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Abstract: The elastic properties of single-walled carbon nanotube heterojunctions were investigated
using conventional tensile, bending and torsion tests. A three-dimensional finite element model
was built in order to describe the elastic behaviour of cone heterojunctions (armchair–armchair and
zigzag–zigzag). This comprehensive systematic study, to evaluate the tensile, bending and torsional
rigidities of heterojunctions, enabled the formulation analytical methods for easy assessment of the
elastic properties of heterojunctions using a wide range of their geometrical parameters.
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1. Introduction

For more than two decades, one-dimensional (1D) nanomaterials, such as carbon nanotubes
(CNTs), with unique mechanical, optical, thermal and electrical properties, have been a focus
of research [1]. Afterwards, the research has included junctions of carbon nanotubes due to
their prospective applications in nanodevices for electronics, biotechnology and health requests.
Wei and Liu [2] published a detailed review describing the properties, manufacture, and potential
applications of CNT junctions. Yengejeh et al. [3] reviewed the developments in modelling and
numerical mechanical characterisation of structurally modified carbon nanotubes, paying special
attention to CNT heterojunctions. 1D CNT heterojunctions are regarded as good candidates for
functional elements in molecular electronics [4] and optics [5], and can be used as a building
blocks for numerous nanoscale devices, including power-supply systems and functional thin-film
electronics [6]. Among the many existing carbon nanotube junctions, such as those between
two or more CNTs (for example, Y,T,X-shaped configurations), the multi-branched and ring-like
junctions, the 1D heterojunctions with two endings, composed of single-walled carbon nanotubes
(SWCNTs), have attracted significant research interest [2,7–9]. SWCNT heterojunctions (HJs), where two
carbon nanotubes are seamlessly bonded together by a transition region, can originate metal-metal,
metal-semiconductor or semiconductor-semiconductor intramolecular junctions, depending on
diameter and chirality of the constituent SWCNTs. This makes SWCNT HJs suitable for nanoelectronic
applications, such as rectifiers [9–11], diodes [12], quantum [13] and photovoltaic devices [14]. The fact
that deformation of CNTs can significantly influence their electrical properties, changing their band
structures and electrical conduction (for example, [15–18]) leads to other potential applications of
SWCNT HJs, in electromechanical devices and as piezo-resistive strain sensors [17], and chemical
and bio-sensors [19,20]. Regarding the numerous potential applications of the SWCNT HJs, it is of
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great importance to achieve their repeatable and controllable synthesis and large-scale fabrication.
Various methods of synthesis of CNT HJs have been reported in the literature, among which are
the chemical vapour deposition (CVD) process [8], the connection of individual CNTs by chemical
reactions [21], electron beam [22] and current [23] welding, ion irradiation [24], and chemical doping [25].
Although numerous methods for producing CNT HJs have been established, it remains a challenge
to produce heterojunctions in industrial scale, accompanied by the fast characterisation of their
structure. Recently, An et al. [4] suggested an efficient method for the controllable preparation of
SWCNT HJs by means of growth of ultra-long SWCNTs and their subsequent modifying to create
HJ regions, on trenched substrate. In addition to the rapid identification of the heterojunctions
produced, this method establishes how to manufacture the SWCNT HJs with the required structure in
large quantities.

In spite of the latest advances accomplished in this research domain, various questions still exist.
As the strength and productivity of the nanodevices depend on the mechanical properties of their
constituents, one of these remaining problems is to correctly describe the deformation behaviour of
CNT heterojunctions.

Melchor and Dobrado [26] outlined two foremost heterojunction configurations: (i) cone-HJs
(heterojunctions of two nanotubes having the same chiral angle, but different radii), such as
armchair–armchair and zigzag–zigzag heterojunctions, and (ii) radius-preserving HJs, constituting by
two nanotubes having different chiral angles, such as armchair–zigzag or chiral–armchair (or zigzag)
heterojunctions. Ghavamian et al. [27] designate the cone-heterojunctions by HJs with straight
connection, while the heterojunctions that preserve the radius are called HJs with bent connection. Yao
et al. [8] pointed out the fact that the majority of HJs (>95%) are cone-heterojunctions.

The molecular dynamics (MD) and nanoscale continuum modelling (NCM) approaches,
later accompanied by finite element (FE) modelling, were established as predominant methods
to simulate the mechanical behaviour of CNT heterojunctions. Several works employing the MD
approach [28–30] were carried out. Lee and Su [28] used an MD simulation approach with reactive
empirical bond-order (REBO) potential for describing the interaction between carbon atoms in their
study of the effect of temperature on yield stress and Young’s modulus of single-walled carbon
nanotube (SWCNT) HJs under tension and compression. Li et al. [29] employed a REBO potential
to investigate the influence of temperature and strain rate on the tensile and failure behaviour of
single-walled and double-walled CNT HJs.

Qin et al. [30] published a study using MD simulation with second-generation Tersoff–Brenner
potential to assess the Young’s modulus and failure stress of single- and double-walled CNT HJs.
Xi et al. [31] used the same potential in their MD study on the mechanical behaviour of HJs structures
containing four (n, n) armchair and five (2n, 0) zigzag SWCNTs. Kang et al. [32] studied the HJs
buckling behaviour under compression, also resorting to the MD simulation with Tersoff–Brenner
potential coupled with NCM approach. Kinoshita et al. [33] calculated the Young’s modulus of
(8, 0)–(6, 0)–(8, 0) SWCNT HJ structures using ab initio density functional theory calculations.

The elastic properties of HJs have been evaluated under the tensile [34–38] and torsion [27,35,39–41]
loading conditions, using the NCM approach. Ghavamian et al. and Yengejeh et al. [35,42] used
the NCM approach for studying the buckling behaviour of HJs. Sakharova et al. [39], assessing the
mechanical properties of the armchair–armchair and zigzag–zigzag HJs, noticed redundant bending
deformation occurs under tension, which complicates the analysis of the results of the tensile test.
Scarpa et al. [34] also described this feature when analysing the tensile test results of (5, 5)–(10, 10)
HJs, in order to calculate the Poisson’s ratio. Most of the studies on the evaluation of the HJ elastic
properties are dealing with cone-heterojunctions [30,34,36,38–41], and only a few works described
the mechanical behaviour of the HJs with bent connection [27,35]. The common finding of some
of these works [27,35,36,38–40] is the reduction of the elastic properties of the HJs (their rigidities,
Young’s and shear moduli), when compared to the elastic properties of the constituent SWCNTs.



Materials 2020, 13, 5100 3 of 30

The results of aforementioned works point out that a comprehensive systematic study is required for
better understanding the mechanical behaviour of HJs.

The present study aims to provide new results to accomplish the modelling of armchair–armchair
and zigzag–zigzag SWCNT heterojunctions and the systematic characterisation of their mechanical
behaviour, resorting to the NCM approach coupled with the three dimensional (3D) FE method.
In this context, a systematic parametric study on the tensile, bending and torsional rigidities of SWCNT
HJs was carried out. A robust methodology is recommended that allows assessing the three rigidities
of HJs in a wide range of their average diameters and differences between diameters of constituent
SWCNTs, without recourse to numerical simulation.

2. Materials and Methods

2.1. Geometric Definition of SWCNT HJs

The SWCNT heterojunction structure can be seen as two SWCNTs coupled by an intermediate
region, as shown in Figure 1a, for the case of cone-heterojunction. The intermediate region contains
Stone–Wales defects [26], as shown in Figure 1b,c (heptagon in bold green and pentagon in bold blue).
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Figure 1. (a) Geometry of the cone zigzag–zigzag (15, 0)–(20, 0) HJ. (b,c) Heptagon (in bold green) and
pentagon (in bold blue) defects in the intermediate region of (b) armchair–armchair (5, 5)–(15, 15) and
(c) zigzag–zigzag (15, 0)–(25, 0) HJs. HJ structures are obtained using the academic software CoNTub
1.0© [26].

The overall length of the cone-heterojunction is expressed by:

LHJ = L1 + L2 + L3 (1)
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where L1, L2 are the lengths of the HJs in the narrow and wide SWCNT regions, respectively, and L3 is
the length of the connecting region (Figure 1a).

When cone-heterojunction is considered (i.e., the heterojunction is composed by two SWCNTs
with different diameters), the diameter of HJ can be presented as the average of the narrow (Dn1),
and wide (Dn2) diameters (for example [26]):

DHJ =
1
2
(Dn1 + Dn2) (2)

The aspect ratio of the cone-heterojunction (armchair–armchair and zigzag–zigzag HJs) is defined
as [29]:

η =
L3

DHJ
(3)

According to a previous study by the authors [39] for the armchair–armchair and zigzag–zigzag
HJs, the angle γ between the direction of the axis of the SWCNTs, constituting the HJs, and the junction
centre line as shown in Figure 2, is equal to 12.7◦, whatever the diameters of constituent SWCNTs,
and the length of the connecting region, L3, is a quasi linear function of (Dn2 − Dn1). The fitted straight
line equation for determination of L3 is as follows:

L3 = (Dn2−Dn1) (4)
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Figure 2. Connecting region of the single-walled carbon nanotube (SWCNT) HJ.

Based on geometrical analysis, a similar expression for the length of the connecting region, L3,
of cone-heterojunctions was suggested by Qin et al. [30]:

L3 =

√
3

2
π(Dn2−Dn1)= 2.7207(Dn2 −Dn1) (5)

2.2. FE Modelling

For modelling of SWCNT HJs, the NCM approach, which is based on the replacement of the
C–C bonds by the equivalent beam elements, was employed. The bases for the application of
continuum mechanics in order to describe the mechanical behaviour of CNT HJs are the established
relations between inter-atomic potential energies of the molecular structure and strain energies of the
equivalent continuum structure comprised of elastic beams, undergoing axial, bending and torsional
deformations [35,38]. The input values for the FE model are given in Table 1.
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Table 1. Material and geometrical properties of the beam element used as input parameters for FE
simulations of SWCNT HJs.

Parameter Value Formulation

Bond stretching force constant, kr [43] 6.52 × 10−7 N·nm−1 –
Bond bending force constant, kθ [43] 8.76 × 10−10 N·nm·rad−2 –

Torsional resistance force constant, kτ [43,44] 2.78 × 10−10 N·nm·rad−2 –
C–C bond/beam length (l = ac-c) 0.1421 nm –

Diameter (d) 0.147 nm d = 4
√

kθ/kr
Cross section area, Ab 0.01688 nm2 Ab= πd2/4
Moment of inertia, Ib 2.269 × 10−5 nm4 Ib= πd4/64

Polar moment of inertia, Jb 4.53 7 × 10−5 nm4 Jb= πd4/32
Young’s modulus, Eb 5488 GPa Eb= k2

r l/4πkθ
Shear modulus, Gb 870.7 GPa Gb = k2

r kτl/8πk2
θ

Rigidity, EbAb 92.65 nN EbAb= krl
Rigidity, EbIb 0.1245 nN·nm2 EbIb= kθl
Rigidity, GbJb 0.0395 nN·nm2 Gb Jb= kτl

The meshes of the SWCNT HJ structures, used in the FE analyses, were constructed using the
CoNTub 1.0 software (University of Granada, Granada, Spain) [26]. This code generates American
Standard Code for Information Interchange (ASCII) files, describing atom positions, which can be
entered as input in the finite element analysis (FEA) code, in order to perform the simulation of
mechanical tests. To convert the ASCII files, obtained using the CoNTub 1.0 program, into the
format usable by the commercial FEA code ABAQUS® (Abaqus 2020, HKS Inc., East Providence, RI,
USA, an in-house application previously developed, designated InterfaceNanotubes [45], was used.
Examples of FE meshes for SWCNT HJs, armchair–armchair and zigzag–zigzag, are shown in Figure 3.
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Figure 3. FE meshes of HJs: (a) armchair–armchair (10, 10)–(25, 25); (b) armchair–armchair
(15, 15)–(20, 20) and (c) zigzag–zigzag (20, 0)–(25, 0); structures obtained using the academic software
CoNTub 1.0 [26].
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The geometrical characteristics of SWCNT HJs used in present FE analyses are shown in Table 2.
In a previous study [39], the influence of the overall length of HJ structures on their bending and
torsional rigidities was examined for heterojunctions made up of constituent nanotubes of equal length
and having one, two and three orders of magnitude the length of the connecting junction region.
Based on these results, the SWCNTs HJs of the present work were built up in such way that the
length of the constituent SWCNTs is about two orders of magnitude of the length of the connecting
junction region.

Table 2. Geometrical characteristics of the HJs under study.

HJ (n1, m1)–(n2, m2) ∆D, nm ¯
DHJ,nm η L1, nm L2, nm L3, nm

ar
m

ch
ai

r–
ar

m
ch

ai
r

(5, 5)–(10, 10) 0.678 1.018 1.940 100.01 99.95 1.97
(5, 5)–(15, 15) 1.357 1.357 2.912 100.01 100.02 3.95
(5, 5)–(20, 20) 2.035 1.696 3.496 100.01 100.04 5.93

(10, 10)–(15, 15) 0.678 1.696 1.166 100.06 100.00 1.98
(10, 10)–(20, 20) 1.357 2.035 1.943 100.05 100.07 3.96
(10, 10)–(25, 25) 2.035 2.375 2.501 100.04 100.06 5.94
(15, 15)–(20, 20) 0.678 2.375 0.833 100.00 100.01 1.98
(15, 15)–(25, 25) 1.357 2.714 1.458 100.02 99.98 3.96
(15, 15)–(30, 30) 2.035 3.053 1.946 100.02 99.97 5.94
(20, 20)–(25, 25) 0.678 3.053 0.649 100.00 101.99 1.98
(20, 20)–(30, 30) 1.357 3.392 1.167 100.02 99.99 3.96
(20, 20)–(35, 35) 2.035 3.732 1.592 100.04 99.97 5.94

zi
gz

ag
–z

ig
za

g

(5, 0)–(10, 0) 0.392 0.588 1.950 99.92 99.96 1.15
(5, 0)–(15, 15) 0.783 0.783 2.918 100.11 100.13 2.29
(5, 0)–(20, 20) 1.175 0.979 3.500 100.12 100.10 3.43
(10, 0)–(15, 0) 0.392 0.979 1.177 100.14 100.12 1.15
(10, 0)–(20, 0) 0.783 1.175 1.952 99.97 100.10 2.29
(10, 0)–(25, 0) 1.175 1.371 2.502 99.96 100.10 3.43
(15, 0)–(20, 0) 0.392 1.371 0.843 100.03 100.00 1.16
(15, 0)–(25, 0) 0.783 1.567 1.466 100.02 99.97 2.30
(15, 0)–(30, 0) 1.175 1.763 1.952 100.01 99.94 3.44
(20, 0)–(25, 0) 0.392 1.763 0.647 99.94 104.61 1.14
(20, 0)–(30, 0) 0.783 1.959 1.169 99.92 102.34 2.29
(20, 0)–(35, 0) 1.175 2.154 1.597 99.92 100.05 3.44

2.3. Loading Conditions

Conventional numerical tensile, bending and torsional tests were used in order to evaluate the
respective rigidities of the SWCNT HJs. The applied loading and boundary conditions are explained
in Figure 4. Two loading conditions, which include fixing the narrow and the wide sides of the HJ
structure, were considered in the tensile, bending and torsion tests.

The tensile rigidity, (EA)HJ, of SWCNT HJ structures is determined as follows:

(EA)HJ =
FzLHJ

uz
(6)

where Fz is the axial tensile force applied at one end of the heterojunction, leaving the other end fixed,
LHJ is the heterojunction length and uz is the axial displacement obtained from the FE analysis.

The bending rigidity, (EI)HJ, is determined as:

(EI)HJ =
FyLHJ

3

3uy
(7)

where Fy is the transverse force applied at one end of the heterojunction, leaving the other fixed, uy is
the transverse displacement, obtained from the FE analysis.
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The torsional rigidity, (GJ)HJ, is determined by:

(GJ)HJ =
TLHJ

ϕ
(8)

where T is torsional moment applied at one end of the heterojunctions, leaving the other fixed and ϕ is
the twist angle, obtained from the FE analysis. The nodes at the end of the heterojunction, on which
the load is applied, are inhibited from moving in the radial direction.Materials 2020, 13, x FOR PEER REVIEW 7 of 30 
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Figure 4. Loading and boundary conditions for zigzag–zigzag (15, 0)–(20, 0) HJ, for the following tests:
(a) tensile; (b) bending; (c) torsional.

3. Results and Discussion

3.1. Rigidities of SWCNT Heterojunctions

3.1.1. Parametric Study of Rigidities of SWCNT Heterojunctions: FE Analysis

The values of the tensile (EA)HJ, bending (EI)HJ and torsional (GJ)HJ rigidities were calculated
by Equations (6)–(8), respectively, using the data taken from the FE analysis. The effect of the
difference between the wide and the narrow diameters of the nanotubes of each HJ, ∆D = Dn2 − Dn1,
the heterojunction aspect ratio, η, and the average HJ diameter, DHJ, was studied in all three rigidities.

The tensile (EA)HJ, bending (EI)HJ and torsional (GJ)HJ rigidities for armchair–armchair and
zigzag–zigzag HJs were plotted in Figure 5 as a function of the difference between diameters of the
wide and narrow nanotubes, ∆D. The values obtained for the two loading conditions are shown.
The values of the (EA)HJ rigidities are grouped by the three values of ∆D considered, with the higher
(EA)HJ values corresponding to lower heterojunction aspect ratios, η = L3/DHJ. The same behaviour
is observed for the (EI)HJ and (GJ)HJ rigidities.
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heterojunction aspect ratio, η (Figure 6b). The (EA)HJ values for armchair–armchair HJs are, in most 
cases, higher than those for zigzag–zigzag HJs. 

Figure 5. Evolution of the rigidities of the HJs with the difference between the narrow and wide
nanotubes, ∆D, for armchair–armchair and zigzag–zigzag HJs: (a) (EA)HJ, (b) (EI)HJ and (c) (GJ)HJ.

To complement the presentation of the HJ rigidity values, the results of Figure 5 were plotted
as a function of the heterojunction aspect ratio, η (Figure 6a–e). The results are grouped (see lines
in the figures) so that the narrow nanotube is the same in each group. Two loading conditions were
considered, with the force (or moment) being applied to the wide and narrow nanotube.
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Figure 6. (a–d) Evolution of (a,b) tensile (EA)HJ, (c,d) (EI)HJ rigidities, with the aspect ratio, η,
for armchair–armchair and zigzag–zigzag HJs; the force is applied to the wide SWCNT at (a,c) and
to the narrow SWCNT at (b,d). (e) Evolution of torsional, (GJ)HJ, rigidity with the aspect ratio, η;
the moment applied to the narrow and to the wide side of the HJ structure.

The tensile rigidity, (EA)HJ, decreases with the increase of the heterojunction aspect ratio, η,
when the force is applied on the wide SWCNT, for armchair and zigzag HJs (Figure 6a). When the force
is applied in the narrow SWCNT, the (EA)HJ rigidity is nearly constant with increasing of heterojunction
aspect ratio, η (Figure 6b). The (EA)HJ values for armchair–armchair HJs are, in most cases, higher than
those for zigzag–zigzag HJs.

The bending rigidity, (EI)HJ, shows non-significant increase with the increase in HJ aspect ratio,
η, when the force is applied on the wide SWCNT (Figure 6c). This increase in (EI)HJ with the HJ
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aspect ratio can be considerable when the force is applied to the narrow SWNCT (Figure 6d). For both
loading conditions, the (EI)HJ values remain almost constant with η for the HJ sequences (5, 5)–(10, 10),
(5, 5)–(15, 15), (5, 5)–(20, 20) and (5, 0)–(10, 0), (5, 0)–(15, 0), (5, 0)–(20, 0), i.e., those with smaller
narrow SWCNTs.

The evolution of the torsional rigidity with the HJ aspect ratio, η is insensitive to the loading
condition: the (GJ)HJ values are approximately identical whether the torsional moment is applied
to the wide or narrow nanotube, and (GJ)HJ rigidities for armchair–armchair HJs are, in most cases,
higher than those for zigzag–zigzag HJs (Figure 6e). The torsional rigidity, (GJ)HJ, increases with
the increase of the HJ aspect ratio, η, and this increase is less significant for HJ groups with smaller
narrow SWCNT.

The results of Figure 6 can be represented as shown in the Figure 7 for the tensile (EA)HJ,
bending (EI)HJ and torsional (GJ)HJ rigidities as a function of the HJ aspect ratio, η, for the both loading
conditions. This figure shows heterojunction sequences that have the same difference between the
diameters of the wide and narrow nanotubes, ∆D = Dn2 − Dn1, i.e., ∆D = 0.678, 1.357, 2.035 nm for
armchair–armchair HJs, ∆D = 0.392, 0.783, 1.175 for zigzag–zigzag HJs. The evolutions of the tensile
(EA)HJ rigidity follow exponential trend, regardless of whether the force is applied to the wide or
narrow nanotube (Figure 7a,b). The same type of trend occurs for the evolutions of the bending (EI)HJ
and torsional (GJ)HJ rigidities with η (Figure 7c–e).
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In Figure 8, the evolutions of the (EA)HJ, (EI)HJ and (GJ)HJ rigidities of armchair–armchair and
zigzag–zigzag HJs are plotted as a function of the average HJ diameter DHJ =

1
2 (Dn1 + Dn2) for the

loading condition in which the force (moment) is applied on the wide nanotube. All three rigidities
increase with the increase of the average HJ diameter. The (EA)HJ evolutions can be separated
for armchair–armchair and zigzag–zigzag HJs. This is also true for (EI)HJ and (GJ)HJ evolutions.
The evolutions of the (EA)HJ rigidity follow quasi-linear trend for heterojunctions with ∆D = 0.678 nm
(armchair–armchair) and ∆D = 0.392 nm (zigzag–zigzag). For bigger ∆D, equal to 1.357 and 2.035 nm
for armchair–armchair HJs and equal to 0.783 and 1.175 nm for zigzag–zigzag HJs, the (EA)HJ evolutions
are close to a second degree polynomial trend. It was previously shown [45] that the evolution of
(EA)HJ rigidity of SWCNT with its diameter follows a quasi-linear trend. The linear dependence
between the (EA)HJ rigidity and the average HJ diameter, for small values of ∆D, reveals that the HJ
structure behaves like a homogeneous SWCNT under tensile loading test. However, for higher ∆D
values, when the (EA)HJ evolutions deviate from the linear trend and become close to a second degree
polynomial trend, this difference can most likely be attributed to the redundant bending deformation,
observed during the tensile test of these HJs [39]. It influences the tensile rigidity results of HJs in
which the difference between diameters of the wide and narrow nanotubes, ∆D, are greater than
0.678 nm and 0.392 nm, for armchair–armchair and zigzag–zigzag HJs, respectively. The evolutions of
the bending, (EI)HJ, and torsional, (GJ)HJ, rigidities with the average HJ diameter DHJ are close a third
degree polynomial trend.

3.1.2. Rigidities of SWCNT Heterojunctions: Analytical Solution

The tensile, (EA)HJ, bending, (EI)HJ, and torsional, (GJ)HJ, rigidities of the heterojunctions can
be calculated from the rigidities of the constituent SWCNTs. For this, a structural analysis of
an equivalent structure composed of three beams, representing the two SWCNTs and the connection
region, was performed assuming that the length of this region is much smaller than that of the SWCNTs.
Based on this analysis, the (EA)HJ rigidity is given by

(EA)HJ =
LHJ(

La
(EA)a

+
a2L f

(EI) f
+

L f

(EA) f

) (9)

where LHJ is the overall length of HJ; a is a geometrical parameter described in Figure 3; (EA)a and
(EA)f are the tensile rigidities of the SWCNTs that comprise HJ and (EI)f is the corresponding bending
rigidity; La and Lf are the lengths of the constituent SWCNTs; the subscript a refers to the nanotube on
which the force (moment) is applied and the subscript f refers to the fixed nanotube.
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Based on similar structural analyses, it is possible to obtain (EI)HJ and (GJ)HJ rigidities, respectively,
as already suggested in a preliminary analysis [40]:

(EI)HJ =
L3

HJ(
L3

a
(EI)a

+
3L2

aL f +3LaL2
f +L3

f

(EI) f

) (10)

(GJ)HJ =
LHJ(

La
(GJ)a

+
L f

(GJ) f

) (11)

where (EI)a and (EI)f are the bending rigidities of the SWCNTs comprising HJ and (GJ)a and (GJ)f are
their torsional rigidities.

The rigidities of the individual SWCNTs, which constitute the HJ structures, can be taken directly
from FE analysis or evaluated analytically as follows [40,45]:

EASW = αSW(Dn −D0) (12)

EISW = βSW(Dn−D0)
3 (13)

GJSW = γSW(Dn −D0)
3 (14)

where Dn is the SWCNT diameter and αSW , βSW , γSW and D0 are fitting parameters. The values of
the fitting parameters are: αSW= 1121.20nN/nm, βSW= 140.25nN/nm, γSW= 130.39nN/nm and D0

is considered equal to zero, as its value is negligible when compared with Dn [40].
Figure 9 compares the values of the three rigidities obtained from FE analysis (Equations (6)–(8))

and those calculated by Equations (9)–(11). In these last equations, the input values of EASW, EISW and
GJSW for individual constituent SWCNTs were obtained from FE analysis. As an alternative these
rigidity values can be assessed from Equations (12)–(14) which allow accurate evaluation of the
SWCNTs rigidities [40,45]. The results of Figure 9 reveal the accurateness of the proposed analytical
expressions for evaluation of the tensile, bending and torsional rigidities of armchair–armchair and
zigzag–zigzag HJs. The fitted linear equations show that the average difference between the rigidity
values obtained from FE analysis and those calculated analytically are 5.67%, 4.33% and 1.08% for
the (EA)HJ, (EI)HJ and (GJ)HJ rigidities, respectively. In addition to Figure 9, the values of the (EA)HJ,
(EI)HJ and (GJ)HJ rigidities obtained from FE analysis (Equations (6)–(8)) and those calculated by
Equations (9)–(11) are shown in Appendix A (Table A1). The greatest differences (about 10%), occur for
the tensile rigidity, (EA)HJ, and are observed in HJs which have simultaneously large mean diameter,
DHJ, and large differences, ∆D, between the diameters of the wide and narrow nanotubes, for which
redundant bending deformation in tension is observed.
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Figure 9. Comparison between the (a) tensile, (EA)HJ, (b) bending, (EI)HJ and (c) torsional, (GJ)HJ
rigidities obtained from the FE analysis (Equations (6)–(8)) and those from Equations (9)–(11) for
armchair–armchair and zigzag–zigzag HJs. Both loading conditions, with the force (or moment) applied
to the narrow and to the wide side of the HJ structure, are considered.

3.1.3. Analytical Study for Evaluation of the Rigidities of SWCNT Heterojunctions

In order to develop an analytical procedure for assessing the HJ rigidities, in addition to the
HJ structures in Table 2, heterojunctions with the geometrical characteristics, shown in Table 3
(armchair–armchair HJs) and Table 4 (zigzag–zigzag HJs), were also considered. These HJ structures
are organized by sequences defined as

(
ni

1, mi
1

)
–(n i

2= ni
1+C, mi

2= mi
1 +C), for armchair–armchair HJs,

and
(
ni

1, 0
)
–(n i

2= ni
1 +C, 0), for zigzag–zigzag HJs, where C is the difference between the chiral indices

of the narrow
(
ni

1, mi
1

)
or

(
ni

1, 0
)
, and wide

(
ni

2, mi
2

)
or

(
ni

2, 0
)

SWCNTs, and is equal to 1, 2, 3, 4, 5, 8, 9,
10, 12 and 15. Each of these HJ sequences corresponds to a specific difference between diameters of
the wide and narrow nanotubes, ∆D (Tables 3 and 4). The selected range of ∆D of the HJ structures,
described in the Tables 2–4, covers most cases of cone heterojunctions.

The tensile, (EA)HJ, bending, (EI)HJ, and torsional, (GJ)HJ, rigidities were calculated with help of
the Equations (9)–(11), respectively, for HJ structures in Tables 2–4. The lengths of the narrow and
wide SWCNTs regions, L1 and L2 were considered both equal to 100 nm. The geometrical parameter a,
defined on the Figure 3, was considered equal to L3 tan(γ), where γ = 12.7◦, whatever the Dn1 and Dn2.
The loading condition in which the force (moment) is applied on the wide nanotube was considered.
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Table 3. Geometrical characteristics of armchair–armchair HJs used to test the analytical model.

(n1, m1)–(n2, m2) C * ∆D, nm ¯
DHJ,nm (n1, m1)–(n2, m2) C * ∆D, nm ¯

DHJ,nm

(4, 4)–(5, 5)

1 0.136

0.543 (5, 5)–(7, 7)

2 0.271

0.814(9, 9)–(10, 10) 1.221
(14, 14)–(15, 15) 1.900 (10, 10)–(12, 12) 1.493
(19, 19)–(20, 20) 2.578 (15, 15)–(17, 17) 2.171
(24, 24)–(25, 25) 3.257 (20, 20)–(22, 22) 2.850
(27, 27)–(28, 28) 3.732 (25, 25)–(27, 27) 3.528

(3, 3)–(6, 6)

3 0.407

0.611 (4, 4)–(8, 8)

4 0.543

0.814(6, 6)–(9, 9) 1.018
(9, 9)–(12, 12) 1.425 (8. 8)–(12, 12) 1.357

(12, 12)–(15, 15) 1.832 (12, 12)–(16, 16) 1.900(15, 15)–(18, 18) 2.239
(18, 18)–(21, 21) 2.646 (16, 16)–(20, 20) 2.443
(21, 21)–(24, 24) 3.053 (20, 20)–(24, 24) 2.985(24, 24)–(27, 27) 3.460

(3, 3)–(8, 8)

5 0.678

0.746
(3, 3)–(9, 9)

6 0.814

0.814
(6, 6)–(12, 12) 1.221

(8, 8)–(13, 13) 1.425
(9, 9)–(15, 15) 1.628

(12, 12)–(18, 18) 2.035

(13, 13)–(18, 18) 2.103
(15, 15)–(21, 21) 2.443
(18, 18)–(24, 24) 2.850

(18, 18)–(23, 23) 2.782
(21, 21)–(27, 27) 3.257
(24, 24)–(30, 30) 3.664

(4, 4)–(12, 12)

8 1.086

1.086
(3, 3)–(12, 12)

9 1.221

1.018
(6, 6)–(15, 15) 1.425

(8, 8)–(16, 16) 1.628 (9, 9)–(18, 18) 1.832

(12, 12)–(20, 20) 2.171
(12, 12)–(21, 21) 2.239
(15, 15)–(24, 24) 2.646

(16, 16)–(24, 24) 2.714 (18, 18)–(27, 27) 3.053

(20, 20)–(28, 28) 3.257
(21, 21)–(30, 30) 3.460
(24, 24)–(33, 33) 3.867

(3, 3)–(13, 13)

10 1.357

1.086
(4, 4)–(16, 16)

12 1.628

1.357
(8, 8)–(20, 20) 1.900

(8, 8)–(18, 18) 1.764 (12, 12)–(24, 24) 2.443
(13, 13)–(23, 23) 2.443 (16, 16)–(28, 28) 2.985
(18, 18)–(28, 28) 3.121 (20, 20)–(32, 32) 3.528

(3, 3)–(18, 18)

15 2.035

1.425 – – – –
(8, 8)–(23, 23) 2.103 – – – –

(13, 13)–(28, 28) 2.782 – – – –
(18, 18)–(33, 33) 3.460 – – – –

* The constant C is the difference between the chiral indices of the wide
(
ni

1, mi
1

)
, and narrow

(
ni

2, mi
2

)
SWCNTs,

constituting the heterojunction:
(
ni

1, mi
1

)
–
(
ni

2 = ni
1 + C, mi

2 = mi
1 + C

)
.
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Table 4. Geometrical characteristics of zigzag–zigzag HJs used to test the analytical model.

(n1, 0)–(n2, 0) C * ∆D, nm ¯
DHJ,nm (n1, 0)–(n2, 0) C * ∆D, nm ¯

DHJ,nm

(4, 0)–(5, 0)

1 0.078

0.353 (5, 0)–(7, 0)

2 0.157

0.470(9, 0)–(10, 0) 0.744
(14, 0)–(15, 0) 1.136 (10, 0)–(12, 0) 0.862
(19, 0)–(20, 0) 1.528 (15, 0)–(17, 0) 1.254
(24, 0)–(25, 0) 1.919 (20, 0)–(22, 0) 1.645
(27, 0)–(28, 0) 2.154 (25, 0)–(27, 0) 2.037

(3, 0)–(6, 0)

3 0.235

0.353 (4, 0)–(8, 0)

4 0.133

0.470(6, 0)–(9, 0) 0.588
(9, 0)–(12, 0) 0.823 (8. 0)–(12, 0) 0.783

(12, 0)–(15, 0) 1.058 (12, 0)–(16, 0) 1.097(15, 0)–(18, 0) 1.293
(18, 0)–(21, 0) 1.528 (16, 0)–(20, 0) 1.410
(21, 0)–(24, 0) 1.763 (20, 0)–(24, 0) 1.724(24, 0)–(27, 0) 1.998

(3, 0)–(8, 0)

5 0.392

0.431
(3, 0)–(9, 0)

6 0.470

0.470
(6, 0)–(12, 0) 0.705

(8, 0)–(13, 0) 0.823
(9, 0)–(15, 0) 0.940

(12, 0)–(18, 0) 1.175

(13, 0)–(18, 0) 1.214
(15, 0)–(21, 0) 1.410
(18, 0)–(24, 0) 1.645

(18, 0)–(23, 0) 1.606
(21, 0)–(27, 0) 1.880
(24, 0)–(30, 0) 2.115

(4, 0)–(12, 12)

8 0.627

0.627
(3, 0)–(12, 0)

9 0.705

0.588
(6, 0)–(15, 0) 0.823

(8, 0)–(16, 16) 0.940 (9, 0)–(18, 0) 1.058

(12, 0)–(20, 20) 1.254
(12, 0)–(21, 0) 1.293
(15, 0)–(24, 0) 1.528

(16, 0)–(24, 24) 1.567 (18, 0)–(27, 0) 1.763

(20, 0)–(28, 28) 1.880
(21, 0)–(30, 0) 1.998
(24, 0)–(33, 0) 2.233

(3, 0)–(13, 0)

10 0.783

0.627
(4, 0)–(16, 0)

12 0.940

0.783
(8, 0)–(20, 0) 1.097

(8, 0)–(18, 0) 1.018 (12, 0)–(24, 0) 1.410
(13, 0)–(23, 0) 1.410 (16, 0)–(28, 0) 1.724
(18, 0)–(28, 0) 1.802 (20, 0)–(32, 0) 2.037

(3, 0)–(18, 0)

15 1.175

0.823 -
(8, 0)–(23, 0) 1.214

(13, 0)–(28, 0) 1.606
(18, 0)–(33, 0) 1.998

* The constant C is the difference between the chiral indices of the wide
(
ni

1, 0
)
, and narrow

(
ni

2, 0
)

SWCNTs,

constituting the heterojunction:
(
ni

1, 0
)
–
(
ni

2 = ni
1 +C, 0) .

Similarly to Figure 8, the (EA)HJ, (EI)HJ, and (GJ)HJ values obtained analytically are plotted
in Figures 10–12, respectively, against the average HJ diameter DHJ for armchair–armchair
(Figures 1a,11a and 12a) and zigzag–zigzag (Figure 10b, 11b and 12b) HJs. The evolutions of the
(EA)HJ rigidity follow a quasi-linear trend for HJs with ∆D up to 0.814 nm, for armchair–armchair,
and 0.470 nm, for zigzag–zigzag structures, which correspond to the difference between the chiral
indices of the wide and narrow nanotubes, C = 6 (Figure 10).
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Figure 10. Evolutions of the tensile, (EA)HJ, rigidity with the average HJ diameter, DHJ, for the
HJs: (a) armchair–armchair (Table 3), and (b) zigzag–zigzag (Table 4). The force was applied to the
wide SWCNT.

From the values of ∆D ≥ 1.086 nm, for armchair–armchair, and ∆D ≥ 0.627 nm, for zigzag–zigzag
HJs, or C = 8, the (EA)HJ evolutions follow a second degree polynomial trend. These latter values of
∆D or C define the geometrical characteristics of HJ structures, from which the redundant bending
deformation is observed, when analysing the results of numerical tensile test. That is, for HJ structures
with ∆D ≤ 0.814 nm (armchair–armchair) and ∆D ≤ 0.470 nm (zigzag–zigzag), or when the difference
between the chiral indices of the wide and narrow nanotubes is 1 ≤ C ≤ 6, the bending deformation that
occurs during tensile test can be neglected: the evolution of the tensile rigidity with the average diameter
follows an almost linear trend as in the case of the individual SWCNTs [45]. In Figures 11 and 12,
the evolutions of the bending, (EI)HJ, and torsional, (GJ)HJ, rigidities with the average HJ diameter,
DHJ, are close a third degree polynomial trend.

The equations fitted to the results of Figures 10–12, which consist of first and second degree
polynomials for tensile, (EA)HJ rigidity (Figure 10), and a third degree polynomial for bending
(Figure 11), (EI)HJ, and torsional (Figure 12), (GJ)HJ, rigidities, are outlined in Appendix A (see
Table A2 for armchair–armchair HJs, and Table A3 for zigzag–zigzag HJs). In these tables, each set
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of fitting equations for the (EA)HJ, (EI)HJ and (GJ)HJ rigidities concerns a specific difference between
the diameters of the wide and narrow nanotubes, ∆D. In case of the tensile rigidity (EA)HJ, the fitting
equations comprise second degree polynomials, for the highest ∆D values, when the redundant
bending deformation in tension reaches importance. The fitting equations in Tables A2 and A3 are
alternatives to Equations (9)–(11), when used to assess the (EA)HJ, (EI)HJ and (GJ)HJ rigidities of
HJs without resorting to numerical simulation, as long as the average HJ diameter, DHJ, is known.
The equations in Tables A2 and A3 include polynomials of first and, in certain cases, second degree for
the tensile rigidity, (EA)HJ, as the latter better describes the behaviour of this rigidity when redundant
bending deformation occurs during the tensile tests.
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Figure 11. Evolutions of the bending, (EI)HJ, rigidity with the average HJ diameter, DHJ, for the
HJs: (a) armchair–armchair (Table 3) and (b) zigzag–zigzag (Table 4). The force was applied to the
wide SWCNT.
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It is worth noting that the almost linear dependence for the evolutions of (EA)HJ rigidity can be
understood based on the linear relationship between heterojunction cross-section area, AHJ, and the HJ
average diameter, DHJ, considering the HJ structure as an equivalent SWCNT with diameter given by
DHJ =

1
2 (Dn1 + Dn2):

AHJ =
π
4

[(
DHJ + tn

)2
−

(
DHJ − tn

)2
]
= πDHJtn (15)

where tn = 0.34 nm is the wall thickness of the nanotube.
In turn, the third degree polynomial trend for the evolutions of (EI)HJ and (GJ)HJ with DHJ can be

understood from the quasi-cubic relationship between the moments of inertia (in bending and torsion)
and the average HJ diameter, DHJ:

IHJ =
π
64

[(
DHJ + tn

)4
−

(
DHJ − tn

)4
]
=
πD

3
HJtn

8

1 +
 tn

DHJ

2 (16)

JHJ =
π
32

[(
DHJ + tn

)4
−

(
DHJ − tn

)4
]
=
πD

3
HJtn

4

1 +
 tn

DHJ

2 (17)
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3.2. Comparison with Literature Results

The literature results for Young’s and shear moduli are summarised in Table 5. Most studies
on the elastic properties of HJs reported in the literature are dealing with the evaluation of Young’s
modulus of cone-heterojunctions [27,30,34–36,38]. The discrepancies observed in the values of the
Young’s modulus of HJs (Table 5) can be related to different modelling and calculation approaches
used. For example, when assessing the Young’s modulus of HJs from the results of the numerical
tensile test, the various authors did not use the same approach in calculating the cross-sectional area of
the heterojunction structure [30,35,38]. In fact, the definition of the elastic moduli of a HJ requires the
concept of an equivalent nanotube, whose diameter value is intermediate between those of the two
nanotubes that make up the HJ. The definition of the equivalent nanotube is not consensual among the
various authors. In this context, it seems more appropriate not to present results of the elastic moduli
(Young’s and shear modulus) and perform a comparison with literature results in terms of HJ rigidities.

Table 5. Elastic moduli of cone-heterojunctions available in the literature.

Reference Method Type of HJs Young’s Modulus,
EHJ, TPa

Shear Modulus,
GHJ, TPa

Qin et al. [30]
Molecular

dynamics (MD):
Tersoff–Brenner

potential

armchair–armchair
sequence with

narrow SWCNT (5, 5)
0.775 * –

zigzag–zigzag
sequence with

narrow SWCNT (9, 0)
0.795 * –

Scarpa et al. [34]
Nanoscale
continuum

modelling (NCM):
linear beams

armchair–armchair
(5, 5)–(10, 10) 1.010 –

zigzag–zigzag (9,
9)–(14, 14) 0.945 –

Hemmatian et al.
[36]

armchair–armchair
(5, 5)–(10, 10), (10,
10)–(15, 15) . . . (25,

25)–(30, 30)

1.109 * 0.344 *

Yengejeh et al. [38]

armchair–armchair
(5, 5)–(10, 10) and a
sequence with ∆D =

0.271 nm

0.947 * –

zigzag–zigzag (11,
0)–(12, 0),(9, 0)–(12,

0), (12, 0)–(16, 0)
0.982 * –

Ghavamian and
Ochsner [35],

Ghavamian et al. [27]

armchair–armchair
composed by

SWCNTs in a range
of (7, 7) to (18, 18)

0.927 * 0.180 *

zigzag–zigzag
composed by

SWCNTs in a range
of (6, 0) to (18, 0)

0.939 * 0.270 *

* Average value.

The comparison study was limited by the works which comprise a definition of the equivalent
cross-section area of the HJ structure. Thus, works where the Young’s modulus of HJs was obtained
from the results of tensile test EHJ = (EA)HJ/AHJ, allow for making some comparisons [35,38].
Yengejeh et al. [38], using the assumption of HJ structure consisting of a sequence of springs,
determined the equivalent cross-sectional area of the HJ, AHJ, as follows:

AHJ =
2A1A2

(A1 + A2)
(18)
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where, A1 and A2 are the cross-sectional areas of SWCNTs that constitute the heterojunction.
Ghavamian and Ochsner [35] assumed the heterojunction as homogeneous SWCNTs having
a cross-section area, AHJ, estimated by a weighted average, as follows:

AHJ =
L1A1+L3A3+L2A2

LHJ
(19)

where, A1, A2 and A3 are the cross-sectional areas of constituent SWCNTs and the connecting region,
respectively; L1, L2 are the lengths of the narrow and wide SWCNTs constituting HJ, respectively, and L3

is the length of the connecting region; LHJ = A1 + A2 + A3 is the overall length of HJs. The cross-sectional
area of connecting region, A3, is given by:

A3 =
(A1+A2)

2
(20)

The tensile rigidity of HJs is determined by:

(EA)HJ= EHJAHJ (21)

where EHJ is the HJ Young’s modulus, taken from the literature, AHJ is the HJ cross-sectional area
determined by Equations (18) or (19), depending on the work from which it was taken.

Table 6 compares the values of (EA)HJ evaluated from the Young’s modulus results of the
works [35,38] using Equation (21), considering the respective expressions (Equation (18) or Equation
(19)) for calculating the HJ cross-section area, AHJ, with current tensile rigidity results obtained
analytically using Equations (9) and (12)–(14), which allows easy comparison with results from those
works. The average difference between current (EA)HJ values and those obtained in the works by
Yengejeh et al. [38], and Ghavamian and Ochsner [35] is 1.62% and 3.03%, respectively. This reinforces
the reliability of the analytical approach involving Equations (9) and (12)–(14), recommended in this
study for determining the tensile rigidity of cone-heterojunctions, without resorting to numerical
simulation, as long as the geometrical parameters of the HJs are known.

To complement and make it easy to understand the comparative analysis on the HJ tensile rigidity,
some results in Table 6 were plotted as a function of the heterojunction aspect ratio, η (Figure 13a),
and as a function of the average HJ diameter, DHJ (Figure 13b). In Figure 13 the results are grouped (see
lines in the figures) for HJ sequences that have the same difference between the values of the diameters
of the wide and narrow nanotubes. i.e., ∆D = 0.136, 0.271, 0.407, 0.678 nm for armchair–armchair
HJs, ∆D = 0.078, 0.392 nm for zigzag–zigzag HJs. A good correspondence with the literature results
is observed. The evolutions of the tensile (EA)HJ rigidity with the HJ aspect ratio, η, obtained in the
present study and those assessed by Yengejeh et al. [38] and Ghavamian and Ochsner [35] follow
similar trends. The same is true for the evolutions of the tensile rigidity, (EA)HJ, with the average HJ
diameter, DHJ.
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Table 6. Comparison of current (EA)HJ results with those from the literature.

Reference (n1, m1)–(n2, m2)
(n1, 0)–(n2, 0)

η ∆D, nm ¯
DHJ,nm

EHJ,
Tpa

Reference

(EA)HJ, nN
Difference,

%Reference +
Equation (21) Current

Yengejeh et al.
[38]

(3, 3)–(5, 5) 1.458

0.271

0.543 0.889 483.20 474.16 1.87
(5, 5)–(7, 7) 0.972 0.814 0.953 805.76 796.82 1.11
(7, 7)–(9, 9) 0.729 1.086 0.981 1119.73 1118.61 0.10

(9, 9)–(11, 11) 1.944 1.357 0.992 1423.45 1381.59 2.94
(14, 14)–(16, 16) 0.583 2.035 1.001 2166.63 2196.91 1.40
(5, 5)–(10, 10) 0.389 0.678 1.018 0.865 835.83 786.07 5.95
(9, 0)–(12, 0) 0.833 0.235 0.823 0.960 826.30 823.72 0.31
(12, 0)–(16, 0) 0.833 0.313 1.097 0.962 1104.03 1099.54 0.41
(11, 0)–(12, 0) 0.254 0.078 0.901 1.023 982.62 987.69 0.52

Ghavamian and
Ochsner [35]

(8, 8)–(15, 15) 1.775 0.950 1.560 0.765 1275.13 1274.97 0.01
(5, 5)–(10, 10) 1.944

0.678

1.018 0.735 798.99 786.07 1.62
(8, 8)–(13, 13) 1.388 1.425 0.825 1255.56 1273.08 1.40

(10, 10)–(15, 15) 1.166 1.696 0.889 1610.67 1577.30 2.07
(13, 13)–(18, 18) 0.941 2.103 0.895 2010.71 2085.06 3.70
(10, 10)–(13, 13) 0.761

0.407
1.560 0.935 1558.49 1600.93 2.72

(11, 11)–(14, 14) 0.700 1.696 0.945 1712.13 1647.32 3.79
(7, 7)–(8, 8) 0.389

0.136
1.018 1.001 1088.15 1096.29 0.75

(9, 9)–(10, 10) 0.307 1.289 1.101 1516.02 1420.02 6.33
(13, 13)–(14, 14) 0.216 1.832 1.101 2154.35 2032.28 5.67

(9, 0)–(19, 0) 2.083 0.783 1.097 0.678 794.31 823.08 3.62
(13, 0)–(8, 0) 1.388

0.392
0.823 0.810 711.72 726.71 2.11

(11, 0)–(16, 0) 1.080 1.058 0.880 994.15 1004.90 1.08
(13, 0)–(18, 0) 0.941 1.214 0.925 1199.80 1190.67 0.76
(11, 0)–(13, 0) 0.486 0.157 0.940 0.978 982.10 980.93 0.12
(10, 0)–(11, 0) 0.278

0.078

0.823 1.101 967.41 902.63 6.70
(11, 0)–(12, 0) 0.254 0.901 1.001 963.31 987.69 2.53
(13, 0)–(14, 0) 0.216 1.058 1.101 1243.81 1165.03 6.33
(14, 0)–(15, 0) 0.201 1.136 1.101 1335.95 1253.40 6.18
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Figure 13. Comparison of the evolutions of tensile rigidity, (EA)HJ, (a) with the HJ aspect ratio, η, and (b)
with the average HJ diameter, DHJ. Each sequence (i.e., line) considers HJs with a given difference
between the diameters of the wide and narrow nanotubes, ∆D.
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To our knowledge, only a few papers have been devoted to the evaluation of the shear modulus
of HJs [27,35,36]. In case of the shear modulus, the results available in the literature are less than for
the Young’s modulus and have little consistency (Table 5). Results of two works, by Ghavamian and
Ochsner [35] and Hemmatian et al. [36], were chosen for comparison purposes. In both studies [35,36],
the NCM modelling approach was employed, and the HJ shear modulus was calculated from the
results of torsional test of the HJ structure, seen as an equivalent SWCNT with the average diameter
DHJ (given by Equation (2)).

In order to perform a comparison with literature results in terms of HJ rigidity, the torsional
rigidity of the HJs was determined from the values of the shear modulus reported by Ghavamian and
Ochsner [35], and Hemmatian et al. [36], as follows:

(GJ)HJ = GHJ JHJ (22)

where (GJ)HJ is the HJ shear modulus, and JHJ is calculated from Equation (17) considering that DHJ is
the average diameter of the nanotubes constituting the HJ, and tn= 0.34nm.

Figure 14 compares the current (GJ)HJ results, obtained from the FE analysis, with the results
calculated from the works of Ghavamian and Ochsner [35] (Figure 14a) and Hemmatian et al. [36]
(Figure 14b). A certain discrepancy is observed between the current values of (GJ)HJ and those calculated
from the work of Ghavamian and Ochsner [35], although a good correspondence is found when
the current torsional rigidity results are compared with those calculated from Hemmatian et al. [36].
The average difference between the (GJ)HJ values taken from FE analysis in the present study and those
obtained from the results of Hemmatian et al. [36] is 3.95%. It should be noted that when discrepancy
occurs between the current results of torsional rigidity of HJs and those obtained by Ghavamian and
Ochsner [35], this also happens for the torsional rigidities of individual SWCNTs; when the discrepancy
is not significant for the HJs, it is also not significant for individual SWCNTs. This can be concluded
from Figure 15a,b, which shows the torsional rigidities, (GJ)HJ, of the individual SWCNTs constituting
the HJs of Figure 14a,b, respectively.Materials 2020, 13, x FOR PEER REVIEW 23 of 30 
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4. Conclusions

A three-dimensional finite element model of cone-heterojunctions was used in order to carry
out a systematic evaluation of the tensile, bending and torsional rigidities of armchair–armchair and
zigzag–zigzag HJs.

The main conclusions of this comprehensive study are as follows:

• For heterojunction with the same difference between the diameters of the wide and narrow
nanotubes, ∆D, the tensile rigidity decreases with the increase of the HJ aspect ratio, following an
exponential trend. The same type of trend occurs for the evolutions of the bending and torsional
rigidities with the HJ aspect ratio.

• The tensile, bending and torsional rigidities increase with the increase of the average HJ
diameter. The evolutions of the tensile rigidity follow a quasi-linear trend for heterojunctions
with ∆D = 0.678 nm (armchair–armchair) and ∆D = 0.392 nm (zigzag–zigzag); but for greater
differences between the diameters of the wide and narrow nanotubes, the tensile rigidity evolution
are close to a second degree polynomial trend; this different behaviour is most likely linked
to the occurrence of redundant bending deformation during the tensile test. The evolutions
of the bending and torsional rigidities with the average HJ diameter are close a third degree
polynomial trend.

• Equations (9)–(11) (together with Equations (12)–(14)) offer a robust method for easily assessing
the tensile, bending and torsional rigidities of HJs in a wide range of their geometrical parameters,
were recommended. The accuracy of these analytical solutions was successfully tested on current
results as well those available in the literature.

It should be noted that taking into account promising potential applications of the SWCNT HJs
and the impossibility of producing the ideal (without defects) HJ structure, a comprehensive study
concerning the influence of structural imperfections on the elastic properties of the SWCNT HJs is
under consideration for future studies.
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Appendix A

Table A1. Comparison of the tensile, (EA)HJ, bending, (EI)HJ, and torsional, (GJ)HJ rigidities of HJs obtained from the FE analysis (and using Equations (6)–(8)) and
those analytically calculated from Equations (9)–(11).

Force/Moment
Application

(n1, m1)–(n2, m2)
(n1, 0)–(n2, 0) η

¯
DHJ,nm

∆D,
nm

(EA)HJ nN
Equation (6)

(EA)HJ nN
Equation (9)

Difference
%

(EI)HJ
nN·nm2

Equation (7)

(EI)HJ
nN·nm2

Equation
(10)

Difference
%

(GJ)HJ
nN·nm2

Equation (8)

(GJ)HJ
nN·nm2

Equation (11)

Difference
%

fo
rc

e
(m

om
en

t)
ap

pl
ie

d
on

w
id

e
SW

C
N

T

(5, 5)–(10, 10) 1.940 1.018 0.678 308.04 308.36 0.10 50.24 51.25 2.01 74.20 72.04 2.91
(5, 5)–(15, 15) 2.912 1.357 1.357 101.61 101.65 0.04 51.07 53.44 4.65 81.17 78.81 2.91
(5, 5)–(20, 20) 3.496 1.696 2.035 48.11 48.10 0.02 51.41 55.19 7.34 83.65 81.21 2.91

(10, 10)–(15, 15) 1.166 1.696 0.678 1194.04 1206.19 1.02 384.92 396.14 2.92 510.75 511.75 0.19
(10, 10)–(20, 20) 1.943 2.035 1.357 609.46 618.36 1.46 394.96 417.75 5.77 591.45 595.34 0.66
(10, 10)–(25, 25) 2.501 2.375 2.035 306.53 335.28 9.38 411.65 433.78 5.38 628.44 634.98 1.04
(15, 15)–(20, 20) 0.833 2.375 0.678 2125.05 2150.45 1.20 1270.42 1311.34 3.22 1567.89 1581.55 0.87
(15, 15)–(25, 25) 1.458 2.714 1.357 1440.17 1468.64 1.98 1307.85 1388.88 6.20 1837.69 1864.30 1.45
(15, 15)–(30, 30) 1.946 3.053 2.035 846.84 932.35 10.10 1376.04 1447.92 5.22 2013.14 2036.69 1.17
(20, 20)–(25, 25) 0.649 3.053 0.678 2964.63 3044.91 2.71 2928.90 3073.60 4.94 3495.42 3531.26 1.03
(20, 20)–(30, 30) 1.167 3.392 1.357 2377.33 2431.10 2.26 3188.52 3252.21 2.00 4107.84 4155.20 1.15
(20, 20)–(35, 35) 1.592 3.732 2.035 1602.32 1757.05 9.66 3229.55 3398.61 5.23 4531.93 4583.19 1.13

(5, 0)–(10, 0) 1.950 0.588 0.392 163.24 163.58 0.21 8.74 8.87 1.42 14.51 14.53 0.18
(5, 0)–(15, 0) 2.918 0.783 0.783 52.86 53.17 0.58 8.78 9.12 3.94 15.71 15.88 1.10
(5, 0)–(20, 0) 3.500 0.979 1.175 24.67 24.97 1.20 8.82 9.31 5.52 16.13 16.31 1.14
(10, 0)–(15, 0) 1.177 0.979 0.392 675.81 682.64 1.01 72.34 73.37 1.42 98.57 98.85 0.28
(10, 0)–(20, 0) 1.952 1.175 0.783 344.27 346.50 0.65 74.17 76.43 3.05 113.95 114.68 0.64
(10, 0)–(25, 0) 1.444 2.375 1.175 171.53 187.89 9.54 76.40 78.34 2.54 120.67 121.78 0.92
(15, 0)–(20, 0) 0.843 1.371 0.392 1219.63 1228.74 0.75 242.56 246.32 1.55 302.28 303.58 0.43
(15, 0)–(25, 0) 1.466 1.567 0.783 827.05 833.80 0.82 249.33 257.66 3.34 354.59 356.61 0.57
(15, 0)–(30, 0) 1.952 1.763 1.175 481.60 527.12 9.45 257.97 265.33 2.85 383.83 387.81 1.04
(20, 0)–(25, 0) 0.647 1.763 0.392 1693.20 1754.72 3.63 565.87 582.17 2.88 675.82 681.70 0.87
(20, 0)–(30, 0) 1.169 1.959 0.783 1383.69 1400.28 1.20 586.48 609.14 3.86 790.48 799.44 1.13
(20, 0)–(35, 0) 1.597 2.154 1.175 927.74 999.98 7.79 596.09 627.10 5.20 858.58 873.75 1.77
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Table A1. Cont.

Force/Moment
Application

(n1, m1)–(n2, m2)
(n1, 0)–(n2, 0) η

¯
DHJ,nm

∆D,
nm

(EA)HJ nN
Equation (6)

(EA)HJ nN
Equation (9)

Difference
%

(EI)HJ
nN·nm2

Equation (7)

(EI)HJ
nN·nm2

Equation
(10)

Difference
%

(GJ)HJ
nN·nm2

Equation (8)

(GJ)HJ
nN·nm2

Equation (11)

Difference
%

fo
rc

e
(m

om
en

t)
ap

pl
ie

d
on

na
rr

ow
SW

C
N

T

(5, 5)–(10, 10) 1.940 1.018 0.678 786.07 792.03 0.76 189.69 193.75 2.14 74.20 72.04 2.91
(5, 5)–(15, 15) 2.912 1.357 1.357 820.72 835.91 1.85 289.11 297.89 3.04 81.17 78.81 2.91
(5, 5)–(20, 20) 3.496 1.696 2.035 870.97 897.04 2.99 337.49 348.60 3.29 83.65 81.21 2.91

(10, 10)–(15, 15) 1.166 1.696 0.678 1577.30 1592.94 0.99 909.80 938.67 3.17 510.75 511.75 0.19
(10, 10)–(20, 20) 1.943 2.035 1.357 1565.47 1597.56 2.05 1499.19 1584.98 5.72 591.45 595.34 0.66
(10, 10)–(25, 25) 2.501 2.375 2.035 1493.29 1641.25 9.91 2038.86 2115.75 3.77 629.64 634.98 0.85
(15, 15)–(20, 20) 0.833 2.375 0.678 2381.49 2404.45 0.96 2376.88 2460.03 3.50 1567.89 1581.55 0.87
(15, 15)–(25, 25) 1.458 2.714 1.357 2346.46 2400.72 2.31 3732.94 3995.31 7.03 1837.69 1864.30 1.45
(15, 15)–(30, 30) 1.946 3.053 2.035 2226.74 2418.23 8.60 5255.92 5500.76 4.66 2016.10 2036.69 1.02
(20, 20)–(25, 25) 0.649 3.053 0.678 3117.55 3212.24 3.04 4876.24 5056.65 3.70 3494.92 3531.26 1.04
(20, 20)–(30, 30) 1.167 3.392 1.357 3118.00 3216.03 3.14 7365.60 7724.38 4.87 4111.25 4155.20 1.07
(20, 20)–(35, 35) 1.592 3.732 2.035 2949.22 3223.37 9.30 10072.71 10594.98 5.19 4538.18 4583.19 0.99

(5, 0)–(10, 0) 1.950 0.588 0.392 437.89 439.12 0.28 34.20 34.58 1.11 14.51 14.53 0.18
(5, 0)–(15, 0) 2.918 0.783 0.783 458.46 463.58 1.12 50.49 51.70 2.40 15.71 15.88 1.10
(5, 0)–(20, 0) 3.500 0.979 1.175 487.37 495.73 1.71 57.73 59.25 2.63 16.13 16.31 1.14
(10, 0)–(15, 0) 1.177 0.979 0.392 899.77 906.30 0.73 172.67 175.45 1.61 98.57 98.85 0.28
(10, 0)–(20, 0) 1.952 1.175 0.783 897.03 906.55 1.06 284.75 292.87 2.85 113.95 114.68 0.64
(10, 0)–(25, 0) 1.444 2.375 1.175 847.80 929.46 9.63 368.71 384.04 4.16 120.39 121.78 1.15
(15, 0)–(20, 0) 0.843 1.371 0.392 1370.79 1375.72 0.36 456.02 464.13 1.78 302.28 303.58 0.43
(15, 0)–(25, 0) 1.466 1.567 0.783 1352.27 1367.86 1.15 717.56 743.36 3.60 354.59 356.61 0.57
(15, 0)–(30, 0) 1.952 1.763 1.175 1258.81 1369.69 8.81 963.25 1007.87 4.63 383.33 387.81 1.17
(20, 0)–(25, 0) 0.647 1.763 0.392 1895.37 1845.22 2.65 919.06 958.28 4.27 674.93 681.70 1.00
(20, 0)–(30, 0) 1.169 1.959 0.783 1802.76 1834.45 1.76 1388.73 1459.07 5.07 791.16 799.44 1.05
(20, 0)–(35, 0) 1.597 2.154 1.175 1659.32 1829.64 10.26 1857.78 1958.78 5.44 858.58 873.75 1.77
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Table A2. Equations fitted to the results in Figure 10a, Figure 11a, and Figure 12a, for the cases of the
tensile, (EA)HJ, bending, (EI)HJ, and torsional, (GJ)HJ rigidities of armchair–armchair HJs.

∆D, nm C Rigid. Fitting Equations

0.136 1
(EA)HJ 1144.20DHJ − 79.79
(EI)HJ 140.92D

3
HJ − 21.543D

2
HJ − 0.5184DHJ + 0.2604

(GJ)HJ 132.22D
3
HJ + 0.0569D

2
HJ − 3.8123DHJ + 0.1739

0.271 2
(EA)HJ 1191.20DHJ − 258.80
(EI)HJ 141.78D

3
HJ − 43.594D

2
HJ − 1.4904DHJ + 1.6835

(GJ)HJ 132.42D
3
HJ + 0.5278D

2
HJ − 16.258DHJ + 2.069

0.407 3
(EA)HJ 1261.30DHJ − 536.11
(EI)HJ 142.83D

3
HJ − 67.264D

2
HJ − 0.0371DHJ + 3.4292

(GJ)HJ 132.48D
3
HJ + 2.2911D

2
HJ − 40.035DHJ + 9.3192

0.543 4
(EA)HJ 1324.10DHJ − 819.03
(EI)HJ 144.07D

3
HJ − 92.596D

2
HJ + 4.2067DHJ + 5.9603

(GJ)HJ 132.49D
3
HJ + 4.565D

2
HJ − 74.054DHJ + 23.571

0.678 5
(EA)HJ 1320.20DHJ − 992.12
(EI)HJ 145.65D

3
HJ − 120.93D

2
HJ + 15.301DHJ + 6.5399

(GJ)HJ 133.16D
3
HJ + 3.0259D

2
HJ − 110.4DHJ + 42.573

0.814 6
(EA)HJ 1308.70DHJ − 1154.20
(EI)HJ 146.64D

3
HJ − 146.98D

2
HJ + 24.574DHJ + 9.6188

(GJ)HJ 133.68D
3
HJ + 1.6866D

2
HJ − 154.64DHJ + 70.3

1.086 8
(EA)HJ 193.15D

2
HJ + 403.44DHJ − 611.86

(EI)HJ 150.15D
3
HJ − 210.42D

2
HJ + 69.697DHJ + 6.9541

(GJ)HJ 136.92D
3
HJ − 15.923D

2
HJ − 238.41DHJ + 143.84

1.221 9
(EA)HJ 180.10D

2
HJ + 339.22DHJ − 583.23

(EI)HJ 151.24D
3
HJ − 240.15D

2
HJ + 94.725DHJ + 4.6415

(GJ)HJ 138.41D
3
HJ − 28.583D

2
HJ − 273.47DHJ + 181.06

1.357 10
(EA)HJ 284.23D

2
HJ − 186.58DHJ − 147.44

(EI)HJ 154.04D
3
HJ − 281.32D

2
HJ + 144.68DHJ − 10.904

(GJ)HJ 144.83D
3
HJ − 73.238D

2
HJ − 251.68DHJ + 193.39

1.628 12
(EA)HJ 296.06D

2
HJ − 449.51DHJ + 87.69

(EI)HJ 156.99D
3
HJ − 349.56D

2
HJ + 228.31DHJ − 30.945

(GJ)HJ 149.77D
3
HJ − 118.45D

2
HJ − 298.53DHJ + 291.77

2.035 15
(EA)HJ 302.53D

2
HJ − 783.21DHJ + 505.78

(EI)HJ 162.58D
3
HJ − 467.74D

2
HJ + 423.39DHJ − 111.88

(GJ)HJ 166.3D
3
HJ − 276.92D

2
HJ − 133.16DHJ + 291.12

The R-square value is always better than R2 = 0.9972, for (EA)HJ, and better than R2 = 0.9999, for (EI)HJ and (GJ)HJ.
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Table A3. Equations fitted to the results in Figure 10b, Figure 11b, and Figure 12b, for the cases of the
tensile, (EA)HJ, bending, (EI)HJ, and torsional, (GJ)HJ rigidities of zigzag–zigzag HJs.

∆D, nm C Rigid. Fitting Equations

0.078 1
(EA)HJ 1134DHJ − 42.291
(EI)HJ 138.84D

3
HJ − 12.253D

2
HJ − 0.1733DHJ + 0.0506

(GJ)HJ 132.58D
3
HJ + 0.029D

2
HJ − 1.269DHJ + 0.0315

0.157 2
(EA)HJ 1182.1DHJ − 148.89
(EI)HJ 139.35D

3
HJ − 24.737D

2
HJ − 0.4883DHJ + 0.3184

(GJ)HJ 132.68D
3
HJ + 0.3053D

2
HJ − 5.4299DHJ + 0.399

0.235 3
(EA)HJ 1250.5DHJ − 307.65
(EI)HJ 140.03D

3
HJ − 38.073D

2
HJ − 0.0121DHJ + 0.647

(GJ)HJ 132.62D
3
HJ + 1.3242D

2
HJ − 13.36DHJ + 1.7955

0.313 4
(EA)HJ 1311.5DHJ − 429.26
(EI)HJ 140.9D

3
HJ − 52.282D

2
HJ + 1.3713DHJ + 1.1218

(GJ)HJ 132.53D
3
HJ + 2.6363D

2
HJ − 24.692DHJ + 4.5375

0.392 5
(EA)HJ 1306.1DHJ − 567.43
(EI)HJ 142.09D

3
HJ − 68.109D

2
HJ + 4.9756DHJ + 1.2278

(GJ)HJ 133.09D
3
HJ + 1.746D

2
HJ − 36.78DHJ + 8.1887

0.470 6
(EA)HJ 1293.6DHJ − 659.51
(EI)HJ 142.7D

3
HJ − 82.58D

2
HJ + 7.9715DHJ + 1.8014

(GJ)HJ 133.5D
3
HJ + 0.9724D

2
HJ − 51.475DHJ + 13.511

0.627 8
(EA)HJ 332.04D

2
HJ + 392.23DHJ − 345.88

(EI)HJ 145.4D
3
HJ − 117.64D

2
HJ + 22.49DHJ + 1.296

(GJ)HJ 136.51D
3
HJ − 9.1658D

2
HJ − 79.233DHJ + 27.599

0.705 9
(EA)HJ 309.06D

2
HJ + 329.24DHJ − 329.43

(EI)HJ 146.1D
3
HJ − 133.94D

2
HJ + 30.502DHJ + 0.8629

(GJ)HJ 137.88D
3
HJ − 16.439D

2
HJ − 90.809DHJ + 34.713

0.783 10
(EA)HJ 332.04D

2
HJ + 392.23DHJ − 345.88

(EI)HJ 148.44D
3
HJ − 156.52D

2
HJ + 46.476DHJ − 2.0223

(GJ)HJ 144.16D
3
HJ − 42.089D

2
HJ − 83.507DHJ + 37.045

0.940 12
(EA)HJ 504.89D

2
HJ − 445.72DHJ + 52.25

(EI)HJ 150.55D
3
HJ − 193.55D

2
HJ + 72.982DHJ − 5.7112

(GJ)HJ 148.83D
3
HJ − 67.964D

2
HJ − 98.892DHJ + 55.802

1.175 15
(EA)HJ 513.61D

2
HJ − 769.18DHJ + 287.53

(EI)HJ 154.79D
3
HJ − 257.12D

2
HJ + 134.37DHJ − 20.5

(GJ)HJ 164.87D
3
HJ − 158.5D

2
HJ − 44.003DHJ + 55.543

The R-square value is always better than R2 = 0.9966, for (EA)HJ, and better than R2 = 0.9999, for (EI)HJ and (GJ)HJ.
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