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ABSTRACT In this work, we present an optimal mapper for OFDM with index modulation (OFDM-IM).
By optimal we mean the mapper achieves the lowest possible asymptotic computational complexity (CC)
when the spectral efficiency (SE) gain over OFDM maximizes. We propose the spectro-computational (SC)
analysis to capture the trade-off between CC and SE and to demonstrate that an N -subcarrier OFDM-IM
mapper must run in exact 2(N ) time complexity. We show that an OFDM-IM mapper running faster than
such complexity cannot reach the maximal SE whereas one running slower nullifies the mapping throughput
for arbitrarily large N . We demonstrate our theoretical findings by implementing an open-source library that
supports all DSP steps to map/demap an N -subcarrier complex frequency-domain OFDM-IM symbol. Our
implementation supports different index selector algorithms and is the first to enable the SE maximization
while preserving the same time and space asymptotic complexities of the classic OFDM mapper.

INDEX TERMS Computational complexity, index modulation, OFDM, signal mapping, software-defined
radio, spectral efficiency.

NOTATION

ci: Index of the i-th active subcarrier in the symbol
g: Number of subblocks per symbol
k: Number of active subcarriers
m: Total number of bits per symbol
m(N ): Asymptotic number of bits per symbol as

function of N
n: Number of subcarriers per subblock
p: Total number of bits per subblock
p1: Number of index modulation bits per subblock
p2: Number of bits per active subcarriers in a

subblock
δ: Half-width of the confidence interval
x: Number of samples of the steady-state mean
s: List of baseband samples per symbol
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approving it for publication was Ailong Wu .

sβ : List of baseband samples in the β-th
subblock

AN ,k : N × k Johnson association scheme
I : List of active subcarrier indexes per symbol
Iβ : List of active subcarrier indexes in the β-th

subblock
N : Number of subcarriers per symbol
M : Constellation size of the modulation

diagram
P1: Number of index modulation bits per

symbol
P2: Number of bits per active subcarriers in a

symbol
X : Decimal representation of the P1-bit

mapper input
T (N ): (De)Mapper computational complexity

as function of N
m(N )/T (N ): (De)Mapper spectro-computational

throughput
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(N
k

)
: N !/(k!(N − k)!)

κ: Wall-clock runtime of a computational
instruction

o(f ): Order of growth asymptotically smaller
than f

ω(f ): Order of growth asymptotically larger
than f

O(f ): Order of growth asymptotically equal or
smaller than f

�(f ): Order of growth asymptotically equal or
larger than f

2(f ): Order of growth asymptotically equal to f
ZT : Transpose of the matrix Z

I. INTRODUCTION
Index Modulation (IM) is a physical layer technique that
can improve the spectral efficiency (SE) of OFDM. IM’s
basic idea for OFDM [1], [2] consists in activating k ∈
[1,N ] out of N subcarriers of the symbol to enable extra(N
k

)
= N !/(k!(N − k)!) waveforms. Of these, OFDM-IM

employs 2blog2 C(N ,k)c to map P1 = blog2
(N
k

)
c bits. Besides,

modulating the k active subcarriers with an M -ary constella-
tion, the OFDM-IM symbol can transmit more P2 = log2M
bits along with P1. Thus, the OFDM-IM mapper takes a total
of m = P1 + P2 bits as input and gives k complex baseband
samples as output for the modulation of the k subcarriers. In
this process, the index selector (IxS) determines the k-size list
of indexes – out of 2P1 possibles – from the P1-bit input. The
remainderN−k subcarriers are nullified. The other DSP steps
follow as usual in OFDM, except for the signal detector at the
receiver. In this sense, several research efforts have been done
to improve the receiver’s bit error rate at low computational
complexity [3]–[7]. Since our focus is on the OFDM-IM
mapper, we refer the reader to the survey works [8]–[11] for
other aspects of the index modulation technique.

A. PROBLEM
In this work, we concern about whether the OFDM-IM map-
per can reach the maximal SE gain over its OFDM coun-
terpart keeping the same computational complexity (CC)
asymptotic constraints. The SE maximization of OFDM-IM
over OFDM happens when the IM technique is applied on
all N subcarriers of the symbol with k = N/2 and the
active subcarriers are BPSK-modulated, i.e., M = 2 [12],
[13]. We refer to this setup as the optimal OFDM-IM
configuration.

The computational complexity of the OFDM-IM mapper
under the optimal SE configuration has been conjectured
as an ‘‘impossible task’’ [9], [14]. This belief comes from
the fact that the number of mappable OFDM-IM waveforms
grows as fast as O(

(N
k

)
), which becomes exponential if the

optimal SE configuration is allowed. Indeed, according to the
theory of computation, a problem of size N is computation-
ally intractable if its time complexity lower bound is �(2N ).
Despite that, as far as we know, the CC lower bound required

to sustain the maximal SE gain of OFDM-IM remains an open
question across the literature. Consequently, no prior work
can answer whether the OFDM-IM mapper indeed needs
more asymptotic computational resources than its OFDM
counterpart to sustain the maximal SE gain.

B. RELATED WORK
In this subsection, we review the literature related to the
design and computational complexity of the OFDM-IM
mapper.

1) EARLY ATTEMPT
The earliest mapper for OFDM-IM we find is due to [1].
The authors suggest a Look-Up Table (LUT) to map P1 bits
into one out of 2P1 unique waveforms for relatively small P1.
To avoid the exponential increase in storage implied by the
optimal SE configuration, the authors employ a Johnson
association scheme [15] to map P1 based on the recursive
matrix AN ,k = [[1 0]T [AN−1,k−1 AN−1,k ]T ], in which ZT

is the transpose of a given matrix Z . Those authors remark
that the matrix indexes decrease linearly with N towards
the base case of recursion. However, we remark that the
overall CC to write all rows of AN ,k is exponential under
the optimal SE configuration. To verify that, consider firstly
that AN ,k can be lower-bounded by Ak,k , since k ≤ N .
To build Ak,k , one needs at least two computational instruc-
tions to write the numbers 1 and 0 and two other indepen-
dent and distinct recursive calls Ak−1,k−1 and Ak−1,k . In the
worst-case analysis, the number of computational steps T
to write all entries of Ak,k can be captured by the recur-
rence T (k) = 2 + 2T (k − 1), which is trivially verified
as�(2k ). Under the optimal SE setup, the proposed recursive
scheme is �(2N ).

2) SUB-BLOCK PARTITIONING
To handle the OFDM-IM mapping overhead, Basar et al. [2],
[7] propose the subblock partitioning (SP) approach. Accord-
ing to the survey work of [9], SP and the IxS algorithm
presented by [2], [7] were (along with a low complexity
detector) the distinctive methods responsible to release the
true potential of the IM scheme, thereby shaping the family
of index modulation waveforms as we know today. The key
idea of SP is to attenuate the mapper CC by restricting
the application of the IM technique to smaller portions of
the symbol called ‘‘subblocks’’. The length n = bN/gc
of each subblock depends on the number g of subblocks,
which is a configuration parameter of OFDM-IM. Increas-
ing g, decreases n, which causes the complexity of the IxS
algorithm to decrease too. This way, SP introduces a trade-
off between SE and CC, since the number of OFDM-IM
waveforms increases for lower g [2], [7]. Thus, setting g = 1
(i.e., deactivating SP) means maximizing the SE efficiency.
SP has represented the state of the art approach to bal-
ance SE and CC across the family of IM-based multi-carrier
waveforms [8], [9], [12]–[14], [16]–[31].
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3) (UN)RANKING ALGORITHMS
The IxS algorithm is a mandatory part for the asymptotic
analysis of the OFDM-IM mapper. As observed by authors
in [2], [7], the IxS task at the OFDM-IM transmitter (receiver)
can be implemented as an unranking (ranking) algorithm.
By reviewing the literature in combinatorics, one can find
out several different (un)ranking algorithms, running at dif-
ferent time complexities [32]–[40]. At a first glance, build-
ing the optimal OFDM-IM mapper may just be a matter of
adopting the IxS algorithm that establishes the complexity
upper-bound for the (un)ranking problem, i.e., the fastest cur-
rently known algorithm. However, in the particular domain
of OFDM-IM, k represents a trade-off between SE and CC.
Thus, because the literature in pure combinatorics does not
concern about SE as a performance indicator, it does not
suffice to guide the design of an optimal OFDM-IM mapper.
Therefore, to the best of our knowledge, no prior analysis
concerns whether the OFDM-IM mapper complexity mini-
mization under the constraint of SE maximization.

4) NOVEL SP-FREE OFDM-IM MAPPERS
In [41], the authors propose the concept of sparsely indexing
modulation to improve the trade-off between SE and energy
efficiency of OFDM-IM. Because this concept imposes k to
be much less than N , the authors rely on [37] to perform IxS
inO(k logN ) time. With the achieved time complexity reduc-
tion, the authors present the first SP-free OFDM-IM mapper.
However, the constraint on the value of k prevents the SE
maximization. To identify the largest tolerable computational
complexity to support the maximal SE, in a prior work [42]
we present the spectro-computational efficiency (SCE) analy-
sis. We define the SC throughput of an N -subcarrier mapper
as the ratio m(N )/T (N ) (in bits per computational instruc-
tions1), where T (N ) is the mapper’s asymptotic complexity to
map m(N ) bits into an N -subcarrier complex OFDM symbol.
From this, the largest computational complexity T (N ) must
satisfy limN→∞ m(N )/T (N ) > 0, i.e., the SC throughput
must not nullify as the system is assigned an arbitrarily
large amount of spectrum. Based on that, in [43] we present

the first mapper that supports all 2blog2 (
N
N/2)c waveforms of

OFDM-IM in the same asymptotic time of the classic OFDM
mapper. However, that proposedmapper still requires an extra
space of 2(N 2) look-up table entries in comparison to the
classic OFDM mapper.

C. OUR CONTRIBUTION
In this work, we build upon [42] and [43] to demonstrate the
first asymptotically optimal OFDM-IM mapper. By optimal,

we mean our mapper enables all 2blog2 (
N
N/2)c waveforms of

OFDM-IM under the same asymptotic time and space com-
plexities of the classic OFDM mapper. Thus, we enhance
our prior work [43] by reducing the space complexity of

1or seconds, given the time each instruction takes in a particular compu-
tational apparatus e.g. FPGA, ASIC.

the mapper from 2(N 2) to 2(N ). Besides, we enhance the
upper-bound analysis of [42] by also showing the corre-
sponding asymptotic lower-bounds that holds for anyOFDM-
IM implementation. In summary, we achieve the following
contributions:
• We derive the general OFDM-IM mapper lower-bound
�(k log2 M + log2

(N
k

)
+ k) and show it becomes the

same of the classic OFDM mapper under the optimal
configuration (i.e., g = 1, k = N/2, M = 2). This
formally proves that enabling all OFDM-IM waveforms
is not computationally intractable, as previously conjec-
tured [9], [14];

• Based on the upper and lower bound we identify,
we show that the optimal OFDM-IMmapper must run in
exact 2(N ) asymptotic complexity. An implementation
running above this complexity (i.e. T (N ) = ω(N )) nul-
lifies the SC throughput for arbitrarily large N , whereas
one running below that (i.e., T (N ) = o(N )) prevents the
SE maximization;

• We present the first worst-case computational complex-
ity analysis of the original OFDM-IM (de)mapper when
the maximal SE is allowed. In this context, we show
that the OFDM-IMmapper/demapper runs inO(N 2) and
becomes more complex than the Inverse Discrete fast
Fourier Transform (IDFT)/DFT algorithm;

• We present an OFDM-IM mapper that runs in 2(N )
time;

• We implement an open-source library that supports
all steps to map/demap an N -subcarrier complex
frequency-domainOFDM-IM symbol. In our library, the
IxS block is implemented with C++ callbacks to enable
flexible addition of other unranking/ranking algorithms
in the mapper. This facilitates the enhancement of cur-
rently supported algorithms to consider aspects not stud-
ied in this work, e.g. equiprobable IM waveforms [44],
Hamming distance minimization [16]. Based on our
theoretical findings, our OFDM-IM mapper library is
the first implementation that enables the OFDM-IM SE
maximization while consuming the same time and space
asymptotic complexities of the classic OFDM mapper.

D. ORGANIZATION OF WORK
The remainder of this work is organized as follows. In
Section II, we present the system model and the assump-
tions of our work. In Section III, we present the compu-
tational complexity scaling laws of the OFDM-IM mapper,
namely, the lower and upper CC bounds under maximal SE.
In Section IV, we analyze the throughput of the original
OFDM-IM mapper. Because such analysis requires the IxS
complexity, in that section we also analyze the CC of the
original IxS algorithm and show how to achieve the lowest
possible CC under the maximal SE. In Section V, we present
a practical case study to validate our theoretical findings.
Finally, in Section VI, we conclude our work and point future
directions.
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FIGURE 1. The OFDM-IM block diagram (Fig. 1a) mitigates the mapping computational complexity by subdividing the symbol into g small subblocks.
To maxizimize the spectral efficiency (SE) gain over OFDM, the mapper has to set g = 1 and k = N/2 (Fig. 1b). We prove such optimal mapper can be
implemented under the same time and space asymptotic complexities of the classic OFDM mapper.

II. SYSTEM MODEL AND ASSUMPTIONS
In this section, we review the OFDM-IM mapper (subsec-
tion II-A) and present its required design for SEmaximization
(subsection II-B). In subsection II-C, we present the assump-
tions to determine the lower and upper bound complexities
for the OFDM-IM mapper.

A. OFDM-IM BACKGROUND
The SP mapping approach [2], [7] is responsible for the main
changes OFDM-IM causes to the classic OFDM transmitter
block diagram (as illustrated in Fig. 1a). SP is characterized
by the configuration parameter g ≥ 1, which stands for
the number of subblocks within the N -subcarrier OFDM-IM
symbol. Each subblock has n = bN/gc subcarriers out of
which k must be active. Considering an M -point modulator
for the active subcarriers, each subblock maps p = p1+p2 =
k log2 M + blog2

(n
k

)
c bits and the entire symbol has gp bits.

The IxS algorithm of the β-th subblock (β = 1, . . . , g) is fed
with p1 = blog2

(n
k

)
c bits and outputs vector Iβ , the k-size

vector containing the indexes of the subcarriers that must
be active in the β-th subblock. To modulate the k active
subcarriers, the ‘‘M -ary modulator’’ step takes the remainder
p2 = k log2 M bits as input and outputs the vector sβ ,
which consists of k complex baseband signals taken from an
M constellation diagram. Then, each subblock forwards 2k
values (i.e., |sβ |+|Iβ | ) to the ‘‘OFDM block creator’’, which
refers to sβ and Iβ to modulate the k active subcarriers in each
subblock and build the full N -subcarrier frequency domain
OFDM-IM symbol. The remaining steps proceed as usual in
OFDM [45].

B. OPTIMAL OFDM-IM MAPPER DESIGN
A requisite to maximize the OFDM-IM SE is to deactivate
SP (i.e., set g to 1) and k to N/2 [7]. In theory, achieving the
maximal SE is just a matter of setting OFDM-IM with the
proper parameters. Indeed, by setting g to 1 (i.e., deactivating
SP) and k to N/2, the resulting mapper (Fig. 1b) enables all
2P1 waveforms of OFDM-IM [7]. However, the authors of
the original OFDM-IM waveform recommend avoiding the

ideal setup because of the resulting computational complexity
(compared with the classic OFDM mapper). In fact, by look-
ing at Fig. 1b, one may observe that the ideal OFDM-IM
mapper can be seen as a classic OFDM mapper with the
addition of the IxS step. Because of this extra-step, the opti-
mal OFDM-IM mapper requires more computational steps
than its OFDM counterpart. However, our rationale is that,
if one can design an OFDM-IM mapper under the same
asymptotic computational complexity of the classic OFDM
mapper, then the extra computational operations required by
the OFDM-IM mapper (compared to OFDM’s) are bounded
by a constant even for arbitrarily large N . Since the IxS
complexity is not affected by M , without loss of generality,
in this work we adopt M = 2 to achieve the largest gain in
comparison to the OFDM counterpart [12], [13]. We refer to
this as the optimal OFDM-IM setup.

C. ASYMPTOTIC ANALYSIS OF MULTICARRIER MAPPERS
We study the scaling laws of the OFDM-IM mapper as a
function of the number N of subcarriers. In particular, for
an N -subcarrier OFDM-IM symbol, we study the number
m(N ) of bits per symbol and the mapper’s computational
complexity T (N ) to map these bits into N complex baseband
samples. We concern about the minimum and maximum
asymptotic number of computational instructions required
by any OFDM-IM mapper implementation. For this end,
we employ the asymptotic notation as usual in the analysis
of algorithms [46]. Our asymptotic analysis assumes the clas-
sic Random-Access Machine (RAM) model which is shown
to be equivalent to the universal Turing machine [47]. The
RAM model focus on counting the amount of basic com-
putational instructions (e.g., data reading, data writing, basic
arithmetic, data comparison) regardless of the technology of
the underlying computational apparatus. For example, based
on the RAM model, one verifies that a classic N -subcarrier
BPSK-modulated OFDM mapper needs to perform N basic
computational instructions of data reading, each as wide as
log2 2 bits. This imposes a minimum of �(N ) basic reading
operations, regardless of a serial or parallel implementation.
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Of course, performing these instructions in parallel yields
more efficient runtime than performing them on a single
processor. Anyway, the resources consumed by the parallel
solution must scale on the derived computational complexity.
Besides, for each reading, N independent baseband samples
must feed N variables in the input of the IDFT DSP block,
demanding a minimum space of �(N ) complex variables.

III. INDEX MODULATION MAPPING
COMPLEXITY BOUNDS
In this section, we derive the CC lower and upper bounds for
an OFDM-IM mapper implementation through asymptotic
analysis as a function of the number of subcarriers N .

A. OFDM-IM MAPPING TIME COMPLEXITY
LOWER BOUND
To derive the general asymptotic lower bound for any
OFDM-IM implementation, we refer to Fig. 1b. Recall we
are considering an SP-free mapper design (i.e., g = 1) to
enable the IM principle on the entire N -subcarrier OFDM-
IM symbol. In this case, the lower bound is readily derived
by observing that any implementation needs at least m basic
computational steps to read the binary input to be mapped.
Also, O(k) basic computational steps are required to write
the baseband samples in the mapper’s output. Based on this,
in Lemma 1 we derive the general CC lower bound for any
OFDM-IM mapper implementation.
Lemma 1 (OFDM-IMMapper General CC Lower Bound):

Theminimum number of computational steps of any OFDM-
IMmapper implementation is�(k log2 M+blog2

(N
k

)
c+k).

Proof: In the optimal OFDM-IM mapper, g = 1.
Thus, the minimum number of computational steps to read
the input is m = P1 + P2 = blog2

(N
k

)
c + k log2 M .

Further, the OFDM-IM mapper must feed the ‘‘OFDM block
creator’’ DSP step with the vectors of the active subcarri-
ers indexes Iβ and their corresponding baseband samples
sβ (β = 1, . . . , g). Since the optimal mapper requires g = 1,
there is only a single k-size vector I1 and another k-size vector
s1, yielding to the total output size of 2k = O(k). Thus,
any OFDM-IM mapper implementation must write at least
O(k) units of data in its output. Therefore, because of the
computational effort to read (input) and write (output) units
of data, any OFDM-IM mapper solution will demand at least
�(k log2 M + blog2

(N
k

)
c + k) computational steps.

When the optimal OFDM-IM setup is allowed, the general
asymptotic lower bound of Lemma 1 becomes �(N ) (Corol-
lary 1). This stems from the fact that the number of index
modulated bits P1 approaches N − log2

√
N as N → ∞

(Lemma 2). Therefore, although the number of waveforms
of the optimal OFDM-IM setup grows exponentially on N ,
the CC of the IM mapping problem is not intractable (i.e.,
�(2N )) as previously conjectured [9], [14].
Lemma 2 (Maximum Number P1 of Index Modulation

Bits): The maximum number of index modulated bits P1
approaches N − log2

√
N for arbitrarily large N .

Proof: By definition, P1 = blog2
(N
k

)
c. If the max-

imum SE gain of OFDM-IM over OFDM is allowed,
(N
k

)
becomes the so-called central binomial coefficient

( N
N/2

)
,

whose well-known asymptotic growth is O(2N /
√
N ) [48].

From this, it follows that P1 approaches log2(2
NN−0.5) =

N − log2
√
N = O(N ) as N →∞.

Corollary 1 (OFDM-IM Mapper CC Lower Bound under
Maximal Spectral Efficiency): Under the optimal spectral
efficiency setup, the general mapping CC lower bound of
OFDM-IM (Lemma 1) becomes�(N+P1), which is the same
of OFDM, i.e., �(N ).

Proof: Since P1 approaches N − log2
√
N = O(N ) for

arbitrarily large N (Lemma 2), the general asymptotic lower-
bound �(N + P1) becomes �(N ), which is the minimum
asymptotic number of computational steps performed by the
classic OFDM mapper.
Lemma 1 and Corollary 1 imply that it is not possible

to implement an OFDM-IM mapper with less than �(N )
computational steps without sacrificing the SE optimality
(Corollary 2). The corollary 2 states that any OFDM-IM
mapper running in sub-linear complexity, i.e., k = o(N )
(which excludes the ideal k = N/2), prevents the maximal
SE gain over OFDM. However, sub-optimal SE setups can
be useful for sparse OFDM-IM systems, in which one gives
up the maximal throughput on behalf of energy consumption
minimization [41].
Corollary 2 (OFDM-IM Mapper Spectro-Computational

Lower-Bound Trade-Off): No OFDM-IM mapper imple-
mentation can maximize the spectral efficiency (SE) gain
over OFDM while running in o(N ) computational steps.

Proof: The asymptotic number of steps of any
OFDM-IM mapper is subject to the general lower bound of
�(k log2 M+blog2

(N
k

)
c+k) (Lemma 1). Thus, the only way

to improve that bound consists of changing the OFDM-IM
configuration parametersM and k . Out of all possible values
ofM and k , themaximum SE gain of OFDM-IM over OFDM
is achieved only when M = 2 and k = N/2 [12], [13]. Also,
under such optimal SE configuration, the general CC lower
bound becomes �(N ) (Corollary 1). Therefore, an OFDM-
IM implementation cannot run bellow this bound (i.e.,
in sub-linear time) unless a non-optimal SE configuration is
adopted for k .

B. OFDM-IM MAPPING TIME COMPLEXITY
UPPER BOUND
The CC upper bound of a problem is usually defined as
the complexity of the fastest currently known algorithm that
solves it [49]. This definition does not suffice to our study
because our asymptotic analysis is further constrained by
the SE maximization. In fact, if the fastest known algorithm
does not suffice to avoid an increasing bottleneck in the
mapping throughput as N grows, then its complexity cannot
be considered suitable to scale the mapper throughput on
N . From this, we define the spectro-computational mapper
throughput (Def. 1) and, based on its condition of scalability
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(Def. 2), we derive the required computational complex-
ity upper bound for any OFDM-IM mapper implementation
(Lemma 3).
Definition 1 (The Spectro-Computational (SC) Through-

put): Let T (N ) be the computational complexity (CC) to
mapm(N ) input bits into anN -subcarrier OFDM-IM symbol.
We define m(N )/T (N ) in bits per computational steps (or
seconds), as the spectro-computational (SC) throughput of
the mapper.
Definition 2 (Spectro-Computational Throughput Scala-

bility): The SC throughput m(N )/T (N ) of a mapper is not
scalable unless the inequality (1) does hold.

lim
N→∞

m(N )
T (N )

> 0 (1)

As a side note about our Def. 2, we call attention to the
fact that it consists of the asymptotic analysis. As such, ‘‘time
complexity’’ means ‘‘amount of computational instructions’’
which can be translated to (but does not necessarily mean)
wall clock runtime. That said, we recognize that a radio
implementation that does not meet our Def. 2 can achieve the
same wall clock runtime of another one that does. However,
in this case, the CC T (N ) will translate into other relevant
radio’s design performance indicators. For example, suppose
that the largest complexity T (N ) to satisfy our Def. 2 in a
particular DSP study is O(N ). A design that violates such a
requirement by employing a more complex algorithm, let us
say O(N 2), can still reach the same wall clock runtime of a
design that does not. However, since the overall number of
performed computational instructions depends on the algo-
rithm’s CC rather than the hardware technology, the average
wall clock time to run a single computational instruction
must be (much) lower in the O(N 2) solution in comparison
to the O(N ) counterpart. This pushes the algorithm’s CC to
the hardware design rather than to the wall clock runtime.
Therefore, the SC throughput of a radio design that violates
our Def. 2 can scale with N but at the expense of impairing
other relevant design performance indicators, such as the
number of hardware components (e.g., logic gates), circuit
area, energy consumption and manufacturing cost [50].

C. REQUIRED COMPLEXITY FOR MAXIMAL SE
Based on Def. 2, in Lemma 3 we show that the upper
bound complexity any OFDM-IM mapper implementation
must meet to ensure the optimal SE configuration is O(N ).
Lemma 3 (OFDM-IM Mapper Upper Bound under Opti-

mal SE Configuration): Under the optimal SE configuration,
the OFDM-IM mapper CC must be upper bounded by O(N ).

Proof: To meet the inequality 1 of Def. 2, T (N ) must
be asymptotically less or equal than m(N ), i.e., T (N ) =
O(m(N )) = O(P1+P2). Under the optimal SE configuration,
k = N/2 and P1 = log2

( N
N/2

)
= O(N ) bits (Lemma 2).

Therefore, T (N ) must be O(N ).
Based on the fact that the required OFDM-IM mapper

upper bound complexity matches its lower bound order of
growth in the optimal SE configuration, Theorem 1 tells us

that the OFDM-IM mapper must run in 2(N ) time. A solu-
tion requiring more asymptotic steps (i.e., ω(N )) nullifies
the mapper throughput as N grows, whereas one requiring
fewer steps (i.e., o(N )) prevents the SE gain maximization
(Corollary 2).
Theorem 1 (Required OFDM-IM Mapping Complexity):

If the configuration that maximizes the OFDM-IM spectral
efficiency gain over OFDM is allowed (i.e., g = 1, k = N/2,
M = 2), the OFDM-IM mapper block of [2], [7] must run in
2(N ) computational steps.

Proof: Corollaries 1 and 2 show that any OFDM-IM
mapper implementation running with less than �(N ) com-
putational steps cannot achieve the optimal SE gain over
OFDM. In turn, Lemma 3 tells us that the mapper throughput
nullifies for arbitrarily largeN if its complexity requires more
than O(N ) steps. Therefore, the exact asymptotic number of
computational steps for any OFDM-IM mapper implementa-
tion under the optimal SE configuration must be 2(N ).

IV. THROUGHPUT ANALYSIS
Our theoretical findings summarized in Theorem 1, disclose
the conditions for the computational feasibility of the optimal
OFDM-IMmapper. The theorem requires exactly2(N ) steps
for the mapper. Since theM -ary LUT block of the OFDM-IM
mapper (Fig. 1b) already runs in N/2 = O(N ) computational
steps, to meet the theoremwe just need to demonstrate the IxS
block can be implemented with 2(N ) computational steps.
By relying on the literature in combinatorics, one can

achieve (un)ranking complexities faster than the 2(N ) time
required by our Theorem 1 e.g., [32], [33]. Such a per-
formance, however, demands k = o(N ). Translated to
the OFDM-IM domain, this means such algorithms prevent
the SE maximization (Corollary 2). We identify that the
original OFDM-IM mapper (and its variants) refer to the
(un)ranking algorithm named ‘‘Combinadic’’ [34], [40].2 In
Subsection IV-A, we analyze the OFDM-IM SCE having
Combinadic as the IxS block. We show that the Combinadic
algorithm not only prevents the mapper to meet our Theo-
rem 1 but also surpasses the O(N log2 N ) complexity of the
IDFT DSP algorithm. In Subsection IV-B, we propose an
optimal OFDM-IM mapper by adapting Combinadic to run
in linear rather than quadratic complexity.

A. OFDM-IM MAPPER WITH COMBINADIC
We start this subsection by explaining how the Combinadic
algorithm works. Then, we analyze its CC when the optimal
SE configuration of OFDM-IM is allowed. Based on that,
we conduct the spectro-computational analysis of the OFDM-
IM mapper.

1) COMBINADIC TERMINOLOGY
TheCombinadic algorithm relies on the fact that each decimal
number X in the integer range [0,

(N
k

)
− 1] has an unique

representation (ck , · · · , c2, c1) in the combinatorial number

2In [51], the author points a fix to the algorithm of [40].
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Algorithm 1 Combinadic Unranking (OFDM-IM IxS
Transmitter)
1: {Inputs: X , N , and k ∈ [1,N ]}
2: {Output: Array ci (i ∈ [1, k]) such that X =

∑k
i=1

(ci
i

)
(Eq. 2)}

3: cc← N ;{the current next candidate for ci};
4: for i from k downto 1 do
5: repeat
6: cc← cc−1; {the first candidate for ck isN−1};

7: ccBinCoef ←
(cc
i

)
;

8: until ccBinCoef ≤ X
9: ci← cc;

10: X ← X − ccBinCoef ;
11: end for
12: return array c;

Algorithm 2 Combinadic Ranking (OFDM-IM IxS
Receiver)
1: {Inputs: Array ck > · · · > c2 > c1 ≥ 0, N > ck , and
k ∈ [1,N ]}

2: {Output: X =
∑k

i=1
(ci
i

)
(Eq. 2)};

3: X ← 0;
4: for i from 1 to k do
5: X ← X +

(ci
i

)
;

6: end for
7: return X ;

Combinadic unranking and ranking algorithms referred to by the IxS block of original OFDM-IM mapper. In the maximal spectral efficiency
OFDM-IM mapper (Fig. 1b), these algorithms run in O(N 2), surpassing the computational complexity of the Fourier transform algorithm.

system [52] (Eq. 2). For OFDM-IM, X represents the P1-bit
input (in base-10) and the coefficients ck > · · · > c2 >

c1 ≥ 0 represent the indexes of the k subcarriers that must be
active in the subblock.

X =
(
ck
k

)
+ · · · +

(
c2
2

)
+

(
c1
1

)
(2)

Combinadic may refer to two distinct tasks, namely,
unranking and ranking. The Combinadic unranking (shown
in Alg. 1) consists in computing the array of coefficients ci,
i ∈ [1, k], of Eq. (2) from the input X (along with N and k).
The Combinadic unranking takes place in the IxS of the
OFDM-IM transmitter. The reverse process, i.e., computing
X given all k coefficients ci, i ∈ [1, k], is known as rank-
ing and is performed by the IxS of the OFDM-IM receiver
(Alg. 2).

2) COMBINADIC UNRANKING FUNCTIONING
The Combinadic unranking is shown in Alg. 1. It takes
N , k and X as input parameters and outputs the array ci,
i ∈ [1, k] such that X =

∑k
i=1

(ci
i

)
(Eq. 2). The candidate

values for the coefficients ci considered by the algorithm
are 0, 1, · · · ,N − 1, which represent the indexes of the N
subcarriers. The coefficients are determined from ck until c1
and the variable cc (line 3) stores the next candidate value for
the current coefficient being computed. The first coefficient
to be computed is ck and its first candidate is N − 1. This is
the value of cc in the very first execution of line 6. For every
candidate value cc, the corresponding binomial coefficient(cc
i

)
is computed and stored in the variable ccBinCoef (line 7).

If condition ccBinCoef ≤ X is satisfied (line 8), then the
candidate value cc is confirmed as the value of ci (line 9) and
X is updated accordingly (line 10). This entire process repeats
until all the remainder k − 1 coefficients are determined.

3) COMBINADIC UNRANKING COMPLEXITY
In a particular worst-case instance of Combinadic unranking
(Alg. 1), the logic test of the inner loop (line 8) fails for
cc = N − 1,N − 2, · · · , k in the first iteration of the outer
loop, i.e. when the first coefficient ck is being determined.
Thus, ck is assigned to k − 1. This narrows the list of can-
didates (for the remainder k − 1 coefficients) to the values
k−2, k−3, · · · , 1, 0. Since the combinatorial number system
ensures that all k coefficients are distinct and that ck is the
largest one, a candidate value that fails for ck can be discarded
for ck−1 and so on. Thus, after ck is determined, there must
be at least k − 1 candidate values for the remainder k − 1
coefficients. Because of this, there is only one logic test per
candidate value in the inner loop regardless of the number
of coefficients. Since there are N candidate values, the inner
loop takes O(N ) time regardless of the outer loop. In each
test of the inner loop, Combinadic relies on the multiplicative
identity (Eq. 3) to compute the binomial coefficient value in
O(k) time. (

N
k

)
=

k∏
i=1

N − i+ 1
i

(3)

Therefore, the overall CC of the Combinadic unranking algo-
rithm is O(Nk). Considering the optimal SE configuration,
k = N/2 and the complexity becomes O(N 2), which is
asymptotically higher than the O(N logN ) complexity of the
IDFT block.

4) COMBINADIC RANKING FUNCTIONING
AND COMPLEXITY
The Combinadic ranking is shown in Alg. 2. It takes the
array of coefficients ci, i ∈ [1, k] from the OFDM-
IM detector and performs a summation of the k binomial
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coefficients
(c1
1

)
+
(c2
2

)
+· · ·+

(ck
k

)
(Eq. 2). Since each binomial

coefficient
(ci
i

)
can be calcuated in O(i) time by the mul-

tiplicative formula (Eq. 3), and i ranges from 1 to k , the
total number of multiplications performed by the algorithm
is 1 + 2 + · · · + k = k(k + 1)/2 = O(k2). Considering the
optimal OFDM-IM setup, k = N/2, the overall complexity
becomes O(N 2) as with Combinadic unranking.

5) OFDM-IM MAPPER THROUGHPUT WITH COMBINADIC
We now analyze the SC throughput of the OFDM-IMmapper
assuming the IxS block is implemented by the Combinadic
algorithm [34], [40] as in the original OFDM-IM design [7].
Considering the optimal OFDM-IM setup, the total number
of bits per symbol is N/2 + blog2

( N
N/2

)
c, whereas the IxS

complexity isO(N 2), as previously analyzed. Thus, according
to Def. 2, the resulting SC throughput must satisfy Ineq. (4)
as follows, otherwise it nullifies over N .

lim
N→∞

N/2+ blog2
( N
N/2

)
c

O(N 2)
?
> 0 (4)

According to the theory of computational complexity, the
wall-clock time taken by a particular implementation of a
O(N 2) algorithm is bounded by the function κN 2, in which
the constant κ > 0 captures the wall-clock runtime taken by
the asymptotic dominant instruction of the algorithm3 on a
real machine. In turn, the number of index modulated bits
tends to N − log2

√
N as N grows (Lemma 2). With basic

calculus, one can verify that the limit in Ineq. (4) tends to zero
for arbitrarily large N regardless of the value of κ , as follows.

lim
N→∞

N/2+ N − log2
√
N

κ · N 2 = 0 (5)

Therefore, referring to the original Combinadic algorithm
to implement the IxS block in the optimal SE configuration
causes the SC throughput of the OFDM-IMmapper to nullify
as N grows.

B. OPTIMAL SPECTRO-COMPUTATIONAL MAPPER
To avoid the asymptotic nullification of the OFDM-IM
mapper throughput while assuring the maximal SE, the IxS
(un)ranking algorithm must run nor faster nor slower than
2(N ) (Thm. 1). In [37], the author presents four unrank-
ing algorithms, out of which one (called ‘‘unranking-comb-
D’’) can meet that requirement. Therefore, one can consider
that algorithm to validate our theoretical findings. However,
we remark that the Combinadic algorithm (referred to by the
original OFDM-IM design) can benefit from the same prop-
erties of unranking-comb-D to run in2(N ) rather thanO(N 2)
under the optimal OFDM-IM setup. Similarly, the ranking
algorithm (not proposed in [37]) can also run in O(N ) as
well. Next, we explain how to adapt Combinadic to enable
the minimum possible CC when the maximal SE is allowed.

3The instruction we choose to count in the analysis. Mostly, real or
complex arithmetic instructions for DSP algorithms.

1) LINEAR-TIME COMBINADIC UNRANKING
The main bottleneck in the time complexity of Combi-
nadic (un)ranking (Alg. 1) is the inner loop. As previously
explained, the inner loop takes k iterations, each of which
demands further O(i) iterations to compute the binomial
coefficients

(ci
i

)
. Since i ranges from k to 1 and the optimal

OFDM-IM setup imposes k = O(N ), this yields k · O(i) =
N/2 × O(N/2) = O(N 2). To improve this complexity, note
that only the first candidate binomial coefficient

(ck
k

)
=
(N−1
N/2

)
needs to be computed from scratch (in O(k) time). Thus,
such computation can be performed outside both loops of
Combinadic (Alg. 1) and stored in a variable we refer to as
ccBinCoef . The resulting modification is shown in line 4 of
the Linear-time Combinadic unranking (Alg. 3). In this algo-
rithm, the variables cc and ccBinCoef denote the candidate
values for ci and

(ci
i

)
, respectively. Following ccBinCoef =(ck

k

)
, the next candidate binomial coefficient, either

( N−1
N/2−1

)
or
( N−2
N/2−1

)
, can be computed from ccBinCoef itself in O(1)

time. In general, one can calculate
(ci−1

i

)
and

(ci−1
i−1

)
from

(ci
i

)
by relying on the following respective equations [37]:(

ci − 1
i

)
= ((ci − i) ∗

(
ci
i

)
)/ci (6)(

ci − 1
i− 1

)
= (i ∗

(
ci
i

)
)/ci (7)

The Eqs. (6) and (7) are exploited by lines 9 and 18 of
Alg. 3, respectively. Thus, all remainder binomial coefficients
within the logic test of the inner loop are computed in O(1)
time. Therefore, the complexity of Combinadic unranking
improves from k · O(i) = N/2 × O(N/2) = O(N 2) to
O(k) + k · O(1), yielding N/2 + N/2 × O(1) = O(N ) in
the optimal OFDM-IM configuration.

2) LINEAR-TIME COMBINADIC RANKING
As with the Combinadic unranking, one can also reduce the
time complexity of the Combinadic ranking (Alg. 2) from
O(N 2) to O(N ) by computing

(ci+1
i

)
and

(ci+1
i+1

)
from

(ci
i

)
in

O(1) time rather than from scratch in O(i) time with the mul-
tiplicative formula (Eq. 3). However, these O(1)-time proper-
ties require the values in the array c to be consecutive, which
can not be the case of OFDM-IMbecause these values depend
on the data the user transmits. One can avoid calculating all k
binomial coefficients from scratch by relying on the fact that
the values ck > · · · > c2 > c1 are restricted to the integer
range [0,N − 1]. Based on this, the linear-time Combinadic
ranking (Alg. 4) computes from scratch only one binomial
coefficient (we refer to as ccBinCoef , line 10) from which at
most N − 1 other coefficients can be computed sequentially
in O(1) time each. Since the value of all other coefficients is
computed from ccBinCoef , this variable cannot be initialized
with null binomial coefficients i.e.,

(ci
i

)
such that ci < i.

Thus, from lines 4 to 9, Alg. 4 looks for the largest i in
the range [0, · · · , i, · · · ,N − 1] such that ci ≥ i. These
lines take O(k) iterations. In line 10, ccBinCoef is initialized
as
(ci
i

)
in O(i) time, yielding a cumulative complexity of
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Algorithm 3 Linear-Time Combinadic Unranking
(OFDM-IM Index Selector Transmitter)
1: {Inputs: X , N , and k ∈ [1,N ]}
2: {Output: Array ci (i ∈ [1, k]) such that X =

∑k
i=1

(ci
i

)
(Eq. 2)}

3: cc← N − 1; {largest candidate for ci};
4: ccBinCoef ←

(cc
k

)
; {candidate value for

(ck
k

)
};

5: for i from k downto 1 do
6: ci← cc;
7: while ccBinCoef > X do
8: {Below,

(ci−1
i

)
is computed from

(ci
i

)
in O(1)};

9: ccBinCoef←((ci−i)*ccBinCoef )/ci;
10: ci← ci − 1;
11: end while
12: X ← X − ccBinCoef ;
13: {Below,

(ci−1
i−1

)
is computed from

(ci
i

)
in O(1)};

14: cc← ci − 1;
15: if cc = 0 then
16: return array c
17: end if
18: ccBinCoef ← (i ∗ ccBinCoef )/ci;
19: end for
20: return array c

Algorithm 4 Linear-Time Combinadic Ranking (OFDM-
IM Index Selector Receiver)
1: {Inputs: Array ck > · · · > c2 > c1 ≥ 0, N > ck , and
k ∈ [1,N ]}

2: {Output: X =
∑k

i=1
(ci
i

)
(Eq. 2)};

3: i← 1;
4: while i ≤ k and ci < i do
5: i← i+ 1;
6: end while
7: if i > k then
8: return 0;
9: end if
10: ccBinCoef ←

(ci
i

)
; X ← 0;

11: for cc from ci to N − 1 do
12: if ci = cc then
13: X ← X + ccBinCoef ;
14: ccBinCoef ← (ccBinCoef ∗(ci+1))/(i+1);
15: i← i+ 1;
16: else
17: ccBinCoef← (ccBinCoef ∗ (cc+1))/(cc+1− i);
18: end if
19: end for
20: return X ;

Adaptation of the Combinadic algorithms (unranking 1 and ranking 2) referred to by the original OFDM-IM mapper to run in O(N ) time.
We prove these adaptations enable the overall OFDM-IM mapper to maximize the spectral efficiency gain over OFDM while consuming the
same time and space computational complexities of the classic OFDM mapper.

O(k) + O(k) = O(k). From this, any consecutive binomial
coefficient (either

(ci+1
i

)
or
(ci+1
i+1

)
) can be computed in O(1)

time from ccBinCoef =
(ci
i

)
as in the linear-time unranking

algorithm. Since the total number of remainder binomial
coefficients ranges from i to N − 1, the loop in line 11
computes all of them in O(N − i) = O(N ) time. Therefore,
the overall complexity isO(k)+O(k)+O(N ) which becomes
O(N ) under the optimal OFDM-IM setup (i.e., k = N/2).

3) SCALABLE OFDM-IM MAPPER THROUGHPUT
We now proceed with the SC analysis of the optimal OFDM-
IM mapper (Fig. 1b) considering an IxS implementation that
meets our Theorem 1. The analysis is as in subsection IV-A5,
except for the fact that the IxS algorithm runs in 2(N ) time
complexity. Thus, the SC throughput is given by

lim
N→∞

N/2+ N − log2
√
N

κ · N
(8)

As N grows, the time complexity is bounded by κN for
some constant κ > 0. Similarly, the SC throughput of the
mapper results in a non-null constant κ > 0, meeting the
Def. 2. As explained in the subsection IV-A5, κ > 0 is
constant that depends on the computational apparatus run-
ning the algorithm. Under the linear-time IxS complexity,
the throughput of the OFDM-IM mapper does not nullify for

arbitrarily large N ,

lim
N→∞

N/2+ N − log2
√
N

κ · N
=

3
2κ

> 0 (9)

Note also that the throughput can increase with N if
one achieves a o(N ) mapper. However, as demonstrated in
Corollary 2, this conflicts with the optimal SE setup, thereby
preventing the SE maximization.

V. IMPLEMENTATION AND EVALUATION
In this section, we present a practical case study to validate
our theoretical findings. In subsection V-A, we introduce
the open-source library we develop for the case study. In
subsection V-B, we describe the methodology to assess and
reproduce the empirical values of our experiments. Finally,
in subsection V-C, we present the results of our practical case
study that validate our theoretical findings.

A. OPEN-SOURCE OFDM-IM MAPPER LIBRARY
We wrote a C++ library that implements all OFDM-IM
steps to map/demap an N -subcarrier complex frequency-
domain symbol. We implement the IxS block with C++
callbacks to enable flexible addition of novel (un)ranking
algorithms. In the released version, we implement the original
IxS algorithm [7] and all the algorithms presented in this work
(Algs. 3 and 4). We do not implement (un)ranking algorithms
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FIGURE 2. Mapper performance: Proposed vs. OFDM-IM.

FIGURE 3. Demapper performance: Proposed vs. OFDM-IM.

that can reach a complexity that is asymptotically faster
than required by our Theorem 1 e.g. [32], [33]. As previ-
ously explained (Corollary 2), performing (un)ranking faster
than 2(N ) would require k 6= N/2, thereby preventing
the SE maximization (Corollary 2). However, future works
may implement IxS algorithms that improve the original
OFDM-IM using other criteria (e.g. BER [16], [44].) than
CC and SE. These and other IxS algorithms can also be
included/evaluated in our library. The entire source code of
our library, as well as detailed instructions on how to enhance
it with novel IxS algorithms, are publicly available under the
GPLv2 license in [53].

B. PERFORMANCE ASSESSMENT METHODOLOGY
We assess the runtime T (N ) (in secs.) and the through-
putm(N )/T (N ) (in megabits per seconds, Def. 1) for both the
original OFDM-IM mapper and our proposed mapper under
the optimal SE configuration (i.e., g = 1, k = N/2 and
M = 2). For each mapper, we assess the performance indica-
tors at both the transmitter (mapper) and the receiver (demap-
per) on a 3.5-GHz Intel i7-3770K processor.

We sampled the wall-clock runtime T (N ) of each map-
per with the standard C++ timespace library [54]

under the profile CLOCK_MONOTONIC. In each execution,
we assigned our process with the largest real-time priority and
employed the isolcpus Linux kernel directive to allocate
one physical CPU core exclusively for each process. We
generate the input for the mappers with the standard C++
64-bit version of the Mersenne Twistter (MT) 19937 pseudo-
random number generator [55]. We set up three indepen-
dent instances of MT19937_64 with seeds 1973272912,
1822174485 and 1998078925 [56]. Every iteration, three
sampled T (N ) are forwarded to the Akaroa-2 tool [57] for sta-
tistical treatment. Akaroa-2 determines the minimum number
of samples required to reach the steady-state mean estimation
of a given precision. In our experiments, this precision corre-
sponds to a relative error below 5% and a confidence interval
of 95%. Besides, in all experiments the highest observed
variance was below 10−3 and the average number of samples
in the transient state was about 300.

Table 1 reports all assessed results for both the orig-
inal OFDM-IM mapper and the proposed mapper at the
transmitter (mapper). The table 2 reports the analogous
results assessed at the receiver (demapper). From left to
right, the tables present the following columns: the number
N of symbol’s subcarriers, the number m(N ) of bits per
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TABLE 1. Mapper performance: Proposed (‘‘Prop.’’) vs. original
OFDM-IM (‘‘Orig.’’).

symbol, the SE gain of the original OFDM-IM waveform
against the classic OFDMmapper,4 the assessed (de)mapper,

4The maximum SE gain is m(N )/N [13].

TABLE 2. Demapper performance: Proposed (‘‘Prop.’’) vs. original
OFDM-IM (‘‘Orig.’’).

the assessed runtime T (N ), the half-width of the confidence
interval δ for T (N ), the achieved (de)mapping throughput,
and the number x of samples needed to achieve the required
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precision. The source-code of all our experiments is publicly
available under GPLv2 license in [53].

C. RESULTS
In Fig. 2a and Fig. 2b, we respectively plot the runtime
and the throughput performances of the compared mappers
for N = 2, 4, . . . , 62. Although only particular values of N
verify in industry standards (e.g. N = 48 [58], N = 52 [59]),
we range it from small to large values to illustrate the asymp-
totic shape predicted by our throughput analysis. Detailed
information about these plots are reported on the Table 1.
As predicted by our theoretical analysis (Subsections IV-A5
and IV-B), in the ideal setup, the runtime order of growth
of the original OFDM-IM mapper is asymptotically larger
than our proposed mapper (Fig. 2a). From the theoretical
analysis, we know these complexities are O(N 2) and O(N ),
respectively. Naturally, the runtime curves of both mappers
increase monotonically towards infinite as the number N of
subcarriers grows. However, because the runtime order of
growth of the original OFDM-IM mapper is larger than the
number m(N ) = N/2 + log2

( N
N/2

)
= O(N ) of bits per

symbol, the throughput m(N )/T (N ) of this mapper nullifies
as N grows (Fig. 2b). This validates the theoretical analysis
we show in subsection IV-A5.

By contrast, when our proposed mapper takes place, both
the resulting computational complexity T (N ) and the total
of bits m(N ) per symbol increases in the same order of
growth. Thus, the throughput m(N )/T (N ) tends to a non-null
constant. In particular, according to our theoretical analysis in
subsection IV-B3, this is m(N )/T (N ) = 3/(2κ). Recall that
the constant κ > 0 captures the wall-clock runtime taken by
the asymptotic dominant instruction of the algorithm on a real
machine. However, in our practical case study, the assessed
runtime T (N ) encompasses all computational instructions
performed by each (de)mapper. Thus, κ represents an aver-
age of the runtime taken by each kind of instruction on
the machine of our testbed i.e., the Intel i7-3770K proces-
sor. From the assessed throughput m(N )/T (N ), the average
value of κ can be computed based on Eq. (9), which is
κ = 3/2 · 1/(m(N )/T (N )). In our testbed, the average run-
time per computational instruction was 0.02 µs.

In Fig. 3a and Fig. 3b, we respectively plot the runtime
and the throughput performances of the compared demap-
pers for different values of N . Detailed informations of
these plots are reported on the Table 2. As in the mapper
analysis, the throughput of the original OFDM-IM demap-
per tends to zero as N grows whereas the throughput of
our proposed demapper tends to a non-null constant under
the same conditions. If compared against its correspond-
ing mapper, we verify that our proposed demapper presents
larger throughput. This means that, although both our mapper
and demapper have the same O(N ) asymptotic complexity,
the demapper implementation is less complex concerning
the constant κ . Indeed, we verify an average κ = 0.015 µs
for the demapper in contrast with the 0.02 µs for the
mapper.

VI. CONCLUSION AND FUTURE DIRECTIONS
In this work, we studied the trade-off between spectral effi-
ciency (SE) and computational complexity (CC) T (N ) of
an N -subcarrier OFDM with Index Modulation (OFDM-IM)
mapper. We identified that the CC lower bound to map

any of all 2blog2 (
N
N/2)c OFDM-IM waveforms is �(N ).

With this, we formally proved that enabling all OFDM-
IM waveforms is not computationally intractable, as previ-
ously conjectured [9], [14]. Besides, we showed that any
algorithm running faster than this lower bound prevents the
OFDM-IM SE maximization. We also presented the spectro-
computational efficiency (SCE) metric both to analyze the
mapper’s throughput and identify an upper bound for the
mapper’s complexity T (N ) under the maximal SE. In this
context, we proved that the worst tolerable CC for the mapper
is O(N ) otherwise, the mapper’s throughput nullifies as the
system is assigned more and more subcarriers. We showed
that this is the case of the original OFDM-IM mapper [7],
in which the O(N 2) CC surpasses the O(N log2 N ) CC of
the IDFT/DFT algorithm. Then, we presented an OFDM-
IM mapper that enables the largest SE under the minimum
possible CC.

We demonstrate our theoretical findings by implement-
ing an open-source library that supports all DSP steps
to map/demap an N -subcarrier complex frequency-domain
OFDM-IM symbol. Our implementation supports different
index selector algorithms and is the first to enable the SE
maximization while preserving the same time and space
asymptotic complexities of the classic OFDM mapper. With
our library, we showed that the OFDM-IM mapper does not
need compromise approaches that prevail in the OFDM-IM
literature such as subblock partitioning (SP) [7]–[9], [13],
[25], adoption of few active subcarriers [41] or extra space
complexity [43].
Future works may consider extra performance indicators

in the analysis (in addition to CC and SE) such as bit-error
rate [16], [44]. Moreover, our mapper can be directly applied
to other IM systems that rely on the same index selector of
the original OFDM-IM mapper such as spatial modulation
systems [60] and dual mode OFDM-IM [25]. Besides, our
methodology can guide the activation of all waveforms in
other variants of OFDM-IM such as multiple mode OFDM-
IM [26].
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