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Abstract 

Background:  Machado–Joseph disease (MJD), also known as spinocerebellar ataxia type 3, is the most common 
of the dominantly inherited ataxias worldwide and is characterized by mutant ataxin-3 aggregation and neuronal 
degeneration. There is no treatment available to block or delay disease progression. In this work we investigated 
whether trehalose, a natural occurring disaccharide widely used in food and cosmetic industry, would rescue bio‑
chemical, behavioral and neuropathological features of an in vitro and of a severe MJD transgenic mouse model.

Methods:  Two MJD animal models, a lentiviral based and a transgenic model, were orally treated with 2% trehalose 
solution for a period of 4 and 30 weeks, respectively. Motor behavior (rotarod, grip strength and footprint patterns) 
was evaluated at different time points and neuropathological features were evaluated upon in-life phase termination.

Results:  Trehalose-treated MJD mice equilibrated for a longer time in the rotarod apparatus and exhibited an 
improvement of ataxic gait in footprint analysis. Trehalose-mediated improvements in motor behaviour were associ‑
ated with a reduction of the MJD-associated neuropathology, as MJD transgenic mice treated with trehalose pre‑
sented preservation of cerebellar layers thickness and a decrease in the size of ataxin-3 aggregates in Purkinje cells. 
In agreement, an improvement of neuropathological features was also observed in the full length lentiviral-based 
mouse model of MJD submitted to 2% trehalose treatment.

Conclusions:  The present study suggests trehalose as a safety pharmacological strategy to counteract MJD-associ‑
ated behavioural and neuropathological impairments.
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Background
Machado–Joseph disease or spinocerebellar ataxia type 
3 (MJD) is a polyglutamine neurodegenerative disorder 
first described in people of Portuguese descent. MJD is 
considered the most common of the dominantly inher-
ited ataxias worldwide [1], with the highest prevalence 
reported in Azorean islands (1:239 in Flores, Portugal) [2]. 
MJD is caused by an expansion of the CAG trinucleotide 

in the coding region of the MJD1/ATXN3 gene, which is 
translated into a polyglutamine tract in the c-terminus 
of ataxin-3 protein. The mutation confers a toxic gain-of 
function to ataxin-3, with formation of neuronal intra-
nuclear inclusions, neuronal dysfunction and degenera-
tion [3–5]. Neuropathological alterations in MJD occur 
in the cerebellum, basal ganglia and brainstem and clini-
cal features include progressive ataxia, ophtalmoplegia, 
dysarthria, dystonia, rigidity and distal muscle atrophies 
[1, 6, 7]. Progress towards understanding the pathogen-
esis of neurodegenerative disorders led to the identifica-
tion of common pathological mechanisms and pathways 
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in polyQ diseases that have become promising molecu-
lar targets for therapy. Over the last years, our group has 
focused on the study of autophagy in MJD and has iden-
tified this pathway as a relevant contributor to the neu-
ropathology. We showed that autophagy is impaired in 
human brain tissue and fibroblasts of MJD patients and 
also in different animal and cellular models of MJD [8–
11]. Moreover, upon local lentiviral-mediated expression 
of the autophagic protein 6/beclin-1 (Atg6/beclin-1) in 
the brain, we observed an alleviation of neuropathological 
and behavioral defects of MJD mouse models, evidenc-
ing that autophagy activation is a promising strategy to 
block MJD progression [8, 11]. However, these molecular 
approaches have limitations, particularly the risks asso-
ciated to viral vector delivery and craniotomy. Moreo-
ver, the neuropathology of MJD involves multiple brain 
regions, so a strategy able to reach a broader distribution 
would be relevant. In an attempt to translate this strategy 
to the clinics in a short time-frame, we envisioned the sys-
temic administration of a safe autophagy activator mol-
ecule as an advantageous alternative.

Trehalose, naturally present in several organisms, such 
as plants, yeasts, bacteria and invertebrates, is a non-
reducing disaccharide, formed by two α-glucose mole-
cules connected through an a,a-1,1 glycosidic linkage. It is 
currently used as a stabilizer in several food, cosmetic and 
pharmaceutical products, having an already proved safety 
profile [12, 13]. Trehalose has been reported to act as a 
natural autophagy inducer [14] and there is evidence of 
beneficial therapeutic effects of trehalose in relieving dis-
ease progression of protein aggregation diseases [15–20]. 
Nevertheless, no studies in MJD had yet been reported.

In this work, we designed a proof of concept study to 
assess whether trehalose alleviates behavioural and neu-
ropathological phenotype features in MJD mouse models 
to evaluate the potential of this sugar to be used as a phar-
macological drug to modify MJD disease progression.

Materials and methods
Drug
Trehalose was obtained from Pfanstiehl Inc (Illinois, 
USA) as trehalose dyhydrate, a white crystalline powder. 
In its solid form was stored at room temperature in a 
ventilated area. For in vitro and in vivo studies was pre-
pared in water, as specified in the following sections.

Cell culture and treatments
The mouse neuroblastoma cell line (Neuro-2A cells) was 
obtained from the American Type Culture Collection cell 
biology bank (CCL-131) and maintained in Dulbecco’s 
modified Eagle’s medium (complete medium; Gibco) sup-
plemented with 10% fetal bovine serum, 100 U/ml peni-
cillin and 100 U/ml streptomycin, at 37  °C in 5% CO2/

air atmosphere. Neuro-2A transduction with lentiviral 
particles expressing mutant ataxin-3 72 CAG repeats 
(MutAtx-3) was performed as previously described [8]. 
Two weeks post-infection, cells were plated and treated 
with trehalose (1 mM, 10 mM or 100 mM) or control (vehi-
cle) for 0.5 h, 1 h, 3 h, 6 h, 24 h, 48 h and 72 h. Treatments 
started 24 h after platting and medium was changed after 
48 h. Trehalose incubations were repeated every 24 h and 
cells from all conditions were collected 72 h after platting.

Resazurin assay
Cells were incubated with 0.1 mg/mL resazurin solution, 
diluted 1:10 in DMEM culture medium, for 45 to 60 min 
at 37  °C. From each well, 100  µl triplicates were placed 
into a 96-well plate and the absorbance was read at wave-
lengths of 570  nm and 600  nm. The absorbance ratio 
570/600 nm was calculated and expressed as percentage 
of control.

RNA extraction and RT‑qPCR
Total RNA was extracted by using the NucleoSpin® RNA 
extraction kit, according to manufacturer’s instructions 
(Macherey–Nagel). RNA was eluted in 40 µl of nuclease-
free water and total RNA was quantified by optical den-
sity (OD) using a Nanodrop 2000 Spectrophotometer 
(Thermo Scientific). RNA purity was evaluated by meas-
uring the ratio of OD at 260 and 280 nm. 1000 ng of total 
RNA were treated with DNase (Qiagen) and then reverse 
transcribed into double stranded cDNA by using the 
iScript cDNA Synthesis Kit® (BioRad). cDNA samples 
were stored at − 20 °C until use.

Real-time PCR was performed using a standard 
SYBR-Green®  PCR kit protocol on a StepOne® Detec-
tion System (Life Technologies). RT-PCR was carried 
out in 10 µL reaction, which included cDNA product 
(diluted 1:10), 1× SsoAdvanced SYBR Green Supermix 
and 0.5 µM of forward and reverse primers. Primers for 
SIRT1, LC3B, p62 and Beclin-1 were pre-designed and 
validated by QIAGEN (QuantiTect Primers, QIAGEN). 
Primers for mutant ataxin-3 and HPRT-1 were designed 
and validated by our group. Reverse-transcription and 
non-template controls were run in parallel. All reactions 
were performed in duplicate, according to the manufac-
turer’s recommendations: 95  °C for 30 s, followed by 45 
cycles at 95  °C for 5  s and 60  °C for 30  s. HPRT-1 was 
used as reference gene. The mRNA fold increase or fold 
decrease with respect to control samples was determined 
by the delta-delta Ct method.

Animals and experimental groups
Transgenic mouse model
A colony of MJD transgenic mice (MJDTg; C57BL/6 
background) expressing the N-terminal-truncated 
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human ataxin-3 with 69 glutamine repeats and a 
N-terminal hemagglutinin (HA) epitope, driven spe-
cifically in cerebellar Purkinje cells by the L7 promoter 
[21], was maintained at CNC animal facility by back-
crossing heterozygous males with C57BL/6 females. 
For this experiment, 14 MJD transgenic female mice 
were weaned and genotyped at 4 weeks of age. Females 
have a less aggressive phenotype than males (unpub-
lished data) and were therefore used in this experiment 
to avoid the use of weakened animals that could reach 
the humane critical endpoints over the long course of 
the experiment. Animals were housed in groups (2–5 
per cage, depending on cohort study) in plastic cages 
(365 × 207 × 140 mm) with food and water ad libitum, 
and maintained on a 12-h light/dark cycle at a room 
with constant temperature (22 ± 2  °C) and humidity 
(55 ± 15%). The animals were allowed 1 week of accli-
mation to the surroundings before the beginning of the 
behavioral tests. Physical state of animals was evalu-
ated daily and weight measured every week.

MJD Tg mice from different progenitors were ran-
domly distributed into control and treatment group 
(7 animals/group) and then tested for behavior back-
ground before beginning the treatment. Trehalose 
was orally administered diluted in drinking distilled 
water at a final concentration of 2% (w/v) to the treat-
ment group, from week 5 to week 35 of age. The con-
trol group was treated with vehicle (distilled water). A 
fresh solution of 2% Trehalose in water was prepared 
and changed twice a week until euthanasia of the 
animals.

Lentiviral‑based mouse model
Twenty-five C57/Bl6 mice (Charles River, France), 
males, 8  weeks old, were housed in groups of 6 per 
cage, in plastic cages (365 × 207 × 140  mm) with 
food and water ad  libitum, and maintained on a 12-h 
light/dark cycle at a room with constant temperature 
(22 ± 2  °C) and humidity (55 ± 15%). Males were used 
in this experiment to ensure comparability with previ-
ous studies using this model. The animals were stereo-
taxically-injected in the striatum with lentiviral vectors 
encoding mutant human ataxin-3 with 72 CAG repeats, 
as previously described [22]. After recovery from sur-
gery, mice were randomly distributed into control 
(n = 13) and treatment groups (n = 12). The treatment 
group was orally-administered with trehalose diluted in 
drinking water at a final concentration of 2% (w/v) and 
the control group was treated with the vehicle (water). 
After 2 and 4 weeks of drug administration, mice were 
euthanized and brains collected for analysis (western 
bot and immunohistochemistry, respectively).

Behavioral testing
Mice were trained on a battery of motor tests starting at 
4 weeks of age (P21–25) and tested for behavioural back-
ground at 5  weeks of age (before the beginning of tre-
halose treatment, t = 0). Behaviour was then evaluated 
at different time points (t = 2, t = 6, t = 11, t = 14, t = 17, 
t = 20, t = 24 and t = 28 weeks of treatment) by an expe-
rienced operator in a blind fashion way. All tests were 
performed in the same dark room after at least 60 min of 
acclimatization.

Rotarod performance test
Motor coordination and balance were evaluated in a 
rotarod apparatus (Letica Scientific Instruments, Panlab, 
Barcelona, Spain). Mice were placed on the rotarod at 
a constant speed (5 rpm) and at accelerated speed (4 to 
40 rpm in 5 min) and the latency to fall was recorded for 
a maximum of 5 min. Mice were allowed to perform four 
trials for each test and time point, with at least 30  min 
rest between trials. For analysis, the mean latency to fall 
off the rotarod of 4 trials was used.

Grip strength test
A grip strength test was performed to assess mice neu-
romuscular function. The grip strength of forelimbs was 
determined using a device consisted of a 300-g metal grid 
with a scale on. The animal was hung with its forepaws 
on the grid. The strength was determined as the weight 
pulled (g) from the scale. The test was performed during 
10–15 consecutive trials and the mean of four best per-
formances was taken to analysis. Mice body weight was 
used as a normalization factor.

Footprint analysis
Footprint analysis was performed at 28  weeks post-ini-
tiation of treatment. To obtain footprint patterns, mice 
front and forefeet were coated with blue and red non-
toxic paints, respectively. Mice were allowed to walk 
on a blank greenish paper along a 100  cm long, 10  cm 
wide runway (with 15 cm high walls). Stride length was 
measured as the average distance of forward movement 
between each stride. Frontbase width and hindbase width 
were measured as the average distance between left and 
right front and hind footprints, respectively. These val-
ues were determined by measuring the perpendicular 
distance of a given step to a line connecting its oppo-
site preceding and proceeding steps. The distance from 
left or right front footprint/hind footprint overlap was 
measured to evaluate uniformity of step alternation. A 
sequence of five consecutive steps was chosen for evalu-
ation, excluding footprints made at the beginning and at 
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the end of the run. Measurements were all made by the 
same operator. The mean value of each set of five was 
considered for each animal.

Brain tissue collection
For histological analysis, the animals were given an aver-
tin overdose (2.5 × 200 mg/g, i.p.) and were transcardially 
perfused with a phosphate solution (0.1 M) followed by 
fixation with 4% paraformaldehyde (PFA; Fluka, Sigma, 
Buchs, Switzerland). The brains were removed, post-
fixed in 4% PFA for 24 h at 4 °C, and then cryoprotected 
by immersion in 25% sucrose/phosphate buffer for 48 h 
at 4  °C. The brains were frozen at − 80  °C and then the 
entire cerebellum (transgenic model) or brain (lentiviral-
based model) was sliced into 30-μm midsagittal or 25-μm 
coronal sections, respectively, using a cryostat (LEICA 
CM3050S, Leica Microsystems) at − 21 °C. Sections were 
collected in anatomical series and stored at 4 °C as free-
floating sections in phosphate buffered saline (PBS) sup-
plemented with 0.05 mM sodium azide until processing.

For western blot analysis (lentiviral-based model), 
animals were euthanized by cervical dislocation. Tissue 
punches from striatum were collected and keep at -80 °C 
until use.

Histological analysis of brain tissue
Cresyl violet staining
Eight sagittal sections along the extent of the mice left 
hemicerebellum (inter-section distance of 240 µm, which 
corresponds to eight sections of 30 µm) were mounted in 
gelatin covered microscope slides and dried at room tem-
perature. Sections were then stained with cresyl violet for 
5 min, differentiated in 70% ethanol, dehydrated by pass-
ing through 95% ethanol, 100% ethanol and xylene solu-
tions and mounted with Eukitt (Sigma-Aldrich).

Immunofluorescent staining
Immunofluorescent staining was performed in eight sag-
ittal sections over the extent of the mice left hemicerebel-
lum (inter-section distance of 240 µm, which corresponds 
to eight sections of 30  µm). Free-floating sections were 
washed with PBS 0.1  M and blocked for 1  h at room 
temperature in 0.3% Triton X-100 in PBS 0.1  M sup-
plemented with 10% normal goat serum (NGS; Gibco). 
Sections were then incubated with the following pri-
mary antibodies: mouse monoclonal anti-HA antibody 
(1:1000; InvivoGen, San Diego, CA, USA) and rabbit pol-
yclonal anti-calbindin-28 K antibody (1:1000; Merck Mil-
lipore) overnight at 4 °C. After incubation, sections were 
washed three times with PBS and then incubated with 
the corresponding secondary antibody goat anti-mouse 
conjugated to the fluorophore 488 (1:200; Molecular 
Probes, Oregon, USA), diluted in blocking solution, for 

2 h, at room temperature. Finally, sections were washed 
three times in PBS, counterstained with 4′,6-diamidino-
2-phenylindole, washed again and mounted with Fluor-
save (Calbiochem, Germany).

Immunohistochemistry
Immunohistochemistry was performed in twelve cor-
onal sections covering the extent of the mice striata 
(25  μm-thick sections at 200  μm intervals). After the 
blockage of endogenous peroxidases with phenylhidra-
zyne/phosphate solution, free-floating sections were 
washed with PBS 0.1  M and blocked for 1  h at room 
temperature in blocking solution (0.1% Triton X-100 in 
PBS 0.1 M supplemented with 10% normal goat serum). 
Sections were processed overnight at 4  °C in blocking 
solution with the following primary antibodies: a poly-
clonal rabbit anti-ubiquitin antibody (1:300; Enzo Life 
Sciences) and a polyclonal rabbit anti–DARPP-32 anti-
body (1:1000; Merck Millipore), followed by 2-h incuba-
tion at room temperature with the respective biotinylated 
goat anti-mouse or anti-rabbit antibodies (1:200; Vector 
Laboratoires). Bound antibodies were visualized using 
the Vectastain ABC kit, with 3,30-diaminobenzidine 
tetrahydrochloride (DAB metal concentrate, Pierce) as 
substrate. Dry sections were mounted in gelatin-coated 
slides, dehydrated with ethanol solutions and xylene and 
mounted in Eukit (Sigma-Aldrich).

Quantitative analysis of histological sections
Quantification of cerebellum volume (transgenic model)
Quantification was made over eight cresyl violet staining 
sagittal sections over the extent of the mice left hemicer-
ebella in a blind fashion. Mosaic pictures of these sec-
tions were taken using a PALM Laser microdissection 
microscope (Carl Zeiss, Germany) with a 20× objective. 
Volume was assessed by measuring the area of the cer-
ebellum in each section using Fiji software. Hemicerebel-
lum final volume was extrapolated using the following 
formula: volume = (area × section thickness) × number 
of sections.

Quantification of cerebellum layers thickness (transgenic 
model)
Quantification was made over four cresyl violet-stained 
sagittal sections. Mosaic pictures were taken using a 
PALM Laser microdissection microscope (Carl Zeiss, 
Germany) with a 20× objective. For each section, layers 
length was blindly determined using Fiji software. Layers 
thickness was assessed by measuring the mean width of 
cerebellum layers (molecular + granular + Purkinje cell 
layers) at interlobular regions.
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Quantification of Purkinje cells and mutant ataxin‑3 
aggregates (transgenic model)
Quantitative analysis of number of Purkinje cells (cal-
bindin-positive cells) and mutant ataxin-3 aggregates 
(HA aggregates) was performed over eight sections. To 
calculate the number of calbindin-positive cells, mosaic 
pictures were taken using a PALM Laser microdis-
section microscope (Carl Zeiss, Germany) with a 20× 
objective. Images were visualized with ImageJ software 
and cells were then manually counted by an operator in 
a blind fashion. Total number (no) of purkinje cells per 
hemicerebellum was calculated by extrapolation, using 
the formula:

Total number of HA aggregates was manually counted 
by an operator in a blind fashion by visualizing immu-
nostained sections using a Axioskop 2 plus microscope 
(Carl Zeiss) and calculated by extrapolation, using the 
formula:

Quantification of mutant ataxin‑3 aggregates size 
(transgenic model)
Quantitative analysis of mutant ataxin-3 aggregates size 
was performed over four sections. Three representative 
pictures of lobule IX were taken using a Cell Observer 
Spinning Disk (Carl Zeiss, Germany) with a 100× objec-
tive. Z projections were visualized and the diameter was 
manually determined by an operator in a blind fashion 
using Fiji software.

Quantification of DARPP‑32 depleted volume, ubiquitin 
inclusions number and size (lentiviral model)
Quantification was made over twelve coronal sections 
per animal (25 μm-thick sections at 200 μm intervals) on 
the extent of the mouse striatum, in a blind fashion. Pic-
tures of DARPP-32 stained sections were taken using a 
5× objective using an Axioskop 2 Plus microscope (Carl 
Zeiss, Germany). Volume was assessed by measuring the 
area of the lesion in each section using Fiji software. Final 
volume was extrapolated as described above. Pictures of 
ubiquitin-stained sections were taken using a 20× objec-
tive, with the same microscope. The analyzed areas of the 
striatum encompassed the entire region containing ubiq-
uitin aggregates. All inclusions were blindly automatically 

no of purkinje cells = (no of cells in section 1

+no of cells in section 2 + · · ·

+no of cells in section 8)× 8 sections

no of mutant ataxin-3 aggregates =
(

no of aggregates in section 1

+no of aggregates in section 2+ · · ·

+no of aggregates in section 8
)

× 8 sections

counted using Fiji software. Total number of ubiqui-
tin aggregates was extrapolated as described for ataxin-3 
aggregates. Data were normalized to the integrated lenti-
virus copy number, quantified as described below.

Protein extraction and preparation
Cellular extracts were obtained by scrapping cells with 
radioimmunoprecipitation assay (RIPA) buffer solu-
tion [50  mM Tris·HCl, pH 7.4; 150  mM NaCl; 5  mM 
EDTA; 1% Triton X-100; 0.5% sodium deoxycholate; 0.1% 
sodium  dodecyl sulfate (SDS)] supplemented with pro-
tease inhibitors (Roche), 200  μM phenylmethylsulpho-
nylfluoride, 1  mM dithiothreitol (DTT), 1  mM Na3VO4 
and 10 mM NaF.

Tissue extracts were lysed in RIPA buffer, supple-
mented as described above, by 2 series of 4 s ultra-sound 
pulse (1 pulse/s). Total protein lysates were stored at 
−  20  °C and protein concentration was quantified with 
BCA protein assay (Pierce Biotechnology, Thermo Scien-
tific, USA).

Western blotting
Protein samples were denaturated in SDS sample buffer 
(0.5 M Tris, 30% glycerol, 10% SDS, 0.6 M DTT, 0.012% 
bromophenol blue) for 5  min at 95  °C. Samples were 
then separated in a 4–12% SDS–polyacrylamide gel 
electrophoresis (SDS-PAGE). Ponceau S staining was 
performed after transference and the membranes were 
blocked with 5% non-fat milk in TBS-T (137 mM NaCl, 
20 mM Tris, 0.1% Tween 20, pH 7.6) following by incu-
bation overnight at 4  °C with mouse monoclonal anti-
β-actin antibody (clone AC74;1:5000; Sigma-Aldrich), 
mouse monoclonal anti-β-tubulin antibody (clone 
SAP.4G5;1:10,000; Sigma-Aldrich), mouse anti-GAPDH 
(1:500; Merck Millipore), mouse monoclonal anti-HA 
antibody (1:1500; InvivoGen, San Diego, CA, USA), rab-
bit monoclonal anti-p62 antibody (1:1500; Cell Signaling 
Technology) and rabbit monoclonal anti-LC3B antibody 
(1:1000; Cell Signaling Technology) diluted in blocking 
solution or in 3% bovine serum albumin (for cell sign-
aling antibodies). After three washes with TBS-T, the 
membranes were incubated for 1 h, at room temperature, 
with an alkaline phosphatase-linked secondary antibody, 
specific to rabbit or mouse immunoglobulin G (1:20,000, 
Amersam Biosciences, GE Healthcare, UK). Immunore-
active bands were visualized using enhanced chemifluo-
rescence (ECF) substrate in the Versa-Doc 3000 imaging 
system (Bio-Rad, USA) and densitometry of the bands 
was quantified using ImageJ software. The specific optical 
density was normalized to the total protein, measured by 
ponceau S, or to the amount of β-actin [23].
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Integrated lentivirus copy number quantification
Twelve mounted histological slides were immersed in 
xylene for 2  days and then hydrated with ethanol solu-
tions and water. Lentiviral-injected striata were removed 
with a scalpel and DNA extraction was performed using 
the GeneRead DNA FFPE Kit (Qiagen), starting from step 
6 of manufacturer’s protocol. Purified cellular genomic 
DNA was then quantified by optical density (OD) using 
a Nanodrop 2000 Spectrophotometer (Thermo Scientific) 
and the purity was evaluated by measuring the ratio of 
OD at 260 and 280 nm. Copy number of integrated len-
tiviruses (proviruses) present in the transduced cells of 
striatum was detected by qPCR using the Lenti-X Pro-
virus Quantitation Kit (Takara) and according to the 
manufacturer’s instructions. Briefly, serial dilutions of 
the cellular gDNA were subjected to qPCR amplification 
alongside dilutions of a calibrated Provirus control tem-
plate. The final result was expressed in terms of provirus 
copies (vg)/cell.

Statistical analysis
Raw data analysis was conducted using Prism GraphPad 
software. Outliers were excluded from analysis using 
Grubb’s test. For behavior results, mean values for each 
animal were calculated and a two-tailed Student’s t test 
(footprint analysis) or a trend analysis to compare linear 
regression slopes using the two-tailed t test hypothesis 
(other behavioral tests) was performed. For other analy-
sis, statistics was performed using the two-tailed Stu-
dent’s t test. Data were represented as mean ± SEM.

Results
Trehalose activates autophagy and reduces mutant 
ataxin‑3 protein levels in neuro‑2a cells expressing mutant 
ataxin‑3
We previously showed that autophagy is compromised 
in MJD and that its activation can ameliorate the dis-
ease neuropathology [8, 11]. To investigate the ability of 
trehalose to increase autophagy in MJD we used Neuro 
2A cells expressing the human isoform of MutAtx3, a 
previously described in vitro model of MJD [8]. We first 
observed that trehalose could be used to treat these cells 
up to 10 mM concentration for a period of 72 h without 
changing metabolic activity (Additional file  1: Fig. S1). 
Cells were then incubated with 10 mM trehalose for 0.5, 
1, 3, 6, 24, 48 and 72  h, and the levels of the transient 
autophagosomal membrane-bound form of LC3B (LC3BI 
and LC3BII), a marker of the autophagic process, were 
measured by western blot. As shown in Fig. 1a, b, LC3BII 
protein levels significantly increased after 24 h, 48 h and 
72  h treatment with 10  mM trehalose, when compared 
to control. More relevant, this effect was accompanied 

by a significant decrease in protein levels of mutant 
ataxin-3 (Fig.  1a, b; Additional file  2: Fig. S2 and Addi-
tional file 3: Fig. S3). Transcript levels of mutant ataxin-3 
and autophagy markers (LC3B, p62 and beclin-1) did not 
change after 10 mM trehalose treatment for a period of 
72 h (Additional file 4: Fig. S4).

Increased levels of LC3BII do not necessarily indi-
cate an increase in total autophagic flux as it can also be 
a consequence of impaired autophagosome-lysosome 
fusion [24]. LC3BII is degraded at the final stages of 
autophagy and when lysosomal degradation is blocked 
there is an accumulation of this protein. Accumulation 
of this protein upon lysosomal degradation inhibition 
is indicative of increased autophagic flux. To confirm 
whether trehalose was indeed increasing autophagy, 
we evaluated LC3BII protein levels in the presence and 
absence of chloroquine, an inhibitor of lysosomal deg-
radation. Again, an increase in LC3BII protein levels 
was observed in N2A cells expressing MutAtx-3, after 
72  h treatment with 10  mM trehalose, as compared 
with control condition (Fig.  1c, d; ##p < 0.01). Moreover, 
upon lysosomal degradation inhibition with chloroquine 
100 µM for 6 h, an accumulation of LC3BII was observed 
for both control and trehalose conditions, respectively 
(Fig.  1d; ****p < 0.0001, compared to control). More 
important, an increased accumulation of LC3BII was 
observed in 10 mM trehalose plus chloroquine condition, 
when compared to control plus chloroquine (Fig.  1d; 
+p<0.05, compared to control), further indicating that 
trehalose increased autophagic flux. We next deter-
mined autophagic flux by the LC3BII turnover assay, 
which compares the LC3II protein levels between control 
and trehalose conditions in the presence and absence of 
lysosomal inhibitors (LC3BII net flux) [25]. As shown in 
Fig.  1e, 10  mM trehalose increased LC3BII autophagic 
flux in neuro-2A cells expressing mutant ataxin-3, indi-
cating an activation of autophagy. Altogether, these data 
shows that trehalose activates autophagy and reduces 
mutant ataxin-3 levels in this in vitro model of MJD.

Trehalose alleviates motor deficits in MJD transgenic mice
Building on the obtained in vitro results, we designed an 
in vivo experiment to investigate whether administration 
of trehalose to a transgenic mouse model of MJD would 
alleviate behavioral and neuropathological defects. Four-
teen MJD transgenic female mice were distributed into 
control and treatment groups and a 2% trehalose solution 
was orally administered to the treatment group over a 
period of 30 weeks (Fig. 2). Dose was chosen accordingly 
to previous studies in animal models of protein aggre-
gation diseases [17, 20]. Mice body weight and general 
physical health was evaluated each week until euthanasia 
of animals. Throughout the whole study, trehalose had no 
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effect in body weight and caused no apparent impact in 
mice general health (Additional file 5: Fig. S5).

To evaluate the therapeutic potential of trehalose 
in recovering the balance and motor function defi-
cits of MJD transgenic mice, we performed the rotarod 
test. Behavioural testing evaluation started before the 

beginning of the treatment (5  weeks old; t = 0  weeks of 
treatment) and was repeated at different time points 
until 28  weeks of trehalose administration (Fig.  2). A 
linear regression analysis was used to assess the time 
course of behavioral performance [26]. At 5  weeks of 
age, MJD transgenic mice already present a marked 

Fig. 1  Autophagy activation by trehalose in neuro-2A cells expressing mutant ataxin-3. Neuro-2A cells expressing mutant ataxin 3 (MutAtx-3) were 
treated with 10 mM trehalose or vehicle (control) from 0.5 to 72 h (h). Protein levels of LC3BI, LC3BII, endogenous ataxin-3 (EndAtx-3) and mutant 
ataxin-3 (MutAtx-3) were quantified by western blot. a Representative picture of Western blot. b Quantitative densitometric analysis of western 
blot bands. Values are presented as mean ± SEM (n = 4–5). Results are expressed as % of control. *,#, $p < 0.05; **,##, $$p < 0.01, compared to control. 
One-way analysis of variance (ANOVA), followed by a Dunnett’s post hoc analysis for multiple comparisons; outliers were excluded using the Grubb’s 
test. Cells were then incubated for 72 h with trehalose 10 mM, in the presence and absence of the lysosomal degradation inhibitor, chloroquine, 
for 6 h before protein collection. Protein levels of LC3BII were quantified by western blot. c Representative picture of Western blot. d Quantitative 
densitometric analysis of western blot bands. Values are presented as mean ± SEM (n = 6). Results are expressed as % of control. ##p < 0.01, 
compared to control; Student’s t test. ****p < 0.0001, compared to control; One-way analysis of variance (ANOVA), followed by a Dunnett’s post hoc 
analysis for multiple comparisons. e Autophagic flux quantification by the LC3BIIturnover assay. Difference between densitometric intensity of LC3II 
bands between control and trehalose conditions in the presence and absence of lysosomal inhibitors. Values are presented as mean ± SEM (n = 6). 
+p<0.05, compared to control plus chloroquine; Student’s t test
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phenotype characterized by ataxic movement and dif-
ficulty to walk and equilibrate, as previously described 
[9, 21, 27]. Trehalose administration improved motor 
performance of MJD transgenic females, as shown 
by the increase in time that treated females equili-
brated in rotarod apparatus, compared to control ani-
mals, which over time exhibited a decrease in the 
latency time to fall (Fig.  3a, b). This effect was statisti-
cally significant for stationary rotarod performance test 
[Linear regression slopes for stationary rotarod: Con-
trol = −  0.6082 ± 0.3820, 2% trehalose = 0.8690 ± 0.3620, 
p = 0.0058, (Fig. 3a); Linear regression slopes for acceler-
ated rotarod: Control = −  0.4599 ± 0.1863, 2% treha-
lose = − 0.1966 ± 0.1519; p = 0.2756).

MJD transgenic mice also exhibit significant gait defi-
cits, presenting reduced stride length and enlarged front 
and hindbase, which can be evaluated by analysis of 
footprint patterns [11]. Therefore, at 28 weeks of treat-
ment, a footprint analysis was additionally performed 
to investigate whether trehalose could rescue limb and 
gait ataxia of MJD transgenic mice. As shown in Fig. 3c 
a close to significant increase in the stride length (Con-
trol = 6.02 ± 0.12  cm, 2% trehalose = 6.51 ± 0.18  cm, 

p = 0.052, Student’s t test) and a significant decrease 
in the front base width (Control = 2.01 ± 0.08  cm, 2% 
trehalose = 1.77 ± 0.07  cm, p = 0.047; Student’s t test) 
was observed in MJD transgenic females treated with 
2% trehalose, revealing that trehalose reduced the gait 
deficits of MJD transgenic females. Overall, behavioural 
data show that 2% trehalose treatment alleviates motor 
and coordination deficits in MJD transgenic mice.

The neuromuscular function is also affected in MJD 
patients, since the primary function of the cerebellum 
is to maintain the excitability of the motor cortex and 
the subsequent control of movement [28]. Such as in 
clinical observations in patients, MJD transgenic mice 
display significant strength deficit [22]. Therefore, we 
performed the grip strength test to assess the abil-
ity of trehalose in recovering neuromuscular deficits, 
but no statistically significant differences in forelimb 
strength were observed between groups (Linear regres-
sion slopes: Control = −  0.0345 ± 0.0057, 2% treha-
lose = −  0.0422 ± 0.0058; p = 0.3470), suggesting that 
trehalose had no effect in recovering neuromuscular 
function of this MJD transgenic mouse model.

Fig. 2  Study design for the transgenic MJD model. Fourteen MJD transgenic female mice were weaned and genotyped at 4 weeks old. MJD 
transgenic mice were then randomly distributed into Treatment and Control groups that received either 2% Trehalose in drinking water or fresh 
distilled water, respectively, from 5 weeks up to 35 weeks of age. Motor and neuromuscular function of the animals was evaluated by performing 
rotarod (constant and accelerated speed) and grip strength tests, respectively, before the beginning of Trehalose treatment (5 weeks of age; t = 0) 
and at several time points (t = 2, t = 6, t = 11, t = 14, t = 17, t = 20, t = 24, t = 28 weeks of treatment). The footprint analysis was performed only at 
t = 28 weeks of treatment. The animals were sacrificed at 35 weeks of age (t = 30) and brain tissues were collected for histopathological analysis of 
the cerebellum
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Trehalose reduces cerebellar atrophy and mutant ataxin‑3 
aggregate size in Purkinje cells of Machado–Joseph 
disease transgenic mice
Cerebellar atrophy is an important neuropathologi-
cal hallmark of this MJD animal model [11, 21], as it is 
typically present in MJD patients [29]. To evaluate if 
the phenotypic improvement correlated with preserva-
tion of the cerebellar neuroanatomy we performed the 
Nissl staining with cresyl violet, which is a classical his-
tological method widely used to study the cytoarchitec-
ture of brain areas [30, 31]. The total cerebellar volume 

and cerebellar layers thickness were measured. Despite 
no observation of differences between groups for cer-
ebellar volume (Fig.  4b; Control = 4.67 ± 0.15  mm3; 2% 
trehalose = 4.68 ± 0.13  mm3; p = 0.9664), cresyl vio-
let staining revealed larger thickness (Fig.  4a, b; Con-
trol = 167.3 ± 2.1  µm, 2% trehalose = 176.3 ± 3.1  µm, 
p = 0.0342) of cerebellar layers of treated MJD transgenic 
mice, when compared to controls (Fig.  4c), suggesting 
prevention of neurodegeneration by trehalose.

Mutant ataxin-3 has toxic properties due to the 
expanded polyQ tract, aggregating and accumulating 

Fig. 3  Motor and neuromuscular function of MJD transgenic mice treated with 2% Trehalose. MJD transgenic females were randomly distributed 
into control (n = 7; black) and treatment groups (n = 7; green) and orally treated either with vehicle or 2% Trehalose. Rotarod and grip strength tests 
were done before the beginning of the treatment and at different time points until 28 weeks (a, b, d). Statistical analysis was performed comparing 
linear regression slopes by a two-tailed t test hypothesis. In rotarod tests, 2% Trehalose increased the latency time to fall of MJD transgenic females 
(a, b). No statistically significant differences in forelimb strength were observed between control and 2% Trehalose groups (d). Additionally, footprint 
patterns were evaluated 28 weeks after treatment (c). Statistical analysis for footprint was performed by using the Student’s t test hypothesis. 2% 
Trehalose reduced gait deficits of MJD transgenic females, increasing the stride length and decreasing the frontbase distance (c). Data are presented 
as mean ± SEM, * < 0.05; ** < 0.01; ns = not significant, comparing to controls
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in neuronal cells [3, 4]. As shown in Fig.  4d, and previ-
ously described [9, 21], neuronal inclusions accumulate 
in Purkinje cells of the cerebellar cortex in this transgenic 
mouse model. Purkinje cells were stained against cal-
bindin-28 K, commonly used as Purkinje cell marker, but 
a very weak and diffuse immunofluorescent signal was 
observed in mice at this age (35 weeks old), particularly in 
controls (Fig. 4d). This loss of calbindin staining is associ-
ated with neuronal dysfunction of Purkinje cells [32]. As 
can be observed, Purkinje cells presented with irregular 
cell bodies and a disordered dendritic network. When 

treated with 2% trehalose, an improvement of the immu-
nofluorescent pattern was observed, and Purkinje cellu-
lar bodies were less irregular and the dendritic network 
more preserved (Fig. 4d).

We then investigated whether trehalose could mod-
ify the number and the size of mutant ataxin-3 aggre-
gates in the cerebellum of MJD transgenic mice. This 
mouse model expresses a NH2-truncated form of the 
ataxin-3 protein (with Q69), that lacks the 286 NH2-
terminal amino acid residues, but is tagged by an HA 
epitope [21], so an immunostaining for the HA tag was 

Fig. 4  Neuropathological analysis of brain tissue from MJD transgenic mice treated with 2% Trehalose. Cresyl violet staining was performed on 
left hemicerebellum sections from MJD transgenic female mice treated with distilled water (control; n = 7) or 2% Trehalose (n = 7) for 30 weeks. 
a Representative picture of cerebellum layers from control and 2% Trehalose-treated MJD transgenic mice. Abbreviations: GL, Granular layer; ML, 
Molecular layer; PCL, Purkinje cell layer. Scale = 50 µm. b, c Trehalose has no effect in cerebellum volume, but increased the thickness of cerebellum 
layers compared to controls. Data are presented as mean ± SEM. Statistical analysis was performed using the two-tailed Student’s t test. * < 0.05, 
comparing to controls; ns = not significant. Immunofluorescent staining was also performed on left hemicerebellum sections from MJD transgenic 
mice treated with distilled water (control; n = 7) or 2% Trehalose (n = 7) for 30 weeks. d Representative confocal image of immunofluorescent 
staining against HA (MutAtx-3; green) and calbindin (red) of left hemicerebellum sections from MJD transgenic mice treated with distilled 
water (control; n = 7) or 2% Trehalose (n = 7) for 30 weeks. Scale bar = 10 µm. e Representative picture of aggregates size from control and 2% 
Trehalose-treated MJD transgenic mice. Scale bar = 5 µm. f, g The total number of aggregates and aggregates size (diameter) in a representative 
lobule (lobule IX) were quantified. Trehalose had no effect in total number of aggregates, but decreased aggregates diameter in lobule IX. Data are 
presented as mean ± SEM. Statistical analysis was performed using the two-tailed Student’s t test. ns not significant
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performed to measure aggregation. The total number of 
mutant ataxin-3 aggregates in the whole cerebellum was 
counted but no differences were observed between 2% 
trehalose and control MJD transgenic mice (Fig. 4f, Con-
trol = 6115 ± 865; 2% trehalose = 6233 ± 419; p = 0.9041). 
However, we observed that trehalose significantly 
decreased the diameter of mutant ataxin-3 aggregates 
in a representative lobule (lobule IX) of the cerebellum 
(Control = 1.91 ± 0.03 µm; 2% trehalose = 1.80 ± 0.03 µm; 
p = 0.0197; Fig. 4e, g). These results show that trehalose 
alleviates cerebellar neuropathology of this transgenic 
mouse model of MJD.

Trehalose ameliorates neuropathology of a lentiviral‑based 
mouse model of MJD
To further strengthen the results obtained with the trans-
genic model, we used a striatal lentiviral-based mouse 
model of MJD to evaluate whether trehalose could allevi-
ate neuropathology. In this model, the neuropathological 
features of MJD are induced by the injection of lentiviral 
vectors encoding a full-length human mutant ataxin-3 
carrying 72 CAG repeats [22]. Twenty-five mice were 
injected in the striatum with the lentiviral vectors and 
distributed into control (n = 13) and treatment groups 

(n = 12), which were orally administered with water and 
2% trehalose solution, respectively. Accordingly to pre-
viously studies from our group [22, 33], we expected to 
observe a positive effect of the treatment after 4  weeks 
administration, which would rationally be anticipated 
by an increase in autophagy. Thus, half of the animals (6 
controls and 6 treated mice) were sacrificed after 2 weeks 
to evaluate autophagy markers and the other half (7 con-
trols and 6 treated mice) after 4 weeks to evaluate neu-
ropathology, by western blot and immunohistochemistry, 
respectively (Fig. 5). After 2 weeks administration of 2% 
trehalose, no statistically significant differences in LC3BII 
and p62 protein levels were detected between groups 
(Fig. 6a, b, (Additional file 7: Fig. S7). At this time point, 
levels of mutant ataxin-3 (aggregates, oligomers and sol-
uble form) were also similar in animals administered with 
water and 2% trehalose (Additional file 6: Fig. S6). 

Histologically, this mouse model is characterized by 
the presence of ubiquitinated aggregates and the loss of 
Darpp-32 immunoreactivity [22, 33]. Darpp-32 is a pro-
tein of the dopaminergic signaling pathway and loss of 
its immunoreactivity is indicative of early neuronal dys-
function. The darpp-32-depleted area in histological 
sections is thus used to quantify the neuropathological 

Fig. 5  Study design for the lentiviral based MJD model. Twenty-five C57/Bl6 mice, males, 8 weeks old, were stereotaxically-injected in the striatum 
with lentiviral vectors encoding mutant human ataxin-3 with 72 CAG repeats. Mice were then randomly distributed into treatment (n = 12) 
and control groups (n = 13) that received either 2% Trehalose in drinking water or fresh distilled water, respectively, After 2 and 4 weeks of drug 
administration, mice were euthanized and brains collected for analysis
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Fig. 6  Brain tissue analysis of the lentiviral-based mouse model treated with 2% Trehalose. C57/Bl6 mice, males, 8-weeks old, were 
stereotaxically-injected bilaterally in the striatum with lentiviral vectors encoding mutant human ataxin-3 with 72 CAG repeats and distributed into 
control and treatment groups that received either water or 2% Trehalose, respectively, during 2 weeks. Protein levels of autophagy markers were 
quantified by western blot in both left and right striatal punches. a Picture of western blot membranes. b Quantitative densitometric analysis of 
autophagy markers (p62 and LC3BII) western blot bands. Values are presented as mean ± SEM (n = 12–13 striatum per group from 6 to 7 animals). 
Student’s t test, compared to control. Loss of darpp-32 staining and ubiqutitin aggregates were evaluated by immunohistochemistry, after 4 weeks 
of 2% trehalose administration, in mice stereotaxically-injected unilaterally in the striatum with mutant human ataxin-3 encoded lentiviral vectors. 
c Representative figure of darpp-32 immunohistological staining. Scale = 100 µm. d The darpp-32 depleted immunoreactivity was decreased in 
mice treated with 2% trehalose. Data are presented as mean ± SEM. Statistical analysis was performed using the two-tailed Student’s t test. *p < 0.05, 
compared to control. e Representative picture of ubiquitin staining. Scale bar = 50 µm. f, g Trehalose had no statistically significant effect in total 
aggregates number and size, but a tendency for decrease was observed. Data are presented as mean ± SEM. Statistical analysis was performed 
using the two-tailed Student’s t test. ns = not significant
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defects induced by mutant ataxin-3 expression. After 
4-weeks administration of 2% trehalose, treated mice 
had a smaller lesion in the striatum, when compared 
to control animals (AreaControl = 52.89 ± 10.88  µm2/vg/
cell; AreaTreatment = 25.56 ± 2.87  µm2/vg/cell; p = 0.0454; 
Fig. 6c, d). Despite no statistically-significant differences 
between groups regarding the aggregate number (Con-
trol = 4842 ± 1290; 2% trehalose = 3125 ± 395; p = 0.2608; 
Fig.  6e), trehalose showed a tendency to decrease the 
aggregates area (AreaControl = 1.282 ± 0.337  µm2/vg/
cel; AreaTreatment = 0.719 ± 0.075  µm2/vg/cel; p = 0.1591; 
Fig. 6f, g), indicative of a reduced aggregates size. These 
observations reveal a protective effect of trehalose 
regarding neuropathologic features that characterize this 
lentiviral model of MJD.

Discussion
In the present work, we show that administration of tre-
halose alleviates the phenotype of two mouse models of 
MJD, suggesting trehalose may be a potential pharmaco-
logical candidate for MJD.

It has been shown that trehalose acts as an autophagy 
inducer [14] and as a chemical chaperone preventing 
protein misfolding and aggregation [34]. These prop-
erties have pointed towards the use of trehalose for the 
treatment of protein aggregation disorders. Therapeutic 
effects of trehalose have been reported in a number of 
diseases using both in vitro and in vivo models, but not 
in MJD [35].

Before testing trehalose in  vivo, we investigated 
whether trehalose would be able to activate autophagy in 
an in vitro model of MJD. This in vitro model was gener-
ated by expressing an expanded form of human ataxin-3 
in mouse neuroblastoma cells [8]. We observed a time-
dependent activation of autophagy by trehalose, with a 
remarkable effect after 24 h, 48 h and 72 h treatment at 
a concentration of 10  mM. The activation of autophagy 
parallels the decrease in the mutant ataxin-3 protein, 
showing that trehalose is effective in reducing mutant 
protein levels. These results are in accordance with pre-
viously described time-dependent effects of trehalose in 
reducing aggregated proteins through autophagy activa-
tion in neuronal cell models of Prions’s [15], Parkinson’s 
and Huntington’s diseases [14].

Based on the in vitro results, we pursued a study using 
an animal model expressing a truncated form of human 
ataxin-3 in Purkinje cells of the cerebellum [21]. The cer-
ebellum is one of the most affected brain regions in MJD, 
being essential for motor coordination and balance [36]. 
Dysfunction and death of cerebellar Purkinje cells lead to 
degeneration of connected cells present in other cerebel-
lar layers and consequently to cerebellar atrophy, which 
is particularly marked in this animal model [21]. These 

MJD transgenic mice display a severe cerebellar ataxic 
behaviour with pronounced impairments in coordina-
tion, balance and gait patterns since the 3rd week of age 
[9, 11, 21]. When animals were administered with 2% 
trehalose we observed beneficial therapeutic effects in 
motor behaviour of the transgenic mouse model. This is 
particularly relevant considering the aggressive pheno-
type presented by these mice and the fact that trehalose 
administration started at 5 weeks of age, after the onset 
of the disease. Furthermore, we observed that trehalose 
effects on behaviour were associated with a reduction 
of the MJD-associated neuropathology. MJD transgenic 
mice receiving trehalose presented less atrophy of cer-
ebellar layers, suggesting a prevention of neurodegen-
eration by trehalose. In agreement, an improvement of 
neuropathologic features was also observed in the lenti-
viral-based model, which expresses the full-length form 
of human ataxin-3. These observations are in accordance 
with those reported for other polyglutamine disorders. 
In Huntington’s disease, 2% trehalose treatment reduced 
foot-clasping posture and improved rotarod perfor-
mance and footprint patterns of R6/2 transgenic mice 
[20]. These animals also displayed a reduction in striatum 
atrophy and in aggregate number. Similarly, treatment 
of SCA17 transgenic mice with 4% trehalose increased 
latency to fall in the rotarod and mediated amelioration 
of gait disturbances in the footprint analysis [37].

Neuronal intranuclear inclusions detected in the brain 
of patients with MJD are considered an important hall-
mark of the disease [3, 4, 38]. A reduction in the number 
of inclusions by trehalose has been reported in models 
of polyQ diseases and associated with improvements 
of the disease phenotype [15, 16, 19, 39], however this 
effect has not been consistently observed [37, 40, 41]. In 
a SCA17 mouse model, trehalose significantly improved 
animal’s behaviour, but had no significant effect in aggre-
gate number [37]. Similarly, we did not detect differ-
ences in the number of aggregates of trehalose-treated 
animals. However, we observed a significant reduction 
in aggregates size after trehalose administration. The 
role of aggregation in the neuropathology of polyQ dis-
eases remains controversial and the presence of mutant 
protein inclusions seems to not fully explain the toxicity 
seen in patients and mouse models [42, 43]. Even though 
aggregates fragments and oligomers have been consid-
ered toxic species, many studies suggest that the type of 
aggregates and its conformation are likely to play a more 
critical role in toxicity due to ability to differently seques-
ter proteins and components, independently of their size 
[42–45]. Accordingly, we previously demonstrated that 
larger aggregates presented increased co-localization 
with caspase-3, suggesting an increased cytotoxicity 
compared to smaller aggregates [46].
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Increasing amount of evidence show that trehalose 
exerts its neuroprotective effects by several mecha-
nisms. Trehalose was detected in brain homogenates 
of mice treated with 2% trehalose in the drinking water 
[20, 47], which support the hypothesis of a direct effect 
in the brain, probably by inducing autophagy via the 
lysosomal-mediated TFEB activation [48–50]. By acti-
vating autophagy, trehalose seems to induce the clear-
ance of unfolded proteins and oligomers, preventing or 
delaying the formation of larger inclusions [14]. In our 
experiments, we did not observe changes in autophagy 
markers after 2  weeks administration of 2% trehalose 
in the lentiviral-based model. This was not surprising, 
as one of the main challenges in the autophagy field is 
the lack of reliable tools to monitor autophagy activity 
in  vivo. Autophagy is a highly dynamic, multi-step pro-
cess and can be modulated at several steps [51] and the 
static analysis of LC3BII or p62 levels have limitations 
in capturing this dynamic process. For instance, a con-
comitant rise in both autophagosome formation rate and 
LC3-downstream degradation can show normal steady-
state levels in LC3II protein despite increased autophagy 
activity. Thus, the use of autophagy markers in this study 
needs to be further complemented in other studies that 
estimate overall autophagic flux to allow a definitive 
interpretation of the observations, as stated in autophagy 
guidelines [52].

It is noteworthy that despite the presence of trehalase 
in the gut, orally administered trehalose has been proven 
to exert significant biological effects in mouse models 
of many different diseases, such as Parkinson’s, Alzhei-
mer’s, muscular dystrophy, Huntington’s disease, ALS, 
prion’s disease, OPMD, obesity, hepatic steatosis, dia-
betes, or chronic ischemia [35, 53, 54]. Thus, we cannot 
exclude that trehalose effects might occur, or at least 
count with contribution of indirect effects in peripheral 
energy metabolism and inflammatory pathways [55, 56]. 
Therapeutic strategies that improves metabolism energy 
and inflammation, such as caloric restriction [22] and 
ibuprofen [57], are indeed effective in MJD mouse mod-
els. Interestingly, trehalose can also affect gut micro-
bioma  [58] , which raise the hypothesis that trehalose 
might interfere by modulating the microbiota-gut-brain 
axis. Further studies would be of utmost importance to 
clarify the mechanism of action of trehalose in MJD and 
other neurodegenerative disorders.

Another relevant aspect concerns the magnitude of 
the beneficial effects of trehalose. When compared to 
other molecules, the effects of trehalose in this MJD 
model seem to be less pronounced and less significant 
[22, 46]. This might be related to the high variability 

observed between animals, the low number of animals 
used (a major limitation of this study) and/or the use of 
a low dosage. Even though this 2% trehalose dose has 
been previously used in animal models [14, 17, 20, 59], 
administration of a higher dose of trehalose is well tol-
erated [37] and would likely lead to more pronounced 
effects in this severe animal model. Furthermore, ini-
tiating the treatment at an early stage would likely be 
advantageous, as it was shown for other drugs [60].

Nevertheless, our data does not support an effect 
comparable to our most robust approaches, namely 
gene silencing [9] or caloric restriction [22] or other 
promising strategies, such as antisense oligonucleotides 
[61, 62]. An interesting approach could be the use tre-
halose in combination with these therapies.

The major advantage supporting the use of trehalose 
in MJD is related to its safety. Acute and subchronic 
toxicological studies demonstrated that trehalose has 
no significant toxic effects in both animals and humans 
[63]. Despite being a sugar, trehalose has no adverse 
effects on metabolism [59, 63–65]. Some studies even 
reported a positive effect of trehalose against weight 
loss in mice [16, 20], which would constitute an advan-
tage as MJD patients have decreased body mass index 
[66, 67]. A Phase 2 open label trial to access safety, tol-
erability and efficacy of trehalose in MJD patients is 
on-going.

In a phase 2 clinical trial to treat Oculopharyngeal 
Muscular Dystrophy (OPMD), trehalose was admin-
istered by intravenous injection, and despite the high 
dose used, no safety issues were identified [68]. More 
relevant, a post hoc analysis of the  cold water, nec-
tar  and  honey-thickened  drinking tests showed that 
OPMD patients had a significant reduction in drink-
ing time as compared to baseline (NCT02015481). This 
clinical study confirmed data from animal models [17] 
and brought expectations regarding the use of trehalose 
in protein-aggregation pathologies.

Conclusions
In conclusion, this study shows that trehalose allevi-
ates motor impairments and neuropathological fea-
tures in MJD mouse models. Further studies would be 
important to clarify the mechanism of neuroprotection 
by trehalose in MJD, to determine the most effective 
dose and evaluate the potential of its association with 
other therapeutic approaches. Nevertheless, given the 
favorable safety profile of trehalose this molecule has 
potential to be used as a pharmacological drug for MJD, 
alone or in combination with other therapies.
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