
fnins-14-00323 April 13, 2020 Time: 18:1 # 1

ORIGINAL RESEARCH
published: 16 April 2020

doi: 10.3389/fnins.2020.00323

Edited by:
Pedro Antonio Valdes-Sosa,

Clinical Hospital of Chengdu Brain
Science Institute, China

Reviewed by:
Sepideh Sadaghiani,

University of Illinois
at Urbana–Champaign, United States

Andrew P. Bagshaw,
University of Birmingham,

United Kingdom

*Correspondence:
Miguel Castelo-Branco
mcbranco@fmed.uc.pt

Specialty section:
This article was submitted to

Brain Imaging Methods,
a section of the journal

Frontiers in Neuroscience

Received: 19 November 2019
Accepted: 19 March 2020

Published: 16 April 2020

Citation:
Abreu R, Simões M and

Castelo-Branco M (2020) Pushing
the Limits of EEG: Estimation

of Large-Scale Functional Brain
Networks and Their Dynamics

Validated by Simultaneous fMRI.
Front. Neurosci. 14:323.

doi: 10.3389/fnins.2020.00323

Pushing the Limits of EEG:
Estimation of Large-Scale Functional
Brain Networks and Their Dynamics
Validated by Simultaneous fMRI
Rodolfo Abreu1, Marco Simões1,2 and Miguel Castelo-Branco1*

1 Faculty of Medicine, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear
Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal, 2 Center for Informatics and Systems
(CISUC), University of Coimbra, Coimbra, Portugal

Functional magnetic resonance imaging (fMRI) is the technique of choice for detecting
large-scale functional brain networks and to investigate their dynamics. Because fMRI
measures brain activity indirectly, electroencephalography (EEG) has been recently
considered a feasible tool for detecting such networks, particularly the resting-state
networks (RSNs). However, a truly unbiased validation of such claims is still missing,
which can only be accomplished by using simultaneously acquired EEG and fMRI data,
due to the spontaneous nature of the activity underlying the RSNs. Additionally, EEG is
still poorly explored for the purpose of mapping task-specific networks, and no studies
so far have been focused on investigating networks’ dynamic functional connectivity
(dFC) with EEG. Here, we started by validating RSNs derived from the continuous
reconstruction of EEG sources by directly comparing them with those derived from
simultaneous fMRI data of 10 healthy participants, and obtaining an average overlap
(quantified by the Dice coefficient) of 0.4. We also showed the ability of EEG to map the
facial expressions processing network (FEPN), highlighting regions near the posterior
superior temporal sulcus, where the FEPN is anchored. Then, we measured the dFC
using EEG for the first time in this context, estimated dFC brain states using dictionary
learning, and compared such states with those obtained from the fMRI. We found a
statistically significant match between fMRI and EEG dFC states, and determined the
existence of two matched dFC states which contribution over time was associated with
the brain activity at the FEPN, showing that the dynamics of FEPN can be captured
by both fMRI and EEG. Our results push the limits of EEG toward being used as
a brain imaging tool, while supporting the growing literature on EEG correlates of
(dynamic) functional connectivity measured with fMRI, and providing novel insights into
the coupling mechanisms underlying the two imaging techniques.

Keywords: simultaneous EEG-fMRI, large-scale functional brain networks, dynamic functional connectivity
(dFNC), electrical source imaging (ESI), task-based fMRI, resting-state functional network connectivity (rs-FNC)
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INTRODUCTION

A large-scale functional brain network is defined as a subset
of interconnected, possibly distant, brain regions that interact
with each other in order to perform a plethora of tasks of
different levels of complexity (Bressler and Menon, 2010). The
identification of such networks led to pivotal findings regarding
brain function in healthy humans (van den Heuvel and Hulshoff
Pol, 2010), and by discriminating changes in some properties
of those networks due to disease, a better understanding of
their pathophysiology was possible (Du et al., 2018). Because
of its remarkable spatial resolution and whole-brain coverage,
functional magnetic resonance imaging (fMRI) is currently the
imaging technique of choice to measure the connectivity strength
(or functional connectivity, FC) between brain regions, and
consequently reconstruct such functional networks with a few
millimeter resolution, despite its modest temporal resolution in
the order of seconds (van den Heuvel and Hulshoff Pol, 2010; Lee
et al., 2013). While task-based fMRI studies have allowed to map
the brain regions that specifically respond to the task of interest
(Barch et al., 2013), several large-scale functional networks can
be found in the normal brain during rest – the so-called resting-
state networks (RSNs) – which exhibit temporally correlated
spontaneous fluctuations in the blood-oxygen-level-dependent
(BOLD) signal (Biswal et al., 1995; Smith et al., 2009). RSNs are
typically identified by decomposing the fMRI data using spatial
independent component analysis (sICA), under the hypothesis
that the resulting independent components (including the RSNs)
are statistically independent in space (Beckmann et al., 2005).

Importantly, RSNs are also identified under the assumption
that their functional connectivity is static; however, current
literature suggests that brain networks in general continuously
reorganize in response to both internal and external stimuli
at multiple time-scales, resulting in temporal fluctuations of
their FC – the so-called dynamic functional connectivity (dFC)
(Hutchison et al., 2013; Calhoun et al., 2014; Preti et al., 2017).
Specifically, it has been shown that dFC correlates with brain
state (stimulation/task, eyes closure vs. eyes open, vigilance, sleep,
anesthesia, and drug manipulation) as well as with age, gender
and disease [for a review, please refer to Thompson (2018)].
dFC correlates of disease are believed to be particularly relevant
for its characterization, and recent studies have demonstrated
that dFC discriminates healthy from patient populations better
than static FC (Du et al., 2018). Under the assumption that
brain function dynamics can be described by a limited number
of states (Preti et al., 2017), a significant number of studies
have dedicated to the identification of such brain states from
the dFC, by applying pattern recognition techniques, particularly
clustering (Allen et al., 2014), principal component analysis
(Leonardi et al., 2013), and dictionary learning (Leonardi et al.,
2014; Abreu et al., 2019).

Despite the undoubted insights that the study of brain
networks’ (dynamic) functional connectivity with fMRI has
provided so far, this imaging technique is only capable of
indirectly measuring brain activity/connectivity, delayed by the
hemodynamic response (Logothetis et al., 2001). In contrast,
magnetoencephalography (MEG) and electroencephalography

(EEG) measure the activity of large populations of neurons
directly, and because of their high temporal resolution at
the sub-millisecond scale, they represent in principle ideal
approaches to study brain functional connectivity (Niedermeyer
and Lopes Da Silva, 2005). Whole-brain FC studies using
MEG or EEG, however, require the challenging procedure of
reconstructing the sources responsible for generating the signals
measured at the scalp (Mantini et al., 2011; Michel and Murray,
2012). Due to continuous technological advances, a reliable
reconstruction of MEG and EEG is now possible, opening the
pathway for the study of large-scale FC with high temporal
resolution. In fact, RSNs typically identified with fMRI were
first replicated on MEG (Brookes et al., 2011; Mantini et al.,
2011), and more recently on EEG (Liu et al., 2017, 2018), by first
performing continuous electrical source imaging (cESI), which
reconstructs their underlying sources over time (Vulliemoz et al.,
2010a; Michel and Murray, 2012), and then applying sICA to
the resulting dataset. This suggests that temporally coherent
fluctuations across distant brain regions can also be captured
with MEG and EEG. Motivated by its portability, low cost
and ease of use (Niedermeyer and Lopes Da Silva, 2005), and
more importantly, the possibility of combining it with other
imaging modalities, particularly fMRI (Abreu et al., 2018), EEG
is frequently preferred over MEG.

Because reconstructing EEG sources involves a complex
pipeline (Michel et al., 2004; Michel and Murray, 2012), a recent
study has systematically investigated the impact of the several
processing steps on the accurate identification of RSNs with
EEG during rest (Liu et al., 2018). However, the ground truth
considered was based on RSNs derived from separately acquired
fMRI data; additionally, the feasibility of using EEG data to map
task-specific brain networks has been poorly explored, and the
estimation of dFC and the associated brain states with EEG is
yet to be investigated. Because RSNs have been shown to be also
present in task-based fMRI studies (Di et al., 2013; Cole et al.,
2016), in this paper we start by validating in a truly unbiased
manner the results from Liu et al. (2017, 2018) by identifying
RSNs on fMRI and EEG data acquired simultaneously from 10
healthy participants performing a neurofeedback (NF) task. Next,
we mapped the target region of the NF (the facial expressions
processing network, FEPN) with fMRI and EEG, and compared
the resulting networks. Finally, we estimated dFC brain states also
from fMRI and EEG, and determined into which extent these
techniques match.

MATERIALS AND METHODS

Participants
Ten healthy participants (mean age: 26 ± 3 years; 9 males)
performed a simultaneous EEG-fMRI NF session. All participants
had normal or corrected-to-normal vision, and no history of
neurological disorders. The study was approved by the Ethics
Commission of the Faculty of Medicine of the University of
Coimbra and was conducted in accordance with the declaration
of Helsinki. All subjects provided written informed consent to
participate in the study.
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Experimental Protocol
The session was performed at the Portuguese Brain Imaging
Network (Coimbra, Portugal) and consisted of four simultaneous
EEG-fMRI runs: first, a functional localizer specifically developed
to identify the FEPN (anchored on the posterior Superior
Temporal Sulcus region; pSTS), followed by three NF runs (of
alternated up and down regulation). The first two NF runs used
either visual or auditory feedback (random order) and the third
had no feedback presented to the participant. The participants
were given a mental strategy to follow during the NF runs, but
were instructed to adapt it to maximize the modulation outcomes
presented by the feedback.

For the localizer run, 8 s blocks of dynamic facial expressions
(happy, sad or alternated between happy and sad expressions)
morphed into the face of a realistic human virtual character are
contrasted with 8 s blocks consisting of the same face with a
static neutral expression, or motion blocks of moving dots. This
rigorous contrast is able to identify regions that respond to the
dynamic aspects of the facial expressions but not to the face itself
or the movement aspects of the stimuli (Direito et al., 2019).
The NF runs consist of 24 s blocks of alternated up and down
regulation of the activity extracted in real-time from the pSTS
region identified in the localizer run. For the first two NF runs, the
participants were presented with visual feedback (materialized
in the intensity level of the facial expression displayed by the
virtual avatar) or auditory feedback (consisting of high and low
pitch beep sounds, corresponding to increasing or decreasing the
amplitude of the BOLD signal in the pSTS region, respectively).
A detailed description of the protocol can be found in the
Supplementary Material, and in our previous paper (Direito
et al., 2019), where we assessed the neuroscientific aspects of the
fMRI NF sessions.

EEG-fMRI Data Acquisition
Imaging was performed on a 3T Siemens Magnetom Trio MRI
scanner (Siemens, Erlangen) using a 12-channel RF receive
coil. The functional images were acquired using a 2D multi-
slice gradient-echo echo-planar imaging (GE-EPI) sequence,
with the following parameters: TR/TE = 2000/30 ms, voxel
size = 4.0 mm × 4.0 mm × 3.0 mm, 33 axial slices,
FOV = 256 mm × 256 mm, FA = 90◦, yielding a total
coverage of the occipital and posterior temporal lobe. The
start of each trial was synchronized with the acquisition of
the functional images. A T1-weighted, magnetization-prepared
rapid acquisition gradient-echo (MPRAGE) sequence was used
for the acquisition of structural data (1 mm isotropic, 176
slices, TR/TE = 2530/3.42 ms), allowing for the subsequent
co-registration of the functional data. For each participant,
160 fMRI volumes were acquired during the localizer run,
yielding approximately 5.33 min of duration; the remaining three
functional (NF) runs consisted of 300 volumes (10 min).

The EEG signal was recorded using the MR-compatible 64-
channel NeuroScan SynAmps2 system and the Maglink software,
with a cap containing 64 Ag/AgCl non-magnetic electrodes
positioned according to the 10/10 coordinate system, a dedicated
electrode for referencing placed close to the Cz position,

and two electrodes placed on the chest for electrocardiogram
(EKG) recording. EEG, EKG, and fMRI data were acquired
simultaneously in a continuous way, and synchronized by means
of a Syncbox (NordicNeuroLab, United States) device. EEG and
EKG signals were recorded at a sampling rate of 10 kHz. No filters
were applied during the recordings. The helium cooling system
was not turned off, as it may carry the associated risk of helium
boil-off in certain systems (Mullinger et al., 2008), and thus is not
permitted in some clinical sites as the one used in this study.

Outside the MR scanner and prior to the beginning of
the experiment, each subject was submitted to an EEG-
only acquisition while performing the localizer stimulation
experiment. These data were used to check the quality of the EEG
recorded inside the MR scanner, after the removal of gradient
switching and pulse artifacts.

All the procedures described next were coded in MATLAB,
and are available together with all data upon request.

Data Pre-processing
Electroencephalography (EEG)
Removal of EEG artifacts
EEG data underwent gradient artifact correction on a volume-
wise basis using a standard artifact template subtraction
(AAS) approach (Allen et al., 2000). Then, bad epochs of
2 s (corresponding to one TR) were manually identified and
removed from the EEG signal; these were selected based on
EEG segments of abnormally high amplitude and/or frequency,
or whenever the gradient artifact correction algorithm failed
to remove the artifact, typically in the beginning and ending
of the recordings. Bad channels were visually inspected and
interpolated. For the removal of the pulse artifact, the method
presented in Abreu et al. (2016) was employed, whereby the EEG
data are first decomposed using independent component analysis
(ICA), followed by AAS to remove the artifact occurrences from
the independent components (ICs) associated with the artifact.
The corrected EEG data are then obtained by reconstructing
the signal using the artifact-corrected ICs together with the
original non-artifact-related ICs. Finally, the EEG data were
down-sampled to 250 Hz and band-pass filtered to 1–45 Hz.
For the purpose of removing the pulse artifact from the EEG,
and the physiological noise from the fMRI (described below),
the Pan-Tompkins algorithm (Pan and Tompkins, 1985) was
optimized and used for the detection of R peaks on the EKG data
(Abreu et al., 2017).

Continuous EEG source imaging
The pre-processed EEG data were then submitted to an EEG
source imaging (ESI) procedure. Specifically, the so-called
continuous ESI was performed, with the purpose of estimating
the temporal variations of the EEG sources responsible for
generating the electrical potential distributions measured at the
scalp with a high temporal resolution. A realistic head model
was built by first segmenting each subject’s structural image into
12 tissue classes (skin, eyes, muscle, fat, spongy bone, compact
bone, cortical gray matter, cerebellar gray matter, cortical white
matter, cerebellar white matter, cerebrospinal fluid, and brain
stem), each with a specific electrical conductivity [depicted in
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Supplementary Table S1; from Liu et al. (2017)]. Because this
is not feasible using the currently available tools (which allow
segmentation up to six tissues), a state-of-the-art brain tissue
model was used (MIDA, available online; Iacono et al., 2015),
and co-registered into the structural image using FSL’s tool
FNIRT (Jenkinson and Smith, 2001; Jenkinson et al., 2002).
The transformed MIDA model onto the structural image of
each participant was then visually inspected for assessing the
quality of the registration step. The electrode positions were
co-registered to the skin compartment by first considering
their standard positions, and then manually adjusting them to
match the distortions clearly observed on the structural images.
Finally, the SimBio finite element model (FEM; Wolters et al.,
2004) algorithm implemented in FieldTrip (Oostenveld et al.,
2011) was then used for numerically approximating the volume
conduction model (the number of FEM elements in each tissue
compartment is depicted in Supplementary Table S1). The
source dipoles were placed on a 4-mm 3D grid only spanning the
cortical gray matter, followed by the estimation of the leadfield
matrix, which maps each possible dipole configuration onto a
scalp potential distribution (the forward problem). The inverse
problem was solved through a distributed inversion solution
approach using the exact low resolution brain electromagnetic
tomography (eLORETA; Pascual-Marqui et al., 2011) algorithm,
which estimates the strength j of each dipole on the source grid at
the x (jx), y (jy), and z (jz) directions. For each EEG time sample
t, the overall strength of a dipole was computed as:

p (t) =
√
j2x (t)+ j2y (t)+ j2z (t) (1)

This was computed for all dipoles and time samples, yielding
a 4D (3D × t) dataset (EEG-ESI). The time-series of dipole
strength was then downsampled to 1 Hz. These processing steps
were selected based on previous studies that comprehensively
investigated their impact on detecting RSNs from EEG-ESI
data, concluding that this was the optimal processing pipeline
(Liu et al., 2017, 2018).

Functional Magnetic Resonance Imaging (fMRI)
The first 10 s of data were discarded to allow the BOLD-fMRI
signal to reach steady-state, and non-brain tissue was removed
using FSL’s tool BET (Smith, 2002). Subsequently, slice timing and
motion correction were performed using FSL’s tool MCFLIRT
(Jenkinson et al., 2002). Then, a high-pass temporal filtering with
a cut-off period of 100 s was applied, and spatial smoothing using
a Gaussian kernel with full width at half-maximum (FWHM) of
5 mm was performed. Physiological noise was removed by linear
regression using the following regressors (Abreu et al., 2017): (1)
quasi-periodic BOLD fluctuations related to cardiac cycles were
modeled by a fourth order Fourier series using RETROICOR
(Glover et al., 2000); (2) aperiodic BOLD fluctuations associated
with changes in the heart rate were modeled by convolution
with the respective impulse response function [as described
in Chang et al. (2009)]; (3) the average BOLD fluctuations in
white matter (WM) and cerebrospinal fluid (CSF); (4) the six
motion parameters estimated by MCFLIRT; and (5) scan nulling
regressors (motion scrubbing) associated with volumes acquired

during periods of large head motion (12 ± 7 scrubbed volumes,
averaged across runs and subjects); these were determined using
the FSL’s utility fsl_motion_outliers, whereby the DVARS metric
proposed in Power et al. (2012) is first computed, and then
thresholded at the 75th percentile plus 1.5 times the inter-quartile
range. Because the respiratory traces were not recorded, the
associated physiological fluctuations in the BOLD signal were
not removed. Finally, volumes corresponding to bad epochs
identified on the EEG were removed.

For each participant, WM and CSF masks were obtained from
the respective T1-weighted structural image by segmentation
into gray matter, WM and CSF using FSL’s tool FAST (Zhang
et al., 2001). The functional images were co-registered with the
respective T1-weighted structural images using FSL’s tool FLIRT,
and subsequently with the Montreal Neurological Institute
(MNI) (Collins et al., 1994) template, using FSL’s tool FNIRT
(Jenkinson and Smith, 2001; Jenkinson et al., 2002). Both WM
and CSF masks were transformed into functional space and
were then eroded using a 3 mm spherical kernel in order to
minimize partial volume effects (Jo et al., 2010). Additionally,
the eroded CSF mask was intersected with a mask of the
large ventricles from the MNI space, following the rationale
described in Chang and Glover (2009).

Data Analysis
In this section, the several data analyses performed on both fMRI
and EEG-ESI for the identification of RSNs, the FEPN and the
dFC brain states are described. Except when stated otherwise, the
same procedures were applied to the fMRI and EEG-ESI data.

Identification of Resting-State Networks (RSNs)
ICA decomposition
Following the approach described in Liu et al. (2017, 2018),
the pre-processed fMRI and EEG-ESI data were submitted to
a group-level probabilistic spatial ICA (sICA) decomposition
using the FSL’s tool MELODIC (Beckmann and Smith, 2004),
whereby the data of all participants for each run are temporally
concatenated prior to the sICA step, as recommended in the
MELODIC’s guide for the identification of RSNs1. The optimal
number of independent components (ICs) was automatically
estimated for the fMRI data based on the eigenspectrum of
its covariance matrix (Beckmann and Smith, 2004), with an
average of approximately 40 ICs across runs. Because the
dimensionality estimation algorithm in MELODIC is tailored
for fMRI data, and for consistency purposes, the EEG-ESI data
were also decomposed into 40 ICs. Nonetheless, when applying
this algorithm to the EEG-ESI data, a similar number of ICs
was estimated, differing no more than five ICs across runs with
relation to those estimated from the fMRI data.

Automatic identification of RSNs
An automatic procedure for the identification of well-known
RSNs was then applied, in which the spatial maps of the ICs
(thresholded at Z = 3.0) were compared with those of the 10
RSN templates described in Smith et al. (2009), in terms of

1https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC
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spatial overlap computed as the Dice coefficient (Dice, 1945). For
each template, the IC map yielding the highest Dice coefficient
was determined as the corresponding RSN. In the cases of non-
mutually exclusive assignments, the optimal assignment was
determined by randomizing the order of the RSN templates (up
to a maximum of 10,000 possible combinations were considered,
for computational purposes), and then sequentially, and mutually
exclusively, assigning them to the IC maps based on their
Dice coefficient. The assignment with the highest average Dice
coefficient across all RSN templates was then deemed optimal,
yielding the final set of RSNs: three visual networks (RSN 1–
3), the default mode network (DMN and RSN4), a cerebellum
network (RSN5), a motor network (RSN6), an auditory network
(RSN7), the salience network (RSN8), a right language network
(RSN9), and a left language network (RSN10). Although the
RSN templates serve as an independent validation of the RSNs,
the Dice coefficient between fMRI and EEG-ESI RSNs was also
computed, thus allowing to directly compare our results with the
current literature (Liu et al., 2017, 2018).

Statistical validation
In order to statistically validate the abovementioned spatial
overlaps, a null model based on the concept of commonly
used permutation tests was defined. Specifically, since it was
hypothesized that 10 RSNs could be unequivocally identified
among the 40 fMRI and EEG-ESI ICs (based on their
substantially higher overlap with RSN templates when compared
with other ICs unrelated with RSNs), the null model was
obtained from the Dice coefficients computed for all the possible
combinations of RSN templates and fMRI/EEG-ESI ICs (a total
of 40 [ICs] × 10 [RSNs] = 400 values). In this way, for each run,
null distributions of Dice coefficients were defined for: (1) the
overlap between RSN templates and fMRI ICs; (2) the overlap
between RSN templates and EEG-ESI ICs; and (3) the overlap
between fMRI and EEG-ESI ICs. By computing their associated
95th percentile, a statistical threshold was then determined for
each analysis, against which the average Dice coefficients across
RSNs were tested (values in Table 1).

Mapping of the Facial Expressions Processing
Network
For the purpose of mapping the regions in the FEPN, a general
linear model (GLM) framework was used on both fMRI and
EEG-ESI data. Although uncommon, the rationale of also using
a GLM to analyze EEG data followed that of previous studies
(Custo et al., 2014; Gonçalves et al., 2014), including the
LIMO EEG toolbox which was specifically designed under this
framework (Pernet et al., 2011). For the localizer run of each
participant, a GLM comprising five regressors was built (one for
each condition; described in section “Experimental Protocol”),
based on unit boxcar functions with ones during the respective
condition to be modeled, and zeros elsewhere. While this GLM
was used directly to model the activity of the FEPN on the EEG-
ESI data since no hemodynamic delay is expected, for the fMRI
data, the regressors were convolved with a canonical, double-
gamma hemodynamic response function (HRF) to account for
such delay (Friston et al., 1995). The respective GLMs were then
fitted to the pre-processed fMRI and the EEG-ESI data using

the FSL’s improved linear model (FILM) (Woolrich et al., 2001),
and voxels exhibiting significant signal changes when contrasting
the facial expression conditions with the neutral and motion
conditions (balanced) were identified by cluster thresholding
(voxel Z > 2.7, cluster p < 0.05). Group activation maps were
then obtained using the FSL’s Local Analysis of Mixed Effects
(FLAME) (Beckmann et al., 2003).

Dynamic Functional Connectivity Analysis
Estimation of dFC
For each run, the dFC was estimated between R = 90 non-
overlapping regions of interest (ROIs) of the cerebrum according
to the automated anatomical labeling (AAL) atlas (Tzourio-
Mazoyer et al., 2002). These ROIs were co-registered from the
MNI space into the participant’s functional space, and the EEG-
ESI and the pre-processed fMRI data were then averaged within
each ROI. Regarding the latter, the resulting BOLD signals were
low-pass filtered with a cutoff frequency of 0.1 Hz, because
synchronized BOLD fluctuations of neuronal origin mainly occur
within this frequency range (Biswal et al., 1995; Cordes et al.,
2001). No filtering was applied to the parcel-averaged EEG-
ESI signals.

The dFC was estimated by means of a sliding window
correlation approach using a window length of 42 s (21 TRs)
with a step of 6 s (3 TRs) for the fMRI data, and a window
length of 40 s (40 time points) with a step of 5 s (5 time
points) for the EEG-ESI data. Such window lengths were selected
based on a recent meta-analysis revealing that physiologically
meaningful, and statistically validated dFC fluctuations can be
detected on the fMRI when using a window length between
30 and 60 s (Preti et al., 2017). Additionally, our previous
study focused on the detection of epileptic dFC states from
simultaneous EEG-fMRI data also showed the ability to detect
epileptic dFC states irrespective of the window length within
the abovementioned interval (Abreu et al., 2019). With this
combination of parameters, comparable properties are expected
to be captured on fMRI and EEG-ESI dFC data, while
guaranteeing that all points at the end of the dFC data are
considered when building the respective last sliding windows.
The pairwise Pearson correlation coefficient was computed for all
pairs of ROI-averaged BOLD-fMRI and EEG-ESI signals for each
sliding window. The final dFC matrix was obtained by extracting
the upper triangular part of each correlation matrix, vectorising
it and subtracting the static FC for each participant (average
across all participant-specific windows), yielding a matrix Cp =

[c1, . . . , cT] ∈ RM×T, where M = (R2
− R)/2 with R denoting

the number of ROIs and T the number of windows. The group
matrix C was obtained by concatenating in time the vectorised,
static FC-subtracted Cp matrices of each participant.

Identification of dFC brain states
In our previous study, we comprehensively compared the
performance of several methods (including the most commonly
used k-means clustering and principal component analysis) with
distinct degrees of sparsity in time, at identifying dFC states
associated with epilepsy (Abreu et al., 2019). We found that an
l1-norm regularized dictionary learning (DL) approach yielded
the best results. The proposed approach can be formulated as the
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TABLE 1 | Dice coefficients between the fMRI and EEG RSNs and RSN templates from Smith et al. (2009), and between the RSNs derived from fMRI and EEG-ESI data,
for each run separately.

Functional runs fMRI RSNs vs. RSN templates EEG RSNs vs. RSN templates fMRI RSNs vs. EEG RSNs

dmax d̄ dmax d̄ dmax d̄

Auditory feedback 0.7 0.5 0.6 0.4 0.5 0.4

Visual feedback 0.7 0.5 0.6 0.4 0.5 0.3

Transfer run 0.7 0.5 0.6 0.4 0.5 0.4

Localizer 0.6 0.5 0.5 0.4 0.7 0.4

matrix factorization problem C= DA, where D = [d1, . . . , dk] ∈

RM×k , and A = [a1, . . . , aT] ∈ Rk×T represent the correlation
matrices and associated weight time-courses of each dFC state,
respectively; and k is the number of dFC states. These are
estimated by solving the optimization problem given by:

arg min
D,A
||C−DA||F (2)

so that the reconstruction error of C, E = ||C−DA||2F, is
minimized; || · ||F denotes the Frobenius norm of a matrix. The
estimation of D and A was performed using the algorithms
implemented in the MATLAB toolbox SPArse Modeling Software
(SPAMS, Mairal et al., 2010). The sparsity of the solutions
was controlled by a non-negative parameter λ on an l1-norm
regularization framework. The optimal k and λ were determined
using a 5–5-fold nested cross-validation (Meir-Hasson et al.,
2014), whereby the external 5-fold cross-validation divided the
data into train and test sets. For each train set (or external fold),
an additional inner 5-fold cross-validation was used, from which
a set of optimal k and λ was determined for each external fold by
minimizing the Bayesian information criterion (BIC); this metric
penalizes model complexity, thus favoring a more parsimonious
estimation of dFC states. The most recurrent set of optimal k and
λ across the external folds was then identified, characterizing the
final dictionary learning model. k was varied between 5 and 10, in
steps of one; and λ was varied across ten values from 1 to 0.1259,
in decreasing exponential steps.

Matching of EEG-ESI and fMRI dFC brain states
In contrast with the identification of RSNs, whereby templates
derived from previous fMRI studies of large populations are
available, dFC state templates are yet to be discovered, as this is
still a fairly recent research topic (Preti et al., 2017; Thompson,
2018). Thus, the dFC states estimated from the EEG-ESI data
can only be cross, rather than independently, validated by the
dFC states estimated from the fMRI data. Because the optimal
number of dFC states was k = 10 for all runs and for both fMRI
and EEG-ESI data (although varying the optimal regularization
parameter: λ = 1 for the fMRI, the sparsest solution, and
λ = 0.25 for the EEG-ESI, corresponding to a solution of
intermediate sparsity), a one-to-one match between the dFC
states from both datasets was determined by computing the
pairwise spatial correlation between the associated correlation
matrices D, and identifying the dFC state pairs with the highest,
and statistically significant correlation (p < 0.05, corrected for
multiple comparisons using the Bonferroni correction). Similarly

to the assignment procedure of RSNs, in cases of non-mutually
exclusive pairs of dFC states, the optimal match was determined
by randomizing the order of the fMRI dFC states, and then
sequentially, and mutually exclusively, matching them to the
EEG-ESI dFC states based on their spatial correlation. The match
with the highest average spatial correlation across all ten dFC
states was then deemed optimal.

Since dFC states are also characterized by weight time-courses
A representing their contribution to the overall dFC over time,
the Pearson correlation between each dFC state time-course and
the contrast defined for mapping the FEPN was computed (for
the localizer run), in order to verify which, if any, of the fMRI
or EEG-ESI dFC states were associated with the expected brain
activity at the FEPN.

Validation analyses
Because of the lack of an independent validation as the one
available for the RSN analyses by the template maps, additional
statistical tests were then performed here. First, the statistical
significance of the dFC states estimated from both fMRI and
EEG-ESI data recorded on each run was assessed by building
a data-driven null distribution, following the work described
in Leonardi et al. (2013) and Abreu et al. (2019). Specifically,
for each run, the fMRI and EEG-ESI C matrices were first
FFT transformed and, for each connectivity pair, a random,
uniformly distributed, phase was added; the inverse FFT was
then applied to transform the data back to the time domain.
The null distribution consisted of estimating D from the phase-
randomized C matrices using the optimal parameters k and
λ, computing the reconstruction error E(i)=||C-diai||

2
F of each

dictionary di with weight ai (i = 1, . . . , k), and repeating this
procedure 10,000 times. dFC states estimated from the true data
with a reconstruction error (calculated as above) below the fifth
percentile of the null distribution in E were deemed meaningful.

Next, in order to validate the matching of fMRI and EEG-
ESI dFC states, the dFC states estimated from the phase-
randomized fMRI data were spatially correlated with the dFC
states estimated from the true EEG-ESI data, and their statistical
significance investigated.

Finally, in order to assess the impact of the window length,
we repeated the procedures described above (estimation of
dFC brain states and their matching across modalities, and the
respective statistical validation) with three different values of the
window length within the adequate interval suggested in Preti
et al. (2017): 30, 50, and 60 s, corresponding to 15/30, 25/50, and
30/60 time points for the fMRI and EEG-ESI data, respectively.
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RESULTS

Identification of RSNs
We started by validating the results from Liu et al. (2017, 2018)
in a truly unbiased manner by identifying RSNs on the fMRI
and EEG data recorded simultaneously using spatial ICA, and
comparing them with the respective templates from Smith et al.
(2009); these results are shown in Figure 1 (for the auditory
and visual feedback runs, and the transfer run) and Figure 2
(for the localizer run). The selected ICs and the RSN templates
show a substantial overlap for all RSNs and imaging techniques,
although slightly higher when considering the RSNs identified on
the fMRI data, as expected and quantified by the Dice coefficient
(values shown in Figure 3, for all possible combinations of
fMRI/EEG-ESI ICs and RSN templates, and for all runs). The
maximum (dmax) and average (d̄) Dice coefficients between fMRI
and EEG-ESI RSNs and the RSN templates are depicted in
Table 1. Despite the comparable Dice coefficients between the
two imaging techniques, with an average of 0.5 and 0.4 for the
fMRI and EEG-ESI data across all runs, respectively, it should be
noted that RSNs 3 (visual), 6 (motor), and 7 (auditory) were only
partially represented on the respective EEG-ESI ICs on all runs,
typically including only one of the hemispheres. Additionally, it
was not possible to recover RSN 5 (cerebellum) with either fMRI
or EEG-ESI data likely because of the limited spatial coverage
of this brain region. Noteworthy, however, is the remarkable
overall consistency of the RSNs identified on both fMRI and
EEG-ESI data across the four runs. The Dice coefficient between
the fMRI and EEG-ESI RSNs is also shown in Table 1, with
the average values across runs ranging from 0.3 to 0.4, and the
maximum values ranging from 0.5 to 0.7. All these values were
statistically significant, as they were above the 95th percentile of
their respective null distribution.

Mapping of the FEPN
Next, we mapped the FEPN using a GLM framework on both
the fMRI and EEG-ESI data; the group activation maps of all
participants is also shown in Figure 2 (bottom). Similarly to what
was observed on RSNs 3, 6, and 7, a unilateral (right hemisphere)
activation was observed when analyzing the EEG-ESI data, in
contrast with the bilateral activation found on the fMRI data.
Nonetheless, both maps notably overlap in the left pre-central
gyrus. At the posterior superior temporal sulcus (pSTS, visible
in the sagittal slices), activations on both fMRI and EEG-ESI
were observed, although the latter were found to be located
more posteriorly in pSTS, as expected, relatively to the former.
Although only present in the EEG-ESI data, frontal activations
were also observed.

Estimation of dFC Brain States
Finally, we estimated dFC states from both fMRI and EEG-ESI
data using an l1-norm regularized dictionary learning approach,
and identified the optimal match between them. Importantly,
all fMRI and EEG-ESI dFC states from all runs survived the
statistical validation with phase-randomized data, supporting
their physiological meaning. The fMRI dFC states and their

matched EEG-ESI dFC states are shown in Figure 4, for all runs.
Although it may not be visually clear, a match was obtained
between fMRI and EEG-ESI dFC states, quantified by the spatial
correlation across the matched dFC states (values shown in
Figure 5, for all possible combinations of fMRI and EEG-ESI dFC
states, and for all runs). Specifically, the maximum and average
spatial correlations (smax and s̄, respectively) between matched
dFC states were smax = 0.4, s̄ = 0.2 for both the localizer and
transfer runs, and smax = 0.5, s̄ = 0.3 and smax = 0.6, s̄ = 0.3 for the
auditory and visual feedback runs, respectively. This match was
validated by statistically assessing the spatial correlation between
dFC states estimated from phase-randomized fMRI data, and
dFC states estimated from true EEG-ESI data. For all runs, we
observed that dFC states did not match in any of the 10,000
randomizations performed, as no statistically significant spatial
correlations (p > 0.05, corrected for multiple comparisons using
the Bonferroni correction) were found between any possible
pairs of states, and thus supporting the statistical validity of
our findings. Importantly, the spatial correlation values were
not substantially affected by the window length, despite a small
decrease for larger (>50 s) window lengths; these are shown in
Supplementary Table S2. For the additional window lengths and
all runs, the estimated dFC states and their match between the
fMRI and EEG-ESI also survived the respective statistical tests.

When analyzing the correlation between the weight time-
courses of all dFC states and the contrast defined for mapping
the FEPN on the localizer run, two fMRI and two EEG-ESI dFC
states were found to exhibit a significant (p < 0.05, corrected
for multiple comparisons using the Bonferroni correction)
correlation r: states #2 (r = 0.22) and #7 (r = 0.17) for the
fMRI data, and states #4 (r = 0.14) and #9 (r = 0.19) for the
EEG-ESI data; the results are shown in Figure 5, at the bottom.
Interestingly, fMRI state #2 is also matched with EEG-ESI state #9
in terms of their spatial correlation, highlighting the consistency
of this finding for the localizer run.

DISCUSSION

Here we comprehensively investigated the extent at which
EEG can be used as a tool to identify large-scale functional
networks, which are typically detected on fMRI. Importantly,
this is the first study to do so in a truly unbiased manner,
by comparing the results obtained from fMRI and EEG data
acquired simultaneously. Moreover, we investigated for the first
time the feasibility of mapping task-specific brain networks, and
of estimating the dFC and associated dFC states, with EEG in
such conditions.

EEG and Resting-State Networks
Although the detection of RSNs with EEG was not reported until
recently, EEG signatures of RSNs derived from simultaneously
acquired fMRI data have already been reported, namely the EEG
spectral power averaged across the five well-known EEG rhythms
(Goldman et al., 2002; Moosmann et al., 2003; Laufs et al.,
2006; Scheeringa et al., 2008). By including the associated time-
courses in a regression analysis of BOLD signals representative

Frontiers in Neuroscience | www.frontiersin.org 7 April 2020 | Volume 14 | Article 323

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00323 April 13, 2020 Time: 18:1 # 8

Abreu et al. Matching EEG-fMRI Functional Connectivity Networks

FIGURE 1 | Group RSNs identified on fMRI and EEG-ESI data for the auditory feedback (top), visual feedback (middle), and transfer runs (bottom). For each run,
the RSN templates (in red–yellow) from Smith et al. (2009) are superimposed with the fMRI (top) and EEG (middle) ICs (in blue–light blue) selected for each RSN
template, according to their Dice coefficient.

of the RSNs, the contribution of each EEG rhythm, and its
interaction with the remaining rhythms, was found to be specific
for each RSN (Mantini et al., 2007; de Munck et al., 2009).

Because resting-state EEG is also known to exhibit spontaneous
fluctuations that can be described by a limited number of
scalp topographies of electrical potentials that remain stable for
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short (∼100 ms) periods of time (EEG microstates; Michel and
Koenig, 2018), it was hypothesized that RSNs were reflected on
both EEG and fMRI. Despite their methodological differences, a
few studies have confirmed such hypothesis (Britz et al., 2010;
Musso et al., 2010; Yuan et al., 2012; Bréchet et al., 2019;
Hunyadi et al., 2019), with one study even establishing a one-
to-one relationship between EEG microstates and fMRI RSNs
(Britz et al., 2010), which, however, has been widely debated
(Michel and Koenig, 2018).

Based on these findings, it is therefore expected that
RSNs are also explicitly reflected on the EEG. This was first
suggested by previous studies showing the ability of functional
connectomes (covariance matrices of signals averaged across gray
matter parceled according to an atlas) extracted from source-
reconstructed EEG data across each EEG rhythm, to predict
functional connectomes derived from simultaneously acquired
fMRI data (Deligianni et al., 2014), and more recently to predict
anatomical connectomes derived from diffusion MRI data as well
(Wirsich et al., 2017). Contradictory results, however, have been
reported regarding the relative importance of each EEG rhythm
for predicting the fMRI functional connectomes. Moreover,
these studies were focused on functional connectomes and their
derived RSNs, rather than the RSNs more conventionally defined
as in Smith et al. (2009).

Such RSNs were first detected on EEG recordings by
decomposing, with spatial ICA and at the subject level, the
temporally concatenated power of the source-reconstructed
EEG data across each rhythm, followed by a clustering step
on the resulting ICs from all subjects to identify group-level

RSNs (Sockeel et al., 2016). These were then compared
with RSNs derived from the fMRI data, with only a sub-set of
RSNs presenting a clear overlap between imaging techniques.
Considering instead the broadband, rather than band-specific,
power of the EEG sources (Liu et al., 2017) also suggested the
identification of RSNs on the EEG. Although these findings
were validated by RSNs derived from fMRI data, the ground
truth considered was not ideal as the two signals were not
acquired simultaneously, and therefore do not account for the
well-known inter-subject and inter-session variability of the
recordings (Smith et al., 2005; Corsi-Cabrera et al., 2007). More
importantly, because RSNs result from the temporal coherency of
spontaneous activity, cross-validating results from two imaging
techniques requires their concurrent acquisition (Abreu et al.,
2018). Besides comparing the RSNs obtained from fMRI and
EEG data acquired simultaneously, here we considered as ground
truth the RSN templates from Smith et al. (2009), which are
commonly used in the literature to inform the identification
of RSNs. In this way, an independent validation could be
performed; one limitation, however, relates with the nature of
such templates, as they were derived from fMRI data recorded
from a large population of healthy subjects, and therefore may
positively bias the amount of overlap (here quantified by the
Dice coefficient) between the fMRI RSNs and their templates,
relatively to the RSNs derived from the EEG. Our results are
in line with this observation, as the maximum and average
Dice coefficient across RSNs were systematically higher for the
fMRI than those for the EEG, in all four runs. Nonetheless,
comparable Dice coefficients were observed between the two
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FIGURE 3 | Dice coefficients between all possible combinations of (left) fMRI ICs or (right) EEG-ESI ICs (x-axis) and the RSN templates (y-axis) from Smith et al.
(2009), for the (from top to bottom) auditory feedback, visual feedback, transfer, and localizer runs. fMRI/EEG-ESI ICs assigned to RSN templates are marked by a
red cross.

imaging techniques; it should be noted, however, that fMRI
ICs typically exhibited a notable overlap with a single RSN
template, rather than having multiple ICs competing for the RSN
template, as observed with some EEG ICs. Such apparent higher
specificity of the fMRI data may again be partially explained
by the RSN templates being derived from fMRI data. Because
the RSNs were obtained from simultaneous EEG-fMRI data,
our results further support the existence of EEG correlates of
RSNs. Similarly to the fMRI-derived RSN templates, by applying
the methodology here proposed to a larger set of EEG-fMRI

recordings, EEG-based RSN templates could in principle be
obtained, and potentially be used to investigate differences from
the fMRI-derived RSN templates.

Continuous Source Imaging of EEG
Acquired Simultaneously With fMRI
In the study of Liu et al. (2017), continuous EEG source imaging
(cESI) was performed under optimal conditions, from high-
density (256 channels) recordings outside the MR scanner.
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FIGURE 4 | Group dFC states estimated from fMRI and EEG-ESI data for the (from left to right) auditory feedback, visual feedback, transfer, and localizer runs. For
each run, the correlation matrices (normalized between –1 and 1, for visualization purposes) of the dFC states estimated from the fMRI data (left) and the matched
EEG-ESI dFC states (right) are shown. For the localizer run, fMRI state #2 and EEG-ESI state #9 are highlighted by the red square, as these two matched dFC
states were associated with the activity at the FEPN.
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FIGURE 5 | (Top) Spatial correlation between all possible combinations of fMRI (y-axis) and EEG-ESI (x-axis) dFC state correlation matrices, for the auditory
feedback, visual feedback, transfer, and localizer runs. Red squares denote non-statistically significant (p > 0.05) spatial correlation values. Matched fMRI and
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state #9 (further highlighted by the green square) is shown (orange and purple traces, respectively), superimposed with the contrast of interest used to map the
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Despite the potential loss in data quality, the feasibility of
performing cESI on EEG data acquired simultaneously with
fMRI has already been demonstrated (Groening et al., 2009;
Vulliemoz et al., 2009, 2010a,b; Siniatchkin et al., 2010),
particularly using EEG caps with a conventional spatial
coverage (32 or 64 channels). In fact, simulation studies showed
that an almost perfect source reconstruction can be obtained
with only 68 channels, reaching a plateau at 100 channels (Michel
et al., 2004). Since several processing steps are carried out when
performing cESI, their impact on the detection of RSNs with
EEG was systematically investigated by Liu et al. (2018), with
the electrode density being the most relevant factor, followed
by the head model and source localization algorithm chosen.
Using the recommended setup and processing pipeline, Liu
et al. (2018) reported an average correlation between fMRI and
EEG RSNs of 0.6. Here, we used the same processing pipeline,
but applied to 64-channel EEG data acquired simultaneously
with fMRI, with a maximum/average Dice coefficient of 0.5/0.4
(averaged across runs). These slightly poorer results may
partially be explained by the potential loss in data quality due

to the presence of MR-induced artifact residuals; nonetheless,
our results demonstrate the feasibility of using cESI applied
to low-density EEG data acquired simultaneously with fMRI,
for detecting RSNs.

Mapping of Task-Specific Brain
Networks With EEG
We used EEG for mapping a task-specific brain network:
specifically, we attempted to map the FEPN from the fMRI and
EEG recordings of the localizer run using a GLM framework.
Although uncommon, such framework has been previously
applied to source-reconstructed M/EEG data: the first studies
were focused on quantifying the contribution of event-related
(Brookes et al., 2004) or band-limited frequency power (Trujillo-
Barreto et al., 2008) waveforms associated with a specific activity
of interest. By adopting this model-based analysis of the EEG, the
generators underlying such activity of interest can in principle be
isolated from the remaining ones. Similarly to our study, previous
reports have also used GLM to analyze broadband EEG data, for
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better characterizing the impulse response function associated
with different types of visual stimuli (Gonçalves et al., 2014), or
for more accurately localizing the generators of EEG microstates
(Custo et al., 2014). These studies and their promising results
motivated our chosen approach to model EEG-ESI data with
the task-specific expected response function, with the additional
benefit of providing an activation map directly comparable with
that from the conventional GLM analysis of the fMRI data.

Despite the small overall overlap (Dice coefficient of 0.1), the
group activation maps of each imaging technique overlapped
at the left pre-central gyrus, which is known to be involved
in the processing of face expressions (Fox et al., 2009; Radua
et al., 2010). Although non-overlapping, relevant fMRI and
EEG-ESI activations were found at the postcentral sulcus and
the posterior superior temporal sulcus (pSTS), the latter being
the anchor of the FEPN (Srinivasan et al., 2016; Wang et al.,
2016). The concordant activations at (or close to) pSTS are
in agreement with our previous work (Direito et al., 2019),
and also with a study specifically focused on the functional
segmentation of the STS (Deen et al., 2015). The latter showed
that among several social perception and cognition tasks, the
participants consistently responded to the perception of faces
mainly at pSTS, highlighting the relevance of these activated
brain regions. Interestingly, the EEG-ESI data also exhibited
frontal activations, which have been shown to play a role in
this cognitive task (Kesler-West et al., 2001); however, this result
cannot be truly validated as such activations were not present
in the fMRI data.

In contrast with the bilateral fMRI activation map, which is
consistent with the results from Deen et al. (2015) and Direito
et al. (2019), an unexpected lateralization of the FEPN was
observed when derived from the EEG data. Such lateralization
was also observed on some of the RSNs, where bilateral
RSN templates only partially overlapped with unilateral EEG
RSNs. Importantly, this does not result from a systematic
limitation of cESI, as other bilateral RSN templates were fully
recovered by the EEG. Nonetheless, several limitations of ESI
have been acknowledged, particularly the non-uniqueness of the
inverse problem. This challenge is only partially overcome by
making assumptions about the neuronal sources in order to
constrain the solution space, which would otherwise be infinite.
Furthermore, ESI solutions are strongly biased toward cortical
(and focal) sources of electrical activity, because of the lack
of sensitivity of reconstruction algorithms with respect to deep
gray matter sources, invariably tending to shift solutions to
the cortical surface (Michel et al., 2004; Michel and Murray,
2012). Notwithstanding these limitations, we verified consistently
overlapping maps for most of the RSNs and the task-specific
FEPN, enforcing the feasibility of this approach.

Dynamic Functional Connectivity and
Brain States
Although unreported so far, the match between dFC states
derived from fMRI and EEG data found in the present study
was somewhat expected, considering that a number of studies
have already found EEG correlates of dFC fluctuations and brain

states measured with simultaneous fMRI (Tagliazucchi and Laufs,
2015), motivated by the yet unclear physiological underpinnings
of dFC (Thompson, 2018). These studies were mainly focused on
healthy subjects (Chang and Glover, 2010; Allen et al., 2017) and
epilepsy patients (Laufs et al., 2014; Lopes et al., 2014; Preti et al.,
2014; Omidvarnia et al., 2017; Abreu et al., 2019). Interestingly,
when comparing the contrast of interest for mapping the FEPN
with the contribution over time of each fMRI and EEG dFC
state, we found that the contribution of two matched dFC states
based on their spatial correlation were significantly correlated
with the FEPN contrast. The identification of fMRI dFC states
specifically associated with a given activity of interest extracted
from the EEG had already been suggested (Abreu et al., 2019).
While this study shows the potential of fMRI to capture dFC
fluctuations associated with specific brain activities, our finding
extends it, and specifically suggests that fluctuations in the
functional connectivity of the FEPN can be captured by both
fMRI and EEG, thus supporting the physiological meaning of the
also statistically validated match found between fMRI and EEG
dFC states. Our results thus further evidence the existence of EEG
correlates of dFC, and open new lines of research where dFC
fluctuations of large-scale functional networks can be investigated
with EEG, a technique that more directly measures brain activity
when compared with fMRI.

Limitations
In this multimodal study, a small sample size was considered,
which inevitably hinders our conclusions to be generalized to
future studies applying the proposed methodology. Nonetheless,
given the consistency of our results regarding the detection
of RSNs, the mapping of the task-related FEPN, and the
identification of matched dFC states across modalities,
particularly those associated with the FEPN, we believe that
this study provides a strong proof-of-concept on the use of EEG
as a brain imaging tool.

Another important aspect of our study is that the participants
were performing a neurofeedback (NF) task. This relates to our
additional goal of testing the transfer of an already validated
fMRI NF intervention to an EEG setup, with the purpose of
generalizing and disseminating such intervention. This motivates
this study’s investigation on the possibility of mapping a task
network of interest (the face expressions processing network,
FEPN) with EEG. Despite some reported differences between co-
activation networks and RSNs (Di et al., 2013), it has been shown
that RSNs can also be accurately identified on fMRI data collected
from participants performing tasks in general (Cole et al., 2016).
This has thus motivated our study to address both the intrinsic
and task-related connectivity aspects from a static and dynamic
point of view. NF tasks, however, are known to modulate the
strength of intra- and inter-network connections, which may
influence the functional organization of RSNs (Sitaram et al.,
2017). Importantly, the NF task used in this study was tailored to
modulate the percent signal change of the BOLD signal measured
at a limited and well-defined brain region in pSTS, rather than
the connectivity strength of specific RSNs (Direito et al., 2019).
Moreover, assuming that this NF task is nonetheless modulating
the RSNs, it has also been shown that NF is able to induce the
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desired changes on both EEG and fMRI when performing real-
time simultaneous EEG-fMRI NF (Zich et al., 2015; Zotev et al.,
2016). It is then expected that potential modulations on the RSNs
and/or dFC states will be reflected on both EEG and fMRI data,
and thus in principle not confounding our results. Naturally, this
could only be confirmed in future studies applying the proposed
methodologies to resting-state data.

CONCLUSION

In this study, we validated in a truly unbiased manner the
existence of RSNs reflected on both fMRI and EEG data,
while also supporting the feasibility of continuous electrical
source imaging to low-density EEG data acquired simultaneously
with fMRI. We also showed that EEG can be used for
mapping task-specific networks (particularly the facial expression
processing network, FEPN), as well as to study the dynamics
of functional networks, and extract their representative dFC
states. Importantly, we also determined that fluctuations in the
functional connectivity of the FEPN can be captured on both
fMRI and EEG. Additionally, our results support the emerging
literature on EEG correlates of (dynamic) functional connectivity
measured with fMRI, and therefore provide novel insights
into the coupling mechanisms underlying the two imaging
techniques. Our analyses push the limits of EEG toward being
used as a brain imaging tool, allowing researchers and clinics to
more efficiently leverage the high temporal resolution, low cost,
portability and ease of use that characterize the EEG.
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