEGylated PLG-co-
hydroxymethyl GA-

based PNP

meso-tetraphenylchlorine
disulphonic acid disodium (TPCS2a)

anti-HER2 nanobody
(11A4) HER2 PEG, Saporin In vitro: SkBr3 (HER2+),

MDA-MB-231 (HER2-) cells [223]

PLGA-based PNP Pheophorbide a FA FR PEG
In vitro: MKN28 cells;
In vivo: mice bearing

MKN28 tumors
[224]

PLGA-based PNP Verteporfin FA FR _ In vitro: HCT116 cells [225]

HA-b-PLGA-based PNP Pp IX HA CD44 _ In vitro: A549 cells [226]

(PLGA) and
carboxymethyl chitosan

(CMC)- based PNP
Hypocrellin A Tf Tf receptor _

In vitro: A549, NIH-3T3 cells;
In vivo: Mice bearing A549

tumors
[227]

PLGA-based PNP meso-tetraphenylchlorine
disulphonic acid disodium (TPCS2a) HA CD44 Docetaxel In vitro: MCF-7 and

MDA-MB-231 cells [208]

PLGA-based PNP meso-tetraphenylchlorine
disulphonic acid disodium (TPCS2a) HA CD44 Docetaxel In vitro: MDA-MB-231 and

HeLa cells [228]

PEG-based PNP Coumarin chromophore Biotin Biotin receptor PEG In vitro: HeLa cells [208]

1,2-distearoyl-sn-
glycero-3-

phosphoethanolamine-
N-[maleimide(PEG-

2000)-based PNP

benzo[1,2-b:4,5-b′]dithiophene
1,1,5,5-tetraoxide RGD-4R peptide αvβ3

integrin receptor

4,4′-(2,2-
diphenylethene-
1,1-diyl)bis(N,N-
diphenylaniline)

In vitro: SKOV-3, HeLa, PC3
and MCF7 cells;

In vivo: mice bearing
SKOV-3 tumors

[229]

PLGA- PNP MB c(RGDfK) peptide αvβ3
integrin receptor

Catalase in the
aqueous core, Black

hole quencher-3

In vitro: U87-MG, MCF-7,
SKOV-3 and HaCaT cells;

In vivo: mice bearing
U87-MG tumors

[212]

PLGA-PEG-based PNP Verteporfin hTf peptide Tf receptor _ In vitro: MDA-MB-231 cells [139]

PEG-PCL-based
Polymeric micelles

HOSiPcOSi(CH3)2-(CH2)3N(CH3)2,
(Pc 4) GE-11 peptide EGFR _

In vitro: SCC-15 cells;
In vivo: mice bearing SCC-15

tumors
[213]
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Table 5. Cont.

Nanocomposition PS Ligand Target Extra Features Application Ref.

Chitosan-based
hydrogel Tetrakis(4-aminophenyl)porphyrin FA FR _ In vitro: The MCF-7 (FR+)

and HepG2 (FR−) cells [219]

Chitosan/alginate-
based hydrogel

meso-Tetra(N-methyl-4-pyridyl)
porphine tetra tosylate (TMPyP) Anti-DR5 antibody Death receptor 5 _ In vitro: HCT116 cells [218]

HA-based hydrogel ICG MMP-2 MMP-2 receptor DOX
In vitro: SCC-15 cancer cells;

In vivo: SCC-15 tumor
bearing mice

[222]

Polyacrylamide-based
hydrogel MB F3 peptide Nucleolin PEG In vitro: MDA-MB-435 and

F98 cells [220]

Polyacrylamide-based
hydrogel HPPH F3 peptide Nucleolin PEG In vitro: MDA-MB-435 and 9

L cells [221]
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4.3. Cyclodextrin (CDs)

CDs, natural cyclic oligosaccharides, are another example of materials used for the development
of nanocarriers. Natural CDs are obtained mainly by enzymatic intramolecular transglycosylation
of starch and are classified as alpha (α)-CD, beta (β)-CD or gamma (γ)-CD based on their number of
linked D-glucopyranose units (6, 7 and 8 groups, respectively) [230]. CD’s applications in therapeutics
are principally due to their ability to form host–guest complexes with a broad spectrum of drug
molecules. This occurs predominantly through encapsulation, covalent conjugation or non-specific
external binding [231]. The use of CD-based nanocarriers permits one to improve the solubility
of several drugs, including PSs. [232]. Introduction of receptor targeting moieties enhancing the
anti-cancer effects of PSs, delivered by means of CD, has also been extensively studied in recent years
(Table 6).

β-CDs have been widely used for drug delivery owing to their ready availability and cavity
size; however, low aqueous solubility might challenge their use in parenteral administration. Despite
this limitation, several works using β-CD-based NPs for the delivery of PSs have been reported.
As an example, HA-targeted β-CD-based NPs, containing adamantane-modified camptothecin
prodrug (via a ROS-responsive thioketal linker) and adamantane-modified THPP, were recently
described. This multi-functional formulation combines PDT with light-controlled chemotherapy.
Significant internalization was observed in MDA-MB-231 breast cancer cells, which overexpress
CD44 receptors, but not in cells with poor expression of CD44 receptors (MCF7), thereby indicating
enhanced and specific uptake of the developed HA-targeted NPs. In vitro evaluation demonstrated
low cytotoxicity in the dark while high phototoxicity was observed at low doses (50 µg/mL). Of note,
in vivo experiments using mice bearing MDA-MB-231 tumors showed 3.7- and 2.2-fold higher tumor
inhibition comparing to free THPP and camptothecin, respectively [233]. Similarly, Yao et al. developed
β-CD-based NPs combining PDT with light activable release of camptothecin (via a nitrobenzene
linker) [234]. The formulation was further decorated with lactobionic acid, which allows one to
target asialoglycoprotein receptors-overexpressing tumor cells. The targeted formulation exhibited
potent phototoxic effect against HepG2 cancer cells, both in vitro and in vivo, when compared with
the non-targeted parent. Additionally, Zhang et al. developed mannose-targeted β-CDs-based NPs
containing adamantane-modified BODIPY as the PS [235]. Receptor-specific internalization and
anticancer activity were confirmed in MDA-MB-231 breast cancer cells, which overexpress mannose
receptors. While the mannose-targeted NPs exhibited over 90% cell death, the ligand-free NPs only
caused 11% cell death. In contrast, no significant differences were observed in the phototoxicity against
MCF-10A cells lacking mannose-receptor overexpression. Treatment of mice bearing MDA-MB-231
tumors showed significant tumor growth inhibition in contrast to the non-targeted formulation.
Importantly, no severe adverse reactions were noted during the treatment.
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Table 6. Examples of ligand-targeted cyclodextrin-based NPs for PDT.

Nanocomposition PS Ligand Target Extra Features Application Ref.

β-cyclodextrin

Adamantane-modified
5,10,15,20-tetrakis(4-

hydroxyphenyl)-21H,23H-
porphine (THPP)

HA CD44 receptor
Adamantane-modified

camptothecin
prodrug

In vitro: MDA-MB-231 cells;
In vivo: mice bearing
MDA-MB-231 tumors

[233]

γ-cyclodextrin Fullerene C60 FA FR GO In vitro: HeLa cells [236]

β-cyclodextrin Chlorin e6 free acid
Adamantine-CGKRK-
GFLG-EE-HAIYPRH

(T7) peptide
Tf receptor _ In vitro: MCF-7 cells [237]

β-cyclodextrin 1,8-dihydroxy-3-
methylanthraquinone (DHMA) Lactobionic acid (LA) Asialoglycoprotein

receptors
PEG, camptothecin
prodrug (NBCCPT),

In vitro: HepG2 cells;
In vivo: mice bearing HepG2

tumors
[234]

β-cyclodextrin Pheophorbide a FA FR Adamantane In vitro: MCF-7 and PC3 cells [238]

β-cyclodextrin Adamantane-modified BODIPY
(BTA) Mannose Mannose receptor Adamantane

In vitro: MDA-MB-231 and
MCF-10A cells;

In vivo: mice bearing
MDA-MB-231 tumors

[235]

β-cyclodextrin Phenanthroline modified
CD-Ruthenium complex Tf Tf receptor Adamantane In vitro: A549 cells 293T cells [239]

β-cyclodextrin GO HA CD44 DOX, Fe3O4 In vitro: BEL-7402 cells [240]

β-cyclodextrin (Phthalocyaninato)zinc(II) FA FR Camptothecin
In vitro: HEP2 cells;

In vivo: mice bearing HEP2
tumors

[241]

β-cyclodextrin 5,10,15,20-Tetrakis(m-hydroxyphenyl)-
21,23H-porphyrin (mTHPP) Tamoxifen Estrogen receptor _ In vitro: MCF7 and

MDA-MB-231 cells [242]

β-cyclodextrin
Adamantane-modified

5-(4-carboxyphenyl)-10,15,20-
triphenylporphyrin

FA FR DOX, GO

In vitro: HeLa and OCT-1
cells;

In vivo: mice bearing HeLa
tumors

[243]
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4.4. Carbon Nanomaterials (CNMs)

CNMs are low dimensional carbon-based constructs which were introduced for the first time in
the mid-1980s. The largest applications of CNMs in medicine have been found for fullerenes, graphene
oxide (GO), carbon nanotubes (CNTs) and carbon dots (CDs). CNMs can be classified based on their
dimensionality. 0D carbon nanomaterials include CDs and fullerenes, which can be defined as hollow
cages and quasi spherical NPs, respectively. The 1D group involves cylinder-shaped CNTs, whereas
graphene is a 2D structure. CNMs contain carbon atoms in sp2 (usually for fullerene, GO and CNTs)
or sp3 (mostly for CD) hybridization that are typically arranged in hexagonal lattices. CNMs have
versatile electrochemical properties which have resulted in a wide range of applications, such as
sensors for diverse materials (DNA, proteins, metals, etc.). Due to their small size (usually between
1 to 100 nm), large surface area and light absorption in the NIR region, CNMs have been explored
for drug delivery, including in PDT [244]. Furthermore, their ability to absorb light in the NIR region
makes CNMs promising candidates for PTT, hence their use in combination therapy. However, due
to poor aqueous solubility as a result of the hydrophobic interactions and unspecific accumulation
in soft tissues, the use of CNMs use is limited by their potential toxicity [245]. In recent years, many
attempts focusing on CNMs surface modification have been investigated, with the goal of increasing
their biocompatibility and tissue specificity [246]. Among them are the attachment of hydrophilic
polymers (PEG, PEI, etc.) and targeting moieties as strategies which can modify their pharmacokinetic
profile, tumor accumulation and cellular internalization [247].

Significant advances in the field have been made in the last few years (Table 7). Multifunctional
platforms that combine PDT with PTT, targeted delivery towards specific tumor cellular populations
and other functionalities have become common. For instance, Shi et al. developed HA-targeted
NCTs loaded with hematoporphyrin monomethyl ether (HMME), which combined PDT and PTT
activities [248]. B16F10 cells treated with these NPs, and illumination at both 532 and 808 nm,
resulted in around 90% cell death, which was significantly higher that the effect obtained with
the free HMME, non-targeted NCTs or HA-targeted NCTs illuminated with a single wavelength.
In contrast, no cytotoxic effect was observed in dark conditions. Treatment of B16F10 tumor-bearing
mice demonstrated strong suppression of tumor growth (only 15% of the tumor volume of the control
group) without systemic toxicity.

Another interesting study was provided by Zheng et al. [249]. The authors developed CD-decorated
with carbon nitrite, coupled with Pp IX, PEG and the RGD peptide. Carbon nitrite was included in
the formulation in order to trigger water splitting, and therefore, increased the oxygen concentration.
This is of high importance, as hypoxic regions are commonly observed in solid tumors, which often
compromise PDT efficacy. In vitro studies conducted in 4T1 cells demonstrated that 50% of cell death
was attained with this nanoplatform in hypoxic conditions, while no photoactivity of the free PS was
observed in the same conditions. In vivo biodistribution studies carried out on 4T1-tumor bearing
mice showed specific tumor accumulation of the RGD-targeted CDs which was proved by monitoring
increased fluorescence of the formulation in the solid tumor in comparison with other organs. This later
was correlated with over 3-times stronger inhibition of tumor growth upon tumor illumination at
630 nm in comparison with free Pp IX and carbon nitride-free CD NPs, within 12 days of the experiment.
Of note, anti-tumor immunity with significant impairment of distant (and not illuminated) metastasis
was reported [249].

DOX loaded fullerene NPs, containing polymeric shell with tumor targeting NGR peptide were
also tested against 4T1 breast cancer cells. The fullerene-based nanoplatform, with switch on/off

properties, allowed for burst chemotherapeutic release after 532 nm laser irradiation. In vitro studies
confirmed the impact of the peptide for enhanced targeting, resulting in 42% cell death after laser
irradiation in comparison with only 20% obtained with the non-targeted counterpart. Moreover, after
systemic administration, NP accumulation in the tumor area was 7.4-fold higher than that obtained
with the non-targeted CDs. Reduced accumulation in heart and kidneys and decreased side effects
were observed [250].
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Table 7. Examples of ligand-targeted carbon nanomaterials for PDT.

Nanocomposition PS Ligand Target Extra Features Application Ref.

CNT ICG FA FR PTT
In vitro: HeLa cells;

In vivo: mice bearing HeLa
tumors

[251]

CD ICG FA FR Polydopamine In vitro: HeLa cells [252]

CNT Organoselenium compound (PSeD) AE105 polypeptide
(uPAR)

Urokinase-type
plasminogen

activator
receptor (uPAR)

pH-responsive
triblock polymer

composed of
PEG-COOH,

polyethyleneimine
(PEI) and 3,4,5,6-

tetrahydrophthalic
anhydride (TA)

(PPTA)

In vitro: MDA-MB-231 and
L02 cells [253]

CNT (2-amino-phthalocyaninato)zinc(II) FA FR _ In vitro: A375 cells [254]

CNT HMME HA CD44 _
In vitro: B16F10 cells;

In vivo: Mice bearing B16F10
tumors

[248]

CNT ICG HA CD44 _
In vitro: SCC7;

In vivo: mice bearing SCC7
tumors

[255]

GO ICG

Anti-epithelial cell
adhesion molecule
(EpCAM) antibody

and A9-aptamer

PSMA _ In vitro: LNCaP cells [256]

GO Chlorin e6 free acid HA CD44 _ In vitro: A549 cells [257]

GO Chlorin e6 free acid RGD4C peptide αvβ3 integrin
receptor

Polyvinylpyrrolidone
(PVP) In vitro: MGC803 cells [258]

GO Chlorin e6 free acid FA FR _ In vitro: MGC803 cell line [259]

GO Chlorin e6 free acid HA CD44 _ In vitro: HeLa and NIH3T3
cells [260]
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Table 7. Cont.

Nanocomposition PS Ligand Target Extra Features Application Ref.

GO MB FA FR DOX In vitro: HeLa and MCF-7
cells [261]

GO Verteporfin c(RGDfK) peptide αvβ3 integrin
receptor

Banoxantrone
dihydrochloride

(AQ4N), and HIF-1α
siRNA (siHIF-1α)

In vitro: Human PC-3
prostate cancer cell line;

In vivo: mice bearing PC-3
tumor

[262]

GO

3-[1-hydroxyethyl]-3-
devinyl-131-β,β-

dicyanomethylene-131-
deoxopyropheophorbide a

FA FR DOX In vitro: Hep-G2 cells [263]

GO Chlorin e6 free acid FA FR

1, 2-Distearoyl-sn-
glycero-3-

phosphoethanolamine-
PEG2000

In vitro: KB, A549, HeLa,
HaCaT cells;

In vivo: mice bearing HeLa
tumors

[264]

GO Pyropheophorbide a Anti-integrin αvβ3
antibody

αvβ3 integrin
receptor _ In vitro: MCF-7, U87-MG

cells [265]

GO Tetrakis(4-carboxyphenyl)porphyrin
(TCPP) FA FR _ In vitro: HeLa cells [266]

GO HPPH HK peptide αvβ3 integrin
receptor PEG

In vitro: 4T1 cells;
In vivo: mice bearing 4T1

tumors
[267]

Fullerene Fullerene (C60) FA FR DOX In vitro: HeLa (FR+) and
A549 and L929 (FR-) cells [268]

Fullerene Fullerene (C60) FA FR _ In vitro: HeLa cells [269]

Fullerene Fullerene (C60) HA CD44
In vitro: HCT-116 cells;
In vivo: mice bearing

HCT-116 tumors
[270]

Fullerene Fullerene (C60) Pullulan
Asialoglycoprotein

receptors
(ASGPR)

_ In vitro: HepG2 cell lines;
In vivo: mice bearing tumors

[271,
272]



Molecules 2020, 25, 5317 30 of 54

Table 7. Cont.

Nanocomposition PS Ligand Target Extra Features Application Ref.

Fullerene Fullerene (C70) R13 Aptamer EGFR _ In vitro: A549 cells [273]

Fullerene Fullerene (C60) D-glucosamine GLUT-1 receptor _ In vitro: PANC1 and PSC
cells [274]

Fullerene Fullerene (C60) NGR peptide CD13/aminopeptidase
N receptor

DOX, 1,
2-Distearoyl-sn-

glycero-3-
phosphoethanolamine

-PEG

In vitro: 4T1 cells;
In vivo: mice-bearing 4T1

tumors
[250]

Fullerene Diadduct malonic acid-fullerene
(C60) NGR peptide CD13/aminopeptidase

N receptor
2-methoxyestradiol

(2ME) In vitro: MCF-7 cells [275]

Fullerene Fullerene (C60) Tf Tf receptor HA, Artesunate In vitro: MCF-7 cells;In vivo:
mice bearing S180 tumors [276]

CD Pp IX FA FR In vitro: HeLa and HT-29
cells [277]

CD CD Heavy-chain ferritin Tf receptor DOX
In vitro: MCF-7 cells;

In vivo: mice bearing S180
tumors

[278]

CD Pp IX RGD peptide αvβ3 integrin
receptor Carbon nitride

In vitro: MCF-7 and 4T1 cells;
In vivo: mice bearing 4T1

tumors
[249]
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4.5. Inorganic NPs

Metals and metal oxides have been introduced to the field of medicine as potential composites
for electron microscopy and drug delivery [279]. The history of their application goes back to ancient
times, when the therapeutic property of gold was used in the treatment of various diseases, such
as epilepsy or syphilis [280]. Today, classic examples of inorganic drugs used in clinical treatment
are cisplatin (an FDA approved anticancer drug) [281] and iron oxide NPs used for the treatment of
glioblastoma [282]. Inorganic NPs, due to their well-defined shape and easily modified surfaces, have
also been applied in the field of PDT. Silica (SiNPs), iron oxide (IONPs) and gold (AuNPs) NPs are
one of the most extensively studied delivery platforms for PS [283,284]. Many efforts to improve the
tumor targeting ability of inorganic NPs, while enhancing the PDT effect, were investigated (Table 8).
One advantage of such NPs is their ability to encompass multiple abilities, creating multifunctional
platforms. For instance, Wang et al. designed a SiNPs formulation containing the chemotherapeutic
drug, DOX, and the photosensitizer, MB, which was further decorated at the surface with a nuclear
localization signal peptide (KKKRK) [285]. In vitro experiments performed using a human malignant
glioma cell line (U87MG) confirmed the desired targeting activity of the formulation at the highest PS
concentration (500 µg/mL), showing about 70% cell death for the targeted formulation in comparison
with free DOX which only exhibited 35% cell death. Moreover, in vivo studies showed site specific
U87MG tumor accumulation after systemic administration of the targeted SiNPs. This was associated
with five times stronger tumor ablation when compared with free DOX, and importantly, an absence of
systemic toxicity [285]. In another study, multifunctional nanosystems combining 5-aminolevulinic
acid (5-ALA)-PDT, PTT (AuNPs) and imaging (dye Cy7.5) properties were developed for the treatment
of breast cancer. Anti-HER2 antibody and HA conjugated to the particle surface mediated an
enhanced targeting ability, resulting in 2.6 times higher uptake of the SiNPs into MCF7 cells than the
non-targeted approach. Furthermore, animal studies confirmed enhanced accumulation in the tumor
site (12.8% accumulation ratio after systemic administration). Although high NPs accumulation was
observed in other organs, such as the liver, toxicity studies did not show any signs of pathological
changes or systemic inflammation [286]. IONPs are also employed in PDT. As an example, IONPs
specifically designed to trigger the Fenton reaction, and decorated on their surfaces with ICG and
HA, exhibited promising results for the treatment of colon cancer. In vitro studies using HCT116 and
A2780 cells revealed an effective IONP internalization which was correlated with PDT/PTT-mediated
cell death upon illumination at 808 nm. Total remission of HCT116 tumors was achieved with
the HA-targeted IONPs upon illumination at 808 nm, which was in contrast with free ICG, empty
IONPs and non-illuminated IONP-ICG-HA. In addition, these multifunctional NPs allowed in vivo
photoacoustic and fluorescence imaging, which revealed the highest tumor accumulation at 6 h post
injection [287].

4.6. Metal Organic Frameworks (MOFs)

MOFs can be defined as hybrid and crystalline constructions of metal ions clusters coordinated by
multifunctional organic ligands/linkers. Due to their versatile properties regarding size, morphology,
biodegradation and chemical composition, MOFs have found a very broad spectrum of applications,
such as for targeted drug delivery [288,289]. A few works have used ligand-targeted MOFs in the
context of PDT (Table 8). A good example of this approach relies on HA-targeted MOF NPs containing
zirconium (IV)-based 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin andα-cyano-4-hydroxycinnamate.
The latter is an inhibitor of monocarboxylate transporter 1, which can be used to reduce lactate uptake
by cancer cells, and therefore, aerobic respirations and oxygen consumption. In vitro experiments
confirmed an enhanced phototoxicity of the formulation against CT26 colon adenocarcinoma cells, in
both aerobic and anaerobic conditions (cell death > 80%), while no toxicity was observed on COS7
fibroblasts. Strong inhibition of CT26 tumor growth without signs of toxicity was observed [290].
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Table 8. Examples of ligand-targeted inorganic nanoparticles (INPs) and metal organic frameworks (MOFs) for PDT.

Nanocomposition PS Ligand Target Extra Features Application Ref.

SiNPs MB
Nuclear localization

signal peptide
(KKKRK)

Nuclear
receptor DOX

In vitro: U87MG cancer cells,
In vivo: U87MG tumor

bearing mice
[285]

SiNPs (Phthalocyaninato)zinc(II) FA FR _ In vitro: A431, SCC12,
CAL27 and NHEKs cells [291]

SiNPs

(5-{p-[3-(2′,5′-dioxo-2′,5′-dihydro-
1H-pyrrol-1′-yl)-N-3-phenoxypropyl)
propanamide]-phenyl}-10,15,20-tri-p-

pyridyl-porphyrine derivative

Dimannoside-
carboxylate

Mannose
6-phosphate

receptor
- In vitro: LNCaP cells [292]

SiNPs Chlorin e6 free acid FA FR

FA polyethylene
glycol-b-poly
(asparaginyl-

chidamide), DOX

In vitro: MCF-7/ADR cells [293]

SiNPs Chlorin e6 free acid HA CD44 DOX In vitro: SCC7 cells [294]

SiNPs
5,10,15,20–Tetrakis(N-methyl-4-
pyridyl)porphyrin tetra tosylate

(TMPyP4)
FA FR G-quadruplex DNA,

DOX In vitro: HepG2 and 3T3 cells [295]

SiNPs

N-[3-(triethoxysilyl)propyl]-O-[4-
(10,15,20-tri(3-hydroxyphenyl)-

(2,3-dihydro)porphyrin-5-yl)
phenyl]-carbamate

FA and Biotin; RGD
and RAD; Cetuximab

and Bovine Serum
Albumin-conjugated

nanoparticles

PEG
In vitro: A549, CCD-34Lu,
KB cells, HeLa, A431 and

HUVEC cells
[296]

SiNPs 5-ALA FA FR _ In vitro: B16F10 cells [297]

SiNPs 5-(4-carboxyphenyl)-10,15,20-
triphenylchlorin (TPC) Neuropilin-1 (NRP-1) VEGFR Gadolinium

In vitro: MDA-MB-23 cells;
In vivo: mice bearing U87

tumors
[298]
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Table 8. Cont.

Nanocomposition PS Ligand Target Extra Features Application Ref.

SiNPs

5,10,15-Trisulphonatophenyl-
20-(N-phenyl-N’-

propyltriethoxysilanecarbamide)
porphyrin

HA CD44 _ In vitro: HCT-116 cells [299]

SiNPs

5,10,15-Trisulphonatophenyl-
20-(N-phenyl-N’-

propyltriethoxysilanecarbamide)
porphyrin

Mannose, galactose
Mannose,
galactose
receptors

Camptothecin,
fluorescein

isothiocyanate
In vitro: Y-79 cells [300]

SiNPs
(5,10,15,20-

Tetraphenylporphyrinato)
palladium(II)

cRGDyK peptides αvβ3 integrin
receptor

fluorescent contrast
agent, ATTO647N

In vitro: MCF-7 and U87-MG
cells [301]

SiNPs

5,10,15-
Trisulphonatophenyl-20-

(N-phenyl-N’-
propyltriethoxysilanecarbamide)

porphyrin

Galactose Galactose
receptor Camptothecin In vitro: HCT-116, Capan-1

and MDA-MB-231 cells [302]

AuNPs (5,10,15,20-
Tetraphenylporphyrinato)zinc(II) FA FR Thioglucose In vitro: HeLa and MCF-7

cells [303]

AuNPs ICG RGD peptide αvβ3 integrin
receptor

Doxycycline,
Combretastatin A4

phosphate, PEG

In vitro: HUVEC and
HT-1080 cells [304]

AuNPs Chlorin e6 (Ce6-labeled aptamer
sequence)

Nucleolin-targeting
aptamer AS1411 Nucleolin DNA-programmed

polymeric SNA, DOX In vitro: HeLa cells [305]

AuNPs 5-ALA Anti-HER2 antibody,
HA HER2, CD44 PEG, Cy7.5

In vitro: MCF-7 cells;
In vivo: mice bearing MCF-7

tumors
[286]

AuNPs Chlorin e6 free acid Anti-CD3 antibody CIK-cells _

In vitro: MGC-803 and GES-1
cells;

In vivo: mice bearing
MGC-803 tumors

[306]
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Table 8. Cont.

Nanocomposition PS Ligand Target Extra Features Application Ref.

AuNPs HOSiPcOSi(CH3)2-(CH2)3N(CH3)2,
(Pc 4) PSMA PSMA receptor PEG

In vitro: PC3pip (PSMA+ )
and PC3flu (PSMA−) cells;

In vivo: mice bearing PC3pip
or PC3flu tumors

[307]

AuNPs Chlorin e6 free acid α-lipoic acid-EGF EGFR _ In vitro: MDA-MB-468 cells [308]

AuNPs (Phthalocyaninato)zinc(II) Lactose-containing
thiol derivative

Galectin-1
receptor

In vitro: SK-BR-3 and
MDA-MB-231 cells [309]

AuNPs 5-ALA U11 peptide

Urokinase-type
plasminogen

activator
receptor (uPAR)

CTSE-sensitive
imaging agent, PEG

In vitro: PANC1-CSTE cells;
In vivo: mice bearing
PANC1-CSTE tumors

[310]

AuNPs
(5-[4-(11-

mercaptoundecyloxy)phenyl]-
10,15,20-triphenylporphyrin

Anti-erbB2 ICR55
antibody ErbB2 Thiolated carboxyl

terminated PEG In vitro: SK-BR-3 cells [311]

AuNPs 5-ALA R8-PLGLAG-EK10
peptide MMP-2 _

In vitro: SCC-7cells;
In vivo: mice bearing SCC-7

tumors
[312]

AuNPs Verteporfin FA FR
PEG-P(Asp-Hyd)-

DHLA block
copolymer

In vitro: HeLA cells [313]

AuNPs HOSiPcOSi(CH3)2-(CH2)3N(CH3)2,
Pc 4 EGF, Tf EGFR, Tf

receptor _

In vitro: U87-MG and LN229
cells;

In vivo: mice bearing
U87-MG tumors

[314]

Au nanoclusters Pp IX FA FR Lipoic acid
In vitro: L929 and C6 cells;
In vivo: mice bearing C6

tumors
[315]

AuNPs HOSiPcOSi(CH3)2-(CH2)3N(CH3)2,
(Pc 4) EGF EGFR _

In vitro: 9L.E29 cells;
In vivo: mice bearing 9L.E29

tumors
[37]
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Table 8. Cont.

Nanocomposition PS Ligand Target Extra Features Application Ref.

AuNPs HOSiPcOSi(CH3)2-(CH2)3N(CH3)2,
(Pc 4) Tf Tf receptor _

In vitro: LN229 and U87 cells;
In vivo: mice bearing U87

tumors
[140]

AuNPs (Phthalocyaninato)zinc(II) Jacalin (lectin) T antigen Thiol-functionalized
PEG In vitro: HT-29 cells [316]

IONPs ICG HA CD44 amino PEG

In vitro: A2780 and HCT-116
cells;

In vivo: mice bearing
HCT-116 tumors

[287]

IONPs
5, 10, 15, 20-tetra(phenyl-4-

N-met32hyl-4-pyridyl)
porphyrin

AS1411 aptamer Nucleolin Daunomycin In vitro: A549 and C26 cells [317]

IONPs Chlorin e6 free acid HA CD44 _ In vitro: B16F1 cells [318]

IONPs Hypericin Lactose
Asialoglycoprotein

receptors
(ASGP-R)

Polydopamine In vitro: HepG2 and MCF-7
cells [319]

IONPs Pheophorbide a FA FR32 PEG, Caffeic Acid In vitro: MDA-MB-231
NIH3T3 and MCF-7 cells [320]

IONPs HOSiPcOSi(CH3)2-(CH2)3N(CH3)2,
(Pc 4)

Fibronectin-mimetic
peptide (Fmp) Integrin β1 _

In vitro: HNSCC, M4E,
686LN and TU212 cells;

In vivo: mice bearing M4E
tumors

[321]

MOF Tetrakis(4-carboxyphenyl)porphyrin
(TCCP) HA CD44 CHC

In vitro: CT26, 4T1, HeLa,
COS7, MCF-7 and HepG2

cells;
In vivo: mice bearing CT26

tumors

[291]

MOF TCPP HA CD44
HIF signaling

inhibitor (ACF),
Zirconium ions

In vitro: H22 and NIH3T3
cells;

In vivo: mice bearing H22
tumors

[322]
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Table 8. Cont.

Nanocomposition PS Ligand Target Extra Features Application Ref.

MOF (Phthalocyaninato)zinc(II) FA FR DOX In vitro: HeLa cells [323]

MOF Al(III) phthalocyanine chloride
tetrasulfonic acid (AlPcS4)

Catalase (CAT)
protein molecules

Cancer cell
membrane

antigens
Cancer cell membrane

In vitro: HeLa, COS7;
In vivo: mice bearing HeLa

tumors
[324]

MOF TCPP FA FR TPP In vitro: SMMC-7721 cells [325]

MOF MB cRGD αvβ3 integrin
receptor _ In vitro: A549 and HeLa cells [326]

MOF TCPP
Bovine Serum

Albumin-sulfonamides
(SAs) complexes

Carbonic
anhydrase IX _

In vitro: 4T1 cells;
In vivo: mice bearing 4T1

tumors
[327]

MOF TCPP Sulfadiazines Carbonic
anhydrase IX

Bovine serum
albumin, MnO2

In vitro: 4T1 cells;
In vivo: mice bearing 4T1

tumors
[328]

MOF TCPP Aptamer of A549
lung cancer cells

A549 lung cancer
cells DOX In vitro: A549, MCF-7 and

LO2 cells [329]
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5. Conclusions and Future Perspectives

Tumor selectivity is widely regarded as an essential consideration in the development of any new
cancer treatment and PDT is no exception. Indeed, the clinical application of PDT is often limited
by the PS’s inability to preferentially accumulate in the tumor. As a consequence, side effects, such
as severe skin photosensitivity, may be developed, ultimately leading to reduced quality of life for
the patient. As discussed in this review, targeting ligands that are recognized and internalized by
receptors overexpressed on cancer cells and/or other cells of the tumor microenvironment are being
used as an attempt to enhance tumor selectivity. Despite promising, this strategy often fails to meet full
expectations. This is likely explained by the high dependence of active targeting (like passive targeting)
on the EPR effect to effectively reach the tumor cells. Additionally, the use of standard 2D monolayer
cell cultures for in vitro testing of active targeting strategies may provide a limited view of in vivo
potential. Thus, 3D cell cultures that better mimic the tumor microenvironment complexity might be a
valuable tool to be explored when bridging results from 2D cell culture and in vivo experiments [330].
In addition, the frequent use of strategies with increased complexity might complicate pharmaceutical
development and scale-up, making the translation from bench top to bedside a daunting task.

Despite these limitations, active targeting continues to be a promising and advantageous approach
to promote effective internalization of the PSs into the targeted tumors cells. Thus, to realize the full
potential of active targeting, research efforts must continue towards the development of new and
improved targeting ligands with multi-targeting abilities and trans-tissue transport abilities. Along
with better formulations for systemic administration of PSs, such improvements are expected to
promote specific and enhanced PS tumor accumulation accompanied with internalization by different
cells of the tumor microenvironment.
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