
Eur. Phys. J. C (2020) 80:1135
https://doi.org/10.1140/epjc/s10052-020-08716-y

Regular Article - Theoretical Physics

Top condensation model: a step towards the correct prediction
of the Higgs mass

A. A. Osipov1,a , B. Hiller2,b, A. H. Blin2,c, F. Palanca2,d, J. Moreira2,e, M. Sampaio3,f

1 Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna, Moscow Region, Russia
2 CFisUC, Department of Physics, University of Coimbra, 3004-516 Coimbra, Portugal
3 ABC Federal U., Santo André, São Paulo, Brazil

Received: 6 August 2019 / Accepted: 30 November 2020 / Published online: 8 December 2020
© The Author(s) 2020

Abstract A realization of the composite Higgs scenario in
the context of the effective model with the SU (2)L ×U (1)R
symmetric four-Fermi interactions proposed by Miransky,
Tanabashi and Yamawaki is studied. The model implements
Nambu’s mechanism of dynamical electroweak symmetry
breaking leading to the formation of t̄ t and b̄b quark con-
densates. We explore the vacuum structure and spectrum of
the model by using the Schwinger proper-time method. As
a direct consequence of this mechanism, the Higgs acquires
a mass in accord with its experimental value. The present
prediction essentially differs from the known overestimated
value, mχ = 2mt , making more favourable the top conden-
sation scenario presented here. The mass formulas for the
members of the second Higgs doublet are also obtained. The
Nambu sum rule is discussed. It is shown that the anoma-
lous U (1)A symmetry breaking modifies this rule at next to
leading order in 1/Nc.

1 Introduction

The top-condensation models have already a long history of
development [1–15]. The main idea of this approach is that
the Higgs sector of the Standard Model (SM) is originated
by the four-Fermi quark couplings which describe physics
below a physical cutoff Λ. These models are an attractive
framework to study the origin of mass beyond the Standard
Model (SM), but reportedly suffer from the following phe-
nomenological problem: the predicted mass of the standard
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Higgs χ is too large mχ = 2mt , where mt = 173 GeV is the
top quark mass. This result, obtained in the large Nc approx-
imation [9] in the one Higgs doublet model, survives in the
two-Higgs-doublet models studied in [10,11]. The inclusion
of the effects due to the gauge and Higgs contributions [9,10]
computed through the one-loop renormalization-group equa-
tions does not essentially improve the situation. The Higgs
mass obtained is still large mχ � √

2mt . A number of
attempts to resolve the Higgs mass problem at large Nc by
using the top-seesaw mechanism have been made in [16–
18]. In these approaches the light Higgs emerges as one
of the composite pseudo Nambu–Goldstone bosons associ-
ated with the spontaneous breaking of an approximate global
U (3)L × U (1)R symmetry down to U (2)L × U (1)V by the
corresponding quark condensates.

The result mχ = 2mt is an analogue of the relation found
in the Nambu–Jona–Lasinio (NJL) model [19,20] for the
mass of the scalar fermion–antifermion bound state (so called
σ -meson) mσ = 2m f , where m f is the mass of the fermion
in the Nambu–Goldstone phase. The generalized form of this
relation is known as the Nambu sum rule [21–23]. Accord-
ing to this hypothesis, collective bosonic modes arising in
a system with four-Fermi interactions can be combined into
pairs (the so-called Nambu partners) for each of which the
equality m2

1 + m2
2 = 4m2

f is fulfilled. This formula relates
the gap in the fermion spectrum, m f , with the correspond-
ing gaps in the boson spectrum m1 and m2. It follows from
the Nambu sum rule that a phenomenologically acceptable
result mχ � mt/

√
2 can be obtained only in the extended

version of the top-condensation model containing at least
two doublets of Higgs fields. In the latter case the sum rule
suggests the existence of a Nambu partner for the standard
Higgs boson with a mass around 325 GeV [23]. It is gen-
erally believed (see e.g., [24,25]) that the conventional top-
condensation models with two Higgs doublets [7,10,11] can-
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not reproduce this result, because the mass mχ tends to be in
the range mt < mχ ≤ 2mt .

In this paper, contrary to above mentioned belief, we show
that in the model [7] the mass mχ varies in the range 2mb <

mχ < mt , and as a consequence a light SM-like Higgs with
a mass of O(mW ) emerges. Our conclusion is based on the
spectrum, which follows from the Schwinger–DeWitt expan-
sion [26–29] of the effective action of the model [7] at low-
energies μ ∼ ΛEW = (

√
2GF )−1/2 = 246 GeV � Λ.

Note that the four-quark terms at the scale Λ can be writ-
ten in terms of static boson fields with Yukawa couplings to
the quarks. This form reproduces the four-Fermi couplings
when auxiliary fields are integrated out. On the other hand,
in the large-Nc limit, the theory evolves at low energy to the
extended SM with the dynamically generated two Higgs dou-
blet fields. It accounts for the one-quark-loop contribution
where one keeps only the leading quadratic and logarithmic
divergences in the form suggested in [9]. It is interesting that
the obtained composite Higgs theory can be identified with
particular renormalization-group trajectories known from the
two Higgs-doublets models [30].

The implementation of the Nambu sum rule for the
model [7] is also considered. We show that the anomalous
breaking of the U (1)A symmetry modifies this rule. The two
Higgs doublets of the model contain eight real fields, three
of which are absorbed by the gauge W± and Z bosons due
to the Higgs mechanism. Of the remaining five fields, two
charged states, χ±, are Nambu partners. However, the other
three neutral states χ0, χ3, and φ0 cannot be reduced to the
picture with two Nambu partners, and as a result, the sum
rule takes a slightly different form, not directly relating the
masses of Higgs states to the gap in the fermion spectrum.
We argue that this modification is the result of going beyond
the leading order approximation in 1/Nc already in the four-
Fermi Lagrangian,1 where the ’t Hooft interaction violating
the Nambu sum rule is 1/Nc suppressed.

The paper is organized as follows. In Sect. 2 we present the
most important features of the model [7]. The new aspect of
our approach here is the derivation of the low-energy effec-
tive action of the model on the basis of the Schwinger–DeWitt
background field method. Through the asymptotic proper
time expansion we obtain the gap equations, spectrum and
coupling constants of the theory. We also obtain and discuss
the Nambu sum rule. Here we give the exact form of these
relations which one obtains in the model and show the role of
the U (1)A anomaly in the modification of this sum rule. The
numerical estimations are given in Sect. 3. The discussion of
the hierarchy problem is given in the end of this section. We

1 The large Nc behaviour of the model is reflected in the coupling
constants, in particular, it is well established that the NJL four-quark
interaction dominates over the ’t Hooft U (1)A breaking interaction as

N
N f −1
c , where N f is the number of flavors (in our case N f = 2).

summarize our results in Sect. 4. The six appendices contain
important details of our calculations.

2 The top–bottom system with four-quark interactions

We discuss below the general features of the model [7] where
for simplicity only the quarks of the third generation are
considered. This includes the dynamical symmetry break-
ing through the top-quark condensation, the spectrum of the
Higgs and gauge-boson states, the implementation of the
Nambu sum rule. Our conclusions here are based on the low-
energy effective Lagrangian obtained by the Schwinger –
DeWitt expansion, and the gap equations, which describe
the ground state of the theory. We adhere to the semiclassical
approximation, i.e., the quantum corrections due to gauge,
quark or composite Higgs fields are not considered.

2.1 Effective Lagrangian

Let us consider the quark–gauge–boson system described at
very large scale Λ (perhaps of the order of the grand-unified-
theory (GUT) scale 1015 GeV) by the SU (2)L×U (1)R gauge
symmetric Lagrangian density

L = ψ̄Liγ
μDμψL +

2∑

a=1

ψ̄a
Riγ

μDμψa
R + L YM + L4ψ.

(1)

Here we focus, for simplicity, upon the third electroweak
generation of quarks. The color indices of quark fields are
suppressed. The heavy quark SU (2) doublet is

ψ =
(

ψ1

ψ2

)
=

(
t
b

)
. (2)

The chiral right-left projection operators are defined as fol-
lows PR = 1

2 (1+γ5), PL = 1
2 (1−γ5) with ψL ,R = PL ,Rψ .

The gauge covariant derivatives have a standard form

DμψL =
(
∂μ − igRTi A

i
Rμ − ig′

RYL BRμ

)
ψL , (3)

DμψR = (
∂μ − ig′

RQBRμ

)
ψR, (4)

where the matrix Q = T3 + YL describes the electromag-
netic charges of top and bottom quarks in relative units of
the proton charge e > 0, YL = 1/6; ARμ = Ai

RμTi and

BRμ are gauge fields2 of the SU (2)L and U (1)R groups of
local transformations, respectively; the SU (2) Lie algebra

2 Here the symbol R anticipates that in the following we may exercise
the freedom of rescaling the gauge fields.
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generators are Ti = τi/2, i = 1, 2, 3, where τi are Pauli
matrices.

At this point it is useful to anticipate some of the discus-
sion of Sect. 2.7 concerning the impact of induced quantum
corrections due to the integration of the short-distance com-
ponents of quark fields. This integration leads to the rescaling
of the gauge fields and their couplings with quarks at low-
energies. In particular, gR = Z1/2

A g and g′
R = Z1/2

B g′, where
g and g′ are renormalized induced coupling constants, the
parameters ZA and ZB are renormalization factors, which
are needed at the low-energy scale μ � Λ to have an entire
correspondence with the Yang–Mills part of the SM. Notice
that g′/g = tan θW , e = g sin θW , sin2 θW = 0.23. As it will
be shown later, ZA and ZB depend upon Λ, and μ; they are
equal to one at μ = Λ.

The pure Yang–Mills part of the Lagrangian density L YM

is standard

L YM = −1

4
(B2

Rμν + G2
Rμν), (5)

where

BRμν = ∂μBRν − ∂νBRμ, (6)

GRμν = ∂μARν − ∂νARμ + gRARμ × ARν . (7)

The physical gauge fields Aμ, Bμ are defined through the

rescaling ARμ = Z−1/2
A Aμ, BRμ = Z−1/2

B Bμ.
The Lagrangian density (1) does not have the electroweak

Higgs sector. Instead, it is assumed that at some high energy
scale Λ the local four-quark interaction L4ψ arises as an
effective description for new physics beyond the SM. This
local interaction has the most general SU (2)L × U (1)R
invariant form [7]

L4ψ = g1(ψ̄
a
Lψb

R)(ψ̄b
Rψa

L)

+ g2(ψ̄
a
Lψb

R)(iτ2)
ac(iτ2)

be(ψ̄c
Lψe

R)

+ g3(ψ̄
a
Lψb

R)τ bc3 (ψ̄c
Rψa

L) + h.c., (8)

where the three independent couplings gi are assumed to
be real and have the same dimension [gi ] = M−2. These
four-fermion operators are the lowest mass dimension oper-
ators we can add to the SM using only quark fields of the
third generation. We discuss the model with real and positive
gi hereafter. As in Eq. (1), the color degrees of freedom of
quarks are not explicitly indicated in (8), but it is assumed that
implicit summation is carried out between the fields enclosed
in parentheses.

The individual terms of the four-quark Lagrangian possess
the following symmetry

g1 : SU (3)c × SU (2)L × SU (2)R ×U (1)V ×U (1)A.

g2 : SU (3)c × SU (2)L × SU (2)R ×U (1)V .

g3 : SU (3)c × SU (2)L ×U (1)R ×U (1)V ×U (1)A. (9)

The theory with only one non-zero coupling g1 would have a
spectrum typical for the NJL-model with U (2)L × U (2)R
chiral symmetry, which leads in the Nambu–Goldstone
phase to structured bosons, four massless pseudoscalars and
four mass-degenerate scalar states with a mass twice the
induced fermion mass. In the absence of the term ∝ g2, the
Lagrangian density (1) has a global U (1)A symmetry, which
being broken spontaneously leads to a massless Nambu–
Goldstone mode. Such a boson is not observed experimen-
tally, therefore, g2 	= 0. The interaction with the coupling
constant g3 violates spatial parity and isotopic symmetry.

2.2 Bosonic variables

The description of collective bound states can be facilitated
if we introduce in the Lagrangian density (1) eight auxil-
iary boson fields σ = σατα, π = πατα .3 With these static
variables the fermion part of (1) takes the Yukawa form (see
Appendix A for details)

L ′ = ψ̄(iγ μDμ + σ + iγ5π)ψ + Lπ,σ + L YM, (10)

where Lπ,σ is quadratic in the boson fields

Lπ,σ = − 1

ḡ2 [(g1 + g2)(π
2
0 + σ 2

i ) + (g1 − g2)(σ
2
0 + π2

i )

− 2g3(π0π3 + σ0σ3 − σ1π2 + σ2π1)], (11)

with ḡ2 ≡ g2
1 − g2

2 − g2
3 	= 0, and the electroweak gauge

covariant derivative is given by

Dμψ = [∂μ − igTi A
i
μPL + ig′Bμ (T3PL − Q)]ψ. (12)

We wish to emphasize that this form of the Lagrangian
density has the same dynamical content as (1). This point is
clarified by solving the Euler–Lagrange equations of static
fields following from (10). In Appendix A we present details
of such calculations.

The Lagrangian density (10) contains the same number
of parameters as (1). We refer to this scenario as minimal
bosonization. As it has been pointed out by Eguchi [31], the
four-fermion theories can induce new coupling constants,
which become independent of the original four-fermion cou-
plings. This means that in principle one can write another
Lagrangian density, L ′′, which will contain additional new
parameters and still will be dynamically equivalent to (1).
Our goals here can be achieved already with the Lagrangian

3 It is assumed here and hereinafter that the Greek index α runs through
the values α = 0, 1, 2, 3, and τ0 = 1.
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density (10), to which we restrict ourselves in this work, so
as not to complicate the calculations.

The static fields σα and πα acquire kinetic terms and self-
interactions, provided that Yukawa couplings, and the low-
energy scale μ are tuned so that the couplings of four-quark
interactions g1, g2, g3 are near their critical value. Let us
consider this point in detail.

2.3 Schwinger–DeWitt expansion

The model we are considering can be described by a gener-
ating functional

Z =
∫
dσαdπαdψdψ̄ exp

(
i
∫
d4xL ′

)
. (13)

As we noted above, the integration over boson fields in (13)
will return us to the initial theory with the Lagrangian den-
sity (1). On the other hand, the path integral representation
is convenient for the 1/Nc expansion of the theory, since
here it is already possible to integrate out the short-distance
components of the quark fields ψ → ψ + ψsd by using
Wilson’s method [32]. Indeed, the analyses of [9] may be
interpreted as implying that at scales below the cutoff Λ the
auxiliary scalar fields σ and π develop induced, fully gauge
invariant kinetic terms and quartic interaction contributions
in the effective action. Here we derive these induced terms in
the case of the model with Lagrangian density (10) by using
the Schwinger–DeWitt technique [26–29] with the specially
assigned cutoff procedure. Notice that the Lagrangian den-
sity (11) requires a diagonalization. However, we calculate
the induced effective Lagrangian part first, since it also con-
tributes to the non-diagonal quadratic form.

The full induced contribution of the integrated short-
distance quark components to the real part of the effective
action can be represented in the form of the asymptotic series
in proper time t (in the Euclidean space, as indicated by the
symbol “E”)

Re SE = −1

2

∫
dt

t3

∫
d4xE

1

(4π)2

∞∑

n=0

tn tr(aEn ), (14)

where aEn are the Seeley–DeWitt coefficients that depend on
fields and, in particular, areaE0 = 1,aE1 = −Y ,aE2 = Y 2/2−
F2

μν/12, with Y defined below in Eq. (17). The remaining
coefficients are not required for our purpose, because only
for n = 0, 1, 2 do the integrals in proper time diverge and
therefore make the dominant contribution at low energies.
Since a0 does not contain fields, we need to consider only
two integrals, which we denote as C1 and C2 and define by

introducing two scale parameters Λ and μ,

C1 =
∫ 1/μ2

1/Λ2

dt

t2 = Λ2 − μ2, (15)

C2 =
∫ 1/μ2

1/Λ2

dt

t
= ln

Λ2

μ2 . (16)

The parameter Λ, as we have already noted, makes sense
of the scale at which unknown physics is approximated by
effective four-quark interactions (8). The second parameter
μ is a low-energy scale, relative to which one-loop contribu-
tions are determined. This is done in such a way that at the
large scale μ = Λ all contributions induced by the proper
time expansion become zero, as it is required [9].

In the model considered, one obtains the following expres-
sions for the field dependent functions in aEn

Y = σ 2 + π2 + iγ5[σ, π ] − i∇μ(γ μσ + iγ μγ5π)

− i

4
[γμ, γν]Fμν, (17)

Fμν = ∂μΓν − ∂νΓμ − i[Γμ, Γν], (18)

Γμ = gTi A
i
μPL − g′Bμ(PLT3 − Q). (19)

These functions are given already after its extrapolation to the
Minkowski space, the necessary ingredients for its derivation
can be found, for instance, in [33].

As a consequence of the fact that Γμ depends on the γ5

matrix, one should be careful applying the covariant deriva-
tives to the scalar fields

∇μ(γ μσ) = ∂μ(γ μσ) − i[Γμ, γ μσ ], (20)

∇μ(iγ μγ5π) = ∂μ(iγ μγ5π) − i[Γμ, iγ μγ5π ]. (21)

Thus, taking into account the leading divergencies in the
proper time expansion of one-quark-loop contributions at low
energies μ � Λ there appears an additional term described
by the Lagrangian density

ΔLsd = − 1

32π2

[
C1tr(−Y ) + C2tr

(
Y 2

2
− F2

μν

12

)]
,

(22)

where traces are calculated from the products of Pauli matri-
ces, and over color and Dirac indices.

Hence, the low-energy theory of fermions and bosons is
described by the SU (2)L×U (1)R gauge-invariant Lagrangian
density

L̃ = L ′ + ΔLsd . (23)

The last term does not change the original theory at high ener-
gies, because ΔLsd = 0 for μ = Λ. However it becomes
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important at low energies μ � Λ, inducing the potential of
the composite Higgs particles, their interactions with gauge
fields and kinetic terms of free bosonic fields.

2.4 Higgs sector and the gap equation

Let us consider the Higgs sector of the model. First we discuss
the vacuum structure of the scalar potential, and derive scalar
masses. From Eq. (23) it follows that the Higgs potential has
the form

VH = −Lπ,σ − C̄1(σ
2
α + π2

α) + 2C̄2

[
1

4
(σ 2

α + π2
α)2

+(σ 2
0 + π2

i )(σ 2
i + π2

0 ) − (σ0π0 − σiπi )
2
]

. (24)

where C̄1,2 ≡ NcC1,2/(4π2).
This formula can be written in a more compact form if one

introduces two electroweak doublets with the U (1) hyper-
charge YL = 1/2 (see Appendix B)

Φ1 =
(

π2 + iπ1

σ0 − iπ3

)
, Φ2 =

(
σ1 − iσ2

−σ3 + iπ0

)
. (25)

These states are not physical because they do not correspond
to the mass eigenstates. Nonetheless, it is useful to compare
Eq. (24), written in terms of these doublets, with the most
general CP conserved scalar potential, the quartic part of
which is symmetric under separate discrete transformations
Φ1 → −Φ1, or Φ2 → −Φ2 given in [30] (see eq. (2) of that
paper). In our case, we have

VH = −C̄1(Φ
†
1Φ1 + Φ

†
2Φ2) + 2C̄2

×
[

1

4
(Φ

†
1Φ1 + Φ

†
2Φ2)

2 + (Φ
†
1Φ1)(Φ

†
2Φ2)

−(Im(Φ
†
1Φ2))

2
]

+ 1

ḡ2

[
(g1−g2)Φ

†
1Φ1 + (g1+g2)Φ

†
2Φ2

+2g3Re(Φ†
1Φ2)

]
. (26)

The comparison yields in the notation of [30]

m2
11 = g1 − g2

ḡ2 −C̄1, m2
22 = g1+g2

ḡ2 −C̄1, m2
12 = − g3

ḡ2 ,

λ1 = λ2 = 1

3
λ3 = −λ4 = λ5 = C̄2. (27)

It shows that the potential of the model considered is quite
restrictive, it has only four real independent parameters
instead of eight in the most general case for such class of
models. This is a direct consequence of the approximation

made in our step from the Lagrangian density (1) to the model
of “minimal bosonization” with the Lagrangian density (10).

Assuming that the vacuum expectation values of the fields
σ0 and σ3 differ from zero: 〈σ0〉 = −m0, 〈σ3〉 = −m3, one
finds the minimum conditions for the potential energy (gap
equations) to determine m0 and m3

m0(g1−g2) − m3g3 = ḡ2m0[C̄1 − (m2
0 + 3m2

3)C̄2], (28)

m3(g1+g2) − m0g3 = ḡ2m3[C̄1 − (m2
3 + 3m2

0)C̄2]. (29)

The fulfilment of gap equations guarantees the absence in VH

of linear in σ0 and σ3 terms at scale μ after the redefinition
of these variables σ0 → σ0 − m0, σ3 → σ3 − m3. The
nonzero vacuum expectation values lead to the gap in the
fermion spectrum. As a result, the top and bottom quarks
acquire the nonzero masses mt = m0 +m3, mb = m0 −m3.
A phenomenologically acceptable solution mt � mb arises
at m0 � m3. Details about the quark condensate content of
these masses are given in Appendix C.

Gap-equations rewritten in terms of quark masses have
the following form

(g1−g3)mt − g2mb = ḡ2mt (C̄1 − m2
t C̄2), (30)

(g1+g3)mb − g2mt = ḡ2mb(C̄1 − m2
bC̄2). (31)

It is obvious that for μ = Λ this system has only a trivial
solution mt = mb = 0: the condition ḡ2 	= 0 warrants the
absence of a nontrivial solution. In the region μ < Λ, the
right-hand side of this system differs from zero and, in the
strong coupling regime, the equations can possess nontrivial
solutions.

The easiest way to establish this fact is to consider a par-
ticular case g2 = 0. In this case Eqs. (30)–(31) are decoupled
with respect to the quark masses

m2
b C̄2 = C̄1 − 1

g1 − g3
, (32)

m2
t C̄2 = C̄1 − 1

g1 + g3
. (33)

It follows then that a bottom quark may acquire its mass
even if g2 = 0. Indeed, one easily comes to the inequality
g1 − g3 > gc = 4π2/NcΛ

2 under which we can expect
that Eq. (32) has a nontrivial solution. This differs from the
model [12], where g2 	= 0 is a main requirement for the bot-
tom quark mass to take non zero value. The trivial solution,
mb = 0, exists only if g2 = 0 as it follows from Eq. (31).
Note that in the case g2 = g3 = 0, the theory is reduced to
the standard version of the NJL model. As is known, if the
constant g1 exceeds its critical value gc, the vacuum of the
model becomes unstable to the trivial solution m0 = m3 = 0
and, as a consequence, the Fermi fields become massive.
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Due to the hierarchy problem (as it will be shown below),
the fulfilment of the inequality g1 > gc is a necessary condi-
tion for the generation of masses of top and bottom quarks.
It will also be a sufficient condition, if the constant g3 	= 0.
This is because the g3-introduced four-quark interaction is
responsible for the difference of quark masses mt 	= mb.
Therefore, we can speak of 〈b̄b〉 condensate catalysis which
takes place at any arbitrarily small value of the constant g3. A
similar statement was made in [34], but in a slightly different
context.

The quadratic part of VH can be diagonalized by two
orthogonal transformations. One of them, characterized by
the angle θ , diagonalizes the charged sector. The other angle
θ ′ is associated with the diagonalization of the neutral scalar
states. The tangents of these angles are expressed in terms of
the ratio m3/m0 and the ratio of the couplings g3/g2

tan θ = m3

m0
, tan 2θ ′ = 3 tan 2θ − 2

g3

g2
. (34)

The rotations to the mass eigenstates are described by the
following formulas (see Appendix D)

Φ1 = H1 cos θ + H2 sin θ = 1

m
(m0H1 + m3H2) , (35)

Φ2 = H2 cos θ − H1 sin θ = 1

m
(m0H2 − m3H1) , (36)

where

H1 =
(

π̃2 + i π̃1

σ ′
0 − m − i π̃3

)
, H2 =

(
σ̃1 − i σ̃2

−σ ′
3 + i π̃0

)
, (37)

and m =
√
m2

0 + m2
3 � mt/

√
2. The diagonalization of the

mixing between the neutral scalars σ0 and σ3 results in the
mass eigenstates σ̃0, σ̃3 and is characterized by the mixing
angle θ ′ 	= θ . Hence, in the weak doublets, these states are
presented as a mixture with the angle α = θ − θ ′ that com-
pensates a difference in the angles

σ ′
0 = σ̃0 cos α + σ̃3 sin α, (38)

σ ′
3 = σ̃3 cos α − σ̃0 sin α. (39)

It should be noted that in the new variables the nonzero
vacuum expectation develops only the field H1, 〈H1〉 =
(0,−m). Such behaviour is typical of any model with two
Higgs doublet states [30], and is known as the Higgs basis
(H1, H2).

It is appropriate to make a few comments. The first one
concerns the form of the gap equations. There are many ways
to rewrite them, but the following one is especially useful for
calculations of the spectrum

ḡ2C̄1 = g1 − 2g2

cos 2θ
+ g3

sin 2θ
, (40)

ḡ2m2C̄2 = g3

sin 2θ
− g2

cos 2θ
. (41)

Our second remark concerns the redefinition of Higgs
fields. The fact is that the expression for the kinetic part of
the free Higgs fields contained in (22) has a non-standard
normalization factor

L kin
H = C2

64π2 tr
[∇μγ μ(σ + iγ5π)

]2

= 1

2
C̄2(|DμH1|2 + |DμH2|2), (42)

where the gauge covariant derivative is

DμH1,2 =
(

∂μ − i
g

2
Ti A

i
μ − i

g′

2
Bμ

)
H1,2. (43)

To give (42) a canonical form, one rescales the fields π̃α =
φα/

√
C̄2, and σ̃α = χα/

√
C̄2 in H1,2. As a consequence, the

two complex scalar doublets of the considered gauge theory
are

H1 = 1√
C̄2

(
φ2 + iφ1

χ ′
0 −

√
C̄2m − iφ3

)
, (44)

H2 = 1√
C̄2

(
χ1 − iχ2

−χ ′
3 + iφ0

)
,

(
χ ′

0

χ ′
3

)
= R(α)

(
χ0

χ3

)
, (45)

where the matrix R(α) is given by Eq. (D.29).
Hereinafter, along with variables H1 and H2, we use the

set

H̃1 =
(

φ2 + iφ1

χ ′
0 − iφ3

)
, H̃2 =

(
χ1 − iχ2

−χ ′
3 + iφ0

)
=

√
C̄2H2,

(46)

which is convenient, for example, when writing a number of
specific vertices of an effective Lagrangian with explicitly
written interaction constants.

To conclude this section, we write down the interaction
part of the Higgs potential explicitly highlighting the terms
of the third and fourth degree in the Higgs fields

V int
H = 2

C̄2

[
1

4
(H̃†

1 H̃1 + H̃†
2 H̃2)

2 + (H̃†
1 H̃1)(H̃

†
2 H̃2)

−(Im(H̃†
1 H̃2))

2
]

− 2m√
C̄2

(H̃†
1 H̃1 + H̃†

2 H̃2)χ
′
0

− 4m0√
C̄2

(cos θχ ′
0−sin θχ ′

3)H̃
†
2 H̃2+ 4m√

C̄2

φ0 Im(H̃†
1 H̃2)

− 4m3√
C̄2

(cos θχ ′
3 + sin θχ ′

0)H̃
†
1 H̃1. (47)

123
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2.5 Nambu sum rule

Let us discuss now the Higgs masses, which we derive from
Eq. (26) (see also Eq. (D.41) and [35]). As one can see, the
mass matrix eigenstates are χα and φα with the following
squared values

m2
χ0

= 4m2 + 2g2

ḡ2C̄2

(
1

cos 2θ
− 1

cos 2θ ′

)
, (48)

m2
χ3

= 4m2 + 2g2

ḡ2C̄2

(
1

cos 2θ
+ 1

cos 2θ ′

)
, (49)

m2
φ0

= 4g2

ḡ2C̄2 cos 2θ
, (50)

m2
χ± = 4g3

ḡ2C̄2 sin 2θ
, (51)

m2
φi

= 0. (52)

It follows that of the eight spinless states of the theory, three
φi are massless Goldstone modes that are absorbed by gauge
fields (Higgs mechanism). The remaining five, as one can
easily verify using (41), satisfy the sum rule

m2
χ0

+ m2
χ3

+ m2
φ0

= 8g3

ḡ2C̄2 sin 2θ
, (53)

m2
χ+ + m2

χ− = 8g3

ḡ2C̄2 sin 2θ
. (54)

This result is somewhat different from the Nambu sum rule.
Indeed, although the sum of the squared masses of the neutral
modes and a similar sum for charged modes are equal to
the same expression, its value is not 4m2

t , as required by the
Nambu sum rule. In addition, instead of two Nambu partners,
the first expression contains the contributions of three states,
which also distinguishes this result from the standard pattern.
In the following we clarify this behavior.

We address this matter, starting by writing down two rela-
tions, which are also a direct consequence of the mass for-
mulas (48)–(52), namely

m2
χ0

+ m2
χ3

= m2
φ0

+ 4(m2
t + m2

b), (55)

m2
χ+ + m2

χ− = 2m2
φ0

+ 4(m2
t + m2

b). (56)

This shows that the non-zero mass of the φ0 meson is the
only reason why the standard Nambu sum rule is violated.

As we have already noted, in the absence of the interaction
with the coupling constant g2, the theory possesses an addi-
tional U (1)A symmetry. It plays the role of the global sym-
metry of Peccei–Quinn [36,37], and prevents the appearance
of the mass of the φ0 meson, which can be interpreted as an
“electroweak axion”. Indeed, one can verify that if g2 = 0,

the masses of the Higgs particles take the following values

mχ0 = 2mb, mχ3 = 2mt , mχ± = 2m, mφ0 = 0. (57)

Here we used (34) to obtain the ratio

g2

cos 2θ ′
∣∣∣
g2=0

= 2g3, (58)

and the gap-equations (32)–(33) to establish that at g2 = 0

2g3 = (m2
t − m2

b)ḡ
2C̄2. (59)

The expressions (57) are in a total agreement with the Nambu
sum rule. Thus, one can conclude that the U (1)A breaking
interaction ∝ g2 is responsible for the deviation from the
canonical Nambu sum rule found in (53)–(54).

One may wish to verify the quark content of the composite
Higgs particles. For example, a neutral state with the mass
2mb must be the b̄b bound state. Indeed, let us consider the
field function that describes this state

χ0 ∝ σ̃0 = σ0 cos θ ′ + σ3 sin θ ′

∝ t̄ t[(g1 + g2 + g3) cos θ ′ + (g1 − g2 + g3) sin θ ′]
+ b̄b[(g1 + g2 − g3) cos θ ′ − (g1 − g2 − g3) sin θ ′]

∝ b̄b. (60)

Here the formula (A.2) has been used. On the last stage, we
took into account that at g2 = 0 and m0 	= m3 the angle
θ ′ = −π/4, as it follows from (34). In the same manner, the
quark content of the remaining states can be revealed.

Thus, in the model under consideration, the light compos-
ite Higgs boson is built mainly of b̄b quarks. Only due to
the interaction ∝ g2 does an admixture of top quarks appear.
That leads to an increase in its mass, which therefore occurs
in the interval 2mb < mχ0 < mt .

Note, that in the limit ofmχ0 � Λ one can reliably use the
renormalization group to improve the predictions for the low-
energy Higgs masses obtained above by the resummation of
the leading logarithmic corrections to arbitrary loop order.
We postpone this analyses to the future.

2.6 Higgs-quark sector and Yukawa couplings

Consider the Yukawa part of the Lagrangian density (23)
which can be made into a somewhat more explicit formula
for the Yukawa couplings (see Appendix E for details)

LY = ψ̄(σ + iγ5π)ψ = 1

m
(mbψ̄LΦ̃1bR + mt ψ̄

a
LeabΦ̃

∗
1btR

+ mt ψ̄LΦ̃2bR − mbψ̄
a
LeabΦ̃

∗
2btR) + h.c. (61)

123
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The Higgs doublets used in this formula are given by
Eq. (D.43). Here one should still take into account the effect
of spontaneous electroweak symmetry breaking considering
the non zero vacuum expectation values of scalar fields. One
should also use the properly normalized Higgs fields (46).
As a result we come to the following expression

LY = −ψ̄Mψ + λbψ̄L H̃1bR + λt ψ̄
a
Leab H̃

∗
1btR

+ λt ψ̄L H̃2bR − λbψ̄
a
Leab H̃

∗
2btR + h.c. (62)

Here the completely antisymmetric unit tensor of second rank
eab has two nonzero components e12 = −e21 = 1. This can
also be represented by the matrix iτ2. The quark-mass-matrix
M = diag(mt ,mb), and the Higgs-Yukawa couplings λt and
λb are

λt = mt

m
√
C̄2

≡ yt√
2
, λb = mb

m
√
C̄2

≡ yb√
2
. (63)

The compositeness boundary condition C̄2 = 0 at μ = Λ

can be associated with the boundary conditions for the run-
ning coupling constants: yt (μ), yb(μ) → ∞ at the high-
energy scale μ → Λ when applying the renormalization
group equations. Let us recall that the boundary condition
states that if the Higgs doublet is a pure quark–antiquark
bound state, then the corresponding Higgs-Yukawa coupling
to the quarks must have a Landau pole at the composite scale
Λ. The couplings yt,b(μ) are only weakly sensitive to their
initial values yt,b(Λ) because μ � Λ and, as a result, they
have enough time to approach an infrared fixed point [14].

2.7 Gauge bosons

Consider now the induced effective Lagrangian which
describes the physics of gauge fields. Its kinetic part follows
from Eqs. (5) and (22) and is given by the density

L kin
gauge = L YM + C̄2

96
tr(F2

μν) + C̄2

256
tr

([γ μ, γ ν]Fμν

)2
,

(64)

where the trace over color degrees of freedom is trivial: it
gives the factor Nc which is absorbed in C̄2. Thus, the symbol
“tr” is understood here as a trace over SU (2) tau matrices and
Dirac gamma matrices. The last term originates from the Y 2

part in (22). We are not integrating over the gauge-boson
fields and need specify no gauge fixing at this stage. The
expression obtained can be simplified. The details are given
in Appendix F. As a result we have

L kin
gauge = L YM − C̄2

48
tr(F2

μν). (65)

Notice that the integration of short-distance components of
quark fields induces a low-energy correction to the Yang–
Mills Lagrangian density in the following form which devi-
ates from the structure of the SM. Indeed, after evaluation of
the trace

tr
(
F2

μν

)
= 2tr f

[
g′ 2(Q2 + Y 2

L)B2
μν + g2G2

μν

]
, (66)

where Gμν = Gμν
i Ti , and YL = 1/6, we obtain

L kin
gauge = L YM − g2C̄2

48

(
11

9
tan2 θW B2

μν + G2
μν

)
. (67)

The whole expression can be written in terms of physical
gauge fields as follows

L kin
gauge = −1

4

[(
1

ZB
+ g2C̄2

12

11

9
tan2 θW

)
B2

μν

+
(

1

ZA
+ g2C̄2

12

)
G2

μν

]
. (68)

Now the free real parameters ZA and ZB can be fixed by
requiring the standard form for kinetic terms of gauge-fields.
This yields

Z−1
A = 1 − g2C̄2

12
, Z−1

B = 1 − g2C̄2

12

11

9
tan2 θW . (69)

Thus, by appropriate rescaling of the gauge fields, we were
able to show that the form of the kinetic term does not change
with the scale of μ.

This cannot be said about the masses of the gauge fields
generated by the Higgs mechanism from the term (42)

L mass
gauge = 1

4
g2m2C̄2

(
W+

μ W−
μ + Z2

μ

2 cos2 θW

)
. (70)

which depends on the scale through C̄2. The masses of the
gauge fields are

mW = 1

2
gm C̄1/2

2 = mZ cos θW . (71)

This expression may be compared with the well-known SM
result mW = gv/2, where v is the vacuum-expectation value
of the standard Higgs field. Combining these formulas we
find that

v = m
√
C̄2 = 254.6 GeV. (72)

Finally, this helps to establish the ratio Λ/μ:

Λ

μ
= exp

[
(2πv)2

Nc(m2
t + m2

b)

]
= 2.345 × 1012. (73)

123
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At scale μ = ΛEW , it gives Λ � 0.58 × 1015GeV. This
suggests the possible role of GUT in the arising of four-quark
interactions as a result of the GUT symmetry breaking.

3 Numerical estimates

The “minimal bosonization” model considered here has five
free parameters: g1, g2, g3,Λ,μ. We will fix them at the
scale of the SM, i.e., at μ = ΛEW = 246 GeV. Then,
in accord with (73), we have Λ = 0.58 × 1015GeV. We
also assume that the couplings g1, g2, g3 can be chosen in a
way to obtain the phenomenologically consistent solutions of
gap equations, i.e, one can fix these parameters to obtain the
experimental values of quark masses, mt = 173 ± 0.4 GeV,
mb = 4.18+0.04

−0.03 GeV. Additionally, we require that the mass
of the Higgs state is mχ0 = 125 GeV. Let us show now under
which conditions our expectations can be fulfilled.

The spectrum of the Higgs states (48)–(51) depends only
on the values of three independent parameters. These are
the quark masses mt and mb, and the ratio g3/g2, which we
parametrise by introducing the dimensionless parameter a

g3

g2
= a tan 2θ. (74)

The other parameters in (48)–(51) can be eliminated with
the help of the gap equation (41). Let us also remind that
the angle θ and the mass parameter m in Eqs. (48)–(51) are
functions of the quark masses mt and mb

tan 2θ = m2
t − m2

b

2mtmb
, m2 = 1

2
(m2

t + m2
b). (75)

That gives θ = 43.6◦.
The angle θ ′ can be expressed only in terms of the masses

of quarks and the parameter a. Moreover, from Eq. (34)

tan 2θ ′ = (3 − 2a) tan 2θ, (76)

we conclude that the angle θ ′ < 0 if a > 3/2.
Now we can represent the mass formulae (48)–(51) in the

form

m2
χ0

= 2m2

a − 1
(2a − 1 − Δ) , (77)

m2
χ3

= 2m2

a − 1
(2a − 1 + Δ) , (78)

m2
φ0

= 4m2

a − 1
, (79)

m2
χ± = 4m2a

a − 1
, (80)

where

Δ =
√

cos2 2θ + (3 − 2a)2 sin2 2θ. (81)

If we fix the parameter a according to the known mass value
of the standard Higgs state: mχ0 = 125 GeV → a = 4.84,
then the following estimates are obtained from these formu-
las: mχ3 = 346 GeV,mχ± = 275 GeV,mφ0 = 125 GeV,
and for the angle θ ′ we find from Eq. (76) the value θ ′ =
−44.8◦.

Let us derive the values of four-Fermi couplings. From
Eq. (74) we have g3/g2 = 102, so g3 � g2. It means, that
one can resort to the gap-equations (32)–(33) to estimate the
values of g1 and g3. These equations show that the coupling
constants of the model must be extremely fine-tuned when
μ2 � Λ2. Indeed, we have

g1 = gc + O

(
μ2

Λ2

)
, gc = 4π2

NcΛ2 =3.9 × 10−29 GeV−2,

g3 = gc
m2

t − m2
b

2Λ2 ln
Λ2

μ2 + O

(
μ2

Λ2

)
. (82)

This is, indeed, the usual fine-tuning or the gauge-hierarchy
problem of the SM, which is isolated in the gap equation
sector of the NJL approach. Our estimates imply extreme
proximity of g1 to the critical value gc, and g3 to the value
2.5gc × 10−24 � 1.0 × 10−52 GeV−2. Thus, the couplings
must be fine-tuned to within

g1

gc
:g2

gc
:g3

gc
∼ 1:10−26:10−24

of the critical value gc.
In conclusion, we note that despite a satisfactory descrip-

tion of both the quark masses and the ground Higgs state, the
predictions obtained for the neutral, φ0, and charged, χ±,
Higgs states are most likely experimentally disfavoured. A
more refined calculation of the mass spectrum based on the
renormalization group approach can shift these values. Work
in this direction is in progress.

4 Conclusions

In this paper we concentrated on the vacuum structure of
the model proposed by Miransky, Tanabashi and Yamawaki
in [7]. To make our calculations as transparent as possible we
restricted to the “minimal bosonization” procedure, which
does not generate new coupling constants. We also used the
Schwinger–DeWitt method in a form that fully meets the
problem of deriving the induced effective Lagrangian, the
induced parameters of which must have an explicit depen-
dence upon two scales Λ and μ, vanishing when μ → Λ

(compositeness condition).

123
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The minimal bosonization procedure leads to the specific
quark-meson part of the Lagrangian which possesses the chi-
ral U (2)L × U (2)R symmetry. Our reasoning was to avoid
calculations of the fermion one loop diagrams directly in the
Nambu–Goldstone phase, where fermions have very differ-
ent masses mt � mb, which are not easy to handle con-
sistently. It turned out to be more efficient to start from the
massless fermion loop in the symmetric phase. In this way,
we managed to obtain a rather simple effective Lagrangian,
to extract its extremum conditions (gap equations), to specify
the ground state of the theory, and, finally, to analyze the main
consequences of the approach for the spectrum of collective
modes, which are the composite Higgs states.

This approach has a series of interesting consequences.
Firstly it leads to a phenomenological value for the mass of
the SM composite Higgs. This result is interesting because,
as we have already noted, top-condensation models usually
yield significantly overestimated values. We have shown that
the standard Higgs is not a pure t̄ t bound state, but has an
essential part associated with the light bottom quarks. The
underlying mechanism is obvious from Eq. (60). The esti-
mates showed that the angle θ ′ is close to −π/4, and that
therefore the b̄b component is dominant in the Higgs χ0 field.

Secondly, we investigated the question of whether the
Nambu sum rules are satisfied in the model with two Higgs
doublets. The presence of the fifth neutral boson φ0 vio-
lates the standard picture of Nambu partners. The initially
massless “electroweak axion” acquires its mass as a result of
U (1)A symmetry breaking (’t Hooft interaction). This vio-
lates the Nambu sum rules. Since an interaction with a much
weaker coupling constant g2 (as compared to g1) is neces-
sary for the generation of the mass of this state, we conclude
that the standard form of the Nambu sum rules is valid only
in the leading order in 1/Nc. It is surprising that such a vio-
lation leads to a degeneracy in mass for the main Higgs χ0

and φ0, mχ0 � mφ0 . This degeneracy is of a random nature
and we believe it will be removed after taking into account
the quantum corrections.

Taking into account the electroweak and strong correc-
tions is still necessary for a complete picture of the emerging
spectrum of states. Such work is under way, and we hope that
it will not greatly affect the result presented here.

The key problem with the model considered is that the new
dynamics lies at a very high energy scale Λ ∼ 1015 GeV.
This value corresponds to the GUT scale 1015 GeV giving
some credit to the scenarios where new interactions are gen-
erated by GUT physics. On the other hand, this shows that
the model is extremely fine-tuned. This is the known hierar-
chy problem of the SM. The top condensation models cannot
clarify this question. However, we saw that the fine-tuning
problem is isolated in the gap equations. Once we tune cou-
plings g1, g2, g3 to admit the desirable solution no further
quadratic divergences in other amplitudes need be canceled.

We hope that the results obtained here contribute to the
further development of the model, since they are obtained
on the basis of fairly simple approximations which, on one
hand, have been quite successful and, on the other, can be
developed in several straightforward directions.
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Appendix A: Linearization of four-Fermi interactions

To prove the dynamical equivalence of the theories based
on the Lagrangian densities (1) and (10) one should inte-
grate over auxiliary fields in the functional integral. Since
the auxiliary fields appear quadratically in the functional inte-
gral they can be integrated out exactly. For that one should
solve the eight Euler–Lagrange equations for auxiliary fields
σα , πα regarding the quark bilinear combinations ψ̄ταψ and
ψ̄iγ5ταψ . So, what one has to make sure to prove dynamical
equivalence of the two theories is that (1) and (10) coincide
on the extremal trajectories, given by the Euler–Lagrange
equations

∂L ′

∂σα

= 0,
∂L ′

∂πα

= 0. (A.1)

The solution of this system of linear equations is straightfor-
ward

2σ0 = (g1 + g2)ψ̄τ0ψ + g3ψ̄τ3ψ,

2σ1 = (g1 − g2)ψ̄τ1ψ − g3ψ̄iγ5τ2ψ,

2σ2 = (g1 − g2)ψ̄τ2ψ + g3ψ̄iγ5τ1ψ,
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2σ3 = (g1 − g2)ψ̄τ3ψ + g3ψ̄τ0ψ,

2π0 = (g1 − g2)ψ̄iγ5τ0ψ + g3ψ̄iγ5τ3ψ,

2π1 = (g1 + g2)ψ̄iγ5τ1ψ + g3ψ̄τ2ψ,

2π2 = (g1 + g2)ψ̄iγ5τ2ψ − g3ψ̄τ1ψ,

2π3 = (g1 + g2)ψ̄iγ5τ3ψ + g3ψ̄iγ5τ0ψ. (A.2)

One can see that quark–antiquark bound states σ0, σ3 are
described by the linear combination of scalars, the π0, π3

are the mixture of two pseudoscalars. The other four bound
states are the mixture of the scalar and pseudoscalar quark–
antiquark bilinears.

Inserting these solutions in (10) yields

ψ̄(σ + iγ5π)ψ + Lπ,σ = 1

2
ψ̄(σ + iγ5π)ψ

= g1

4
[(ψ̄ταψ)2 + (ψ̄iγ5ταψ)2]

+ g2

4
[(ψ̄τ0ψ)2−(ψ̄τiψ)2−(ψ̄iγ5τ0ψ)2+(ψ̄ iγ5τiψ)2]

+ g3

2
[(ψ̄τ0ψ)(ψ̄τ3ψ) − (ψ̄τ1ψ)(ψ̄iγ5τ2ψ)

+ (ψ̄τ2ψ)(ψ̄iγ5τ1ψ) + (ψ̄iγ5τ0ψ)(ψ̄iγ5τ3ψ)].
(A.3)

What we need now is to demonstrate that this expression
matches exactly withL4ψ , given by Eq. (8). For this purpose
let us use the left and right chiral components of the Dirac
field ψ

ψ̄ταψ = τ abα (ψ̄a
Lψb

R + ψ̄a
Rψb

L) ≡ sα, (A.4)

ψ̄iγ5ταψ = iτ abα (ψ̄a
Lψb

R − ψ̄a
Rψb

L) ≡ pα, (A.5)

and define the complex 2 × 2 matrix

Σab = 1

2
(sα + i pα) τ abα = 2ψ̄b

Rψa
L , (A.6)

Σ
†
ab = 1

2
(sα − i pα) τ abα = 2ψ̄b

Lψa
R . (A.7)

Then one can easily see that the first term of Eq. (8) can
be written as

(ψ̄a
Lψb

R)(ψ̄b
Rψa

L) = 1

4
Σ

†
baΣab = 1

4
tr(Σ†Σ) = 1

8
(s2

α + p2
α)

= 1

8
[(ψ̄ταψ)2 + (ψ̄iγ5ταψ)2] (A.8)

To convert the second term in (8) we need a well-known
formula

(iτ2)
ab(iτ2)

cd = εabεcd , (A.9)

which gives

(ψ̄a
Lψc

R)(iτ2)
ab(iτ2)

cd(ψ̄b
Lψd

R)

= 1

4
Σ†

caΣ
†
dbεabεcd = 1

2
det Σ†

= 1

8
[s2

0 − s2
i − p2

0 + p2
i − 2i(s0 p0 − si pi )]. (A.10)

It follows then that

(ψ̄a
Lψc

R)(iτ2)
ab(iτ2)

cd(ψ̄b
Lψd

R) + h.c.

= 1

2
(det Σ† + det Σ) = 1

4
[s2

0 − s2
i − p2

0 + p2
i ]

= 1

4
[(ψ̄τ0ψ)2 − (ψ̄τiψ)2−(ψ̄ iγ5τ0ψ)2+(ψ̄iγ5τiψ)2].

(A.11)

For the third term in (8) we have

(ψ̄a
Lψb

R)τ bc3 (ψ̄c
Rψa

L) = 1

4
Σ

†
baτ

bc
3 Σac = 1

4
tr(Σ†Στ3)

= 1

4
(s0s3 − s1 p2 + s2 p1 + p0 p3)

= 1

4
[(ψ̄τ0ψ)(ψ̄τ3ψ)−(ψ̄τ1ψ)(ψ̄iγ5τ2ψ)

+(ψ̄τ2ψ)(ψ̄iγ5τ1ψ)+(ψ̄ iγ5τ0ψ)(ψ̄iγ5τ3ψ)]. (A.12)

Combining the formulas (A.8), (A.11) and (A.12) one can
see the equivalence of Lagrangian densities (1) and (10).

Appendix B: Infinitesimal transformations of fields

We start from the infinitesimal U (2)V ×U (2)A transforma-
tions of quark fields

δψ = i(α + γ5β)ψ, δψ̄ = iψ̄(−α + γ5β), (B.13)

where α = 1
2αaτa , β = 1

2βaτa , and αa, βa are the eight
(a = 0, 1, 2, 3) infinitesimal parameters of the global trans-
formations of the vector U (2)V and axial-vector U (2)A
groups.

The invariance of the Yukawa term ψ̄(σ + iγ5π)ψ under
transformations (B.13) means the validity of the following
chiral transformation laws for bosonic fields

δσ = i[α, σ ] + {β, π}, δπ = i[α, π ] − {β, σ }. (B.14)

Since mesonic fields are real functions, the transformations
do not depend on α0. Thus, we deal with the SU (2)V ×U (2)A
group. Commutators and anti-commutators can be calculated
by using the basic properties of Pauli-matrices. This yields

[τi , τ j ] = 2iei jkτk, {τa, τb} = 2habcτc, (B.15)

where i, j, k = 1, 2, 3 and the only non zero components of
the totally symmetric coefficients habc are h000 = 1, h0i j =

123
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δi j . Then we have

δσa = 1

2
tr (τaδσ ) = habcβbπc − δakeki jαiσ j

δπa = 1

2
tr (τaδπ) = −habcβbσc − δakeki jαiπ j (B.16)

or, in the components

δσ0 = βaπa, δσi = −ei jkα jσk + β0πi + βiπ0,

δπ0 = −βaσa, δπi = −ei jkα jπk − β0σi − βiσ0, (B.17)

The formulas (B.17) allow us to establish how the group
SU (2)V × U (2)A acts on the following complex combina-
tions of fields

δ(σ0 − iπ3) = i [α1π2 − α2π1 + β0σ3 + β3σ0 − iβaπa] ,

δ(π2 + iπ1) = i [−(α1 − iα2)iπ3 − (β1 − iβ2)σ0

+α3(π2 + iπ1) − β0(σ1 − iσ2)] ,

δ(iπ0 − σ3) = α1σ2 − α2σ1 − β0π3 − β3π0 − iβaσa,

δ(σ1 − iσ2) = i [α3(σ1 − iσ2) − (α1 − iα2)σ3

−β0(π2 + iπ1) − π0(β2 + iβ1)] . (B.18)

From these formulas, in particular, one can find how these
combinations are transformed under the action of the group
SU (2)L × U (1)A. To project the infinitesimal action of the
chiral group SU (2)V ×U (2)A on the SU (2)L×U (1)A group
one should properly identify the set of relevant infinitesi-
mal parameters. In the case of SU (2)L one should chose the
left transformations, i.e., to put the parameters of right-hand
transformations to zero. Requiring that αi + βi = 0, we
arrive to the set of four parameters ωi/2 ≡ αi = −βi , β0

which parametrize the infinitesimal action of the group. From
(B.18) one finds the action of the group on the bosonic fields

δ(σ0 − iπ3) = i

2
[(ω1 + iω2)(π2 + iπ1) − ω3(σ0 − iπ3)]

− iβ0(iπ0 − σ3),

δ(π2 + iπ1) = i

2
[(ω1 − iω2)(σ0 − iπ3) + ω3(π2 + iπ1)]

− iβ0(σ1 − iσ2),

δ(iπ0 − σ3) = i

2
[(ω1 + iω2)(σ1 − iσ2) − ω3(iπ0 − σ3)]

− iβ0(σ0 − iπ3),

δ(σ1 − iσ2) = i

2
[(ω1 − iω2)(iπ0 − σ3) + ω3(σ1 − iσ2)]

− iβ0(π2 + iπ1), (B.19)

These formulas show that Φ1 and Φ2 in (25) behave like fun-
damental SU (2)L -doublets, and that U (1)A transformations
exchange them

δΦ1,2 = iωi
τi

2
Φ1,2 − iβ0Φ2,1. (B.20)

We may consider the U (1)A symmetry in a different basis

Φ1 = 1√
2
(Φ ′

1 + Φ ′
2), Φ2 = 1√

2
(Φ ′

2 − Φ ′
1), (B.21)

in which the axial group acts without mixing of fields, but
changing sign

δΦ ′
1,2 = iωi

τi

2
Φ ′

1,2 ± iβ0Φ
′
1,2. (B.22)

This U (1) symmetry (suitably extended to the quark sector)
was first introduced by Peccei and Quinn [36,37] in connec-
tion with the strong-CP problem.

Appendix C: Quark content of the Higgs fields

Let us clarify the quark content of the scalar auxiliary vari-
ables σα and πα . This helps to understand the origin of the
quark masses and the reasoning for the specific grouping of
these fields into the electroweak doublets. Our starting point
are Eq. (A.2), which can be investigated for the existence of
solutions homogeneous in space-time. In particular, it gives

2〈σ0〉 = (g1 + g2 + g3)〈t̄ t〉 + (g1 + g2 − g3)〈b̄b〉,
2〈σ3〉 = (g1 − g2 + g3)〈t̄ t〉 − (g1 − g2 − g3)〈b̄b〉. (C.23)

Expressed in terms of top and bottom quark masses they take
the form

mt = −(g1 + g3)〈t̄ t〉 − g2〈b̄b〉,
mb = −g2〈t̄ t〉 − (g1 − g3)〈b̄b〉. (C.24)

It follows then that even in the absence of the bottom quark
condensate, 〈b̄b〉, the presence of top condensate, 〈t̄ t〉, may
generate the mass of both quarks, provided that U (1)A sym-
metry is violated, g2 	= 0.

From Eq. (A.2) one can also obtain that

σ0 − iπ3 = (g1 + g2 + g3)t̄L tR + (g1 + g2 − g3)b̄RbL ,

π2 + iπ1 = (g1 + g2 − g3)b̄RtL − (g1 + g2 + g3)b̄L tR,

iπ0 − σ3 = (g1 − g2 − g3)b̄RbL − (g1 − g2 + g3)t̄L tR,

σ1 − iσ2 = (g1 − g2 − g3)b̄RtL + (g1 − g2 + g3)b̄L tR .

(C.25)

These relations show that if one neglects the mixing gener-
ated by the interaction with the coupling g3, in other words if
one puts g3 = 0, two electroweak doublets in Eq. (25) would
have the following quark content

Φ1 = (g1 + g2)

(
b̄RtL − b̄L tR
b̄RbL + t̄L tR

)
, (C.26)

123
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Φ2 = (g1 − g2)

(
b̄RtL + b̄L tR
b̄RbL − t̄L tR

)
. (C.27)

The upper states here have the positive charge Q = 1 and
T3 = 1/2, the lower ones are neutral, Q = 0, andT3 = −1/2.
Therefore both doublets can be characterized by the U(1)
hypercharge YL = Q − T3 = 1/2.

Appendix D: Diagonalization of the Higgs states

The arbitrary quadratic form

Ωx
y (a, b, c/2) = (x, y)

(
a c/2
c/2 b

) (
x

y

)
(D.28)

can be diagonalized by the orthogonal transformation R(θ)

to the new variables (x̃, ỹ)

(
x

y

)
=

(
cos θ sin θ

− sin θ cos θ

)(
x̃

ỹ

)
= R(θ)

(
x̃

ỹ

)
. (D.29)

The condition

tan 2θ = c

b − a
(D.30)

nullifies off-diagonal terms. The diagonal ones are

Ωx
y (a, b, c/2) = Ω x̃

ỹ (a11, a22, 0),

a11 = 1

2

[
a + b + (a − b)

√
1 + tan2 2θ

]
,

a22 = 1

2

[
a + b − (a − b)

√
1 + tan2 2θ

]
. (D.31)

With these notations the quadratic part of the potential (24)
after the shifts σ0 → σ0 − m0, and σ3 → σ3 − m3 can be
written

V (2)
H = Ωπ0

π3
+ Ωσ3

σ0
+ Ωπ2

σ1
+ Ωσ2

π1
, (D.32)

where arguments of the quadratic forms are given corre-
spondingly

aπ0,π3
11 = 1

ḡ2 (g1 + g2) + m2C̄2 − C̄1,

aπ0,π3
22 = 1

ḡ2 (g1 − g2) + m2C̄2 − C̄1,

aπ0,π3
12 = 2m0m3C̄2 − g3

ḡ2 . (D.33)

aσ3,σ0
11 = 1

ḡ2 (g1 + g2) + 3m2C̄2 − C̄1,

aσ3,σ0
22 = 1

ḡ2 (g1 − g2) + 3m2C̄2 − C̄1,

aσ3,σ0
12 = 6m0m3C̄2 − g3

ḡ2 . (D.34)

aπ2,σ1
11 = 1

ḡ2 (g1 − g2) + (m2
0 + 3m2

3)C̄2 − C̄1,

aπ2,σ1
22 = 1

ḡ2 (g1 + g2) + (3m2
0 + m2

3)C̄2 − C̄1,

aπ2,σ1
12 = g3

ḡ2 . (D.35)

aσ2,π1
11 = 1

ḡ2 (g1 + g2) + (3m2
0 + m2

3)C̄2 − C̄1,

aσ2,π1
22 = 1

ḡ2 (g1 − g2) + (m2
0 + 3m2

3)C̄2 − C̄1,

aσ2,π1
12 = − g3

ḡ2 , (D.36)

and we recall that m2 = m2
0 + m2

3.
The diagonalization of these forms show that

θπ0π3 = θπ2σ1 = θσ2π1 ≡ θ, (D.37)

where

tan 2θ = m2
t − m2

b

2mtmb
, or tan θ = m3

m0
. (D.38)

To get these results we have used gap equations (30)–(31).
In the case of Ω

σ3
σ0 we obtain the different angle

θσ3σ0 ≡ θ ′, (D.39)

with the relation

tan 2θ ′ = 3
m2

t − m2
b

2mtmb
− 2

g3

g2
= 3 tan 2θ − 2

g3

g2
. (D.40)

The diagonalized quadratic part of the potential VH is
given by

V (2)
H = g2

ḡ2

m2
t + m2

b

mtmb
π̃2

0 + 2g3

ḡ2

m2
t + m2

b

m2
t − m2

b

(
σ̃ 2

1 + σ̃ 2
2

)

+
[
(m2

t + m2
b)C̄2 + g2

ḡ2

(
1

cos 2θ
− 1

cos 2θ ′

)]
σ̃ 2

0

+
[
(m2

t + m2
b)C̄2 + g2

ḡ2

(
1

cos 2θ
+ 1

cos 2θ ′

)]
σ̃ 2

3 .

(D.41)

It is easy to establish that states with a definite mass
(described by the variables which diagonalize V (2)

H ) are asso-
ciated with the initial doublets (25) by the orthogonal trans-
formation

(
Φ1

Φ2

)
=

(
cos θ sin θ

− sin θ cos θ

) (
Φ̃1

Φ̃2

)
, (D.42)
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where the rotated states are collected in the two doublets

Φ̃1 =
(

π̃2 + i π̃1

σ ′
0 − i π̃3

)
, Φ̃2 =

(
σ̃1 − i σ̃2

−σ ′
3 + i π̃0

)
. (D.43)

Here σ ′
0 and σ ′

3 are linear combinations of the neutral scalar
physical states σ̃0, σ̃3

(
σ ′

3

σ ′
0

)
≡

(
cos α − sin α

sin α cos α

) (
σ̃3

σ̃0

)
. (D.44)

The angle α = θ − θ ′.
The obtained formulas represent a solution to the problem

of diagonalizing the quadratic part of the potential VH , i.e.
it is assumed that the vacuum state is correctly determined.
However, If we are interested in the problem of minimizing
the potential VH and want to examine the ground state of
the theory, the formulas (D.42) should be modified by sub-
stitutions σ0 → σ0 − m0, and σ3 → σ3 − m3 in accord
with Eq. (37). This replacement does not change Φ̃2 = H2,
because
(

σ ′
3

σ ′
0

)
→

(
σ ′

3

σ ′
0

)
− R(−α)R(−θ ′)

(
m3

m0

)

=
(

σ ′
3

σ ′
0

)
− R(−θ)

(
m3

m0

)
=

(
σ ′

3

σ ′
0

)
−

(
0

m

)
, (D.45)

where, on the last stage, we used the relations

cos θ = m0

m
, sin θ = m3

m
. (D.46)

However, Φ̃1 is changed to H1. As a consequence, the lower
component of H1 has a (real and negative) vacuum expecta-
tion value −m, while H2 has a null expectation value.

Appendix E: The Yukawa part of the Higgs Lagrangian

Let us consider the Yukawa part of the Lagrangian density
(23)

LY = ψ̄(σ +iγ5π)ψ = ψ̄L(σ +iπ)ψR+ ψ̄R(σ − iπ)ψL

= t̄L tR(σ0 + σ3 + iπ0 + iπ3)

+ t̄LbR(σ1 − iσ2 + iπ1 + π2)

+ b̄LbR(σ0 − σ3 + iπ0 − iπ3) + b̄L tR

(σ1 + iσ2 + iπ1 − π2) + h.c. (E.47)

This can be written in terms of physical fields

LY = 1

m

{
t̄L tR[mt (σ

′
0 + i π̃3) + mb(σ

′
3 + i π̃0)]

+ t̄LbR[mt (σ̃1 − i σ̃2) + mb(π̃2 + i π̃1)]

+ b̄LbR[mb(σ
′
0 − i π̃3) + mt (−σ ′

3 + i π̃0)]
+b̄L tR[mb(σ̃1 + i σ̃2) − mt (π̃2 − i π̃1)] + h.c.

}
.

(E.48)

Noting that

ψ̄LΦ̃1bR = t̄LbR(π̃2 + i π̃1) + b̄LbR(σ ′
0 − i π̃3),

ψ̄LΦ̃2bR = t̄LbR(σ̃1 − i σ̃2) − b̄LbR(σ ′
3 − i π̃0),

ψ̄a
LeabΦ̃

∗b
1 tR = t̄L tR(σ ′

0 + i π̃3) − b̄L tR(π̃2 − i π̃1)

ψ̄a
LeabΦ̃

∗b
2 tR = −t̄L tR(σ ′

3 + i π̃0) − b̄L tR(σ̃1 + i σ̃2),

(E.49)

where Φ̃1 and Φ̃2 are given by (D.43), eab is totally antisym-
metric tensor with e12 = 1, we find

LY = 1

m
(mbψ̄LΦ̃1bR + mt ψ̄LΦ̃2bR

+ mt ψ̄
a
LeabΦ̃

∗b
1 tR − mbψ̄

a
LeabΦ̃

∗b
2 tR + h.c.). (E.50)

Appendix F: An useful formula

Here we present mathematical details related with the step
made from Eqs. (64)–(65). Namely, we prove the equality

tr([γ μ, γ ν]Fμν)
2 = −8 tr(Fμν)

2 + ∂μV
μ. (F.51)

The four-divergence of a four-vector Vμ does not contribute
to the variation of the action and hence does not affect the
dynamical characteristics of the system. We recall that “tr”
means the calculation of two traces tr =trD tr f taken with
respect to the Dirac matrices, trD , and SU (2) flavour matri-
ces, tr f .

The spin-1 fields strength tensor Fμν is defined by
Eqs. (18)–(19). Its gauge-field content is

Fμν = PRF
μν
R + PL F

μν
L , (F.52)

where

Fμν
R = g′QBμν, Fμν

L = gGμν + g′YL Bμν, (F.53)

and

Gμν = ∂μAν − ∂ν Aμ − ig[Aμ, Aν]. (F.54)

Using these formulas we find

tr([γ μ, γ ν]Fμν)
2

= tr{[γμ, γν][γρ, γσ ](PRF
μν
R Fρσ

R + PL F
μν
L Fρσ

L )}
= 1

2
tr{[γμ, γν][γρ, γσ ](Fμν

R Fρσ
R + Fμν

L Fρσ
L )}
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+ 1

2
tr{[γμ, γν][γρ, γσ ]γ5(F

μν
R Fρσ

R − Fμν
L Fρσ

L )}
= −16 tr f (F

μν
R Fμν

R + Fμν
L Fμν

L )

+ 8ieμνρσ tr f (F
μν
R Fρσ

R − Fμν
L Fρσ

L ). (F.55)

It is straightforward to see now that the first term here gives
the first term on the right hand side of Eq. (F.51). Indeed,

tr(Fμν)
2 = tr(PRF

μν
R Fμν

R + PL F
μν
L Fμν

L )

= 2 tr f (F
μν
R Fμν

R + Fμν
L Fμν

L ). (F.56)

Let us consider now the second term. Our goal is to show
that it has a form of a total derivative. The calculations show
that

eμνρσ tr f F
μν
R Fρσ

R = tr f ∂
μ(4g′ 2Q2eμνρσ B

ν∂ρBσ ), (F.57)

eμνρσ tr f F
μν
L Fρσ

L =eμνρσ tr f [g2GμνGρσ +g′ 2Y 2
L B

μνBρσ ]
= 4eμνρσ tr f ∂

μ
(
g2Aν∂ρ Aσ

−2i

3
g3Aν Aρ Aσ + g′ 2Y 2

L B
ν∂ρBσ

)

(F.58)

Therefore, we find

Vμ = 32ieμνρσ tr f
[
g′ 2(Q2 − Y 2

L)Bν∂ρBσ − g2Aν∂ρ Aσ

+2i

3
g3Aν Aρ Aσ

]
. (F.59)

Thus, the validity of the formula (F.51) is established.
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