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Abstract: The consideration of plastic crack tip opening displacement (CTOD, δp), as a crack driving
force has given us the opportunity to predict fatigue crack growth (FCG) rate numerically, and,
therefore, to develop parametric studies focused on the effect of loading, geometrical, and material
parameters. The objective here is to study the effect of the isotropic hardening parameters of the Voce
law on FCG, which are the isotropic saturation stress, YSat, and the isotropic saturation rate, CY. The
increase of these hardening parameters causes δp to decrease. However, this effect is much more
pronounced for YSat than CY. The variation is non-linear, and the rate of variation decreases with
the increase of isotropic parameters. The increase of YSat increases the crack closure phenomenon.
Finally, the influence of the isotropic parameters is more relevant for pure isotropic hardening than
for mixed hardening.

Keywords: fatigue crack growth; isotropic hardening; crack tip opening displacement; CTOD;
crack closure

1. Introduction

Most fatigue crack growth (FCG) studies deal with the effect of load parameters—namely ∆K, stress
ratio, Kmax, and variable amplitude loading. However, the material parameters are also expected to
have a major effect on FCG. In real materials, it is not possible to change material properties one-by-one;
therefore, analytical or numerical approaches are the solution to study the effect of properties on FCG
rate. Table 1 presents some analytical models proposed in the literature [1–10] involving material
parameters—namely the elastic parameters (Young’s modulus, E, and Poisson’s ratio, ν), yield stress,
Y0, and isotropic hardening (hardening exponent, n, cyclic strain hardening coefficient, K’, and cyclic
strain hardening exponent, n’). Young’s modulus and Y0 are included in all of the models. The fracture
toughness is included in the models of Nicholls [2] and Chand and Garg [5], while the failure strain
is included in other models [3,4]. The isotropic hardening parameters are included in the models of
Schwalbe [3] and Chand and Garg [5]. The effect of kinematic hardening parameters is not found in
literature models.
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Table 1. Fatigue crack growth models that include material properties.

Reference Model Comments

Pelloux [1] da
dN = 2∆K2

πEY0

E—Young’s modulus
Y0—Yield stress

Nicholls [2] da
dN = ∆K4

4EY0≤
2
c

-

Schwalbe [3] da
dN = β ∆K2

4π(1+n)Y2
0
( 2Y0
ε f E )

1+n εf—failure strain
n—hardening exponent

Jablonski [4] da
dN =

0.0338(1−ν2)
ε f EY0

∆K2 n = 10
ν—Poisson’s ratio

Chand and Garg [5] da
dN =

0.15∆K2
e f f Y0

nEK2
Ic(1+R)3.8

KIc—fracture toughness
R—stress ratio

Skelton et al. [6] da
dN =

∆K2(1−ν)
2πEWc

Wc—critical value of density of
cumulative energy

Clavel and Pineau [7] da
dN = β∆K2

EY0

β = 0.25 Clavel and Pineau
β = 0.02 (1−ν2) Liu [8]

Liu and Liu [9] da
dN = 0.036

EY0
(∆K − ∆Kth)

2 ∆Kth—fatigue threshold

Carpinteri [10] performed finite element analyses of crack propagation by means of a strain-based
criterion and observed a greater amount of crack extension in the kinematic hardening case for a given
remote load, which means that isotropic hardening increases crack growth resistance. Martínez-Pañeda
and Fleck [11] modeled advances in a mode I crack under small scale yielding conditions using a cohesive
zone formulation. Kinematic hardening significantly raised the level of plastic dissipation. Pommier
and Bompard [12] investigated the relative importance of kinematic versus isotropic hardening for
modeling crack closure. The material with prevailing kinematic hardening displayed cyclic plasticity at
the tip and less crack tip closure than the material with isotropic hardening. The isotropic hardening is
often neglected if a material does not exhibit significant cyclic hardening and only kinematic hardening
is considered [13–15]. In fact, studies that assume purely isotropic behavior are relatively rare [16–18].

The main objective here is to study the effect of isotropic hardening parameters on FCG rate. The
parameters studied were isotropic saturation rate, CY, and isotropic saturation stress, Ysat. A numerical
analysis based on the finite element method was followed to calculate the plastic crack tip opening
displacement (CTOD), δP, which was found to be linearly related to FCG rate in numerical [19,20]
and experimental [21] studies. This approach has already been used in previous works to predict the
effect of a material’s yield stress, Y0 [22], and Young’s modulus [23]. All other physical and numerical
parameters were kept constant in order to isolate the effect of isotropic hardening parameters.

2. Elastic–Plastic Material Model

The material studied (304L stainless steel) was assumed to have an elastic–plastic behavior. The
elastic behavior was isotropic, with E = 210 GPa and ν = 0.30 as parameters of the generalized Hooke’s
law. The plastic behaviour was described by the von Mises yield criterion coupled with a mixed
isotropic–kinematic hardening under an associated flow rule:√

3
2
(σ′ −X′) : (σ′ −X′) −Y = 0 (1)

where σ′ is the deviatoric Cauchy stress tensor, X′ is the deviatoric backstress tensor described by the
Armstrong–Frederick kinematic hardening law [24], and Y is the flow stress described by the Voce
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isotropic hardening law [25]. The non-linear (exponential) kinematic hardening model proposed by
Armstrong and Frederick can be written as:

.
X′ = CX

[
XSat

∑
σ
−X′
]

.
ε

p
(2)

where
.

X′ is the backstress rate, which represents the translational velocity of the yield surface centre

during plastic deformation, σ is the equivalent stress, and
.
ε

p
is the equivalent plastic strain rate; CX

and XSat are the kinematic hardening parameters, respectively representing the saturation rate and the
saturation value of the exponential kinematic hardening X, which can be written as [26]:

X = XSat[1− exp(−CXε
p)]. (3)

The Voce law is an isotropic hardening model that is often used to describe the behavior of
materials that exhibit stress saturation at large strains, and can be written as follows:

Y = Y0 + (YSat −Y0)[1− exp(−CYε
p)] (4)

where YSat is the saturation stress, CY is the stress saturation rate, and εp is the equivalent plastic strain.
The set of material properties that best describe the cyclic behaviour of the SS304L is presented

in Table 2, labeled as “Reference”. The optimization procedure that was performed to identify these
material properties can be found in a previous work [27,28]. Table 2 also presents the numerical
changes (−25%, +25%, and +50% of the “Reference” case) in the isotropic parameters YSat and CY. The
case “0.50YSat” was not considered because it leads to softening (i.e., YSat < Y0). Figure 1 presents
the isotropic and mixed hardening stress–strain curves for the materials presented in Table 2, for
monotonic uniaxial tension; accordingly, the isotropic hardening curves (see Figure 1a) were obtained
from Equation (4) and the mixed hardening curves (see Figure 1b) were obtained from Equation (1).
As expected, the level of the mixed-hardening stress–strain curves (see Figure 1b) was higher than
that of the isotropic hardening curves (see Figure 1a). Accordingly, the mixed-hardening cases from
Table 1 offer greater resistance to plastic deformation than the isotropic hardening cases. Moreover, the
sensitivity to numerical changes in YSat is higher for isotropic hardening than for mixed-hardening
(see Figure 1). Similar trends were obtained for CY.Metals 2020, 10, 177 4 of 10 
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Figure 1. Stress–strain curves for monotonic uniaxial tension. (a) Isotropic hardening. (b) Mixed 
hardening. 

3. Numerical Model 

A compact tension specimen, C(T), was numerically modeled in DD3IMP using in-house code 
[29,30], with a width, W, equal to 50 mm, and an initial crack length, a0, of 24 mm. The symmetry 
conditions of the specimen’s geometry allowed for the modeling of only one-quarter of the 
specimen, reducing the numerical overhead. Frictionless contact was modeled over a symmetry 
plane placed behind the growing crack front in order to simulate plasticity-induced crack closure. 
Relative to the specimen’s thickness, t, only 0.1 mm were simulated to reduce numerical effort and to 
simulate a plane stress state with the proper boundary conditions. A remote cyclic load was applied 
at the hole of the specimen with a magnitude varying between 41.67 N and 4.167 N. The stress ratio, 
R, was therefore equal to 0.1 and Kmax, Kmin, and ΔK were 18.3, 1.83, and 16.5 MPa.m0.5, respectively. 
All simulations were performed with two load cycles between crack increments that occurred at 
minimum load. As previously mentioned, the numerical parameters were kept constant in order to 
isolate the effect of isotropic hardening. 

An ultra-refined mesh was employed at the crack tip region with the element’s dimensions 
being 8 × 8 μm2. The goal of employing this mesh was to accurately quantify strain gradients and 
local stress. The remaining volume of the specimen’s geometry was discretized by a coarser mesh. 
The finite element mesh was constituted by a total of 7287 three-dimensional (3D) linear 
isoparametric elements and 14,918 nodes. Each crack increment—i.e., each node 
release—corresponded to the dimension of the elements in the ultra-refined region (8 μm). The 
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level. Therefore, stable values of CTOD were able to be obtained. In some numerical simulations, 
the crack closure effect was removed by eliminating the contact of the crack flanks, which meant 
that the crack flanks may have overlapped. This is physically impossible; however, it can be 
numerically made, allowing for the study of crack propagation in a simpler state. All simulations 
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4. Results 

4.1. Typical Curves 
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Figure 1. Stress–strain curves for monotonic uniaxial tension. (a) Isotropic hardening.
(b) Mixed hardening.
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Table 2. The set of material properties.

Material Hooke’s Law Voce Law Armstrong–Frederick Law

SS304L Mixed
Hardening [28]

E
(GPa)

ν
(–)

Y0
(MPa)

YSat
(MPa)

CY
(–)

CX
(–)

XSat
(MPa)

Reference 196 0.3 117 204 9.00 300 176
0.50YSat 196 0.3 117 204 9.00 300 176
0.75YSat 196 0.3 117 102 9.00 300 176
1.25YSat 196 0.3 117 153 9.00 300 176
1.50YSat 196 0.3 117 255 9.00 300 176
0.50CY 196 0.3 117 204 4.50 300 176
0.75CY 196 0.3 117 204 6.75 300 176
1.25CY 196 0.3 117 204 11.25 300 176
1.50CY 196 0.3 117 204 13.50 300 176

SS304L Purely
Isotropic

E
(GPa)

ν
(–)

Y0
(MPa)

YSat
(MPa)

CY
(–)

CX
(–)

XSat
(MPa)

Reference 196 0.3 117 204 9.00 0 0
0.75YSat 196 0.3 117 153 9.00 0 0
1.25YSat 196 0.3 117 255 9.00 0 0
1.50YSat 196 0.3 117 306 9.00 0 0
0.50CY 196 0.3 117 204 4.50 0 0
0.75CY 196 0.3 117 204 6.75 0 0
1.25CY 196 0.3 117 204 11.25 0 0
1.50CY 196 0.3 117 204 13.50 0 0

3. Numerical Model

A compact tension specimen, C(T), was numerically modeled in DD3IMP using in-house
code [29,30], with a width, W, equal to 50 mm, and an initial crack length, a0, of 24 mm. The
symmetry conditions of the specimen’s geometry allowed for the modeling of only one-quarter of the
specimen, reducing the numerical overhead. Frictionless contact was modeled over a symmetry plane
placed behind the growing crack front in order to simulate plasticity-induced crack closure. Relative to
the specimen’s thickness, t, only 0.1 mm were simulated to reduce numerical effort and to simulate a
plane stress state with the proper boundary conditions. A remote cyclic load was applied at the hole of
the specimen with a magnitude varying between 41.67 N and 4.167 N. The stress ratio, R, was therefore
equal to 0.1 and Kmax, Kmin, and ∆K were 18.3, 1.83, and 16.5 MPa.m0.5, respectively. All simulations
were performed with two load cycles between crack increments that occurred at minimum load. As
previously mentioned, the numerical parameters were kept constant in order to isolate the effect of
isotropic hardening.

An ultra-refined mesh was employed at the crack tip region with the element’s dimensions being
8 × 8 µm2. The goal of employing this mesh was to accurately quantify strain gradients and local
stress. The remaining volume of the specimen’s geometry was discretized by a coarser mesh. The finite
element mesh was constituted by a total of 7287 three-dimensional (3D) linear isoparametric elements
and 14,918 nodes. Each crack increment—i.e., each node release—corresponded to the dimension of the
elements in the ultra-refined region (8 µm). The simulations stopped when the total crack propagation,
∆a, reached the value of 1272 µm, making 159 crack propagations. This allowed for the stabilization of
crack tip fields and the crack closure level. Therefore, stable values of CTOD were able to be obtained.
In some numerical simulations, the crack closure effect was removed by eliminating the contact of the
crack flanks, which meant that the crack flanks may have overlapped. This is physically impossible;
however, it can be numerically made, allowing for the study of crack propagation in a simpler state.
All simulations were evaluated at the first node behind the crack tip (8 µm behind the tip).
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4. Results

4.1. Typical Curves

Figure 2a shows a common variation of crack tip opening displacement, CTOD, with the applied
load, F, in simulations with the crack closure phenomenon. These curves are constituted by several
regimes. In regime 1,2, the crack is closed despite the increase of F. At point 2, the opening of the crack
occurs. When the crack first opens, it experiences purely elastic deformation, as shown in regime 2,3.
Point 3 corresponds to the transition between purely elastic and elastic–plastic behaviour at the crack
tip, and is characterized by a plastic crack tip opening displacement, CTODp, equal to 0.001 µm. This
value is purely empirical. At this stage, the plastic deformation increases rapidly until it reaches the
maximum value of F at point 4. The unloading of the specimens is similar to the loading process:
first, the crack experiences purely elastic deformation in regime 4,5, followed by the elastic-plastic in
regime 5,6. At point 6, the crack closes.
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Figure 2. (a) Crack tip opening displacement (CTOD) vs. load (with crack closure); (b) CTOD and
plastic CTOD vs. load (without crack closure); (SS304L mixed hardening).

Figure 2b plots a typical CTOD against the F curve in the simulations without the crack closure
phenomenon. In this kind of curve, the crack is already open at the minimum value of F, making points
1 and 2 coincident. Regimes 1–3 and 3–4 are the purely elastic and elastic–plastic regimes during the
specimen’s loading, respectively. Regimes 4,5 and 5,6 are the same regimes, but during the specimen’s
unloading. The higher values of CTOD achieved in these simulations are due to the higher effective
loads contributing to deformation in the absence of crack closure. This figure also shows the variation
of CTODp with F. In the purely elastic regimes, CTODp remains constant and increases/decreases
non-linearly in the elastic–plastic ones.

4.2. Effect of YSat and CY without Crack Closure

Figure 3a shows three curves of CTOD versus load for different values of YSat (cases “1.25YSat”,
“Ref”, and “0.75YSat”—see Table 2). As expected, reducing the isotropic saturation stress has, as a
consequence, higher values of CTOD, and, therefore, higher values of deformation at the crack tip.
The increase of deformation is due to the plastic part, as shown in Figure 3b, which was built by
extracting the elastic CTOD from the total CTOD presented in Figure 3a. In a uniaxial test, when YSat

is reached, the increment in plastic deformation is performed at a constant value of stress (equal to
YSat). Decreasing the value of YSat leads to a decrease in the amount of stress required for plastic strain
(see Figure 1a); in other words, for a given stress value, the plastic strain will be higher for decreasing
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values of YSat. This can be seen by the ranges of deformations present in both Figure 3a,b, and also by
the separation of the curves at lower values of the load. Similarly, for a given load value, the CTOD
will be higher for decreasing values of CY.Metals 2020, 10, 177 6 of 10 
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Figure 3. (a) Total CTOD vs. load; (b) Plastic CTOD vs. load. (SS304L isotropic; without crack closure).

Figure 4a,b show the variation in the plastic CTOD range, δp, with YSat and CY, respectively,
for the purely isotropic and mixed hardening models of the SS304L. Both figures show a non-linear
variation of δp with the isotropic hardening parameters, making it difficult to establish analytical
models containing these hardening parameters. The increase of the hardening parameters causes δp

to decrease with a rate that also decreases with the hardening parameters. The reduction of δp is
much more pronounced for YSat than for CY, which can be expected when considering the physical
meaning of both parameters. Also, for both figures, the mixed hardening model achieves less δp than
the isotropic hardening model. This supports the results shown in Figure 1, where mixed-hardening
cases (see Figure 1b) offer greater resistance to plastic deformation than isotropic hardening cases (see
Figure 1a).
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crack closure).
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4.3. Effect of YSat and CY with Crack Closure

Figure 5a shows three CTOD versus F curves for the purely isotropic SS304L, in simulations with
crack closure, in which the values of YSat were changed, corresponding to the cases “0.75YSat”, “Ref”,
and “1.25YSat” in Table 2. The numerical changes made to YSat had a great influence on the range of
CTOD values; in other words, the deformation obtained at the crack tip was deeply affected. As was
expected, increasing the value of YSat reduced the CTOD range and the total deformation due to the
reduction of the plastic deformation, as shown in Figure 5b. Also, it can be seen here that the crack
opening load, Fopen, and the crack closure load, Fclose, were affected by the numerical changes. Fopen

tended to increase and Fclose to decrease when the value of YSat was higher.
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Figure 5. (a) CTOD vs. load; (b) plastic CTOD vs. load (SS304L isotropic; with crack closure).

Figure 6 presents the evolution of U* with crack growth, ∆a. U* is the percentage of the load cycle
during which the crack is closed:

U∗ =
Fopen − Fmin

Fmax − Fmin
× 100 (5)

where Fmax and Fmin are, respectively, the maximum and minimum loads. At the beginning of the
numerical simulation, i.e., where ∆a = 0, U* is small and increasing progressively towards a stable
value, the residual plastic wake is formed. The stable values are reached at about ∆a = 500 µm, which
corresponds to 60 crack increments. Therefore, the 160 crack increments considered in the present
study are more than enough to obtain stable values of the crack opening level. Additionally, there is
more crack closure for mixed hardening than for isotropic hardening.

The crack closure levels are represented in Figure 7a,b: U* is a function of YSat and CY, respectively,
for both the purely isotropic hardening and mixed hardening models. As previously stated, the
increase of YSat caused Fopen to increase, and, therefore, it was expected that U* would increase, as
shown in Figure 7a. Also, the purely isotropic hardening reduced U* in comparison with the mixed
hardening. Despite the high numerical range of variation of the isotropic parameters, the variation
of U* was relatively small for both hardening conditions (approximately 17% in Figure 7a and 4% in
Figure 7b).
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Figure 7. Crack closure level, U*, vs. (a) isotropic saturation stress, YSat; (b) isotropic saturation rate,
CY (with crack closure).

The plot of δp shown in Figure 8a,b serves as a function of YSat and CY, respectively. As noted in
Figure 7a,b, the purely isotropic hardening model provided less U* than the mixed hardening model.
Therefore, a more effective load range was available in the purely isotropic model, contributing to more
plastic deformation, as shown in the results in Figure 8a,b. As in Figure 4a,b, the mixed hardening
model achieved less δp than the pure isotropic model. The dashed lines indicate the values obtained
without contact of crack flanks. The difference in the solid lines is the effect of crack closure, which is
relevant in all cases.
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Figure 8. Plastic CTOD range, δp, vs. (a) saturation stress, YSat; (b) stress saturation rate, CY (with
crack closure, solid lines; without crack closure, dashed lines).

5. Conclusions

A numerical approach, based on plastic CTOD, was used here to study the effect of isotropic
parameters, which are the isotropic saturation stress, YSat, and the isotropic saturation rate, CY. The
main conclusions are:

The increase of the hardening parameters causes δp to decrease. However, this effect is much
more pronounced for YSat than for CY. The variation is non-linear, and the rate of variation decreases
with the increase of the isotropic parameters.

The increase of YSat causes the increase of the crack closure phenomenon.
The influence of the hardening parameters is more relevant for pure isotropic hardening than for

mixed hardening.
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