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Abstract The critical region of the two flavour quark-
meson model with vector interactions is explored using
the Functional Renormalization Group, a non-perturbative
method that takes into account quantum and thermal fluc-
tuations. Special attention is given to the low temperature
and high density region of the phase diagram, which is very
important to construct the equation of state of compact stars.
As in previous studies, without repulsive vector interaction,
an unphysical region of negative entropy density is found
near the first order chiral phase transition. We explore the
connection between this unphysical region and the chiral crit-
ical region, especially the first order line and spinodal lines,
using also different values for vector interactions. We find
that the unphysical negative entropy density region appears
because the s = 0 isentropic line, near the critical region, is
displaced from its T = 0 location. For certain values of vec-
tor interactions this region is pushed to lower temperatures
and high chemical potentials in such way that the negative
entropy density region on the phase diagram can even disap-
pear. In the case of finite vector interactions, the location of
the critical end point has a non-trivial behaviour in the T−μB

plane, which differs from that in mean field calculations.

1 Introduction

The phase diagram of Quantum Chromodynamics (QCD) is
a widely studied topic by both experimental and theoretical
physics and much has been learned about its properties since
its first conjecture by N. Cabibbo and G. Parisi [1]. However,
the phase structure at low temperatures and high baryonic

a e-mail: renan.pereira@student.uc.pt (corresponding author)
b e-mail: r.stiele@ip2i.in2p3.fr
c e-mail: pcosta@uc.pt

density remains a mystery, e.g., the existence of a first order
phase transition and the critical end point (CEP).

Heavy ion collision (HIC) experiments conducted by
the STAR Collaboration in the Relativistic Heavy Ion Col-
lider (RHIC) at Brookhaven National Laboratory [2–4] and
by NA61/SHINE Collaboration in the Super Proton Syn-
chrotron (SPS) at CERN [5,6], are currently, not only study-
ing the properties of the quark-gluon plasma (QGP), but
also trying to map the phase boundary of QCD. In the
future, other facilities like the Nuclotron based Ion Col-
lider fAcility (NICA) at Joint Institute for Nuclear Research
[7], Facility for Antiproton and Ion Research (FAIR) at
GSI Helmholtzzentrum für Schwerionenforschung [8] and
J-PARC Heavy Ion Project at Japan Proton Accelerator
Research Complex (J-PARC) [9], will also join the collective
effort to better understand the properties of nuclear and quark
matter under extreme conditions of temperature, density and
in the presence of magnetic fields.

The low temperature and high density region of the phase
diagram, where the CEP might exist, is not only interesting
for nuclear and particle physics studies, but also extremely
important for astrophysical applications, namely to study the
evolution and properties of neutron stars. Since the equation
of state for nuclear matter derived from first principles is
still unknown, the core composition of these objects is still
an open question and several options have been proposed.
Some model calculations propose different neutron star core
compositions such as hyperon matter, pion or kaon conden-
sates and quark matter [10,11].

From the theoretical side, lattice QCD (LQCD), a first
principles method, is not able to shed light on these questions
since it is not yet possible to do LQCD calculations at finite
chemical potential due to the famous sign problem which
renders the importance sampling needed in Monte Carlo
simulations ineffective [12]. Recently, different approaches
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have been tried to circumvent this problem like reweighing,
Taylor series expansions, imaginary chemical potential and
Complex Langevin dynamics [12–14]. Due to these short-
comings, to seek for qualitative and increasingly quantitative
understanding of QCD matter, other theoretical tools have
been applied to study the phase diagram, such as Dyson-
Schwinger equations and effective model calculations. Some
of these calculations predict a first-order phase transition and
a CEP in the low temperature and high density region of the
phase diagram [15–21].

Model calculations, using the Nambu–Jona–Lasinio (NJL)
model or the quark-meson (QM) model, can be improved by
going beyond the common mean field approximation (MF)
[22–30]. Usually, when dealing with these chiral effective
models, the quark contribution to the path integral can be
reduced to a quadratic interaction and be exactly integrated
out. The remaining path integrals, usually related to meson
degrees of freedom, are not quadratic and some approxima-
tion has to be performed in order to obtain an effective action.
In the MF approximation the remaining path integrals are cal-
culated by the saddle-point approximation which effectively
means that the only field configuration taken into account is
the classical one, all quantum fluctuations to the remaining
fields are left aside.

One way to go beyond the MF approximation is using
an application of the renormalization group to continuous
field theories, the Functional Renormalization Group (FRG),
a powerful non-perturbative method which allows to incor-
porate quantum and thermal fluctuations in a field theory.
The renormalization group is an important tool in theoreti-
cal physics since it allows the study of physical phenomena
in different scales of distance and/or energy with enormous
range of applications such as: studying the strong interac-
tion, the electroweak phase transition, effective models of
nuclear physics, condensed matter physics systems and quan-
tum gravity [31–33]. Some of its most important applications
in the history of physics are the elimination of ultraviolet
divergences in renormalizable quantum field theories and its
application to explain the universality properties of contin-
uous phase transitions. The FRG has been extensively used
to study the QCD phase diagram using chiral effective mod-
els beyond the MF, like the NJL model [34–37] and the QM
model [38–44]. For detailed reviews on the FRG method see
[45–47].

The application of the FRG method to the 2-flavour QM
model leads to the presence of an unphysical negative entropy
density region in the low temperature and high density region
of the phase diagram, near the critical region where a first
order chiral phase transition and CEP are predicted by the
model. This behaviour was first discussed in detail by R.
Tripolt et al. in [48], although previous FRG studies have

reported decreasing pressures with increasing temperatures
[39,40]. The authors have put forward some explanations for
this unphysical region: the truncation used to derive the QM
flow equation is not enough to define a thermodinamically
consistent model beyond the mean field approximation or
the specific choice of regulator, used to account for fluctua-
tions in the model, is not appropriate. They also discuss the
possibility that the source for such behaviour is physical like
a pairing transition to a color superconducting phase or to
the existence of inhomogeneous phases. For more details see
[48].

In this work, we will consider the 2-flavour QM model
with vector interactions to explore the connection between
these vector degrees of freedom with the critical region pre-
dicted by the model and the unphysical negative entropy den-
sity region. Vector interactions are very important to describe
in-medium properties and are widely used to describe neu-
tron stars [49–51], study the curvature of the critical line [52]
and vector meson masses. The general effect of these interac-
tions on the phase diagram, in MF calculations, is to drive the
first order phase transition and CEP towards lower tempera-
tures and higher chemical potentials. For high enough vector
couplings, the critical region disappears leaving a smooth
crossover for the chiral transition for all values of tempera-
ture and chemical potential. The ω0 and ρ3

0 vector mesons
will be considered. The ω0 vector is known to stiffen the
equation of state of quark matter while the ρ3

0 can be very
important in isospin asymmetric systems, acting as an isospin
restoring interaction. Hence the inclusion of these degrees of
freedom can be essential to describe certain physical systems
at high densities like neutron stars.

This paper is organized as follows. In Sect. 2 the 2-flavour
QM model, including vector interaction and the FRG formal-
ism are presented. The vector degrees of freedom are frozen
and the flow equations for the effective potential and entropy
density are laid out. In Sect. 3 the results are presented and
the effect of the vector interactions on the critical region and
on the unphysical negative entropy density are discussed.
Finally, in Sect. 4 conclusions are drawn and further work is
proposed.

2 Model and formalism

The 2-flavour quark-meson model is invariant under chiral
symmetry i.e., SU (2)L × SU (2)R . It can be built by con-
sidering a quark field ψ , interacting with dynamical meson
fields via symmetry conserving terms at the Lagrangian level.
Considering the scalar and pseudoscalar fields, σ , π and
the isoscalar-vector and isovector-vector fields, ωμ and ρμ,
the following symmetry conserving Lagrangian density, in
Minkowski spacetime, can be written:
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L = ψ
[
i /∂ − gS(σ + iτ · πγ5) − gω /ω − gρτ · /ρ + μ̂γ0

]
ψ

+ 1

2

(
∂μσ

)2 + 1

2

(
∂μπ

)2 − 1

4
FμνF

μν − 1

4
Rμν Rμν

−U
(
σ,π , ωμ, ρμ

)
. (1)

Here, the quark field ψ is a Nc-component vector in flavour
space, where each component is a Dirac spinor and τ

are the three Pauli matrices. To study the system at finite
density, a diagonal quark chemical potential matrix, μ̂ =
diag (μu, μd), was also included. The field strength tensors
Fμν and Rμν are used to define the kinetic terms for the ωμ

and ρμ fields, respectively, and are given by:

Fμν = ∂μων − ∂νωμ, (2)

Rμν = ∂μρν − ∂νρμ − gρρμ × ρν . (3)

The potential U
(
σ,π , ωμ, ρμ

)
, must be invariant under chi-

ral symmetry except for an explicit chiral symmetry breaking
term, that tilts the potential to give a finite mass to the Gold-
stone mode, the pion. At the mean field level, for the the σ

and π fields, this potential can include arbitrary powers of
the chiral invariant φ2 = σ 2 +π2. Regarding the vector field
contributions to the potential, several types of terms can be
included, as long as the symmetries are respected. Due to the
nature of the FRG calculation, one has only to specify the
potential at the ultraviolet scale.

The effect of current quark masses is to explicitly break
chiral symmetry at the Lagrangian level, giving rise to a
(slightly) massive Goldstone mode. This can be accom-
plished in the QM model by adding to the potential a non-
vanishing expectation value for the σ field,

U
(
σ,π , ωμ, ρμ

) → U
(
σ,π , ωμ, ρμ

) − cσ. (4)

This field will behave as an order parameter for the chiral
transition.

Finite temperature can be included using the Matsubara
formalism in which a Wick rotation to Euclidean space-time
is applied to the action. To simplify the notation, we intro-
duce the fields, φi = {σ,π} and V i

μ = {
ωμ, ρμ

}
. Using

the Euclidean action SE = ∫ 1/T

0 dτ
∫

d3x L , the generat-
ing functional of the fully connected Green’s functions, for a
given temperature (T ) and chemical potential (μ), is defined
as:

W
[
T, μ; J i , j iμ

]

= ln
∫

Dψ Dψ Dφi DV i
μ

× e
−SE

[
T,μ;ψ,ψ,φi ,V i

μ

]
+∫ 1/T

0 dτ
∫

d3x
(
J iφi+ j iμV

i
μ

)

, (5)

where we have included sources for the scalar fields
(
J i
)

and for the vector fields
(
j iμ
)
, omitting the sources for the

fermion fields which can be integrated out. First we are only
interested in dealing with the path integral over the vector
fields hence, we write:

W
[
T, μ; J i , j iμ

]

= ln
∫

DV i
μ e

−SV

[
T,μ;J i ,V i

μ

]
+∫ 1/T

0 dτ
∫

d3x j iμV
i
μ. (6)

We have defined the effective action for vector degrees of
freedom as:

SV

[
T, μ; J i , V i

μ

]

= − ln
∫

Dψ Dψ Dφi

× e
−SE

[
T,μ;ψ,ψ,φi ,V i

μ

]
+∫ 1/T

0 dτ
∫

d3x J iφi

(7)

Writing explicitly only the functional dependence on j iμ,
the effective action can be computed by Legendre transform-
ing W

[
j iμ
]

as follows:

Γ [Ṽ i
μ] = −W [ j iμ] +

∫ 1/T

0
dτ

∫
d3x j iμṼ

i
μ, (8)

where Ṽ i
μ is the expectation value of the vector fields V i

μ, in
the presence of an external source j iμ and it is defined as:

δW
[
j iμ
]

δ j iμ(x)
= Ṽ i

μ(x). (9)

The effective action can be written as [53]:

e−Γ [Ṽ i
μ] =

∫
DV i

μ

× exp

{

−SV

[
V i

μ + Ṽ i
μ

]
+
∫ 1/T

0
dτ

∫
d3x

δ

δΓ [Ṽ i
μ] Ṽ

i
μV

i
μ

}

.

(10)

In a chiral effective model, the most important dynamics
comes from chiral symmetry breaking. This means that the
dynamics of the more massive fields, will play a secondary
role. Hence, following previous approaches [54], the vector
fields will be used to model unknown degrees of freedom
at short distances. This allows the use of the saddle-point
approximation to solve the path integral in Eq. (10): the clas-
sical trajectories will be the most important for such fields,
effectively freezing these heavier modes.

Using the saddle-point approximation, the main contri-
bution to the integral will come from the minimum of the
action SV [V i

μ] . Taylor expanding the action SV [V i
μ + Ṽ i

μ]
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around Ṽ i
μ one can get the effective action in the mean field

approximation,

e−Γ [Ṽ i
μ] ≈ e

−SV

[
Ṽ i

μ

]

. (11)

Where the mean field configuration is calculated from:

∂SV (V i
μ)

∂V i
μ

∣
∣∣∣∣
V i

μ=Ṽ i
μ

= ∂Γ (V i
μ)

∂V i
μ

∣
∣∣∣∣
V i

μ=Ṽ i
μ

= 0 (12)

Due to rotational invariance, the spatial components of
the mean fields Ṽ i

j , vanish [54]. Since we are not interested
in studying the condensation of mean fields that change the
properties of the vacuum, the non-diagonal elements ρ̃1 =
ρ̃2 = 0 will also be zero. Therefore, only the fields ω̃0 and ρ̃3

0
can have non-zero values. These fields can be absorbed in the
definition of the effective quark chemical potential matrix, μ̃,
as:

μ̃ = μ̂ − gωω̃0 − gρρ̃3
0τ 3. (13)

As expected, the mean field ρ̃3
0 , introduces an isospin asym-

metry [54].
Using Eqs. (7) and (11), we can write the effective action

as:

Γ [T, μ; J i ] = − ln
∫

Dψ Dψ Dφi

× e−SE
[
T,μ̃;ψ,ψ,φi

]+∫ 1/T
0 dτ

∫
d3x J iφi

. (14)

The same approximation could be performed in the remain-
ing meson path integrals and the quarks can be integrated out
exactly, yielding the quark-meson model in the mean field
approximation. However, in the present work, we will go
beyond mean field by taking into account quantum fluctua-
tions of the σ and π fields using the FRG method. Modifying
Eq. (14) with a regulator term, the effective average action
can be defined through a modified Legendre transformation
[45].

2.1 The FRG method

In the formalism of the FRG, the central object is the aver-
age effective action, Γk . This object depends explicitly on a
momentum scale k and has well defined limits: at the momen-
tum scale k = Λ, we have the classical action to be quantized,
S , at the momentum scale k = 0, all quantum fluctuations
have been included and we obtain the full quantum effective
action, Γ i.e.,

Γk→Λ = S ,

Γk→0 = Γ.

The average effective action interpolates these regimes in the
space of all possible actions. The behaviour of this quantity
during the renormalization group flow is governed by the so-
called Wetterich equation [55]. For boson fields this equation
is given by:

∂tΓk[φ] = 1

2
tr

{
∂t R

B
k

(
Γ

(2)
k [φ] + RB

k

)−1
}
, (15)

while, for fermions, it can be written as:

∂tΓk[ψ] = − tr

{
∂t R

F
k

(
Γ

(1,1)
k [ψ] + RF

k

)−1
}
. (16)

Here, t = ln k
Λ

is the adimensional renormalization time
with respect to some cutoff momentum Λ. The derivatives
of the average effective action, Γ

(2)
k and Γ

(1,1)
k , follow the

usual notations for boson and fermion fields derivatives. The
function Rk is the so-called regulator function and it can
be interpreted as a scale dependent mass term. As long as
the interpolation between the ultraviolet and the infrared is
correct, the regulator can take any functional form since it will
only interfere in the arbitrary path taken, between these points
in the theory space. Of course, since from the numerical point
of view it is impossible to reach k = 0 [45], a finite infrared
cut-off has to be applied meaning that different regulators
might lead to different infrared effective actions.

These equations are exact functional differential equations
for the effective average action which, in principle, can be
solved given a set of initial conditions. Solving exactly the
Wetterich is an impossible task due to the infinitely high
coupled behaviour of the equation and some approximation
scheme is needed. There are two widely used approximations
schemes to solve this equation: the vertex expansion and the
operator expansion. In the present work we will use the lat-
ter approach in the so-called local potential approximation
(LPA), by building an effective average action based on the
operator expansion with increasing mass dimension.

To use Wetterich’s equation, a regulator function, which
respects the interpolating limits of the effective average
action, has to be chosen. We employ the so-called optimized
or Litim regulator function [56], for bosons and fermions,
respectively given by:

RB
k

(
p2
)

=
(
k2 − p2

)
θ
(
k2 − p2

)
, (17)

RF
k

(
p2
)

= − p · γ

⎛

⎝

√
k2

p2 − 1

⎞

⎠θ
(
k2 − p2

)
. (18)

After solving the flow equation one can relate the effective
action in the minimum, with the grand canonical potential,
Γk=IR(T, μ)min = βVΩ(T, μ), to calculate several ther-
modynamic quantities of interest such as the pressure (P),
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particle (ρi ), entropy (s) and energy densities (ε), using the
following relations [57]:

P(T, μ) − P0 = −Ω(T, μ), (19)

ρi (T, μ) = −
(

∂Ω(T, μ)

∂μi

)

T
, (20)

s(T, μ) = −
(

∂Ω(T, μ)

∂T

)

μ

, (21)

ε(T, μ) = −P(T, μ) + T s(T, μ) +
∑

i

μiρi (T, μ).

(22)

The constant P0 is the vacuum pressure i.e., P0 = P(0, 0).

2.2 The flow equations

In the lowest order of LPA, only the potential is scale depen-
dent and using Eq. (14), the imaginary-time average effective
action can be written as:

Γk[T, μ] =
∫ 1/T

0
dτ

∫
d3x

×
{
ψ
[
/∂ + gS(σ + iτ · πγ5) − μ̃γ0

]
ψ

+ 1

2

(
∂μσ

)2 + 1

2

(
∂μπ

)2 +Uk

(
σ,π , ω0, ρ

3
0

)}

(23)

with the scale dependent grand potential,Uk , written in terms
the chiral invariant φ2 = σ 2 + π2 and of the mean vector
fields:

Uk

(
σ,π , ω0, ρ

3
0

)
= Uχ

k

(
φ2
)

+UV
k

(
σ,π , ω0, ρ

3
0

)
. (24)

The contribution Uχ
k is a function of the chiral invariant only

and the term UV
k represents the contribution from the vector

degrees of freedom. While the functional dependence of the
chiral part of the potential is calculated during the flow, a
mean field approximation is performed in the vector chan-
nels, and a functional dependence for UV

k must be chosen.
In this work we use:

UV
k

(
σ,π , ω0, ρ

3
0

)
= −m2

ω

2
ω2

0 − m2
ρ

2
ρ2

0 . (25)

Applying the stationary condition of Eq. (12) to the effec-
tive average action in Eq. (23) is equivalent to requiring that
the potential Uk

(
σ,π , ω0, ρ

3
0

)
is minimal with respect to the

vector fields, at each momentum scale k [54,58], i.e.,

∂Uk(σ,π , ω0, ρ
3
0 )

∂ω0

∣
∣
∣
∣
∣
ω0=ω̃0,k

= ∂Uk(σ,π , ω0, ρ
3
0 )

∂ρ3
0

∣
∣
∣
∣
∣
ρ3

0=ρ̃3
0,k

= 0.

(26)

Hence, the vector fields acquire an implicit dependence on the
RG scale k. This requirement ensures that the flow equation
follows a path, in theory space, where the effective potential
is always in the minimum with respect to the vector fields.

Since no pion condensation will be considered, only the
radial direction of the field, φ = {σ, 0}, will contribute and
we can switch variables to σ .

Calculating the scale derivative of Eq. (23) and using the
stationary conditions for the vector fields given in Eq. (26),
yields:

∂tUk

(
T, μ; σ, ω̃0,k, ρ̃

3
0,k

)
= ∂tU

χ
k

(
T, μ; σ, ω̃0,k, ρ̃

3
0,k

)
.

(27)

Hence, ensuring at each momentum shell that the vector
fields stationary conditions hold, one can simply solve the
flow equation for Uχ

k with effective quark chemical poten-
tials modified by the vector fields. Putting everything together
leads to the dimensionful LPA flow equation for the effective
potential Uχ

k :

∂tU
χ
k

(
T, μ; σ, ω̃0,k, ρ̃

3
0,k

)

= k5

12π2 ×
{

1

Eσ

[1 + 2nB(Eσ )] + 3

Eπ

[1 + 2nB(Eπ )]

− 4Nc

Eψ

∑

i=0,1

⎛

⎝1 −
∑

η=±1

nF
(
Eψ − ημ̃k,i

)
⎞

⎠
}
.

(28)

Here, the effective chemical potential, μ̃k,i , is defined as:

μ̃k,i = μi − vk,i . (29)

With, i = 0 for up quarks and i = 1 for down quarks. The
vector contribution, vk,i , is defined as:

vk,i = gωω̃0,k + (−1)i gρρ̃3
0,k . (30)

The functions, nB(E) and nF(E) are the Bose–Einstein and
Fermi–Dirac distribution functions respectively and,

E2
σ = k2 + ∂2

σU
χ
k , (31)

E2
π = k2 + 1

σ
∂σU

χ
k , (32)

E2
ψ = k2 + g2

Sσ
2. (33)
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After solving the above flow equation, one has access to
Uχ
k=IR. The full potential in the infrared, Uk=IR, contain-

ing the contribution coming from vector fields, can easily be
calculated with k = IR:

Uk=IR

(
T, μ; σ, ω̃0, ρ̃

3
0

)
=Uχ

k=IR

(
T, μ; σ, ω̃0, ρ̃

3
0

)

+UV
k=IR

(
T, μ; σ, ω̃0, ρ̃

3
0

)
.

(34)

The contribution coming from the vector fields can be calcu-
lated using Eq. (25) in the infrared.

Using Eq. (26) and the flow equation (28), applying the
substitution ∂μ → −(ηE/p)∂p and performing an integra-
tion by parts [59], the following self-consistent equations for
the vector fields can be written:

gωω̃0,k

(
T, μ; σ, ω̃0,k, ρ̃

3
0,k

)

= gωω̃0,Λ + 4Nc

12π2

(
gω

mω

)2

×
∑

η=±1

∑

i=0,1

Ik,ηi
(
T, μ; σ, ω̃0,k, ρ̃

3
0,k

)
, (35)

gρρ̃3
0,k

(
T, μ; σ, ω̃0,k, ρ̃

3
0,k

)

= gρρ̃3
0,Λ + 4Nc

12π2

(
gρ

mρ

)2

×
∑

η=±1

∑

i=0,1

(−1)i Ik,ηi
(
T, μ; σ, ω̃0,k, ρ̃

3
0,k

)
. (36)

Where we have defined:

Ik,ηi
(
T, μ; σ, ω̃0,k, ρ̃

3
0,k

)
=3

∫ Λ

k
dp ηp2nF

(
Eψ − ημ̃k,i

)

−
[
ηp3nF

(
Eψ − ημ̃k,i

)]Λ

k
.

(37)

Since the equations depend only on the product gωω̃0,k =
ω̃k and gρρ̃3

0,k = ρ̃k , we take this combined quantity as vari-
ables. Likewise, the equations depend only on the combi-
nation gω

mω
= Gω and gρ

mρ
= Gρ , we take these ratios as

parameters.
We are also interested in studying the entropy of the sys-

tem including quantum fluctuations in order to understand
what happens to the low temperature behaviour of this quan-
tity. Hence, a flow equation for the entropy must be derived.
Using Eqs. (21) and (28) and considering that the temperature
derivative commutes with the scale derivative, the following
dimensionful flow equation for the chiral contribution to the
average entropy density, sχ

k , can be derived:

∂t s
χ
k

(
T, μ; σ, ω̃0,k , ρ̃

3
0,k

)

= − k5

12π2

{
2nB(Eσ )[1 + nB(Eσ )]

[
1

T 2 + ∂2
σ s

χ
k

2T E2
σ

]

+ ∂2
σ s

χ
k

[1 + 2nB(Eσ )]

2E3
σ

+ 6nB(Eπ )[1 + nB(Eπ )]

[
1

T 2 + ∂σ s
χ
k

2σT E2
π

]

+ 3∂σ s
χ
k

[1 + 2nB(Eπ )]

2σ E3
π

+ 4Nc

Eψ

∑

i=u,d

∑

η=±1

nF
(
Eψ − ημ̃k,i

)

T 2

[
1 − nF

(
Eψ − ημ̃k,i

)][
Eψ − ημ̃k,i − ηT ∂T vk,i

]}
.

(38)

If considering finite vector interactions, there is an extra
contribution coming from the temperature dependence of
the vector fields, at each momentum shell, ∂T vk,i . For the
detailed calculation of this quantity, see the Appendix B.

The entropy density in the infrared, sk=IR, containing the
contribution coming from vector fields, can easily be calcu-
lated after solving the system of flow equations through:

sk=IR

(
T, μ; σ, ω̃0, ρ̃

3
0

)
=sχ

k=IR

(
T, μ; σ, ω̃0, ρ̃

3
0

)

− ∂UV
k=IR(T, μ; σ, ω̃0, ρ̃

3
0)

∂T
.

(39)

The contribution coming from the vector fields can be cal-
culated using the stationary conditions for the vector fields
given by Eqs. (35) and (36).

The system of coupled, partial differential equations, for
the effective average action and average entropy, given in
Eqs. (28) and (38) alongside the self-consistent equations
for the vector fields, (35) and (36), must be solved numeri-
cally. One way to do so, is to use a Taylor expansion around
the scale-dependent minimum of the effective potential Uk .
This method however, is not well suited to study the low
temperature and high density regime of the phase diagram,
where for certain parametrizations, a first order chiral phase
transition is expected and two minima co-exist. In the present
work we use the grid method, a much more powerful tech-
nique that provides full access to the effective potential, in
a given range of the σ field. This allows the study of the
phase diagram around a first order phase transition. In this
numerical approach, the field variable σ is discretized in an
one-dimensional grid, and the first and second derivatives
of the effective potential with respect to σ are calculated
using finite differences. For more information about the used
numerical approach, see the Appendix A.
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The value of the vector fields, ω̃0,k and ρ̃3
0,k , are calcu-

lated using Eqs. (35) and (36) at each momentum shell k. In
practice, by following this approach, the flow of the effec-
tive potential and the entropy density are automatically in the
minimum with respect to to the vector fields.

In the MF calculation, the self-consistent equation for the
ω̃0 field is directly related to the sum of the quark densities
while the one for the ρ̃3

0 field is related to the difference of the
quark densities. This means that the ρ̃3

0,k field is zero for sym-

metric matter (ρ̃3
0,k = 0), i.e. if considering μu = μd . The

FRG calculation leads to a similar scenario. Indeed, in [54] it
was shown that neglecting the boson quantum fluctuations,
the MF results can be recovered. However, the choice of non-
zero ultraviolet value of the ρ̃3

0 vector field, ρ̃3
0,Λ, would lead

to an explicit isospin breaking interaction and to a non-zero
ρ̃3

0 field, even for symmetric matter. Indeed, in [58], non-zero
values for ω̃0,Λ were considered and their effect on the phase
diagram was studied. However there is no reason to consider
a ultraviolet potential with explicit isospin breaking by the ρ̃3

0
field. Hence, in the present work, we will consider ρ̃3

0,Λ = 0.

In order to investigate the effect of the ρ̃3
0 field on the

phase diagram and the unphysical negative entropy density
region, an asymmetry between the quark flavours has to be
considered. Following [60], we allow for different chemical
potentials for each quark flavour,

μu = μ + δμ, (40)

μd = μ − δμ. (41)

In principle, upon considering a finite δμ, pion condensa-
tion could happen. This means that the effective potential
would dependent on two chiral invariants, φ2 = σ 2 + π2

3
and ξ2 = π2

1 +π2
2 [61]. In such a scenario, not only the flow

equations would be much more complicated but a two dimen-
sional grid would have to be considered since there are two
distinct chiral invariants. Following previous works [51,54],
to simplify the calculations, we will neglect the possibility
of pion condensation and work only with one chiral invari-
ant. To make this approximation valid, a very small differ-
ence between quark chemical potentials of δμ = −30 MeV
will be considered [60]. For such a value of δμ, we will be
describing matter with more down quarks then up quarks, a
very important scenario to study neutron stars, for example.

3 Results

In this section we present the phase diagram of the 2-flavour
quark-meson model, calculated by solving the flow equation
(28), for different values of temperature and chemical poten-
tial. Different vector couplings are considered in order to
study their effect on the phase diagram. We also present, for

the same scenarios, the results of solving the flow equation
for the entropy, given in Eq. (38). From this calculation we
are able to study the behaviour of the entropy density near the
critical region with and without vector interactions where an
unphysical region, of negative entropy density, is expected
from previous calculations [48]. We also test the thermody-
namical consistency by checking if the numerical tempera-
ture derivative of the effective potential agree with the result
coming from solving the flow equation for the entropy den-
sity.

Regarding the numerical calculation, solving the system
of coupled flow equations in a grid is very computationally
demanding. In fact, the computational time is not only dic-
tated by the grid size and the infrared cutoff, kIR but, in
the case of finite vector couplings, of consistently solving
Eqs. (35) and (36) for each grid point at every momentum
shell (see the Appendix A).

In order to make the numerical computations more effi-
cient within the scope of the present work, we decided to use
a higher infrared cutoff of kIR = 80 MeV then the one used
in [48] of kIR = 40 MeV. We verified, by solving the flow
equations for different values of kIR, that this change does
not influence the results qualitatively, allowing the study of
the qualitative effect of different vector interactions in the
phase diagram and in the unphysical negative density entropy
region, using less computing resources. Using a finite value
for the infrared cutoff (kIR) physically means neglecting,
in the numerical calculation, low momentum modes of the
meson fields at the level of the path integral.

Different grid sizes were also studied and after some
analysis we decided to use a 80-point grid size in σ ∈
[2, 122] MeV. As for the infrared cut-off, using a thinner grid
does not change the qualitative behaviour of the results and
since the same grid is used for every scenario, considering a
given grid size represents a systematic uncertainty.

The system of flow equations can then be solved from the
UV scale, k = Λ, down to the infrared scale, k =IR, to yield
Uk=IR and sk=IR, the effective potential and entropy density
in the infrared. In order to solve this system of coupled partial
differential equations, a set of initial conditions has to be
provided. In the case of Eqs. (28) and (38), these correspond
to the effective action and entropy density in the k = Λ

momentum shell. The effective potential in the UV, Uk=Λ, is
chosen in such a way that it respects the symmetries of the
system and to yield, in the infrared, the experimental values
for pion mass and decay constant. In this work we use the
usual potential:

Uk=Λ(T, μ; σ) = 1

2
m2

Λσ 2 + 1

4
λΛσ 4, (42)

with the parameters given in Table 1.
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Table 1 Used parameter set [48]. It yields in the vacuum, for
kIR = 80 MeV, the following observables: fπ = 92.4 MeV, mπ =
137.6 MeV, mσ = 606.7 MeV and mq = 388.2 MeV

Λ [MeV] mΛ/Λ λΛ c/Λ3 gS

1000 0.969 0.001 0.00175 4.2

The vector fields in the UV, ω̃0,Λ and ρ̃3
0,Λ, in this work,

were chosen to be zero,

gρρ̃3
0,Λ(T, μ; σ) = 0, (43)

gωω̃0,Λ(T, μ; σ) = 0. (44)

In [58] also the effect of a σ dependence for the ω̃0,Λ vector
field was studied, which ended up not changing the phase
structure significantly. We will consider the vector coupling
constants, Gω = gω/mω and Gρ = gρ/mρ as free parame-
ters and study the influence of different values on the structure
of the phase diagram. In [54], these parameters were consid-
ered as bounded by Gω = Gρ = 0.001 − 0.01 MeV−1.
These bounds were obtained using vacuum properties, by
considering the vector fields as massive, mω,mρ ∼ 1 GeV
and gω = gω = 1 − 10 [54]. However these parameters
might be density dependent and in-medium modifications
could change their magnitudes.

Due to the fact that there is no temperature dependence
in the UV potential, the UV entropy density, sk=Λ, is simply
given by:

sk=Λ(T, μ; σ) = 0. (45)

Since the UV scale is fixed at a finite value, there is no rea-
son why the effective potential in the UV, should be tem-
perature and chemical potential independent [41]. Indeed,
in [62], only the purely thermal flow equation was solved,
effectively generating a temperature and chemical potential
UV potential.

In the presence of a first order chiral phase transition,
the effective potential has two minima. The phase transition
in this case will be defined through the Maxwell construc-
tion: when the effective potential has several minima, the
one with lowest energy represents the stable phase. In Fig. 1,
we present such a construction at T = 20 MeV for the QM
model using the FRG method. The dot is the chiral transi-
tion chemical potential while the squares are the chemical
potentials of spinodal points.

We start our study by considering the QM model with-
out vector interactions. In Fig. 2 we present the first order
phase transition of the model, the sk=IR = 0 line and the
CEP. One can see that the region in-between spinodal lines
is very narrow, differently from MF calculations. Indeed, for
T = 20 MeV one can analyse Fig. 1 and observe that the

345.0 345.4 345.8 346.2 346.6
-5532.2

-5532.1

-5532.0

-5531.9

-U
k=

IR
 [M

eV
/fm

3 ]

μq [MeV]

 phase transition point
 spinodal points

Fig. 1 Extrema of the infrared effective potential as a function of the
quark chemical potential for T = 20 MeV. The phase transition point
is represented by the dot while the squares are the spinodal points
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Fig. 2 First order phase transition of the QM model without vector
interactions. The red lines are the spinodals, the black line is the first
order phase transition line and the CEP is the black dot. The blue line
corresponds to the sk=IR = 0 line and below this line entropy density
is negative

overall size of the region in-between spinodal points is less
then 1.5 MeV. We also present the line sk=IR = 0 which,
trivially, separates the region of positive and negative entropy
densities. This result is very similar to the one presented in
[48]. However, in [48], a region of negative entropy density
is only discussed on the right side of the first order phase
transition. Here, we find such an unphysical region on both
sides of the phase transition line. This apparent difference
can be of numerical origin. While we solved the flow equa-
tion for the entropy density, it can also be calculated as the
derivative −∂Uk=IR/∂T |μ, after solving the flow equation
for the effective potential.

More, we see that the sk=IR = 0 line behaves like an
isentropic line that crosses the first order phase transition: in
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[63–65] when an isentropic line crosses the first order phase
transition it enters the critical region, touches each spinodal
line once and exits the critical region. The branches entering
from outside the spinodal region until touching the phase-
transition line correspond to the entropy in the stable mini-
mum of the potential. The two parts of the line between the
phase transition line and touching the spinodal lines corre-
spond to the entropy in the respective local minimum. Finally,
the branch between touching both spinodal lines follows the
solution in the maximum of the potential.
Thermodynamically, the zero-entropy density line must be
located at the zero-temperature axis. This leads us to observe
that the sk=IR = 0 isentropic line is displaced from its T = 0
location in this model within the FRG approach.

A possible origin for the displacement of this isentropic
line and consenquently the existence of the negative entropy
density region is that finite chemical potential effects are not
correctly accounted in the model beyond mean field. Upon
considering an UV potential which is independent of the tem-
perature and chemical potential, one is considering that the
initial conditions to solve the differential equations are the
same for every point in the phase diagram. Such case may
not be true and considering temperature and chemical poten-
tial dependences in the UV potential are known to modify
the thermodynamics and the phase structure [62]. Hence,
building a temperature and/or chemical potential UV effec-
tive potential could provide more insights on the origin of
the negative entropy density region. Such a study is beyond
the scope of the present work and is left as future work.

The next step in our study is to consider the effect of
finite vector interactions. First we just consider the effect
of the ω̃0 field, by setting Gρ = 0, and increasing Gω.
The critical region with increasing Gω can be seen in
Fig. 3. For increasing vector coupling in the range Gω =
[0.001, 0.004] MeV−1 (see Fig. 2, panels a–d), there are two
main effects regarding the critical region: the CEP is moved
to much higher temperatures and smaller chemical potentials
and the extension of the region in-between spinodal lines
increases. The low temperature first order phase transition
line is slightly shifted to higher chemical potentials while
for higher temperatures the first order line is dragged along
with the CEP to smaller chemical potentials. Further increas-
ing the vector coupling, Gω = [0.006, 0.015] MeV−1 (see
Fig. 2, panels e–i), a very different behaviour is observed:
the CEP is moved towards smaller temperatures and higher
chemical potentials while the region in-between spinodal
lines gets imperceptibly smaller. The behaviour of the CEP
for these values of Gω is very similar to the one found in [58]
even tough in that study, the chiral limit is used.

The behaviour of the negative entropy density region and
sk=IR = 0 line is very interesting: increasing the vector cou-
pling Gω pushes this region to lower values of temperature.
In fact, there is a critical value of Gω to which there is no

more negative entropy density region on the phase diagram
of the model.

As already discussed, we expect that the range of mag-
nitudes that we considered for the vector couplings to be
within acceptable and physical ranges. Specially since these
couplings may be density dependent. Nonetheless, the van-
ishing of the negative entropy region for a given vector cou-
pling is not a signal that such a coupling is physical. The
critical vector coupling in which we do not observe a nega-
tive entropy density region is not unique, since it should be
different for another parameter set (different values for Λ,
mΛ, λΛ, c and gS). Also, we were only able to solve the
flow equations down to a minimum temperature of 5 MeV.
Hence, a given critical value of Gω and Gρ , where no neg-
ative entropy density is found above T = 5 MeV does not
guarantee that, for lower temperatures, the negative entropy
density region is not present.

From MF studies one expects that the inclusion of repul-
sive vector interactions would push the CEP towards lower
values of temperature, making it disappear for a high enough
vector coupling. However we observe a rather different and
complex behaviour when including quantum fluctuations
with the FRG. Indeed the CEP and first order phase transition
do not disappear for the range of considered vector couplings
and the previous unphysical negative entropy density region
disappears for increasing Gω.

As already stated, in order to study the effect of the ρ̃3
0

vector field on the first order phase transition, the two flavour
quark system must be on an asymmetric state. As already
discussed, we will consider a finite isospin chemical potential
of δμ = −30 MeV.

In Fig. 4, we show the results of comparing the critical
region of the model with δμ = 0 and δμ = −30 MeV, with-
out vector interactions i.e., Gω = Gρ = 0. The effect of con-
sidering a finite isospin is the following: the first order line is
shifted to higher chemical potentials (at lower temperatures)
and the CEP is marginally moved to lower quark chemical
potentials but its temperature remains the same (within our
level of numerical accuracy). Since the sk=IR = 0 isentropic
line is connected to the spinodal region, moving the first order
line to higher chemical potentials also moves the unphysical
negative entropy density region. The inclusion of a finite δμ

also enlarges the region in-between the spinodal lines.
In order to study the isolated effect of the ρ̃3

0 vector field
with δμ = −30 MeV, we set Gω = 0 and calculated the
phase diagram for increasing values of Gρ . The results can
be seen in Fig. 5. Increasing the couplingGρ , has the opposite
behaviour of considering a finite δμ: it shifts the first order
line to smaller chemical potentials while the CEP is slightly
moved to higher chemical potentials and low temperatures.
The region in between spinodal lines is also larger with finite
Gρ when compared to the case without vector interactions,
even tough the effect is much less noticeable than when con-
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Fig. 3 First order phase transition of the QM model, for increasing
values of Gω and fixed Gρ = 0. The red, black and blue lines are the
spinodals, first order phase transition and the sk=IR = 0 lines, respec-

tively, for each value of Gω. The CEPs are represented by the black
dots. Entropy density is negative below the sk=IR = 0 line

sidering finite Gω. The first order phase transition line at
low temperatures is very close to its original location with
δμ = 0 for Gρ = 0.008 MeV−1. Thus, increasing this cou-
pling is effectively restoring the isospin symmetry, broken by
the finite δμ. Indeed, in nuclear relativistic mean field mod-
els, the ρ̃3

0 vector field can be added to the theory as an isospin
restoring interaction, mirroring the Bethe–Weizsäcker mass
formula and the valley of beta stability in nuclear physics
[66].

Finally in Fig. 6 we consider Gω = Gρ = 0.008 MeV−1,
with δμ = −30 MeV. In this scenario we are taking into
account the combined effect of the ω̃0 and ρ̃3

0 vector fields.
The obtained phase diagram is extremely similar to the one
obtained in the Fig. 3 panel f, with Gω = 0.008 MeV−1 and
δμ = 0. The only difference is on the location of the first
order line which is negligibly dislocated to smaller chemi-
cal potentials. Taking the previous results into account, this
behaviour is expected: the ρ̃3

0 field is restoring the isospin
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Fig. 4 First order phase transition of the QM model without vector
interactions, for δμ = 0 and δμ = −30 MeV. The red, black and blue
lines are the spinodals, first order phase transitions and the sk=IR = 0
lines, respectively. The CEPs are represented by the black dots. Entropy
density is negative below the sk=IR = 0 line

symmetry while the influence of the ω̃0 field is identical to
the one observed in the isospin symmetric case.

4 Conclusions

We have calculated the critical region near the first order
phase transition of the two flavour QM model with vec-
tor interactions, within the FRG approach to include quan-
tum fluctuations. Besides the first order chiral transition and
the CEP, the spinodal lines were presented. The unphysical
region of negative entropy density reported by [48] was also
found and its behaviour due to the presence of vector inter-
actions was studied.

The behaviour of the critical region under finite vector
interactions is different from mean field calculations: increas-
ing the repulsive vector interaction pushes the CEP towards
higher values of temperature and lower values of chemical
potential. Further increasing the vector interaction, drives the
CEP to smaller temperatures and higher chemical potentials.
Another important conclusion is that the region in-between
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Fig. 5 First order phase transition of the QM model with δμ =
−30 MeV, for increasingGρ with fixedGω = 0. The red, black and blue
lines are the spinodals, first order phase transitions and the sk=IR = 0

lines, respectively. The CEPs are represented by the black dots. Entropy
density is negative below the sk=IR = 0 line
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Fig. 6 First order phase transition of the QM model with δμ =
−30 MeV, for Gω = Gρ = 0.008 MeV−1. The red lines are the spin-
odals, the black line is the first order phase transition line and the black
dot is the CEP

spinodal lines increases in chemical potential with increas-
ing vector couplings. Matter inside the spinodal region cor-
responds to unstable matter which can only be reached in a
non-equilibrium evolution of the system in the form of clus-
terized matter. Very different from the case without vector
interactions, the increase of this region in chemical potential,
due to finite vector interactions, indicates that it is possible
to have clusterized chiral symmetric matter in a wider region
of densities.

We also found that the region of negative entropy density
is present on both sides of the first order phase transition
line. The positive entropy density region and the negative
entropy density region is, trivially separated by the skIR = 0
line. However, this line behaves like an isentropic line: it
passes through the first order line, touches one spinodal line,
changes direction crossing the first order line again, touches
the other spinodal and changes direction again. This leads
us to conclude that the appearance of the negative entropy
density region is a consequence of the displacement of the
the s = 0 isentropic line from its T = 0 location. For a
high enough vector interaction the negative entropy density
regions disappears leaving a physical phase diagram with a
first order phase transition and CEP and without negative
entropy.

Considering a difference of up and down quark chemi-
cal potentials δμ, so a finite isospin chemical potential, has
a big effect on the chemical potential of the first order line
but the location of the CEP is unchanged in temperature and
marginally changed to smaller chemical potentials. Increas-
ing at a finite δμ the coupling of the ρ̃3

0 vector field, Gρ ,
is equivalent to restore isospin symmetry while pushing the
CEP to lower values of temperature, leading to a phase struc-
ture similar to the one with δμ = 0 with a CEP at smaller
temperatures.

To better understand the origin of the unphysical negative
entropy density region, as previously found by [48], a flow
equation beyond the LPA could be derived and the phase dia-
gram and entropy density calculated. A different regulator
function could also influence the results. Due to the mathe-
matical nature of the QM flow equation, we were only able to
calculate the phase diagram down to low temperatures (T =
5 MeV) but not at zero temperature. Solving the T = 0 flow
equation exactly could also provide some new analytical and
numerical insights. Some efforts in this direction have been
done in [67], where the authors try to solve the flow equation
at T = 0 by executing a mathematical transformation to the
differential equations in order to transform the rectangular
initial condition on a circular one, due to the Fermi sphere.

Another possible source for the appearance of the negative
entropy density region is the fact that the UV potential is tem-
perature and chemical potential independent. As future work
we plan to explore how different, temperature and chemical
potential dependent UV potentials affect the phase diagram
and the negative density entropy region.
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Appendix A: Numerical details

In [68] it was demonstrated how to ensure numerical stability
during the integration of a generalized version of Eq. (28),
through an optimal step-size. To derive such optimal step, for
simplicity, it was considered that the function derivatives are
calculated with low order finite-difference methods: forward
difference for the RG time variable, t , and three-point rule
for the σ -direction. It is supposed that the numerical stability
condition derived within this simpler scheme, is also valid for
the fourth-order Runge–Kutta method, used in the t variable
and higher order finite-differences used for the σ derivatives.
Following this approach the following conditions for the step-
size Δt was derived:

|Δt | ≤ 2|G|
∣∣F2

∣∣ , (A.1)

|Δt | ≤ Δσ 2

2|G| . (A.2)

Here, G and F are given by:

G = − k5

24π2E3
σ

[
coth

(
Eσ

2T

)
+ Eσ

2T
csch2

(
Eσ

2T

)]
, (A.3)

F = − k5

8π2σ E3
π

[
coth

(
Eπ

2T

)
+ Eπ

2T
csch2

(
Eπ

2T

)]
. (A.4)

As in [68], we do not consider these conditions for σ ∼ 0.
Since these conditions only depend on the bosonic sector
of the flow equation, the fact that one is dealing with effec-
tive finite chemical potentials does not change the conditions
directly. The effect of finite chemical potential and finite vec-
tor mesons only change these conditions indirectly, since the
potential and its derivatives will be different during the flow.

To solve the set of coupled differential equations, in such
a way to get full access to the full effective potential, we
employed the grid method. In this method, the field variable
σ is discretized in an one-dimensional grid, and the first and
second derivatives of the effective potential with respect to
σ are calculated using finite differences. The five point mid-
point rule was used except in the grid endpoints where the
forward and backward rules were used.

One starts the calculation in the UV scale i.e., at k = Λ.
At this momentum scale the effective potential and entropy
density are calculated using the initial conditions provided in
Eqs. (42) and (45), respectively. The needed derivatives with
respect to σ are calculated for every σ -grid point, using finite
differences. Next, an optimal step size in the renormalization
group time, Δt , is calculated using Eqs. (A.1) and (A.2): the
smaller Δt is used. The flow equations are then solved using
the fourth-order Runge–Kutta method, to provide the σ -
dependent effective potential and entropy density in the next
step t − Δt , i.e., Uk=Λ exp (t−Δt)(σ ) and sk=Λ exp (t−Δt)(σ ).

This process is repeated until the infrared scale is reached at
k = IR. After reaching the infrared scale, one is in posses-
sion of theUk=IR(σ ) and sk=IR(σ ) and can then calculate the
minimum of the effective potential, in which all observables
are defined.

When considering finite vector interactions, the self-
consistent Eqs. (35) and (36) have to be solved at every σ -grid
point, at every momentum scale k. Hence, for a given k, for
every σ -grid point, a two-dimensional root finding algorithm
is used to find the values of gωω̃0,k and gρρ̃3

0,k that fulfil this
system of equations. To speed up the root finding process, the
solutions at the momentum scale k are provided as guesses
for the next momentum shell. Since we are using the forth-
order Runge-Kutta method this process has to be performed
four times to be able to calculate the effective potential and
entropy density in a given momentum scale.

The computing time is then related to the σ grid size,
the infrared cutoff, kIR, and the root fiding precision, when
considering vector interactions. The complexity of the flow
equations also dictates the computing time since the step-size
Δt dictates how fast one goes from the UV down to the IR
and different values of temperature and chemical potential
influence the overall magnitude of the adaptive step-size.

One very important observation is that the optimal step-
size calculated using Eqs. (A.3) and (A.4) does not depend on
the chemical potential and can still be used in the calculation
with finite vector interactions.

In order to arrive at the phase diagram, the flow equation
was solved multiple times for different values of temperature
and chemical potential. In order to speed-up calculations,
the OpenMP interface was used to run the computer code in
parallel.

Appendix B: Temperature derivative of the vector fields

In order to calculate the entropy flow equation, it is neces-
sary to calculate, at each momentum shell k the following
quantity1:

∂vk,i

∂T
= ∂ω̃k

∂T
+ (−1)i

∂ρ̃k

∂T
. (B.5)

Considering that the vector stationary conditions hold, for
a given momentum shell, k, we can use Eqs. (35), (36) and
(37), to write the temperature derivatives of the vector fields

1 In this section we use, ω̃k = gωω̃0,k , ρ̃k = gρ ρ̃3
0,k , Gω = gω

mω
and

Gρ = gρ

mρ
.
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as:

∂ω̃k(T ; ω̃k, ρ̃k)

∂T
= aω

∑

η=±1

∑

i=0,1

∂

∂T
Ik,ηi (T ; ω̃k, ρ̃k),

(B.6)

∂ρ̃k(T ; ω̃k, ρ̃k)

∂T
= aρ

∑

η=±1

∑

i=0,1

(−1)i
∂

∂T
Ik,ηi (T ; ω̃k, ρ̃k).

(B.7)

With aω = NcG2
ω/3π2 and aρ = NcG2

ρ/3π2. We only need

to calculate ∂
∂T Ik,ηi , which can be written as:

∂

∂T
Ik,ηi (T ; ω̃k, ρ̃k)

= J (1)
k,ηi (T ; ω̃k, ρ̃k) − J (2)

k,ηi (T ; ω̃k, ρ̃k)

×
[
∂ω̃k(T ; ω̃k, ρ̃k)

∂T
+ (−1)i

∂ρ̃k(T ; ω̃k, ρ̃k)

∂T

]
. (B.8)

Here,

J (1)
k,ηi (T ; ω̃k , ρ̃k)

= 3
∫ Λ

k
dp ηp2 nF

(
Eψ − ημ̃k,i

)

T 2
(

1 − nF
(
Eψ − ημ̃k,i

))(
Eψ − ημ̃k,i

)

−
[

ηp3 nF
(
Eψ − ημ̃k,i

)

T 2

(
1 − nF

(
Eψ − ημ̃k,i

))(
Eψ − ημ̃k,i

)]Λ

k

,

(B.9)

J (2)
k,ηi (T ; ω̃k , ρ̃k)

= 3
∫ Λ

k
dp p2 nF

(
Eψ − ημ̃k,i

)

T

(
1 − nF

(
Eψ − ημ̃k,i

))

−
[

p3 nF
(
Eψ − ημ̃k,i

)

T

(
1 − nF

(
Eψ − ημ̃k,i

))
]Λ

k

. (B.10)

The derivatives of the vector fields with respect to tem-
perature are given by:

ω̃′
k(T ; ω̃k, ρ̃k)

= aω

∑

η=±1

∑

i=0,1

{
J (1)
k,ηi (T ; ω̃k, ρ̃k)J

(2)
k,ηi

− (T ; ω̃k, ρ̃k)
[
ω̃′
k(T ; ω̃k, ρ̃k) + (−1)i ρ̃′

k(T ; ω̃k, ρ̃k)
]}

,

(B.11)

ρ̃′
k(T ; ω̃k, ρ̃k)

= aρ

∑

η=±1

∑

i=0,1

(−1)i
{
J (1)
k,ηi (T ; ω̃k, ρ̃k) − J (2)

k,ηi

(T ; ω̃k, ρ̃ka)
[
ω̃′
k(T ; ω̃k, ρ̃k) + (−1)i ρ̃′

k(T ; ω̃k, ρ̃k)
]}

.

(B.12)

This system of equations can be solved analytically for ω̃′
k

and ρ̃′
k . Neglecting the variable dependences, we can write:

ω̃′
k = Ak − Bkω̃

′
k − Ck ρ̃

′
k, (B.13)

ρ̃′
k = Dk − Ekω̃

′
k − Fk ρ̃

′
k . (B.14)

Where we have defined,

Ak(T ; ω̃k, ρ̃k) = aω

∑

η=±1

∑

i=0,1

J (1)
k,ηi (T ; ω̃k, ρ̃k), (B.15)

Bk(T ; ω̃k, ρ̃k) = aω

∑

η=±1

∑

i=0,1

J (2)
k,ηi (T ; ω̃k, ρ̃k), (B.16)

Ck(T ; ω̃k, ρ̃k) = aω

∑

η=±1

∑

i=0,1

(−1)i J (2)
k,ηi (T ; ω̃k, ρ̃k),

(B.17)

Dk(T ; ω̃k, ρ̃k) = aρ

∑

η=±1

∑

i=0,1

(−1)i J (1)
k,ηi (T ; ω̃k, ρ̃k),

(B.18)

Ek(T ; ω̃k, ρ̃k) = aρ

∑

η=±1

∑

i=0,1

(−1)i J (2)
k,ηi (T ; ω̃k, ρ̃k)

= aρ

aω

Ck(T ; ω̃k, ρ̃k), (B.19)

Fk(T ; ω̃k, ρ̃k) = aρ

∑

η=±1

∑

i=0,1

J (2)
k,ηi (T ; ω̃k, ρ̃k)

= aρ

aω

Bk(T ; ω̃k, ρ̃k). (B.20)

Very easily one can solve the system of linear equations
to get:

∂ω̃k

∂T
= Ak − CkDk + Ak Fk

1 + Bk − CkEk + Fk + Bk Fk
, (B.21)

∂ρ̃k

∂T
= Dk + BkDk − Ak Ek

1 + Bk − CkEk + Fk + Bk Fk
. (B.22)

When considering only one vector field i.e., if Gρ = 0 or
Gω = 0, the temperature derivatives are much simpler:

Gρ = 0 → ∂ω̃k

∂T
= Ak

1 + Bk
, (B.23)

Gω = 0 → ∂ρ̃k

∂T
= Dk

1 + Fk
. (B.24)
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