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Abstract: On 17 June 2017, one of the most dramatic and destructive wildfires in Portugal’s History
started, formed by a complex of at least five wildfires that merged together burning more than
45,000 hectares. In its aftermath, 66 persons lost their lives, most of them trying to run away from
the fire, more than 250 were injured, and over 1000 structures (including 263 residential homes)
were damaged or destroyed, with direct losses estimated at around 200 million euros. Shortly after
the fire was extinguished, and as part of a larger analysis, the authors performed exhaustive field
work to assess the fire impact on all manmade structures in the area of the Pedrógão Grande fire.
A specific geodatabase was built, accounting for an extensive set of parameters aimed at characterizing:
(i) The structure, (ii) the surroundings of the structure, and (iii) the arrival and impact of the fire. A total
of 1043 structures were considered for the analysis, mostly support structures, like sheds or storage
(38.6%), but also around 25% of dwellings (13.3% primary and 11.9% secondary). Regarding the
ignitions, more than 60% of the structures were ignited due to the deposition of firebrands in different
weak points. In addition, more than 60% of these ignitions occurred on the roofs, mainly because of
the vulnerability associated with the structures and materials supporting them. Despite these results,
and from what we observed on the structures that were not destroyed, we still consider that for the
Portuguese reality houses are a good refuge, providing that they and their surroundings are managed
and kept in good conditions.
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1. Introduction

The year 2017 was the worst in Portugal’s history, in terms of forest fires and the damages
associated with them. June and October were the months in which two of the most deadly and
destructive fire episodes raged the Portuguese Mainland, killing a total of 117 persons and burning
more than 200,000 hectares. That year had a record breaking 540,000 hectares of burned area across the
Country. The fires of June became known as the Pedrógão Grande fires, and the authors, while members
of the Forest Fire Research Centre (CEIF) of ADAI, at the University of Coimbra, were invited by
the Portuguese Government to analyze in detail and produce a report on those events, covering the
fatal accidents, fire behavior and propagation, and the destruction related to structures. The analysis
presented here is based on that work and on the official report that the authors produced, with the
remaining CEIF team [1].

The evolution of the main fires that occurred near Pedrógão Grande was analyzed in detail by our
team, based on an extensive ground survey that involved the interview of hundreds of persons and
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the consultation of a large number of documents. The result of fire growth is shown in Figure 1, as
isochrones of fire spread.
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1.1. The Pedrógão Grande Fire Complex

On 17 June 2017, Portugal was under a severe drought and very high values of the fire weather
risk indices. A thunderstorm system that formed in the Centre of Spain crossed part of Portugal,
accompanied by lightning and strong downbursts, causing several fires. At 14h43 a fire was reported
near the village of Escalos Fundeiros (blue circle in Figure 1), in the Municipality of Pedrógão Grande,
in Central Portugal. Other two ignitions were reported soon after, one at 14h48, about 15 km to the
northeast, near the village of Fonte Limpa, in Góis Municipality (yellow circle in Figure 1) and another
at 15h41 at Moninhos (orange circle in Figure 1). The almost simultaneous occurrence of these fires
in the same region, added to other fires, some of which started later, caused a dispersion of the fire
suppression forces and limited the efficiency of control of some of them.

According to our research, the fire of Escalos started in a valley due to the contact between the
vegetation and a 15 kV electrical line. On the initial attack, the need to protect nearby houses and the
fire spread in the slopes and canyons above the valley, producing intense spotting, seriously limited
the capacity of the fire fighters to control this fire. At 16h15, a second ignition was produced on the
same electric line, near Regadas, 2 km Nothwest from Escalos (pink circle in Figure 1). With the limited
resources available, the attack to this fire was also limited to the protection of some nearby houses.

At around 18h00 a linear downburst from the thunderstorm, which was above the fire of Góis at
this time, reached both fires of Escalos and Regadas, dropping their convection columns towards the
ground and inducing them to spread towards Southwest. From this time on these two fires spread
freely, threatening a vast area of the Municipality and dozens of small villages in which hundreds of
persons lived or stayed for holidays.

The two fires of Escalos and Regadas spread initially in diverging directions, but around 19h30 their
inner flanks began to approach and merge causing the phenomenon designated as “junction fire” [2] in
which very intense fires and strong convective processes are produced. The population could see a
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wide front of flames coming towards them from Northeast and threatening to destroy everything in its
path, prompting many persons to get into their cars and run away from the fire. Given the evolution of
the fire between 19h30 and 20h30 (Figure 1), the persons trying to leave the area inside the “circle” that
was burning with great intensity during that period were surrounded by fire wherever they went and
62 perished while trying to run away. In a stretch of 400 m, from road N236-1, 30 persons driving their
cars lost their lives. Only four persons died inside their houses, possibly due to smoke inhalation.

The need to rescue a large number of persons, many of them needing medical attention, in the
context of a very large fire that continued to spread, the collapse of radio and telephone communications,
as well as of the electrical and water systems, and unavailable roads, created a huge burden on the
emergency command system. In the remaining hours of the 17th June, the fire continued spreading
almost freely, burning an area of 13,500 ha that day. On the 19th June the fire of Góis merged with
the fire of Pedrógão Grande. Both were controlled on the 22nd June with a total area of 45,000 ha,
approximately 29,000 ha for the fire of Pedrógão Grande and 16,000 ha for the fire of Góis. Given its
importance, this paper will be focused on the fire of Pedrógão Grande.

1.2. The Wildland Urban Interface

The wildland urban interface (WUI) can be simply defined as “the space where structures and
vegetation coexist in a fire prone environment” [3], but we should also add the human component [4],
because, ultimately, it is people who are affected and are often associated with the origin and/or
solution of the problem. The first known definition of WUI belongs to C.P. Butler [5], an American
physicist from the Stanford Research Institute (currently SRI International), that states that an interface
fire is “any point where the fuel feeding a wildfire changes from natural (wildland) fuel to man-made (urban)
fuel. . . . For this to happen, wildland fire must be close enough for its flying brands or flames to contact the
flammable parts of the structure”. In this first definition, it was already recognized that it is not necessary
that the fire contacts with a structure in order for it to ignite. From a pure heat transmission point of
view, we can observe three mechanisms that can originate the ignition of a structure: Conduction [6],
radiation [7] and convection [8]. However, the fact is that usually the ignition happens due to
projections of incandescent particles (firebrands or embers) even if the fire front is still hundreds of
meters or even a few kilometers away [9–13]. Being a major source of ignitions, firebrands have in fact
received particular attention in several experimental studies, namely in the laboratory, using firebrand
generators, in real scale [14–18] and in observed fires [11,12,19–22]. Most of these relate to the ignition
of structures (or their components), but others are more broad and consider the ignition of different
fuel beds [23–27].

Also identified in the beforementioned definition of WUI are two of the primary requirements
to characterize this problem: the houses or structures as fuel and the proximity of the source of heat
that can ignite them. Together with the existence of oxygen, the three form what we can call a triangle
of requirements for the ignition of structures [28] by analogy with the well-known concept of fire
triangle [29]. That is, structures can ignite only if these three factors exist simultaneously and in
sufficient quantity.

Understandably, the possibility of having several houses or other structures burning during a
wildfire may set a disaster situation in the WUI [10,30,31]. However, if on the contrary, the structures
prove to be resistant, then, with high probability, the disaster will not occur [32], and they can be a
place of refuge or shelter for the population. The vulnerability of structures has to do not only with the
structure itself and its ease of ignition, but also with the surrounding space [33], in what is known
as the Home Ignition Zone [34–37]. If the number of such vulnerable structures is so high that it
exceeds the capacity of the means of protection, then that capacity and effectiveness are limited, and
many will remain unprotected. On the other hand, if structures are not vulnerable then there will
be no, or few, ignitions and the means of protection will not be overloaded. From this sequence of
relationships, adapted from [30], it is understood that the existence of a fire with extreme conditions of
propagation does not imply that there will be a disaster in the WUI. Everything is dependent on the
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vulnerability of the constructed space and its surroundings. This area needed around the structures
that should be subjected to preventive fuel management has been usually accepted to be in a range
of 30 m [28,32,33,38,39]. This value of 30 m, which is the basis for most of the recommendations all
around the world (although many go further than that), was obtained through extensive computational
simulation, relating the characteristics of the fire, with the properties of the structures, and also through
field tests, where structures, constructed essentially with wood, were placed at different distances of
the vegetation and exposed to high-intensity fires [40]. Graham et al. [32] have analyzed several cases
and assert that it is very difficult for a structure to ignite by direct contact of a fire that is more than that
distance, which is assumed to be the worst-case scenario, but for flat terrain or light slope. We can
thus say with some certainty that the probability of ignition of a structure by the direct close effect
of fire (whether by radiation, convection or conduction) can be drastically reduced if the fuels in its
surroundings are eliminated or modified [11,39,41,42]. We can also say that these rules can be altered
by factors such as topography or wind, which can greatly influence fire behavior and may imply the
need to adapt the width of fuel management [43,44]. Some other authors suggest the extension to
100 m (e.g., [45]), although with a lower priority.

This still leaves the need to deal with the most common mechanism of structure ignition,
the deposition of embers. To minimize the chance of ignition by embers, the management actions must
be oriented to the structure itself, being in terms of maintenance, construction materials, or active or
passive self-defense mechanisms.

In Portugal, like in many other countries in the Mediterranean basin, there is a high degree of
probability of a wildfire, along its path, finding much more than natural fuels. The country often
has structures, infrastructures, and/or people scattered everywhere, mixed with vegetation. Figure 2
presents the WUI risk at the Portuguese municipality level. In a more comprehensive perspective,
we consider here the definition of risk proposed by [46]: “the potential occurrence of physical losses
(e.g., destruction of a house), social losses (e.g., deaths), economic (e.g., destruction of timber production,
structure collapse) and environmental (e.g., damage to an ecosystem, effects on air quality) in a given
area and in a given period of time, resulting from the vulnerability of socio-ecological systems to a
forest fire “.Fire 2020, 3, x FOR PEER REVIEW 5 of 22 
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The Country has profound differences in some districts, mainly the coastal ones, that have very
sharp structural inequalities [4]. For example, in the Coimbra district (Central Portugal), there is a very
large difference between the municipalities that compose the western half (Baixo Mondego) and the
eastern half (Pinhal Interior).

The area inside the white circle, enlarged at the right, is where the Pedrógão fire complex took
place, and it corresponds to areas with very high WUI fire risk, some of them the highest found in
the whole Country. Throughout this region, [4] identified some common problems, namely: Isolated
houses within forest areas (high risk); interfaces of small settlements with forested areas (high risk);
interfaces of small settlements with shrubs (except Castanheira de Pera) (moderate risk); and interfaces
of settlements in irrigated agroforestry mosaic (moderate risk).

1.3. The Impact of Fire on Structures

The way in which the structures in the WUI are damaged by wildfires has received special
attention all over the world [1,32,36,37,47–52], and efforts have been made by the scientific community,
but also the operational and technical, in order to understand the ignition mechanisms of the structures
and the weaknesses they present to the passage of a wildfire [39,43,53–56]. For instance, [57] carried
out an historical analysis on the impact of fire on people and structures across Australia between 1901
and 2011. During this work specific databases were created to allow data harmonization and collection.
Inspired by this report, we designed a customized geodatabase to allow us the systematic collection
of data related to the impacts of the Pedrógão Grande wildfire complex, namely on personal accidents
resulting in deaths, and on structures damaged. Although the geodatabases were relatively simple,
they were designed to allow the collection of the maximum amount of detail during the fieldwork,
considering the time available for its execution. Another study, recently done in California, comparing
houses that survived fires to houses that were destroyed, between 2013 and 2018, was carried out
state-wide and analyzed in three broad regions [56]. This study accounted for characteristics that
we also used in our work, such as the role of defensible space distance, defensive actions, and the
buildings’ structural characteristics. Overall, they concluded that structural characteristics (e.g., having
enclosed eaves, vent screens, and multi-pane windows) probably prevented the wind-born ember
penetration into structures and the multi-pane windows protected from radiative heat.

When wildfires impact communities there is usually a shift on fire management strategies that
need to prioritize the protection of human life and property [58–61]. However, evaluating this impact
can be hard to achieve, given the difficulty in obtaining measurable data that allows the establishment
of gradations of social, economic, or even emotional and familiar impact. From a purely structural
impact perspective, it becomes more feasible to gather a set of parameters that allow us to estimate
how the fire has impacted the community affected. This was the main objective of this study, i.e.,
to develop a methodology to characterize the impact of fire on structures, deploying it in the analysis
of the communities affected by the Pedrogão Grande fire complex. After an extensive field campaign,
performed right after the fires took place, a detailed analysis of all the collected data was performed,
and published in the respective Official Fire Report [1]. We present here what we believe to be the
most important results obtained. We evaluate the impact that the fire had on man-made structures,
regardless if they are dwellings, storages, sheds, or any other structure.

2. Materials and Methods

The present analysis was based on an extensive field verification of all human made structures
damaged by fire, regardless of their purpose, use, or type. For this end, different tools were
used, to allow an easy integration and analysis of data: ArcMap [62], a well-known Geographic
Information System [63], Collector for ArcGIS, for field data collection [64], SPSS statistical package [65],
and Microsoft Excel [66].
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2.1. Database Design

In order to compile and register all data referring to the damaged structures, a spatial database was
designed and created, using ArcMap. This database allowed the systematic collection of information,
or variables, about the fire, the built structures and their surroundings, the impact of the fire on them,
and the behavior of owners and users. The variables used, in total, 24, had in its majority predefined
answers, in order to maximize efficiency during the field work. Table 1 presents the list of variables,
grouped according to the object of their characterization.

Table 1. Variables used in the field work, the corresponding answer options, and the ratio of
answers obtained.

Variable Group Item/Variable Options Answers

1. The structure

1.1 Type of structure

Primary housing;
Secondary housing;

Agricultural warehouse;
Shed/Storage; Garage;
Commerce; Industry;
Uninhabited house;

Vacant structure; Cattle
shed/Stable; Outdoor

kitchen; Other

1043 (100%)

1.2 Type of construction Masonry; Stone; Wood;
Metal; Other 1042 (99.9%)

1.3 Age of construction <10 years; between 10
and 30 years; >30 years 1037 (99.4%)

1.4 Use of the structure
before the fire In use; Out of use 1037 (99.4%)

1.5 Condition of the
structure before the fire

Well preserved;
Moderately preserved;
Poorly preserved; In

ruins

1035 (99.7%)

1.6 Condition of the
structure after the fire

Little damaged;
Moderately damaged;
Very damaged; Totally

destroyed

1043 (100%)

2. The surroundings of
the structure

2.1 Fuel management Total; Partial; Absent 963 (92.3%)

2.2 Isolated structure? Yes/No 1042 (99.9%)

3. The arrival and
impact of the fire

3.1 Date of fire arrival Date 464 (44.5%)

3.2 Time of fire arrival Time 464 (44.5%)

3.3 Ignition location

Roof; Window; Door;
Open structure; Wall;

Vent; Other; With
damage but no ignition

1041 (99.8%)

3.4 How the ignition
occurred

Firebrands; Direct fire
impact; Materials

burning in the
immediate vicinity;

Contiguous structure;
With damage but no

ignition

1041 (99.8%)

3.5 Did you have
communications at the
time of the fire?

Yes/No 161 (15.4%)

3.6 Did the electric power
fail during the fire? Yes/No 166 (15.9%)

3.7 Power supply failure
time Time 133 (12.8%)

3.8 Did the water fail
during the fire? Yes/No 162 (15.5%)

3.9 Water supply failure
time Time 111 (10.6%)
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Table 1. Cont.

Variable Group Item/Variable Options Answers

4. Human behavior
towards the incoming

fire

4.1 User of the structure
ran away at the time of
the fire?

Yes/No 140 (13.4%)

4.2 User of the structure
survived on the run? Yes/No 73 (7%)

4.3 Were there people
defending the structure? Yes/No 231 (22.1%)

4.4 Did anyone get
injured defending the
structure?

Yes/No 103 (9.9%)

4.5 Number of injured
persons defending the
structure

Number 8 (0.8%)

4.6 Did anyone die
defending the structure? Yes/No 92 (8.8%)

4.7 Number of deaths
defending the structure Number 3 (0.3%)

With all the variables and options defined, ArcMap was used to create a geographic database [67]
with the possibility of attaching photographs. This database was uploaded to ESRI’s ArcGIS online
service [68] in order to allow remote access. Using a mobile application from the same ESRI, the ArcGIS
Collector [64], installed on a field GPS, it was possible to perform all the inventory work interactively,
filling in the database and attaching photographs of the structures. It was not always possible to fill all
the fields, for several reasons. For example, if a structure was completely destroyed, it was not possible
to measure the conservation status before the fire. Some of the fields, such as this, or when the fire hit
the structure, if there was a failure in water or energy supply, or if there were people defending the
structure, could only be filled if there was some local inhabitant present during the field visits that
could inform us. Sometimes, it was possible to deduce some responses by observing the structure, the
surroundings, or some clues related to the behavior of the fire.

2.2. Field Campaign Design and Data Collection

Taking into account the size of the affected region and the time available to carry out the survey
and analysis, visiting the entire burned area searching for damaged structures would be extremely hard
to accomplish. Therefore, the initial planning comprised the search for already available data sources
related to the location of damaged structures. Given the social impact that this fire complex had,
the Portuguese Government almost immediately announced an economical support program to help
the local population rebuild or recover their lost property, namely residential homes and structures
needed for any professional or subsistence activities. For this reason, many of the local inhabitants
began reporting their losses to the respective local authorities, who registered those requests, and
eventually subjected them to a field verification process at a later stage. To our knowledge, these surveys
were carried out in all affected municipalities. Bearing this in mind, in the first stage, we requested this
information from the municipalities’ authorities, having obtained it from 4 of the 11 affected by the fire:
Castanheira de Pera, Figueiró dos Vinhos, Penela, and Sertã. For different reasons, it was not possible to
obtain the rest in due time. Together with Pedrogão Grande, these were the five municipalities selected
to carry out the fieldwork and the respective analysis. For Pedrogão Grande we managed to obtain the
data from a collaborative open data web platform set up by Esri Portugal (the official distributor of the
North American Esri—Environmental Systems Research Institute, world leader in the Geographic
Information Systems technology), titled “FireHub 2017” [69]. Using this platform, we had access to
a set of georeferenced points representing structures allegedly damaged by fire, but not validated,
especially in the municipality of Pedrógão Grande, but with some cases in Castanheira de Pera and Penela.
At a later stage we obtained data also from the municipality of Góis (27 houses damaged by fire),
Pampilhosa da Serra (8 houses and 20 agricultural sheds), and Alvaiázere (10 structures but only one
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was a secondary dwelling), but they were not included in the fieldwork and therefore the analysis.
The municipalities of Ansião, Arganil, and Oleiros were only marginally affected by the fire and had no
registered damage in structures.

In this first stage, we obtained 704 non-validated georeferenced points (potentially damaged
structures) that allowed us to plan and schedule the field visits, minimizing the travelling distances.
Our initial objective was to focus on this set of points and during these visits try to search for other
non-registered damaged structures, either by direct observation or with the help of the local population
that proved to be the most valuable resource. In fact, most of the times we were able to declare the
ignition cause by interviewing local residents that were present during the fire. Also, the team elements
responsible for the survey have a large experience in the field of urban and wildfires, as, apart from
researchers, two of them are experienced firefighters. This initial set of points allegedly represented,
for the most part, primary housings. In the course of the fieldwork, 289 of them proved to be inaccurate.
In some cases, there were not even structures in the place indicated by the georeferenced points and in
others the structures had not been damaged by the fire. As we said before, we were interested in all
affected structures, not only housings, so during the field work we inventoried 684 other points that
were not listed initially. In total, 1453 points were visited (Figure 3), of which 1099 points were initially
considered valid. At the beginning of the fieldwork, we began to identify some structures, not in the
initial listing, which were clearly already in ruins before the fire. Taking into account not only the large
number of such structures in the affected region but also the fact that the analysis of the impact of fire on
them is very difficult, so it was decided not to record these cases any more. In total, discounting these
structures in ruins (56), we finished with 1043 valid points that fulfilled the requirements for analysis.

Fire 2020, 3, x FOR PEER REVIEW 9 of 22 

 

 

Figure 3. Location of all points visited (blue, red, and orange) and not visited (yellow). 

Between 20 July and 3 September 2017, a team that included two of the authors covered a total 

of 2550 km, talking to the population and observing the structures, the terrain, and the impact of the 

fire. Some variables were of direct observation, and therefore easier to obtain, for instance those 

related to the structure or its surroundings. However, some of them, like the failure of water supply, 

electricity, or communications, implied the testimony of someone that was present during the fire. In 

addition, questions related to the time at which that happened, are obviously subjected to what the 

persons interviewed remember. In Table 1, we can see the ratio of answers that we managed to collect 

for all the variables. For variables 3.4 through 3.9 and 4.1 through 4.7 the answer ratio was below 25% 

and for this reason we decided not to include them in the analysis. 

3. Results and Discussion 

The data collected in the field work were synchronized daily with ArcGIS Online and then 

organized and analyzed in ArcMap, Microsoft Excel, and IBM SPSS Software. The described 

methodology foresees the visit of pre-established points. All the other structures that we were able to 

inventory during the fieldwork were identified while we were heading for the marked points. 

Although we have covered practically the entire area of the most affected municipalities, it is possible 

that there are damaged structures that we have missed. 

Table 2 presents the distribution of the valid points considered for analysis in the three 

administrative divisions existing in Portugal: District (Distrito, in Portuguese, the largest one), 

Municipality (Concelho, intermediate), and Parish (Freguesia, the smallest). Only the last two have 

effective administrative power. We can observe that the municipality of Pedrógão Grande was 

undoubtedly the most affected one, with more than 60% (640) of the total damaged structures. 

Together with the other two affected municipalities from the District of Leiria (Castanheira de Pera and 

Figueiró dos Vinhos) they account for the vast majority of the damaged structures (95%, 990 structures). 

This is fairly easy to understand, as it corresponds to the area where the fire was more violent and 

spread more intensely, as demonstrated in [1]. This is also the area where 66 persons lost their lives, 

as a consequence of the fire. 

Figure 3. Location of all points visited (blue, red, and orange) and not visited (yellow).

Between 20 July and 3 September 2017, a team that included two of the authors covered a total of
2550 km, talking to the population and observing the structures, the terrain, and the impact of the fire.
Some variables were of direct observation, and therefore easier to obtain, for instance those related to
the structure or its surroundings. However, some of them, like the failure of water supply, electricity,
or communications, implied the testimony of someone that was present during the fire. In addition,
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questions related to the time at which that happened, are obviously subjected to what the persons
interviewed remember. In Table 1, we can see the ratio of answers that we managed to collect for all
the variables. For variables 3.4 through 3.9 and 4.1 through 4.7 the answer ratio was below 25% and for
this reason we decided not to include them in the analysis.

3. Results and Discussion

The data collected in the field work were synchronized daily with ArcGIS Online and then
organized and analyzed in ArcMap, Microsoft Excel, and IBM SPSS Software. The described
methodology foresees the visit of pre-established points. All the other structures that we were able
to inventory during the fieldwork were identified while we were heading for the marked points.
Although we have covered practically the entire area of the most affected municipalities, it is possible
that there are damaged structures that we have missed.

Table 2 presents the distribution of the valid points considered for analysis in the three
administrative divisions existing in Portugal: District (Distrito, in Portuguese, the largest one),
Municipality (Concelho, intermediate), and Parish (Freguesia, the smallest). Only the last two have
effective administrative power. We can observe that the municipality of Pedrógão Grande was
undoubtedly the most affected one, with more than 60% (640) of the total damaged structures.
Together with the other two affected municipalities from the District of Leiria (Castanheira de Pera and
Figueiró dos Vinhos) they account for the vast majority of the damaged structures (95%, 990 structures).
This is fairly easy to understand, as it corresponds to the area where the fire was more violent and
spread more intensely, as demonstrated in [1]. This is also the area where 66 persons lost their lives, as
a consequence of the fire.

Table 2. Resume of the number and distribution of the damaged structures considered for analysis,
among the three Portuguese Administrative divisions.

1. District Total 2. Municipality Total 3. Parish/Union of
Parishs Total

Castelo Branco 30 Sertã 30

Castelo 5

Cernache do
Bonjardim, Nesperal

e Palhais
25

Coimbra 23 Penela 23
Cumeeira 2

Espinhal 21

Leiria 990

Castanheira de
Pêra 172 Castanheira de Pêra e

Coentral 172

Figueiró dos
Vinhos

178

Aguda 51

Campelo 57

Figueiró dos Vinhos e
Bairradas 70

Pedrogão Grande 640
Graça 225

Pedrógão Grande 134

Total 1043

The concentration of damaged structures in the time and place of the most extreme fire propagation
was obvious from the beginning. We obtained 464 answers (44.5%) pertaining to the date and time of
arrival of the fire, and from these, 388 placed it between 18:30 and 20:30 of 17 June. Figure 4 is a close
up on the area of the analysis and graphically presents the density of damaged structures, where the
warm read/yellow colors show the concentration of the destruction in the western area of Pedrógão
Grande and southern of Castanheira de Pera. In Figueiró dos Vinhos the damage was more scattered.
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From the 1043 structures analyzed, an overwhelming total of 890 (85.3%) were either highly
damaged or completely destroyed, as depicted in Table 3.

Table 3. Number of structures inventoried per degree of damage.

Condition of the Structure after the Fire

Slightly
Damaged

Moderately
Damaged

Highly
Damaged

Totally
Destroyed Total

Number of
structures 79 (7.6%) 74 (7.1%) 432 (41.4%) 458 (43.9%) 1043 (100%)

From now on, the results are shown grouped according to the object of their characterization,
as presented earlier in Table 1. Not all variables were analyzed, mainly because the number of answers
was too short, as is the case of group 4, “Human behavior towards the incoming fire”. We will hereafter
present the ones deemed useful to understand how the fire impacted the affected region. To achieve
this, we cross-examined the results against the condition of the structure after the passage of the fire.
As two or more variables are examined simultaneously, the number of answers must be restricted to
the lowest value, hence representing common answers.

3.1. Group 1—The Structure

The fire did not impact all structures equally. The impact was differentiated according to the type
of structure, the type of construction, the age, or the state of conservation.

Considering the type of damaged structure (Table 4), the most affected were support structures
like small agricultural sheds or storages (38.6%). Included in this category are the annexes that can
be found in many houses, which serve different purposes, but do not fit into any other category.
However, more important, around 25% referred to homes, either primary (13.3%) or secondary (11.9%).
There is a similar distribution of damage by classes between the two, although the percentage of high
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damage and of destruction is slightly higher in the secondary housing. This may be explained by
the fact that being temporary houses, mainly for weekends or holidays, the degree of conservation
and maintenance is usually lower than in the houses with permanent occupation. This distribution
of damage among classes is also similar in most of the other types of structures, i.e., the majority of
structures presented high damage or were completely destroyed. It is important also to notice that 25%
of primary houses only presented slight damages.

Table 4. Degree of damage according to the type of structure.

Condition of the Structure after the Fire 1

Type of Structure Slightly
Damaged

Moderately
Damaged

Highly
Damaged

Totally
Destroyed

Total 2

1043 (100%)

Primary housing 35 (25.2%) 17 (12.2%) 46 (33.1%) 41 (29.5%) 139 (13.3%)
Secondary housing 19 (15.3%) 9 (7.3%) 46 (37.1%) 50 (40.3%) 124 (11.9%)

Agricultural
Warehouse 1 (1.4%) 5 (6.8%) 28 (37.8%) 40 (54.1%) 74 (7.1%)

Shed/Storage 12 (3%) 20 (5%) 179 (44.4%) 192 (47.6%) 403 (38.6%)
Garage 5 (8.3%) 9 (15%) 22 (36.7%) 24 (40%) 60 (5.8%)

Commerce 0 (0%) 1 (100%) 0 (0%) 0 (0%) 1 (0.1%)
Industry 0 (0%) 2 (13.3%) 5 (33.3%) 8 (53.3%) 15 (1.4%)

Uninhabited house 2 (3.4%) 4 (6.9%) 36 (62.1%) 16 (27.6%) 58 (5.6%)
Vacant structure 1 (0.8%) 3 (2.3%) 56 (42.4%) 72 (54.5%) 132 (12.7%)

Cattle shed/Stable 2 (10%) 1 (5%) 8 (40%) 9 (45%) 20 (1.9%)
Outdoor kitchen 0 (0%) 2 (33.3%) 2 (33.3%) 2 (33.3%) 6 (0.6%)

Other 2 (18.2%) 1 (9.1%) 4 (36.4%) 4 (36.4%) 11 (1.1%)
1 Values represent the number of structures and the respective percentage in each class of damage inside each type
of structure (read percentage horizontally); 2 Values represent the number of structures per type of structure and the
percentage in respect to the total of damaged structures (read percentage vertically).

The fourth most affected type of structures referred to vacant houses (12.7%), that differ from
the uninhabited by not having any signs of usage, like furniture or other contents and being in a
poor condition. The remaining 23.6% include all the other categories that we managed to identify,
like warehouses, garages, commerce and industry, or animal stables.

In relative terms, the highest percentage of destruction was observed in vacant structures (54.5%),
agricultural warehouses (54.1%), and industry facilities (53.3%), practically with the same percentages,
although the effective number of structures is very different, with 72, 40, and 8, respectively.

It is also noticeable that agricultural sheds or storage constructions were very affected, and only
8% presented slight or moderate damage. This can be explained by the fact that the construction
type is often weak and even if the owners were present, their efforts were directed to try to save the
houses, not the support constructions. Among the structures classified as “Other” we can highlight
four, for their social importance: One kindergarten (totally destroyed), two chapels (highly damaged),
and one cultural space (highly damaged).

More than the justifications given before to explain the fact that a structure was more or less
damaged, there are some more objective variables that may be used. From the 1043 valid structures for
analysis, we obtained answers for 1035, regarding both their condition and use before the fire (Table 5).
From these, 73.6% were in fact being used or occupied, while 26.4% showed no signs of it. From these
last ones, the poorly preserved structures prevail, understandably, and overall, practically all structures
had high damage or were destroyed. As for the structures in use, only 219 out of 762 (28.7%) were
considered to be in a good pre-fire condition and the majority of the damage occurred in structures
moderately preserved (509 out of 762, 57.6%). The highest percentage in the slightly damaged class
occurred in the well-preserved structures (47 out of 73, 64.4%).
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Table 5. Degree of damage according to the condition of the structure and the use of the structure
before the fire.

Condition of the Structure after the Fire 1

Use and Condition of the
Structure before The Fire

Slightly
Damaged

Moderately
Damaged

Highly
Damaged

Totally
Destroyed

Total 2

(1035)

In use

Well
preserved 47 (21.5%) 27 (12.3%) 50 (22.8%) 95 (43.4%) 219

Moderately
preserved 25 (4.9%) 33 (6.5%) 224 (44%) 227 (44.6%) 509

Poorly
preserved 1 (2.9%) 1 (2.9%) 14 (41.2%) 18 (52.9%) 34

Sub-total 73 (9.6%) 61 (8%) 288 (37.8%) 340 (44.6%) 762 (73.6%)

Out of use

Well
preserved 1 (33.3%) 0 (0%) 1 (33.3%) 1 (33.3%) 3

Moderately
preserved 1 (1.1%) 7 (8%) 53 (60.9%) 26 (29.9%) 87

Poorly
preserved 4 (2.2%) 6 (3.3%) 88 (48.1%) 85 (46.4%) 183

Sub-total 6 (2.2%) 13 (4.8%) 142 (52%) 112 (41%) 273 (26.4%)
1 Values represent the number of structures and the respective percentage in each class of damage inside each
class of use and condition (read percentage horizontally); 2 Values represent the number of structures per class of
use inside each class of structure condition and the percentage in respect to the total of damaged structures (read
percentage vertically).

It is perceptible in the results that, when the conditions are met for a structure to be destroyed,
the degree of maintenance has little influence, as can be seen by the similar percentages on the totally
destroyed class (although the percentage slightly increases as the conservation worsens).

The other two variables considered in this section of the analysis are the type of construction
(Table 6) and its approximate age (Table 7). One of the structures was destroyed to a point where
we could not identify its type, hence only 1042 values were used. Regarding the age, we could not
evaluate it in six structures.

Table 6. Degree of damage according to the type of construction.

Condition of the Structure after the Fire 1

Type of
Construction

Slightly
Damaged

Moderately
Damaged

Highly
Damaged

Totally
Destroyed

Total 2

(1042)

Masonry 71 (13.4%) 57 (10.8%) 195 (36.8%) 207 (39.1%) 530 (50.9%)
Stone 7 (1.7%) 14 (3.3%) 222 (52.9%) 177 (42.1%) 420 (40.3%)
Wood 0 (0%) 0 (0%) 0 (0%) 29 (100%) 29 (2.8%)
Metal 1 (1.7%) 2 (3.3%) 14 (23.3%) 43 (71.7%) 60 (5.8%)
Other 0 (0%) 1 (33.3%) 1 (33.3%) 1 (33.3%) 3 (0.3%)

1 Values represent the number of structures and the respective percentage in each class of damage inside each
class of type of construction (read percentage horizontally); 2 Values represent the number of structures per type of
construction and the percentage in respect to the total of damaged structures (read percentage vertically).

Table 7. Degree of damage according to the approximate age of the structure.

Condition of the Structure after the Fire 1

Age of Construction Slightly
Damaged

Moderately
Damaged

Highly
Damaged

Totally
Destroyed

Total 2

(1037)

<10 years 6 (23.1%) 5 (19.2%) 2 (7.7%) 13 (50%) 26 (2.5%)
Between 10 and 30

years 17 (14.4%) 11 (9.3%) 26 (22%) 64 (54.2%) 118 (11.4%)

>30 years 56 (6.3%) 58 (6.5%) 399 (44.7%) 380 (42.6%) 893 (86.1%)
1 Values represent the number of structures and the respective percentage in each class of damage inside each class
of use and condition (read percentage horizontally); 2 Values represent the number of structures per class of age and
the percentage in respect to the total of damaged structures (read percentage vertically).
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The typical construction in Portugal uses concrete and clay bricks, here identified as masonry,
but in many regions either old houses or newly reconstructed ones can also be made of stone, or a mix
of both. This is confirmed by the results of Table 6, where we see that more than 90% of the affected
structures are built with one of these two materials. Wood construction is not very common, especially
in houses, and we can see that all wooden structures affected by fire were totally destroyed (example
in Figure 5).
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From the 530 masonry structures damaged by fire, 176 (33.2%) refer to houses and a similar
number (177) to sheds or storage constructions. Around 42% of the stone structures refer also to
sheds or storages (179 out of 420). The vast majority (86.1%) of the structures are of an advanced age
(more than 30 years old), as shown in Table 7. From these, 114 are residential homes (12.8%) and 356
are sheds or storage structures (39.9%). The more recent structures are clearly more resistant to the
passage of the fire, especially those built in the last 10 years (only 2.5% of the 1037 considered).

3.2. Group 2—The Surroundings of the Structure

The items from group 1 are determinant to the probability of a structure being damaged or not,
but we must also consider the way those structures are mixed with the natural vegetation. We consider
here two aspects: The fact that the structures are isolated, or not, and the fuel management in their
periphery. The need and reasoning behind fuel management in the WUI was already addressed.
In Portugal, the legislation observed at the time of the Pedrógão fire complex established two buffers
where fuel management was mandatory: In continuous urban areas, a fuel break of 100 meters around
the perimeter, and in isolated houses located outside these areas, individual fuel breaks of 50 meters
around the structures. These fuel breaks do not need to be completely clean of vegetation, and there
were, at the time specific guidelines regarding surface fuels clearance or trees thinning and pruning [70].
After the 2017 fires the guidelines had some changes, especially regarding the fuel load and vertical
and horizontal continuity [71]. We found 963 structures in which fuel management should be executed.
If we were to be strict in observing these 50 or 100 meters, we would not have found one single structure
fulfilling the requirements of the legislation. Instead, we decided to use a more flexible approach and
consider three classes of fuel management. Whenever there was a fuel discontinuity in at least one
side of the structure, with a width corresponding to a common road (3 meters), we considered the fuel
management to be “partial”. This discontinuity could be a road, an irrigated lawn, vegetable garden,
bare soil, or any type of barrier to the passage of a surface fire. If the fuel break was all around the
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house, we considered it to be “full”. If there were no discontinuities, we assumed it to be “absent”.
Looking at Table 8, the immediate perception is that there is no clear difference in having absent or
partial fuel management, as the number of damaged structures is similar. Obviously, generalizations
cannot be made, since we did not analyze the structures that were not damaged by fire, but this result
leads us to believe that fuel management is only effective if it is fully carried out in the surroundings of
the structures.

Table 8. Degree of damage according to the fuel management on the surroundings of the structure.

Condition of the Structure after the Fire 1

Fuel
Management

Slightly
Damaged

Moderately
Damaged

Highly
Damaged

Totally
Destroyed

Total 2

(963)

Absent 17 (4%) 20 (4.7%) 183 (43.3%) 203 (48%) 423 (43.9%)
Partial 37 (7.6%) 40 (8.2%) 198 (40.7%) 211 (43.4%) 486 (50.5%)

Full 7 (13%) 8 (14.8%) 19 (35.2%) 20 (37%) 54 (5.6%)
1 Values represent the number of structures and the respective percentage in each class of damage inside each class
of fuel management (read percentage horizontally); 2 Values represent the number of structures per class of fuel
management and the percentage in respect to the total of damaged structures (read percentage vertically).

Considering the type of construction used in Portugal, and addressed earlier, we observe that it
is not common to have “structure to structure” ignition, like in other countries whenever different
materials, like wood, are used [13,36,72]. Also, structures disposed in groups, as in urban areas, offer a
combined protection, mainly to the ones located inside the cluster. We can combine both results
from the variables “isolated structure” (structure location) and “fuel management” to produce a joint
analysis, as seen in Table 9.

Table 9. Degree of damage according to the relative house location and fuel management.

Condition of the Structure after the Fire 1

Structure location and Fuel
Management

Slightly
Damaged

Moderately
Damaged

Highly
Damaged

Totally
Destroyed

Total 2

(963)

Isolated

Absent 12 (5%) 13 (5.4%) 113 (47.1%) 102 (42.5%) 240
Partial 15 (8.4%) 14 (7.9%) 71 (39.9%) 78 (43.8%) 178

Full 6 (16.2%) 7 (18.9%) 12 (32.4%) 12 (32.4%) 37

Sub-total 33 (7.3%) 34 (7.5%) 196 (43.1%) 192 (42.2%) 455 (47.2%)

Not isolated

Absent 5 (2.7%) 7 (3.8%) 70 (38.3%) 101 (55.2%) 183
Partial 22 (7.1%) 26 (8.4%) 127 (41.2%) 133 (43.2%) 308

Full 1 (5.9%) 1 (5.9%) 7 (41.2%) 8 (47.1%) 17

Sub-total 28 (5.5%) 34 (6.7%) 204 (40.2%) 242 (47.6%) 508 (52.8%)
1 Values represent the number of structures and the respective percentage in each class of damage inside each
class of fuel management and structure location (read percentage horizontally); 2 Values represent the number of
structures per class of fuel management inside each class of structure location and the percentage in respect to the
total of damaged structures (read percentage vertically).

Overall, the number of structures that are not isolated is slightly larger (508 out 963 or 52.8%).
The isolated structures should be the ones that are more in need of fuel management, but the majority of
them did not have any type of management (240 out of 455 or 52.7%) or only had “partial management”
(178 out of 455 or 39.1%). In the non-isolated structures, the majority are those with partial management
(308 out of 508 or 60.6%), which is understandable considering that they are in clusters of structures.

3.3. Group 3—The Arrival and Impact of the Fire

The main mechanisms of structure ignition were already explained, and in this part of the analysis
we tried to identify, for each structure, precisely where and how the fire impacted, either by direct
observation or by talking to the owners or neighbors of the structure. We obtained 1041 valid answers
for both variables. One common answer in both variables, as shown in Tables 10 and 11, is related to the



Fire 2020, 3, 57 15 of 21

fact that 38 structures suffered damage but did not ignite. These damages are mostly associated with
the strong wind and extreme heat that accompanied the fire. We observed damaged roofs, windows,
window blinds, or other small wood or plastic elements, as seen in Figure 6.

Table 10. Degree of damage according to the type of ignition.

Condition of the Structure after the Fire 1

Type of Ignition Slightly
Damaged

Moderately
Damaged

Highly
Damaged

Totally
Destroyed

Total 2

(1042)

Firebrands 27 (4.2%) 54 (8.5%) 294 (46.2%) 261 (41%) 636 (61.1%)
Direct fire impact 7 (3.2%) 8 (3.6%) 91 (41%) 116 (52.3%) 222 (21.3%)

Materials burning in
the immediate

vicinity
7 (5.3%) 9 (6.8%) 43 (32.3%) 74 (55.6%) 133 (12.8%)

Contiguous structure 2 (16.7%) 1 (8.3%) 3 (25%) 6 (50%) 12 (1.2%)
With damage but no

ignition 35 (92.1%) 2 (5.3%) 1 (2.6%) 0 (0%) 38 (3.7%)

1 Values represent the number of structures and the respective percentage in each class of damage inside each type
of ignition (read percentage horizontally); 2 Values represent the number of structures per type of ignition and the
percentage in respect to the total of damaged structures (read percentage vertically).

Table 11. Degree of damage according to the location of the ignition.

Condition of the Structure after the Fire 1

Location of the
Ignition

Slightly
Damaged

Moderately
Damaged

Highly
Damaged

Totally
Destroyed

Total 2

(1042)

Roof 16 (2.5%) 36 (5.6%) 299 (46.4%) 293 (45.5%) 644 (61.9%)
Window 14 (8.3%) 17 (10.1%) 70 (41.4%) 68 (40.2%) 169 (16.2%)

Door 4 (5.3%) 7 (9.3%) 36 (48%) 28 (37.3%) 75 (7.2%)
Open structure 2 (2.9%) 6 (8.8%) 13 (19.1%) 47 (69.1%) 68 (6.5%)

Wall 5 (21.7%) 4 (17.4%) 0 (0%) 14 (60.9%) 23 (2.2%)
Vent 0 (0%) 1 (5.3%) 12 (63.2%) 6 (31.6%) 19 (1.8%)

Other 3 (60%) 1 (20%) 1 (20%) 0 (0%) 5 (0.5%)
With damage

but no ignition 35 (92.1%) 2 (5.3%) 1 (2.6%) 0 (0%) 38 (3.7%)

1 Values represent the number of structures and the respective percentage in each class of damage inside each
location of the ignition (read percentage horizontally); 2 Values represent the number of structures per location of
the ignition and the percentage in respect to the total of damaged structures (read percentage vertically).

About 61% of the structures (Table 10) were damaged because of the deposition of burning embers,
or firebrands, in one or more weak spots. This is in line with observations in other case studies, as
identified before. This number could be potentially increased, if we added the categories “materials
burning in the immediate vicinity” and “contiguous structure”, as we observed that most of these
situations were also provoked by firebrands. We did not count them because the true cause of the
structure ignition was not directly the firebrand, but the material that it ignited. The direct impact of
fire on structures represented 21.3% of the total.

Regarding ignition location (Table 11), most of them were in the roof of the structures (61.8%,
Figure 7). These ignitions were of different nature: (i) Firebrands deposited in vulnerable parts of the
roofs, either where there was accumulation of fuels (leaves, twigs, etc.), or where there were structural
defects, leaving sensitive elements visible (raised tiles, broken vents, holes, etc.) and (ii) the wind that
was felt during the fire raised the roofs or part of them, regardless of their state of conservation, or
construction materials (tiles, metal sheets, wood), leaving the interior exposed.
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The windows were the second element most exposed to ignition, although with a much lower
value (16%, Figure 8). We mainly found cases of old windows, sometimes broken, and many structures
where the windows had no glass. These are mostly related to support structures, not to housing.
Another aspect that deserves to be highlighted is the existence of vents, especially in older houses,
without particle retention systems, which are a point of entry for firebrands (19 cases).
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4. Conclusions

The initial objectives delineated for this work were extremely ambitious, as we had the goal to
visit and document every single structure affected by the Pedrógão Grande fire complex, in an area of
more than 45,000 ha [1]. Considering the resources and time available, we assumed the need to focus
on a smaller area, in the region that was most damaged by the fire. Even so, we covered an area of
around 29,000 ha, and are confident to have visited the majority, if not all, of the structures damaged
by this part of the fire complex.

Although the damage caused by the fire on the structures was scattered by the entire fire area, there
was a clear concentration on the central area of the western part of the fire, between the Municipalities
of Castanheira de Pera and Pedrogão Grande. In this area, different phenomena of extreme fire behavior
were observed, which also resulted in the death of 65 civilians and 1 firefighter [1,73]. The impact of
the fire on the local population could eventually be measured by this number of fatalities [73] but
also by the type of structures that were burned [74]. More than 85% of the damaged or destroyed
structures are of an advanced age and the largest group, almost 40%, were used as support to different
occupational activities (like agriculture), or as storage near the residential homes. The most affected
part of the population was the aged rural population, typical in some inland regions of Portugal [75].
The value that this fringe of the population puts on their property is extremely high, especially when it
relates to their subsistence. The damage caused in residential homes has a strong impact on the losses
associated with any wildfire [76], mainly those used as primary residences, which in this case totaled
139, with 41 being destroyed and 46 severely damaged. This had a notorious social impact and gave
origin to multiple solidarity campaigns as well as official programs from the Government to help those
citizens recover.

Contrary to the fires of October, in the same year [47], the industrial facilities were not much
affected, accounting only for 1.4% of the total damaged structures. In October, the destruction in this
type of structures was much more marked, and object of a similar detailed study [52]. In that study,
the mechanisms of ignition were also analyzed, and the conclusions were similar to the case of Pedrógão,
with the firebrands being the main ignition source.

On a final note, during the more complete field work, performed for the production of the
aforementioned Report [1] and that includes the diligences to analyze fire behavior and the fatal
accidents, as well as the damaged structures, we concluded that, from the 66 fatalities registered in this
fire, only 4 happened inside structures (homes). All four victims belonged to a vulnerable population
group, that should have been removed to a safe place, had the conditions allowed it. Furthermore,
the houses from most of the victims did not suffer sufficient damage to put their lives in risk, should
they have chosen to stay. This supports the idea that, for the Portuguese reality, houses are a good
refuge, providing that they and their surroundings are well-managed and kept in good conditions.
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