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Abstract

In the past few years, rapid developments in artificial intelligence technology have culmi-
nated in its widespread adoption. The application of AI in real-world scenarios has revealed
the importance of fairness in machine learning, in order words, the capacity of decision-
making systems to operate in a way that doesn’t discriminate against any particular group
or individual. Because of this, algorithmic fairness has become a booming field in Machine
Learning research with an increasing number of papers being released each year.

Missing values are extremely prevalent in large datasets like those used in real-world ap-
plications by the industry. These missing values can be generated according to the three
missing data mechanisms: Missing Completely At Random, Missing At Random, and
Missing Not At Random. Since most machine learning algorithms can’t handle these
missing values, they have to be dealt with. This is normally accomplished through data
imputation. Because of these unique circumstances, the effect that missing data and the
imputation process have on the fairness of decision-making systems has become an ignored
but important topic in Machine Learning research.

This thesis presents a thorough study of the effects that data imputation has on the fair-
ness of machine learning models. We conducted our experiments considering different
missing data mechanisms, imputation methods, and missing rates. To analyze the fairness
of our models we utilized 7 fairness metrics: Disparate Impact, CV, Equal Opportunity,
Equal Mis-Opportunity, Positive Calibration, Negative Calibration, and Generalized En-
tropy Index. The main findings include how each of these metrics reacts to imputed data.
Disparate Impact, and CV, show a positive correlation with missing rate. According to
the Generalized Entropy Index and Equal Mis-Opportunity, classifier became less fair the
higher the missing rate. The other metrics showed no correlation with the percentage of
imputed data.

Keywords

Missing Data; Missing Mechanisms; Bias; Data Imputation; Fairness.
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Resumo

Nos últimos anos, os rápidos desenvolvimentos na tecnologia da inteligência artificial culmi-
naram na sua adopção generalizada. A aplicação de IA em cenários do mundo real revelou
a importância da equidade em machine learning, por outras palavras, a capacidade dos
sistemas de tomada de decisão autónoma de operarem de uma forma que não discrimine
qualquer grupo ou indivíduo. Devido a isto, a equidade algorítmica tornou-se um campo
em expansão na investigação sobre Inteligência Artificial, com um crescente número de
trabalhos a serem publicados todos os anos.

Valores em falta são extremamente prevalecentes em grandes datasets como aqueles que
são utilizados em aplicações no mundo real pela indústria. Estes valores em falta podem
ser gerados de acordo com os três mecanismos de dados em falta: Missing Completely At
Random, Missing At Random, and Missing Not At Random. Uma vez que, a maioria dos
algoritmos de machine learning não consegue lidar com valores em falta, estes têm de ser
tratados. Isto é normalmente alcançado através da imputação de dados. Devido a estas
circunstâncias únicas, o efeito que os dados em falta e o processo de imputação têm sobre a
equidade dos sistemas de inteligência artificial encontra-se com um tópico importante mas
ignorado na investigação de ML.

Esta tese apresenta um estudo aprofundado dos efeitos que a imputação de dados tem
sobre a equidade dos modelos de inteligencia artificial. Conduzimos as nossas experiências
considerando diferentes mecanismos de dados em falta, métodos de imputação, e taxas de
faltas. Para analisar a equidade dos nossos modelos, utilizámos 7 métricas de equidade:
Disparate Impact, CV, Equal Opportunity, Equal Mis-Opportunity, Positive Calibration,
Negative Calibration, and Generalized Entropy Index. As principais conclusões incluem a
forma como cada uma destas métricas reage a dados imputados. O Disparate Impact, e
o CV, mostram uma correlação positiva com a taxa em falta. De acordo com o Índice de
Entropia Generalizada e a Equal Mis-Opportunity, os modelos tornaram-se menos justos
quanto mais alta for a taxa em falta. As outras métricas não mostraram qualquer correlação
com a percentagem de dados imputados.

Palavras-Chave

Dados em Falta; Mecanismos de Dados em Falta; Preconceito; Imputação de Dados;
Equidade.
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Chapter 1

Introduction

The traditional approach to extracting patterns and knowledge from data entails manual
data analysis and interpretation. However, as technology advanced, the size and complex-
ity of datasets increased; nowadays, it’s not uncommon to find datasets with millions of
instances, each with hundreds of features, in fields such as astronomy and medicine [1].
For these datasets, this method of manually probing a data set is time-consuming, costly,
and highly subjective. As a result, data analysis using automated methods has become a
necessity.

Fayyad et al., in 1996, defined Knowledge Discovery in Database (KDD) as the “overall
process of discovering useful knowledge from data” [1]. Succinctly, KDD is a collection
of technologies and techniques which aim to extract previously unknown and potentially
useful information from raw data. The KDD process can be divided into 5 main steps:
Selection (i), Preprocessing (ii), Transfromation (iii), Data Mining (iv) and Pattern Eval-
uation/Interpretation (v) (Figure 1.1).

Figure 1.1: Knowledge Discovery in Database(KDD) pipeline, adapted from Fayyad et al.
[1]

The Selection step is the process of selecting and retrieving the relevant data from the
main database. The Preprocessing step involves looking for missing data and eliminating
noisy, redundant, and poor-quality data from the data set in order to increase the data’s
effectiveness and reliability. In the Transformation step, the data is transformed and
aggregated in to the form required for the data mining. The next step is the backbone of
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the KDD Process: the Data Mining step. The goal of this step is to look for patterns in the
data, using methods appropriate to the type of problem to be solved (e.g., classification,
clustering, regression). In the last step, Pattern Evaluation/Interpretation we assess and
evaluate the mined patterns and rules possibly returning to the previous steps for further
iterations.

In this thesis, we will be focusing on the preprocessing step, particularly how the imputation
of missing data can influence the fairness of the Machine Learning(ML) models obtained
in the Data Mining phase.

1.1 Contextualization

Typically, machine learning approaches are model-based. Given a dataset, the algorithm
will generate a model based on a training process, which is then tested to measure its
performance. One of the most common problems these systems face is Missing Data (MD)
[2]. Unfortunately, in real-world scenarios, most datasets contain a significant portion of
missing values [3][4]. The properties of Missing Data are derived from the missing mech-
anism that caused it. There are three types of missing mechanisms: Missing Completely
At Random (MCAR), Missing At Random (MAR) and Missing Not At Random (MNAR)
(a detailed explanation of each mechanism is provided in Chapter 2.

Currently in literature, there are several ways of dealing with Missing Data, such as Case
Deletion, Data Imputation, Model-Based Procedures and Machine Learning Approaches
for Machine Learning Estimation [5]. Case Deletion is the deletion of instances or features
with missing values so that only complete instances remain. In Data Imputation, plausible
replacements for the missing values are estimated based on the observable data. In Model-
Based Procedures, the data is handled as a probability distribution modeled by means of
some procedures such as expectation–maximization (EM) algorithm. Finally, the Machine
Learning approach handles the missing data in the Machine Learning models designed for
handling incomplete input data. This thesis will focus on most popular approach [4], Data
Imputation, particularly, on the effects that imputed data has on the fairness of machine
learning models.

As technology increases, AI algorithms have begun managing tasks that have substantial
effects on people’s lives, from criminal risk prediction [6] to credit risk assessments [7]. As
the importance of the tasks performed by these systems increased, the need arose for these
systems to be fair. There are currently two types of fairness in literature: group fairness
and individual fairness [8]. For Group Fairness, a system is considered fair if it does not
discriminate against any particular sub-group. One the other hand, Individual Fairness is
built around the concept that similar individuals should receive similar predictions.

While both these subjects have been extensively studied in literature, the intersection
between these areas has not received the same level of attention and it’s an area which we
hope to contribute to.

1.2 Research Questions

The purpose of this thesis is to study the effects that missing data imputation strategies
have on the fairness of the models.Therefore, the main research question is:

2
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What is the connection between the process of imputation and the fairness of an artificial
intelligence system?

To answer this question, three sub-questions were formulated and answered in two exper-
iments:

• How does the percentage of data imputed affect the fairness and performance of a
system?

• Do different types of missing data mechanisms produce different fairness results after
imputation? If so, which?

• Does the imputation method affect fairness results?

In order to answer these questions, we started by deleting values from 4 complete datasets
commonly used in fairness studies until we reached Missing Rates of 5, 10, 20 and 40%.
The missing values were then imputed using several Imputation Methods. The original
datasets and the new imputed datasets were, then, used to train prediction models. The
outcomes of these models were then evaluated and compared based on performance and
fairness. A full description of this experiment is provided in Chapter 3).

1.3 Document structure

The remainder of this dissertation is organized as follows. Chapter 2 provides an overview
of the background knowledge that underpins this work, as well as a review of papers
that investigated the effects of data imputation on the fairness machine learning models.
Following that, Chapter 3 describes the architecture of the experimental setup that was
designed for the experiments performed, the results of which are presented and discussed
in Chapter 4. Finally, in Chapter 5, conclusions from this work are drawn, as are future
research directions.

3
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Chapter 2

State of the Art

This chapter will stand as a summary of the most relevant areas of this research. We
shall start with an overview of missing data, the different mechanisms behind missing data
and the challenges that each pose. Following this, we will present a brief explanation
of algorithmic fairness, its different subgroups, definitions and measures. Lastly, we will
present different papers which have already focused on the effects of missing data on
fairness.

2.1 Missing Values And Imputation

Missing data is an extremely common occurrence and one of the major issues machine
learning faces today [9]. In educational and psychological datasets, Peugh and Enders [10]
and Rombach et al [11] estimated that the percentage of missing values ranged from 1% to
70%. Corroborating this claim, 45% of the datasets in the UCI data repository [12], one
of the most popular source of datasets used in machine learning, have missing values.

While minimizing the causes of missing values is important to reduce the amount of lost
information, their varied and common sources mean that missing values are likely to con-
tinue to be a regular phenomenon in datasets. Therefore, the study of the effects of missing
values on artificial intelligence systems is of aggravated importance.

2.1.1 Missing Values Mechanisms

Rubin, in [13], classified the missing mechanisms based on the statistical relation between
the missing data and the remaining values and their order in the dataset. There are three
main mechanisms for missing data: Missing Completely At Random (MCAR), Missing At
Random(MAR) and Missing Not At Random (MNAR).

Basic Notation

To properly define the various Missing Value Mechanisms, we will establish the following
basic notation. Consider a data matrix Z which includes both the set of observed values
Zobs and the set of missing values Zmiss. Let R be the missing data indicator matrix of

5
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equal dimensions to R where:

Rij =

{
1 if Zij ∈ Zmiss

0 if Zij ∈ Zobs

(2.1)

Missing Completely At Random

Missing Completely At Random (MCAR) occurs when the mechanism behind the missing
data is completely unrelated to both the values that are missing and the set of observed
responses in the dataset. Therefore, the missing data mechanism can be classified as
MCAR if the following condition is satisfied:

P (R|Z) = P (R) ∀ Z (2.2)

The great advantage of this type of missing data is that, because of its completely random
nature, no bias is inserted into the system. While information is lost, observed values
are likely to be still representative of the original dataset, and the analysis will remain
unbiased.

While MCAR is the ideal missing data mechanism, it is normally an unreasonable expec-
tation to have in many fields of study. Despite this, if the cause of missing data is an
equipment failure, the samples being lost in transit or an otherwise random event, that
data can be regarded as being MCAR [14].

Missing At Random

Missing At Random (MAR) data has a systematic relationship with the set of observed
values in the dataset. MAR data is not missing randomly across all observations, but
rather only within a sub-sample of the data. For example, if during a survey, women are
more to not likely answer questions about their weight than men, that missing data is
MAR.

Missing At Random can be mathematically formalised as:

P (R|Z) = P (R|Zobs) ∀ Zmiss (2.3)

Missing Not At Random

Missing data can be classified as Missing Not At Random (MNAR) if it is related to the
unobserved values themselves. As such, MCAR data can be described according to the
following relation:

P (R|Z) ̸= P (R) ∀ Z (2.4)

Just like MAR, MNAR can introduce bias into the system. Furthermore, since the mecha-
nism behind the missingness is related to unobtainable data and therefore we cannot draw
any pattern from it, this type of missing data is much harder to handle.

2.1.2 Types of Imputation

The best way to handle missing data is to prevent (or at least reduce) it through the
careful planing of the study and data collection process. Unfortunately, that isn’t always

6



State of the Art

an option as many of the studies use previously created datasets. Still, due to missing
data’s negative effect on most systems, it needs to be handled. One of the most popular
ways of accomplishing that is through the use of imputation.

Imputation refers to the generation and replacement of plausible data, capable of replacing
missing values through the analysis of existing data. Generally, imputation algorithms
can be divided into two main branches: statistical-based methods and machine-learning
based methods. Statistical-based methods attempt to replace missing values with those
most similar to those present in the available data. On the other hand, machine-learning
methods create a predictive model with known data that is capable of estimating missing
values. We will now present a brief overview of some of the most popular methods for both
types of imputation.

Mean/Mode Imputation

Perhaps the simplest imputation method, Mean/Mode Imputation replaces missing values
with the mean or mode of its feature depending on whether the data is numerical or cate-
gorical. Class-Conditional Mean/Mode Imputation is a variant of Mean/Mode Imputation
in which the missing values are the means and mode of their classes[5]. One downside of
this method is that it is blind to the correlation between features, being unable to take
into account the relation between the values of other features and the missing value for the
imputation. Another drawback is that the universal results of this method can introduce
fairness bias in the dataset in favor of the majority class [15].

KNN Imputation

K-nearest neighbor (KNN) Imputation is a supervised machine learning approach where
missing values are imputed using the information of the closest k instances, based on the
observed values present in other features. After the closest neighbors are defined, the
generated values are calculated using the mean if the data is continuous or the mode
if the data is categorical[5]. The mean is sometimes weighted based on the inverse of
the distance implemented, allowing for closer patterns to have a bigger impact on the
imputation process. This method has two parameters that must be defined apriori: a
distance metric and the number of nearest neighbors to be used.

MICE Imputation

Multiple Imputation by Chained Equations (MICE)[16, 17] is a popular statistical imputa-
tion method which uses several regression models to conditionally model all variables with
missing values upon the remaining variables in the dataset. There are 6 main steps to the
MICE algorithm[18]:

1. Impute all missing values with a simple imputation, such as imputing the mean.
These new values can be viewed as "place holders";

2. From the set of missing variables choose a missing variable xmiss. Its "place holder"
values are reverted to missing;

3. The observed values of xmiss are regressed on the other variables of the dataset. In
other words, a regression model is created with xmiss as the dependent variable and
all other variables as independent variables;

7
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4. The regression model created in step 3 is used to predict the value of the missing
values of xmiss. These new values are then inserted into the dataset until the next
cycle;

5. Steps 2 to 4 are repeated for every variable with missing values. We define an iteration
or "cycle" when all variables have been imputed;

6. Steps 2 to 4 are then repeated for a previously defined number of cycles or until
convergence of the imputation parameters.

After all cycles have been completed, MICE has imputed all missing values while still
preserving the distribution of parameters governing the imputation.

2.2 Algorithmic Fairness

Fairness is defined as the impartial treatment of individuals; the absence of discrimination
towards the individual based on the groups they belong; the measurement of an individual
based on their merits, unshackled by any bias exterior to the individual himself [19]. This is
the ultimate goal of algorithmic fairness. To create systems capable of producing outputs,
unaffected both positively or negatively, by outside bias. However, to be able to achieve
this one must be able to present a measurable definition of fairness.

2.2.1 Causes of Unfairness

Before we can define, measure and eliminate algorithmic unfairness it is of great importance
that we first understand its causes. Understanding the origin of unfairness will reveal infor-
mation about the nature of fairness and provide us with a guiding light in the development
of algorithms capable of minimizing a system’s unfairness.

The main cause of algorithmic unfairness is the presence of bias in the training datasets.
These biases are then assimilated in the decision-making process of the predictor result-
ing in an unfair system. Any sufficiently large dataset will possess some kind of bias, a
systematic favoring of one group over another, but careful analysis of the dataset used is
of paramount importance to reduce the bias present in the system. Barocas and Selbst
in [20] compile a list of common phenomenons in datasets which have been shown to be
correlated with unfair behaviours:

• Human Bias: Most ML system’s training has been at some point labeled by hu-
mans and we are extremely likely to make decisions with some kind of conscious or
unconscious bias. As the machine learning system learns from this biased dataset it
normally keeps the bias of the humans who preceded it;

• Compounding Bias: Initial bias present in the dataset tends to compound on itself
creating an evermore flawed dataset. The bias affects the decision making progress
of the dataset, which then makes an unfair decision which adds one more biased in-
stance to the dataset. Bias has a propensity to become a self-fulfilling prophecy. For
example, consider a machine learning model whose function is predicting whether or
not an individual should be given a loan. If the dataset used is disproportional nega-
tive towards black people, the model will be more likely to give negative predictions
to black people. As a result of this, black people will be given less loans, which will
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then cause the banks dataset to become even more biased. Models trained in the
new dataset will be more likely to show discriminatory behaviour;

• Insufficient Features: Features tend to be less optimized for protected groups, i.e
the information they provide is often less relevant for the protected group. Not only
that, the data collection process is frequently less reliable for unprivileged groups.
This extra noise can lead to predictors with less accuracy for protected groups;

• Skewed Dataset: Modern machine learning systems need a lot of data and people
are not equality distributed between all protected groups, so big datasets tend to get
quite skewed in the direction of one or a few (un)protected groups. When machine
learning models train under extremely skewed datasets they tend to optimize for the
majority group as this holds more weight which causes the models to become less
accurate and fair toward the minority groups;

• Proxy Features: Even if the sensitive variables(e.g. sex, race) are removed from the
dataset and aren’t used in the training of ML systems, fairness is not guaranteed.
A lot of datasets possess features that have a high correlation with the sensitive
features(e.g. neighborhood) who can serve as proxies to the sensitive features. If
proxy features are still included bias will still happen.

2.2.2 Types of Fairness

The question of what is and is not fair has been pondered by philosophers and psychologist
far before the first computer was created. However, despite their long fight against bias and
discrimination, they have yet to arrive at an all-encompassing definition of fairness. This
alone should be a testament to the difficulty of this problem. The fairness problem is too big
and too subjective for there to be a universal solution to its question, as different cultures,
personalities and perspectives tend to create different definitions of fairness. Despite this, if
fairness is to be applied to machine learning, definitions and metrics need to be established.
Currently in literature, proposals to define measures fall into two main schools of thought
as to what constitutes fairness: group fairness and individual fairness.

Group Fairness or statistical parity approaches measure fairness, based not on the results
of any particular individual, but on the outcome of the algorithm for two or more subgroups
of the overall population. They are an attempt to create systems that treat different groups
of people equally. It is an intuitive type of approach as, throughout history, most systemic
discrimination has been aimed at groups of people that share some inherent or acquired
traits. These groups, normally called protected groups, are characterized by the possession
of some sensitive attribute in their sensitive variable(e.g race, gender, sexuality). Most
published fairness metrics are group fairness approaches, making it the most popular type
of fairness.

Some issues, however, have been raised against these types of approaches, caused by the
clustering of the population into a predefined number of sub-groups. Firstly, if, after the
fairness analysis is executed, another protected group or sensitive variable is discovered
nothing in the previous analysis proves that fairness exists for the new group [8]. Further-
more, the coarse-grained nature of this type of analysis implies that even when fairness
between each group is achieved there may still be undiagnosed unfairness resultant of the
intersection of several groups(e.g black women), something known as fairness gerryman-
dering [21]. In order to fix this, an analysis of each possible combination of protected
groups is necessary, but such an analysis doesn’t scale very well and increases the risk
of overfitting. Lastly, even if fairness is upheld for all possible intersections of protected
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groups, there may still be individuals being treated unfairly by the algorithm. In [22],
several examples are presented where group fairness is achieved but individuals are still
being treated unfairly.

The concern about the blindness of traditional statistical fairness approaches to individual
unfairness, led to Individual Fairness being presented in [22] as an alternative to group
fairness, which would by its nature avoid some of the aforementioned problems. These kinds
of approaches seek to analyze fairness at the individual level, comparing the disparities in
the treatment of different individuals to ascertain if a system is fair. Many of the approaches
are united under the belief that individuals that possess similar attributes, with respect to
the task being analyzed, should receive similar predictions or decisions and that fairness
at the individual level will then translate to a fair system, regardless of how certain groups
are treated.

Individual fairness is not without its flaws, however. The biggest problem of many individ-
ual fairness definitions is that they require a method capable of measuring the similarity
between any two instances in the population. This similarity metric will change from task
to task as the relevant features for that task change with it, making finding a generic so-
lution a difficult problem. Even the process of choosing a set of task-relevant features and
how they should affect the similarity metric is, in and of itself, a hard problem. It requires
prior moral judgments which can inject bias into the system, defeating the purpose of the
analysis [23]. Furthermore, even if the similarity metric is appropriate for the individuals
in the training set, there are no guarantees that it remains so for the individual on the
testing set or new unseen individuals[22].

These problems in the implementation of individual fairness metrics have proved to be
a major bottleneck in the adoption of individual fairness. This has led to some newer
individual fairness metrics to drop the similarity aspect of the approach and focus more
on finding a more robust notion of individual fairness [24, 25].

2.2.3 Group Fairness Definitions

The problem of fairness in AI is incredibly multifaceted. As such, even in within each type,
there are several different definitions of fairness, analyzing fairness through contrasting
perspectives. We will now present an overview of the most popular fairness definitions for
each type, starting with group fairness.

Equal Opportunity

Equal Opportunity is a fairness definition, presented in [26], which states that in order for
an algorithm to be considered fair the following condition must be upheld, where Ŷ is the
predicted class, A is the set of protected groups and Y is the true class of the instance:

P [Ŷ = 1|A = 0, Y = 1] = P [Ŷ = 1|A = 1, Y = 1] (2.5)

Equal Opportunity assures that the probability of the positive class being accurately pre-
dicted is the same for both protected groups, essentially meaning that the true positive
rate(TPR) is the same for both protected groups.
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Equalized Odds

Also presented [26], Equalized Odds is a stricter version of equal opportunity, which states
that a "predictor Ŷ satisfies Equalized Odds with a protected attribute A and outcome Y
if Ŷ and A are independent conditional on Y ".

For a binary problem, Equalized Odds would be satisfied if and only if the following
condition was achieved:

P [Ŷ = 1|A = 0, Y = y] = P [Ŷ = 1|A = 1, Y = y), y ∈ {0, 1}] (2.6)

Equalized Odds accepts a predictor as fair if its true positive and false positive rates(FPR)
are the same for all its protected groups. This makes it a more complete fairness definition
than Equal Opportunity, which only requires that true positive rates be equal. However,
the added restrictions also make it a harder definition to be satisfied.

Demographic Parity

Demographic Parity, also commonly referred as Statistical Parity, is another popular def-
inition of fairness, which states that a predictor Ŷ is fair if the probability of a positive
outcome is the same regardless of protected attribute A. This constraint can be formalised
as:

P [Ŷ = 1|A = 0] = P [Ŷ = 1|A = 1] (2.7)

In its essence, Demographic Parity, as a definition of fairness, considers algorithms fair
when their outcomes have correction to the membership of any particular protected group.
This definition is blind to the true outcome Y of any instance and its use may lead to
situations where a completely accurate predictor, Ŷ = Y , is impossible to achieve. This
can, however, be useful when there is a bias present in the true outcome feature which we
want to change or nullify.

Predictive Rate Parity

Predictive Rate Parity [27], also known as sufficiency, is a definition satisfied when any
true outcome Y is statistically independent of a protected attribute A given the predictor
outcome Ŷ, in other words, Y and A are conditionally independent given Ŷ. This definition
can be formalized as:

P [Y = y|Ŷ = c, A = 0] = P [Y = y|Ŷ = c, A = 1], ∀y ∈ Y, c ∈ Ŷ (2.8)

This definition is useful as its fulfillment assures a predictor with optimal accuracy, Ŷ = Y ,
and an equal chance of success and failure across all sensitive groups. One possible downside
of this approach is that true outcomes are considered to be without bias, which means that
current bias embedded in the data are likely not be perceived by the metric.

Furthermore, in the case of a binary problem, Predictive Rate Parity can be defined as the
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simultaneous fulfillment of the following two conditions:

P [Y = 1|Ŷ = 1, A = 0] = P [Y = 1|Ŷ = 1, A = 1]

∧ (2.9)

P [Y = 0|Ŷ = 0, A = 0] = P [Y = 0|Ŷ = 0, A = 1]

These conditions are known as Predicted Positive Value (PPV) and Predicted Negative
Value (PNV) respectfully and are in off them useful fairness conditions sometimes used
instead of the sufficiency as they are easier to achieve.

Calibration

Calibration [28] or test fairness is satisfied by any predictor Ŷ, in which the positive class
is statistically independent of protected attribute A given a predicted score s.

P [Y = 1|Ŷ = s, A = 0] = P [Y = 1|Ŷ = s, A = 1], ∀s ∈ Ŷ (2.10)

This definition is similar to the above-referenced PPV with the difference that, instead
of only taking into consideration circumstances where the predicted score is also positive
class, it accounts for every possible prediction score. This is especially useful in scenarios
where the number of true outcomes and predicted outcomes is not the same. For example,
a predictor trying to solve a binary classification problem (0 or 1) capable of outputting
11 values from 0.0 to 1.0, where the higher the predicted score the higher likelihood of the
instance belonging to the positive class.

2.2.4 Individual Fairness Definitions

We will now proceed to present some of the most prevalent fairness definitions in individual
fairness.

Fairness Through Unawareness

Perhaps the most simple and intuitive solution to algorithmic unfairness, Fairness Through
Unawareness [29] is an individual fairness definition that states that a predictor Ŷ is fair as
long as any protected attributes A are not explicitly used in its predictions. The principle
behind this definition is that if a predictor does not have to assess to sensitive attributes,
no decision will be made based on that information and therefore systematic discrimination
won’t be possible. On that account, any algorithm which excludes from its input protected
attributes automatically fulfills this definition.

Although Fairness Through Unawareness may seem like a sufficient approach to defining
and measuring fairness, in practice, it possesses a major flaw that severely damages its
functionality as a metric. Many datasets possess features that, while not being protected
attributes in and of themselves, are highly correlated with existing protected attributes, for
example, neighbor or address features are regularly correlated with protected attributes like
race. In such cases, removing the protected attributes from the dataset may not solve the
unfairness of a predictor as these features can act like proxies for the eliminated sensitive
attributes.
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Fairness Through Awareness

Introduced in [22], Fairness Through Awareness was the definition that introduced the
concept of individual fairness to the literature. As the first measure created with the
specific intent of measuring fairness at the individual level it holds a fundamental place in
individual fairness.

Fairness Through Awareness is based on the concept that similar individuals with respect
to a particular task should be given similar outcomes. Accomplishing this goal requires
two separate components. The first one is a similarity metric, a distance measure capable
of measuring the similarity between any two individuals. The second component is a
function capable of measuring the distance between the probabilities of different outcomes
for two instances. Fairness Through Awareness then considers fair any algorithm for which
the distance of probabilities is not larger than the distance of similarities. Therefore, it
essentially works by firstly measuring the similarity of individuals and the similarity of
outcomes, normalizing the results if necessary, and comparing the two.

The definition can be formalized as such: consider a set of individuals V, mapping function
M that maps those individuals to a probability distribution over the outcomes A, M : V →
△(A), a distance metric D and a similarity metric d, capable of measuring the similarity
of two individuals, d : V × V → IR. The mapping M satisfies the(D,d)-Lipschitz property
and therefore Fairness Through Awareness if:

D(Mx,My) ≤ d(x, y) ∀x, y ∈ V (2.11)

As mentioned above, the most significant drawback of Fairness Through Awareness and
measures derived from it is that it requires a task-relevant similarity metric. Such a metric
may not always be available as deciding which features are relevant to the task at hand and
how much is a very hard problem. Another problem with this requirement is that defining
what counts as a similarity or a difference for the task at hand depends on moral judgment,
which isn’t ideal as it creates an opportunity to introduce bias to the system.[23].

Generalized Entropy Index

Generalized Entropy Index was introduced by Till Speicher et al. in [25] as a more universal
approach to individual fairness which tries to address some of the main drawbacks of
Fairness Through Awareness. Till Speicher et al. propose the use of the Generalized
Entropy Index, which has been used extensively to measure inequality in economics and
social welfare[30, 31, 32], as a universal individual fairness metric.

Firstly we need to define a benefit function that maps a predicted outcome given to an
instance to the benefit it receives of the said outcome, typically bi = ŷi−yi+1. The results
of this benefit function can be seen in table 2.1. True positive and true negative cases are
given a benefit of 1 as the predicted outcome was the one they deserved. False negatives
receive a benefit of 0, as they represent individuals that should have received the positive
label but instead were given the disadvantageous negative label. On the other hand, false
positives obtain a benefit value of 2 because they occur when an individual undeservedly
receives the advantageous positive label.

After this, we calculate the benefit for all individuals, b = (b1, ..., bn), and the mean value
of benefits received by the population, µ. The Generalized Entropy Index can therefore
be calculated using the following expression, where α /∈ {0, 1} is a constant defined by the
user:
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TP TN FP FN
Benefit 1 1 2 0

Table 2.1: Benefit obtained by an individual depending on their classification score

εa(b1, b2, b3, ..., bn) =
1

n · α · (α− 1)

n∑
i=1

[(
bi
µ

)α

− 1

]
(2.12)

2.2.5 Fairness Metrics

We will now present the metrics we will use to measure the fairness of our classifiers.
These metrics will be based upon the fairness definitions presented in the previous section.
In total, we will use 7 fairness metrics: 6 evaluating group fairness and 1 dedicated to
individual fairness.

The metrics will be displayed according to a context of binary classification where there
are two groups for any given sensitive attribute: one privileged and one protected. The
Ricci dataset sensitive attribute of Race processes more than two values(Black, White, and
Hispanic). For this dataset, we will calculate the metric individually for every protected
group and present the mean of the results.

Let Ŷ represent the predicted class of an instance belonging to the sensitive attributes A
and whose true outcome is Y . The positive class of Y and Ŷ will be represented as a 1.
The privileged group of the sensitive attributes will be considered 1.

Additionally, we will be analyzing the calculating the score the following data 2.2 would
achieve for each metric.

Index A Y Ŷ

1 1 0 1
2 1 1 1
3 1 1 0
4 1 0 1
5 1 1 1
6 1 0 0
7 0 1 0
8 0 0 1
9 0 0 0
10 0 1 1
11 0 0 0
12 0 0 0

Table 2.2: Example data

Disparate Impact

Disparate Impact (DI), Felman et al. [33], is a metric inspired by one of two tests for
disparate impact in US legal literature. It measures fairness based on the fairness definition
of Demographic Parity, also known as Statistical Parity. Disparate Impact is obtained by
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performing a ratio between the probability of an element belonging to the protected group
receiving a positive outcome and the probability of an element belonging to the privileged
group obtaining a positive outcome, as can be observed in 2.13. As such, a DI score
of 1 means a perfectly fair output, also referred to as satisfying the demographic parity
constraint in literature.

DI =
P [Ŷ = 1|A = 0]

P [Ŷ = 1|A = 1]
(2.13)

In the example dataset 2.2, out of 6 total elements the privileged group possesses 4 positive
classifications, making P [Ŷ = 1|A = 1] 2/3. The unprivileged group, on the other hand,
only has 2 individuals classified as positive out of a total of 6; P [Ŷ = 1|A = 0] would
therefore be 1/3. The DI score for the example data would be 1/2.

CV

Calders and Verwer’s[34] CV also measures how well an outcome can satisfy the Demo-
graphic Parity constraint. This measure is similar to DI, except that the difference is used
instead of the ratio 2.14. This measure has been used to assess gender discrimination in the
United Kingdom, for example. Like in the case of Disparate Impact, a CV of 1 represents
complete fairness under the Demographic Parity constraint.

CV = 1− (P [Ŷ = 1|A = 1]− P [Ŷ = 1|A = 0]) (2.14)

The P [Ŷ = 1|A = 1] and P [Ŷ = 1|A = 0] for the example dataset are the same as in the
previous metric. The CV Score obtained would, however, be 2/3.

Equal Opportunity

The metric proposed below 2.15, attempts to quantify how well a predictor fulfills the
fairness definition of Equal Opportunity. This metric is obtained by subtracting from 1
the difference between the probability of a positive classification for a positive pattern of
the privileged group and the probability of a similar prediction for a positive pattern of
the unprivileged group. As was previously stated, equal opportunity is satisfied when the
TPR is equal for all protected groups. Like in the previous metrics, 1 is the highest score
achievable in terms of fairness.

Equal Opp. = 1− (P [Ŷ = 1|Y = 1, A = 1]− P [Ŷ = 1|Y = 1, A = 0]) (2.15)

In the example data, the privileged group has 2 positive classifications out of the total
3 positive items, or P [Ŷ = 1|Y = 1, A = 1] 2/3. Conversely, only 1 out of a total of 2
positive members of the unprivileged group are classed as positive; P [Ŷ = 1|Y = 1, A = 0]
would therefore be 1/2. The example data’s Equal Opportunity score would be 5/6.

Equal Mis-Opportunity

Equal Mis-Opportunity is similar to Equal Opportunity, except it requires a similar FPR
for all values of a sensitive attribute (2.16), instead of the TPR. It measures if the number
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of false positives is being evenly distributed among the protected groups.

A positive classification tends to be advantageous for the individual. For example, in
the case of the German dataset, a positive classification would mean that one would be
considered a safe individual to grant credit to. Being incorrectly classified as belonging to
the positive class would mean that one would be getting an undeserved advantage in the
context of Equal Mis-Opportunity.

Equal Mis-Opp. = 1− (P [Ŷ = 1|Y = 0, A = 1]− P [Ŷ = 1|Y = 0, A = 0]) (2.16)

In the example dataset 2.2, the privileged group has 2 incorrect positive classifications out
of the total 3 negative items, therefore P [Ŷ = 1|Y = 0, A = 1] is 2/3. In contrast, just
1 of the 4 negative members of the unprivileged group is classified as positive, making
P [Ŷ = 1|Y = 0, A = 0] 1/4. The example data’s Equal Opportunity score would be 5/12.

Positive Calibration

Positive Calibration[35] or Cal+, as can be seen in 2.17, is achieved by subtraction from
1 the difference between the probability of a positive prediction for an element of the
privileged group being correct and the probability of the same event happening for a
member of the unprivileged group. This metric is based on the definition of Calibration
but focuses only on positive predictions.

Cal+ = 1− (P [Y = 1|Ŷ = 1, A = 1]− P [Y = 1|Ŷ = 1, A = 0]) (2.17)

In the illustrative dataset 2.2, out of 4 elements from the privileged group who received
a positive classification, 2 belonged to the positive class, making P [Y = 1|Ŷ = 1, A = 1]
1/2. The protected group possesses 2 members who were classified as positive, of which 1
is actually positive. This makes the P [Y = 1|Ŷ = 1, A = 0] of the dataset 1/2. Since both
P [Y = 1|Ŷ = 1, A = 1] and P [Y = 1|Ŷ = 1, A = 0] have the same value, our example
dataset achieves the maximum Positive Calibration score of 1.

Negative Calibration

Negative Calibration[35] or Cal− is a metric similar to Positive Calibration. It too is based
on the notion of Calibration except that it focuses on negative predictions.

Cal− = 1− (P [Y = 1|Ŷ = 0, A = 1]− P [Y = 1|Ŷ = 0, A = 0]) (2.18)

The privileged group has 1 incorrectly classified negative item out of a total of 2 negative
predictions, therefore P [Y = 1|Ŷ = 0, A = 1] is 1/2. Conversely, the unprivileged group
received 4 negative predictions, 1 of them being incorrect. consequently ,the PP [Y =
1|Ŷ = 0, A = 0] is 1/4. This makes the Negative Calibration of the dataset 3/4.

Generalized Entropy Index

Generalized Entropy Index(Till Speicher et al. [25]) is an individual fairness metric. As
previously stated, it tries to measure how unequally the outcomes of an algorithm benefit
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different individuals in a population. For this metric, we chose an of 2, meaning we half
the squared coefficient of variation, resulting in the simplified formula 2.19, where bi is the
output of the benefit function for the individual and µ is the mean of the benefit results.
Contrary to the other metrics, the optimally fair score is 0.

ε2(b1, b2, b3, ..., bn) =
1

n · 2

n∑
i=1

[(
bi
µ

)2

− 1

]
(2.19)

According to the previously established benefit function bi = ŷi − yi + 1, the elements
of the illustrative dataset achieve the benefit scores of table 2.3. Therefore, the mean of
benefit scores, µ, is 13/12. The overall value achieved in the Generalized Entropy Index is
approximately 0.178.

Index Y Ŷ bi

1 0 1 2
2 1 1 1
3 1 0 0
4 0 1 2
5 1 1 1
6 0 0 1
7 1 0 0
8 0 1 2
9 0 0 1
10 1 1 1
11 0 0 1
12 0 0 1

Table 2.3: Benefit(bi) of each instance of the example dataset

2.3 Performance Metrics

In this section, we present a brief description of several classification performance evaluation
metrics used in our experiments. We will provide the mathematical formula for each of
the metrics and give a brief explanation of the metric, its advantages, and its drawbacks.

Consider the following notation in the context of binary classification:

• True Positive(TP): Positive instances correctly classified as positive.

• True Negative(TN): Negative instances correctly classified as negative.

• False Positive(FP): Negative instances incorrectly classified as positive.

• False Negative(FN): Positive instances incorrectly classified as negative.

Accuracy

The simplest performance metric is Accuracy. As can be seen in 2.20, it’s simply a fraction
between the number of correctly predicted values and the number of predicted values.
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True Value
Positive Negative

Predicted Value Positive TP FP
Negative FN TN

Table 2.4: Confusion Matrix in binary classification

Accuracy’s domain is the interval [0, 1], where 1 means perfectly accurate and 0 means no
value was predicted correctly.

ACC =
TP + TN

TP + TN + FP +NP
(2.20)

Despite being a simple and effective way of measuring the performance of a classifier,
accuracy is not very sensitive to imbalanced problems(problems where there is an unequal
distribution of classes in the data). For example, if a model that always predicted the
positive class was tasked with a problem in which 85% of the data belonged to the positive
class, it would achieve an accuracy of 0.85.

Precision

Precision measures the likelihood of any positive prediction being correct. As is observable
in equation 2.21, it is calculated by dividing the number of true positives by the sum of
all true positives and false positives. Precision is a particularly useful metric in problems
where the cost of misclassifying a negative instance as positive is high.

Precision =
TP

TP + FP
(2.21)

Recall

Recall also known as True Positive Rate(TRP), calculates the proportion of positive in-
stances that were correctly classified. It is the ratio between true positives and all positive
instances.

Recall =
TP

TP + FN
(2.22)

F1-score

F-score is a metric that attempts to summarize the results obtained using the Precision
and Recall metrics into a single metric. It achieves this by performing the harmonic mean
of precision and recall, Fβ :

Fβ =
(1 + β2) ·Recall · Precision

β2 ·Recall + Precision
(2.23)

β is a value defined by the user that defines the weight Recall has on the measure. Typically,
β is set to one, yielding the F1-score metric or simply F1. The F1-score is calculated using
the 2.24 equation, which is a simplified version of the above-mentioned formula.
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F1 = 2 · Recall · Precision

Recall + Precision
(2.24)

2.4 Literature Review

Even though the effects of missing data on the fairness of artificial intelligence is still
a largely untouched topic, in the past few years some research has been conducted on
this subject. In this section, we will present a short summary of the papers that have
approached this topic before us.

Fernando Martínez-Plumed et al. [9] were the first to analyze the effects of missing val-
ues in algorithmic fairness. They tested three popular fairness dataset machine learning
datasets which already possessed missing values (Adult Dataset1, Recidivism Dataset2 and
the Titatic Dataset3) and found that instances with missing values were fairer than their
counterparts, achieving a better score under Statistical Parity Difference(SPD). Despite
this increase in fairness, missing values also proved to have a negative impact on the accu-
racy of predictors. After comparing two common methods of dealing with missing values:
deletion and imputation, Fernando Martínez-Plumed et al. surmised that imputation pro-
vided a good compromise between fairness and accuracy.

Christian Fricke’s [36] master thesis focused on the validation of the findings of [9], with
a special focus on the effects of imputation. For the purposes of testing, they created a
dataset from self-reported law school admissions, designated the MyLSN dataset. They
found that rows containing missing values were in general fairer than rows without them
achieving better Statistical Parity Difference scores, further corroborating the findings of
Fernando Martínez-Plumed et al. Additionally they tested two popular imputation meth-
ods of fairness: unconditional mean imputation and multivariate imputation by chained
equations. In general, imputation seemed to decrease negative discrimination by including
patterns and observations that would otherwise be lost. Not only that, the increased sam-
ple size also seemed to have a beneficial effect on performance, significantly improving a
classifier’s prediction accuracy. The iterative nature of MICE allowed it to achieve better
results in the SPD compared to mean imputation but at the cost of lower accuracy.

In [37], Yanchen Wang and Lisa Singh analyzed the effects of missing values on algorithmic
fairness based on the missing mechanism present in the data. They found that not all
missing mechanisms were equal with regard to fairness. Out of the three mechanisms,
MCAR data had the smallest impact on fairness and MNAR the biggest. This reinforces
the need to adapt the methods we use to the type of missing data present.

1https://archive.ics.uci.edu/ml/datasets/adult.
2https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis.
3https://www.kaggle.com/c/titanic.
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Experimental Setup

The main goal of our work is to study if imputed data causes any effects on the fairness
of machine learning models. To accomplish this, we devised the following experiment, the
design of which will be the subject of this chapter. We focused on studying the dataset
the fairness bias in missing data imputation using datasets without missing values. The
lack of missing values allows us to run our classification algorithms on the original dataset,
generating more accurate ground truths for each dataset. The design of the experiments
can be seen in figure 3.1. It contains six main stages: (i) Data Collection, (ii) Missing Data
Generation, (iii) Missing Data Imputation, (iv) Oversampling, (v) Classification, and (vi)
Evaluation.

Figure 3.1: Pipeline for the Experiments

We began by selecting 4 complete datasets used in fairness-aware studies and generated
missing values for each of the three missing mechanisms using deletion algorithms. We,
then, imputed those missing values using the 3 imputation methods described in chapter
2. After this, we proceed to oversample new values for the minority class by 30% using
SMOTE. The new imputed datasets are then used to train and test machine learning
models for both the Random Forest and SVM algorithms in the Classification stage. In
the Evaluation step, the results from the classification stage are then evaluated according
to 4 performance metrics, 6 group fairness metrics and 1 individual fairness metric.

We based our implementation on the code-base provided by Sorelle A. Friedler et al in
[38], which is available on GitHub1. They developed a modular fairness analysis pipeline
in Python. We found it a good starting point for the implementation of our experiments.

1https://github.com/algofairness/fairness-comparison
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However, missing values and the data amputation and imputation processes were not
considered in the pipeline’s design. In order to conduct our experiments, besides the
datasets, we added implementations of Missing Data Generations for each of the missing
mechanisms, as well as, implementations for Mean/Mode, KNN and MICE imputation.
The Oversampling step was also introduced through the SMOTE algorithm. We also added
implementations of the following metrics: Precision, Recall, F1-Score, Equal Opportunity,
Equal Mis-Opportunity and GEI.

3.1 Data Collection

In order to analyze the effect that different missing mechanisms and imputation methods
had on the fairness of ML models, we first selected four datasets typically used in fairness-
aware research from different contexts and with different sample sizes, number of features
and types of features. Since our imputation methods and classification algorithms could
not handle categorical data, we modified the data to include one-hot encoded versions of
each categorical variable. This means we create a binary variable for each unique value
of the categorical variable and for each instance assign the value 1 in the binary variable
that corresponds to the original value. For the first experiment, we selected only complete
datasets with no missing values. Incomplete datasets, meaning datasets with missing
values, were also selected to be used in the second experiment.

3.1.1 Complete Datasets

We performed the first experiment on real-world datasets, all of which have been previ-
ously used in the fairness-aware machine learning literature [39]. As such, the datasets
come from real-world domains affected by questions of fairness: hiring and promotion,
creditworthiness, loans, income earned, and recidivism prediction.

These datasets have no missing values. Because of this, we can obtain the fairness an AI
model achieves on each of these datasets. These values will be used as the ground truth
for the datasets. We will now present a brief description of each Dataset:

Ricci Dataset

The Ricci dataset2 is derived from the Ricci v. DeStefano case (Supreme Court of the
United States,2009)[40], in which they investigated the results of a promotion exam within
a fire department in November and December of 2003. The classification task is to predict
which individuals received a promotion based on the results achieved in the exam. It’s
a relatively small dataset, containing 118 instances and 5 features: 3 numerical features
and 2 categorical nominal features. This dataset has only one sensitive attribute, the
attribute Race(Black, White, and Hispanic), with white being the privileged group. The
white-to-non-white ratio is 57.6%:42.4%.

2https://www.key2stats.com/data-set/view/690
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German Dataset

The German Credit dataset3 (Dua, Dheeru and Graff, Casey, 2017[12]), which contains
1000 samples of German bank account holders. Each account is described using 21 at-
tributes: 6 numerical, 2 categorical ordinal and 13 categorical nominal. The prediction
task is to determine whether it is risky to grant a certain individual credit or not.

The dataset contains two sensitive attributes: Sex and Age. Age can be binarized into
young(≤25) and old(>25) by thresholding age at 25. The majority of the dataset is com-
posed of people older than 25 years(81%:19%). While the sex attribute is not present in
the original data, its information can be extracted from the given information. The ratio
of male-to-female instances is 69%:31%.

Student-Mathematics Dataset

The Student-Mathematics Dataset4 (Cortez Silva, 2008[41]) investigated students’ marks
in the subject of Mathematics at the secondary education level in two Portuguese schools
in 2005. Therefore, the goal is to predict whether a student will pass or fail the subject at
the end of the year. The dataset is comprised of 395 students described by 33 attributes:
16 numerical, 1 categorical ordinal, and 16 categorical nominal.

The dataset has two sensitive attributes, Sex and Age. The sex attribute is dominated
by female students, with a female-to-male ratio of 52.7%:47.3%. The protected groups for
the age feature are divided into two categories: young students (<18 years old) and old
students (≥ 18 years old). The ratio of young to old students is 71.9%:28.1%.

Student-Portuguese Dataset

Like the above-mentioned Dataset, the Student-Portuguese Dataset4 ((Cortez Silva, 2008[41]))
was created from the results secondary level students of two Portuguese schools in 2005, but
in the subject of Portuguese. The dataset contains information on 649 students described
by 33 features: 16 numerical, 1 categorical ordinal, and 16 categorical nominal.

The protected attributes of this dataset are Sex and Age. Most students are female, with
a ratio of female:male of 59%:41%. Similarly to the Student-Mathematics dataset[41], the
age-sensitive attribute is binarized into young and old students by thresholding age at 18.
The age attribute is dominated by young students, with the ratio of young to old being
72.1%:27.9%.

Datasets Instances Attributes Numerical Cat. Ordinal Cat. Nominal Sensitive
Ricci 118 5 3 0 2 Race

German 1,000 21 6 2 13 Sex, Age
Student-Mathematics 395 33 16 1 16 Sex, Age
Student-Portuguese 649 33 16 1 16 Sex, Age

Table 3.1: Number of Instances, Attributes, Numerical, Categorical Ordinal Attributes
(Cat. Ordinal), Numerical Categorical Nominal Attributes (Cat. Nominal) and Sensitive
Attributes (Sensitive) that they each dataset possesses.

3https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data
4https://archive.ics.uci.edu/ml/datasets/student%2Bperformance
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3.2 Missing Data Generation

As we use complete datasets, in order to be able to impute data we must first create missing
values. We decided to only amputate the values pertaining to the training set, in order to,
prevent the imputation error from altering our results and better compare the obtained
results for different parameters. We amputated the datasets according to the three Missing
Mechanisms presented in chapter 2: Missing Completely At Random (MCAR), Missing At
Random (MAR), and Missing Not At Random (MNAR).

Our implementations generate missing values in all features of the dataset, with exception
of the sensitive attributes and the classification feature, as they are necessary for our
analysis. The missing data generation is also blind to the sensitive groups present in the
dataset, meaning that an individual’s sensitive attribute is not taken into account in the
amputation process.

3.2.1 Missing Completely At Random

The Missing Completely At Random (MCAR) is the simplest of the three missing mecha-
nisms. As stated in Chapter 2, this mechanism occurs when the data deletion is completely
random, not being related to any data either from or outside of the dataset. In order to
simulate this, we used a pseudo-random number generator to choose values from all fea-
tures of the dataset until the desired percentage was reached. Following this, the chosen
values were simply deleted.

Algorithm 1 Implementation of the MCAR Algorithm
Input:

data: Complete Dataset
MR: Missing Data Percentage

Output:
missing_data: Dataset with MR% of missing data

x = numObservarions(data)
y = numFeatures(data)
num_MV = round(x × MR)
for i in range(0,y) do ▷ Amputate the values

nan_rows = random(x,num_MV)
data[nan_rows, i] = NaN

end for

3.2.2 Missing At Random

Missing At Random or MAR mechanism occurs when the missing data depends on the
set of observable data and has no relation to the missing values or to data outside of
the dataset. We based our implementation on the approach proposed by Twala et al. in
[42]. We begin by creating feature triplets (x1, x2, and x3). The values of x2 and x3 of
the instances with the lowest values in x1 will then be deleted. x1 must, therefore, be a
numerical or categorical ordinal feature.

In order to make up for the fact that the feature x1 must be part of the observable data
and cannot be deleted, an additional 50% of the data from x2 and x3 will be eliminated.
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For example, in a run with a 40% Missing Rate, 60% of the data from x2 and x3 will be
deleted.

Algorithm 2 Implementation of the MAR Algorithm
Input:

data: Complete Dataset
MR: Missing Data Percentage
triplets: array containing the triplets of features

Output:
missing_data: Dataset with MR% of missing data

x = numObservarions(data)
y = numFeatures(data)
num_MV = round(2.25 x × MR)
for triplet in tripletss do ▷ Amputate the values

f_obs, f_missing = triplet
x_obs = data[:, f_obs]
nan_rows = sort(x_obs)
data[nan_rows[num_MV], f_missing] = NaN

end for

3.2.3 Missing Not At Random

Whenever missing data is related to unobservable data, that follows the Missing Not At
Random mechanism. We implement this mechanism by dividing the dataset into two: one
containing numerical or categorical ordinal features and another containing categorical
nominal features. In the first group, we simply delete the lowest values of the feature up
until the desired Missing Rate has been fulfilled. Features in the second group can’t be
ordered, so we randomly generate a categorical hidden feature outside of the dataset with
the same number of instances and delete values from the features in the second group
corresponding to the lowest values in the hidden feature. Using these methods, we assure
that after the amputation is complete, the data responsible for the missing values can’t be
accessed, and therefore the true pattern behind the missing data will be unknown.

In table 3.2, we have an example of the data created by each of the missing mechanisms.
The data shown was extracted from the Ricci dataset. The MCAR missing data was
selected at random. The rows with MAR missing data are the rows with the lowest value
in the Oral feature. Finally, the instances of MNAR data are instances with the lowest
value within its own feature.

3.3 Missing Data Imputation

In the Missing Data Imputation stage, we generate new values to replace the ones lost
during the previous stage. We will utilize the imputation methods presented in Chapter
2: (i) Mean/Mode Imputation, (ii) KNN Imputation and (iii) MICE Imputation.

For the Mean/Mode Imputation method, we replace the missing data with the mean in
numerical features and the mode in categorical features. Since categorical data cannot
be handled by KNN Imputation and MICE Imputation, we start the implementation of
these methods by One Hot Encoding of the categorical features. The resulting dataset
is imputed using the implementations of these algorithms available in the python library

25



Chapter 3

Algorithm 3 Implementation of the MNAR Algorithm
Input:

data: Complete Dataset
MR: Missing Data Percentage
nominal_features: array containing Categorical Nominal of features

Output:
missing_data: Dataset with MR% of missing data

x = numObservarions(data)
y = numFeatures(data)
num_MV = round(x × MR)
hidden_feature = generate_feature(x)
for i in range(0,y) do ▷ Amputate the values

if nominal_features[i] == True then
nan_rows = argsort(hidden_feature)

else
nan_rows = argsort(data[i])

end if
data[nan_rows[num_MV], i] = NaN

end for

Oral Written MCAR_Written MAR_Written MNAR_Written

89.52 95 95 95 95
80 95 Missing 95 95

88.57 76 76 76 Missing
76.19 84 84 84 84
76.19 82 Missing 82 82
70 84 84 Missing 84

73.81 81 81 Missing 81
87.62 69 Missing 69 Missing
82.38 64 Missing 64 Missing
56.67 81 81 Missing 81
70.95 70 70 Missing Missing
62.38 75 Missing Missing Missing
78.57 64 64 64 Missing
59.05 77 Missing Missing 77

Table 3.2: Example of the MCAR, MAR, and MNAR mechanisms. Data taken from the
Ricci Dataset.

scikit-learn(version 1.2.0). Then, by selecting the feature with the greatest value as the
new value for the category feature, we convert the One Hot Encoded features back into
categorical features.

3.4 Oversampling

Initially, the German, Student-Mathematics, and Student-Portuguese datasets were prov-
ing themselves to be challenging for our classification algorithms to analyze, due to the
imbalance between the positive and negative classification class. In order to improve our
results, we decided to conduct an oversampling of the minority class by 30%. The over-
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sampling process was conducted separately for each permutation of sensitive attributes so
as to maintain the imbalance between protected groups and preserve in-group patterns.

For the Oversampling stage, we decided to use the implementation of the Synthetic Mi-
nority Oversampling Technique(SMOTE) algorithm available in the python library
imblearn(version 0.6.0). SMOTE first chooses a minority class instance at random and
locates its k closest minority class neighbors. The synthetic instance is then made by ran-
domly selecting one of the k closest neighbors, b, and joining them to form a line segment
in the feature space. The two selected examples, a and b, are combined to create the
synthetic instances.
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Chapter 4

Experimental Results

In this chapter, we will present the experimental results obtained using the methodology
proposed in chapter 3. We plan to investigate we plan to analyze how changes to the
processes of missing data generation and missing data imputation affect the performance
and the fairness of an ML system. We will be analyzing the results grouped by the following
two combinations of parameters:

• 1st Group: Results grouped by Missing Rate, Missing Mechanism, Dataset and
Classification Algorithm

• 2nd Group: Results grouped by Missing Rate, Imputation Method, Dataset and
Classification Algorithm

The results were analyzed and summarized in the tables 4.1 and 4.2, for the first and
second groups respectively. The results of both the performance and fairness metrics were
classified into three categories based on their relation with the missing rate used: (I)
improves with the missing rate(IMR), (II) degrades with the missing rate(DMR) and (III)
no correlation with the missing rate(NCMR).

Metrics classified with IMR showed a positive correlation with Missing Rates, i.e., an
increase in performance was detected for performance metrics and an increase in fairness
was detected for fairness metrics as missing data increased. Likewise, metrics classified
with DMR increased their distance from their perfect classification as the percentage of
missing data increased. NCMR is a classification given when no trend could be established
in the data as the missing rate increased, either because the values suffered no significant
changes or the changes did occur but no clear pattern could be extracted. It is important to
note that these trends are examined across the entire missing data percentage spectrum,
which means that if there are no statistically significant differences for low amounts of
missing data, such as 5% or 10%, but those trends are developed for higher percentages of
missing data, those trends will still be classified.

Thirty runs were conducted for each combination of parameters for the pipeline presented
in the previous chapter. We used five values for the missing rate parameter: 0%, 5%,
10%, 20%, and 40%. The results of both groupings were then subjected to a battery of
statistical tests to determine if our findings hold statistical significance. Since our results
did not meet the assumptions necessary for parametric tests, we opted to use 4-way ANOVA
with non-restricted permutations to evaluate if the values of our parameters belonged to
separate populations, as presented by Marti Anderson and Cajo Ter Braak in [43]. It is
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an application of permutation tests to ANOVA tests, in order to allow its application to
data that doesn’t follow a normal distribution. If the null hypothesis that there are no
differences between the means of all groups is rejected, we proceed to the post-hoc analysis
of the data. We resorted to Dunn’s test [44], which is to be equivalent to carrying out
a series of Mann-Whitney tests between the various groups of values associated with the
parameters, with the p-values being rectified through the Bonferroni correction. Dunn’s
test is usually only applied with 1 or 2 factors. Above this, the results are very conservative
and the analysis becomes very complex. For this reason, we will only analyze combinations
of at most 2 factors for Dunn’s test. We used the level of significance, α = 0.05 for both
the 4-way ANOVA and Dunn’s Tests. Furthermore, we used the 95% confidence intervals
to analyze the effects of the different missing mechanisms and imputation methods, and
considered, that if the confidence intervals of two populations did not overlap there was a
statistically significant difference between them.

Through this analysis we can obtain information that allows us to answer the following
research questions, posed in chapter 1:

• How does the percentage of data imputed affect the fairness and perfor-
mance of a system?

• Do different types of missing data mechanisms produce different fairness
results after imputation? If so, which?

• Does the imputation method affect fairness results?
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Dataset Miss.
Mechanism

Algorithm Acc. Precision Recall F1-Score DI Equal
Opp.

Equal
Mis-Opp.

CV Cal.+ Cal.- GEI

Ricci

MCAR SVM DMR DMR DMR DMR NCMR NCMR NCMR NCMR NCMR NCMR NCMR

RF DMR DMR DMR DMR NCMR NCMR NCMR NCMR NCMR NCMR DMR

MAR SVM DMR DMR IMR DMR IMR DMR NCMR IMR DMR IMR NCMR

RF DMR DMR DMR DMR IMR NCMR DMR IMR NCMR NCMR DMR

MNAR SVM DMR DMR IMR DMR IMR NCMR DMR IMR DMR IMR NCMR

RF DMR DMR DMR DMR IMR DMR DMR IMR DMR NCMR DMR

German

MCAR SVM DMR DMR DMR DMR NCMR NCMR NCMR NCMR NCMR IMR NCMR

RF DMR DMR DMR DMR NCMR NCMR NCMR NCMR NCMR NCMR NCMR

MAR SVM DMR DMR DMR DMR NCMR NCMR DMR NCMR IMR DMR DMR

RF DMR DMR DMR DMR NCMR NCMR NCMR NCMR NCMR NCMR DMR

MNAR SVM IMR IMR IMR IMR IMR IMR IMR IMR NCMR NCMR IMR

RF DMR DMR DMR DMR IMR NCMR IMR IMR NCMR NCMR DMR

Student-Mat

MCAR SVM DMR DMR DMR DMR NCMR NCMR NCMR NCMR NCMR NCMR NCMR

RF DMR DMR DMR DMR NCMR NCMR NCMR NCMR IMR NR DMR

MAR SVM DMR DMR DMR DMR DMR DMR DMR DMR NCMR NCMR DMR

RF DMR DMR DMR DMR NCMR NCMR DMR NCMR IMR DMR DMR

MNAR SVM DMR DMR DMR DMR IMR DMR DMR IMR NCMR NCMR DMR

RF DMR DMR DMR DMR DMR NCMR NCMR DMR NCMR NCMR DMR

Student-Por

MCAR SVM DMR DMR DMR DMR NCMR NCMR NCMR NCMR NCMR NCMR DMR

RF DMR DMR DMR DMR NCMR NCMR NCMR NCMR NCMR NCMR DMR

MAR SVM DMR DMR DMR DMR IMR IMR NCMR IMR NCMR NCMR DMR

RF DMR DMR DMR DMR NCMR NCMR IMR NCMR IMR IMR DMR

MNAR SVM DMR DMR DMR DMR NCMR NCMR NCMR NCMR NCMR NCMR DMR

RF DMR DMR DMR DMR IMR NCMR IMR IMR NCMR IMR NCMR

Table 4.1: Tendencies(Increase with increases in Missing Rate(IMR), Degrades with increases in Missing Rate(DMR), No Correlation with Missing Rate(NCMR))
present in the results of the Oversample then Imputation pipeline when grouped by Dataset, Missing Mechanism, Algorithm and Missing Rate.
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Dataset Imp.
Method

Algorithm Acc. Precision Recall F1-Score DI Equal
Opp.

Equal
Mis-Opp.

CV Cal.+ Cal.- GEI

Ricci

Mean/Mode SVM DMR DMR IMR DMR IMR DMR NCMR IMR DMR IMR NCMR

RF DMR DMR DMR DMR IMR NCMR DMR IMR NCMR NCMR DMR

KNN SVM DMR DMR IMR DMR IMR DMR NCMR IMR DMR IMR NCMR

RF DMR DMR DMR DMR IMR NCMR DMR IMR NCMR NCMR DMR

MICE SVM DMR DMR IMR DMR IMR DMR NCMR IMR DMR IMR NCMR

RF DMR DMR DMR DMR IMR NCMR DMR IMR NCMR NCMR DMR

German

Mean/Mode SVM DMR DMR IMR NCMR IMR IMR NCMR IMR IMR NCMR NCMR

RF DMR DMR DMR DMR NCMR NCMR NCMR NCMR NCMR NCMR DMR

KNN SVM DMR DMR IMR NCMR IMR NCMR NCMR IMR IMR NCMR NCMR

RF DMR DMR DMR DMR IMR IMR NCMR IMR NCMR NCMR DMR

MICE SVM NCMR NCMR NCMR NCMR IMR IMR NCMR IMR NCMR NCMR NCMR

RF DMR DMR DMR DMR NCMR NCMR NCMR NCMR NCMR NCMR DMR

Student-Mat

Mean/Mode SVM DMR DMR DMR DMR NCMR NCMR NCMR NCMR NCMR NCMR DMR

RF DMR DMR DMR DMR NCMR NCMR NCMR NCMR NCMR DMR DMR

KNN SVM DMR DMR DMR DMR IMR NCMR NCMR DMR NCMR NCMR DMR

RF DMR DMR DMR DMR NCMR NCMR DMR NCMR NCMR NCMR DMR

MICE SVM DMR DMR DMR DMR NCMR NCMR NCMR NCMR NCMR NCMR DMR

RF DMR DMR DMR DMR DMR NCMR DMR DMR IMR DMR DMR

Student-Por

Mean/Mode SVM DMR IMR DMR DMR NCMR NCMR NCMR NCMR NCMR DMR DMR

RF DMR DMR DMR DMR IMR NCMR NCMR IMR NCMR IMR DMR

KNN SVM DMR DMR DMR DMR NCMR NCMR NCMR NCMR NCMR NCMR DMR

RF DMR DMR DMR DMR NCMR NCMR NCMR NCMR NCMR NCMR NCMR

MICE SVM DMR DMR DMR DMR IMR NCMR IMR IMR NCMR NCMR DMR

RF DMR NCMR DMR DMR IMR NCMR IMR IMR NCMR IMR DMR

Table 4.2: Tendencies(Increase with increases in Missing Rate(IMR), Degrades with increases in Missing Rate(DMR), No Correlation with Missing Rate(NCMR))
present in the results of the Oversample then Imputation pipeline when grouped by Dataset, Imputation Method, Algorithm and Missing Rate.
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4.1 How does the percentage of data imputed affect the fair-
ness and performance of a system?

During the process of using imputation techniques to restore datasets with missing data,
the effects of imputing a high percentage of missing data are felt twofold. Firstly, and
perhaps more intuitively, the higher the percentage of missing data present in a dataset,
the more likely it is for unique patterns to be removed from the dataset. This data, once
lost, cannot be replicated using imputation. Secondly, no imputation algorithm is perfect.
Given any sufficiently complex dataset with a high enough percentage of missing data,
imputation errors will happen. This tends to mean that the higher the percentage of
imputed data, the more the imputed dataset will distance itself from the complete dataset.
With this in mind, in this section, we will provide a granular study on how the percentage
of data imputed affects the fairness and performance of an ML model.

Performance Metrics

The performance metrics show similar behavior for both groups of parameters. Accuracy,
Precision, Recall and F1-Score achieved a p-value of 0.05 for missing rate and all
interactions between the missing rate and the other factors, for the 4-way ANOVA test
with unrestricted permutation, meaning we reject the null hypothesis that the means of all
the groups are equal for each performance measure. As we can see in table 4.3, values of
the lower percentage of missing data (0%, 5% and 10%) do not show a significant difference
between themselves, the higher values of missing rate(20% and 40%) show a statistically
significant difference between them and all other values. Through the analysis of the
tables 4.1 and 4.2, we can ascertain that all performance metrics show a consistent negative
correlation with the missing rate in all runs.

Accuracy

Missing Rate 0 0.05 0.1 0.2 0.4
0 1.000

0.05 1.000 1.000
0.1 0.374 0.034 1.000
0.2 0.000 0.000 0.000 1.000
0.4 0.000 0.000 0.000 0.000 1.000

Precision

Missing Rate 0 0.05 0.1 0.2 0.4
0 1.000

0.05 1.000 1.000
0.1 1.000 0.099 1.000
0.2 0.000 0.000 0.000 1.000
0.4 0.000 0.000 0.000 0.013 1.000

Recall

Missing Rate 0 0.05 0.1 0.2 0.4
0 1.000

0.05 0.069 1.000
0.1 0.312 1.000 1.000
0.2 0.000 0.157 0.030 1.000
0.4 0.000 0.000 0.000 0.000 1.000

F1-Score

Missing Rate 0 0.05 0.1 0.2 0.4
0 1.000

0.05 1.000 1.000
0.1 1.000 0.065 1.000
0.2 0.000 0.000 0.003 1.000
0.4 0.000 0.000 0.000 0.000 1.000

Table 4.3: P-values obtained using the Dunn’s Test to check if there are statistically significant
differences between the pairs of Missing Rates for the Accuracy, Precision, Recall and F1-score
metrics. The Bonferroni Correction was applied to these values. P-values in bold indicate strong
evidence against the null hypothesis.

Removing a higher percentage of the dataset removes more information. Imputation meth-
ods attempt to remedy this by generating new values capable of replacing the values that
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are missing. They generate new values by analyzing patterns in the available data and
using them to predict the values that are missing. However, these algorithms aren’t flaw-
less. Given any sufficiently complex dataset, they will never be able to correctly predict
the true values of all the missing data. This means that datasets with imputed values will
only have a fraction of the information of the original dataset. Some information is lost in
the process of amputation and imputation. This missing information makes it harder for
AI models to correctly predict the correct outcome for any given instance. Therefore, on
average, increasing the missing data of any given dataset tends to decrease the performance
of predictors.

Fairness Metrics

The fairness metrics, on the other hand, did not all react the same way to changes in the
missing rate of data, as can be seen in the tables 4.1 and 4.2. While this is not surprising
given the oftentimes mutually exclusive nature of a lot of fairness definitions, it further
reinforces the need to use several fairness metrics so as to achieve a more all-encompassing
view of fairness.

The individual fairness metric Generalized Entropy Index showed the strongest corre-
lation with changes in the missing rate. This metric showed a positive correlation with the
missing rate resulting in an increase in its values from 16 to 24 of Dataset for the first group
and 19 of the 24 permutations for the second group. Since for the Generalized Entropy
Index, the value for absolute fairness is 0 the results of our experiments were becoming
less fair the more the missing rate increased.

We believe this occurs because Generalized Entropy Index is a metric that assumes that the
class values present in the dataset are perfectly fair. For this metric, in order for a classifier
to be perfectly fair it needs to be perfectly accurate [25]. As previously noted, the classifiers’
accuracy tended to drop as the missing rate grew. This meant that a higher percentage of
values were being undeserving misclassified, making the values of the Generalized Entropy
Index worse. As seen in figure 4.1, as accuracy increases the Generalized Entropy Index
decreases.

Figure 4.1: Scatter plot between values of the Accuracy and Generalized Entropy Index
Metrics for all datasets for the first group.

The statistical tests performed back up our conclusions. The missing rate factor and
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iterations including it in the test 4-Way ANOVA with unconstrained permutations yielded
a p-value of 0, meaning we reject the null hypotheses. Dunn’s Test revealed that for the
higher Missing Rates, like 20% and 40%, provoked outputs significantly different from the
other levels, as can be seen in table 4.4.

GEI

Missing Rate 0 0.05 0.1 0.2 0.4
0 1.000

0.05 1.000 1.000
0.1 1.000 1.000 1.000
0.2 0.000 0.000 0.001 1.000
0.4 0.000 0.000 0.000 0.000 1.000

Table 4.4: P-values obtained using the Dunn’s Test to check if there are statistically significant
differences between the pairs of Missing Rates for the Generalized Entropy Index. P-values in bold
indicate strong evidence against the null hypothesis.

The missing rate was, on average, positively correlated with the fairness definitions based
on the Statistical Parity definition, like Disparate Impact and CV. According to tables
4.1 and 4.2, the metrics tended to increase with the increase in missing rate. Because
Statistical Parity does not evaluate predictor accuracy, requiring simply that the positive
classifications be distributed evenly throughout the protected groups, the loss of accuracy
has no effect on the results of this metric. The higher the missing rate is the more infor-
mation gets erased from the dataset. Since the missing data will be imputed using the
remaining patterns in the data, the imputed dataset tends to be more uniform. As a result,
there would be fewer disparities across protected groups, causing their classifications to be
more similar.

We rejected the null hypothesis for the test 4-way ANOVA with non-restricted permuta-
tions for these metrics as well. Although we detected this positive correlation through
all levels of the missing rate factor, Dunn’s test revealed that this trend only becomes
statistically significant for Missing Rates if 40%, as can be seen in table 4.5.

DI

Missing Rate 0 0.05 0.1 0.2 0.4
0 1.000

0.05 1.000 1.000
0.1 1.000 0.790 1.000
0.2 1.000 0.108 1.000 1.000
0.4 0.000 0.000 0.000 0.000 1.000

CV

Missing Rate 0 0.05 0.1 0.2 0.4
0 1.000

0.05 1.000 1.000
0.1 1.000 0.420 1.000
0.2 0.634 0.085 1.000 1.000
0.4 0.000 0.000 0.000 0.000 1.000

Table 4.5: P-values obtained using the Dunn’s Test to check if there are statistically significant
differences between the levels of Missing Rates for the Disparate Impact and CV metrics. P-values
in bold indicate strong evidence against the null hypothesis.

The Equal Mis-Opportunity metric showed a negative correlation with the missing rate,
as can be seen in tables 4.1 and 4.2. On average, according to Equal Mis-Opportunity,
the classifiers become less fair the higher the missing rate is. Equal Mis-Opportunity
requires that the false positive rate be equal for all protected groups. As the missing
rate increases errors in the imputed dataset tend to increase as well. We believe that
the increase in the missing rate causes a disproportional increase in false positives in the
privileged group, which previously because of its size benefited from a higher degree of
accuracy.

Like the previous fairness metrics, Equal Mis-Opportunity presented a p-value of 0 in the
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test 4-way ANOVA with non-restricted permutations for the missing rate factor. As we
can see in table 4.6, only the values of the highest level of missing rate revealed themselves
to present significant differences.

Equal Mis-Opp.

Missing Rate 0 0.05 0.1 0.2 0.4
0 1.000

0.05 0.246 1.000
0.1 0.139 1.000 1.000
0.2 1.000 1.000 1.000 1.000
0.4 0.042 0.000 0.000 0.047 1.000

Table 4.6: P-values obtained using the Dunn’s Test to check if there are statistically significant
differences between the levels of Missing Rates for the Equal Mis-Opportunity metrics. P-values
in bold indicate strong evidence against the null hypothesis.

The other fairness metrics failed to present statistically significant differences between
missing rates. In the 4-way ANOVA test with non-restricted permutations, with alpha =
0.05, Equal Opportunity achieved a p-value of 0.186 for the missing rate factor, i.e, there
wasn’t a statistically significant difference between the levels of this parameter. We did
reject the null hypothesis for the test 4-way ANOVA with non-restricted for the metrics
Negative Calibration and Positive Calibration. But neither the post-hoc analysis
using Dunn’s test (table 4.7) and analysis of the data (tables 4.1 and 4.2) revealed a
consistent trend in the data.

Cal +

Missing Rate 0 0.05 0.1 0.2 0.4
0 1.000

0.05 1.000 1.000
0.1 0.102 0.208 1.000
0.2 1.000 1.000 0.080 1.000
0.4 1.000 1.000 0.009 1.000 1.000

Cal -

Missing Rate 0 0.05 0.1 0.2 0.4
0 1.000

0.05 0.207 1.000
0.1 1.000 1.000 1.000
0.2 1.000 0.106 0.134 1.000
0.4 1.000 0.027 0.155 1.000 1.000

Table 4.7: P-values obtained using the Dunn’s Test to check if there are statistically significant
differences between the levels of Missing Rates for the Positive and Negative Calibrations metrics.
P-values in bold indicate strong evidence against the null hypothesis.

In conclusion, as we have seen throughout this section, different fairness metrics reacted dif-
ferently to increases in missing rate. The Generalized Entropy Index showed the strongest
correlation with the increase in the missing rate of a dataset. According to this metric,
the predictions of a machine-learning model become less fair the higher the missing rate
is, because of the loss of accuracy caused by the errors of the imputation process. On
the other hand, the metrics based on statistical parity, Disparate Impact and CV, showed
the opposite reaction, measuring that the predictions of a model become fairer the higher
the missing rate. Others, like Equal Opportunity, showed no apparent reaction to changes
in the missing rate. More than anything, this shows that we should be careful of the
fairness definition we are using in both research and real-world applications, as they react
differently to the imputed datasets.
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4.2 Do different types of missing data mechanisms produce
different fairness results after imputation? If so, which?

We will now analyze the effects that different missing mechanisms have on the fairness
metrics we employed. We will analyze the results of the experiments executed with 40%
missing rate since the effects of the different missing rates will be felt with greater intensity
in those runs. We will be analyzing the results using the means and 95% confidence intervals
of our results.

For the performance metrics Accuracy and F1-Score, the MCAR missing mechanism
achieved the best results, followed by the MAR missing mechanism and finally the MNAR
missing mechanism, as can be seen in fig 4.2. This makes sense since the MCAR missing
mechanism causes data to be randomly erased, introducing no bias towards any classifi-
cation class, and therefore, is generally considered to be the easiest mechanism to impute
[45]. The missing mechanism MAR, on the other hand, causes deleted data to be related to
observed data, so while the missing data contains patterns that can influence the accuracy
of a predictor, those same patterns can be reconstructed using an imputation algorithm.
Lastly, the missing data under the MNAR mechanism is related to unobserved data. Be-
cause of this, the patterns that generated the missing data are inaccessible at the moment
of imputation, causing the accuracy of the imputed data of this mechanism to be the lowest
[45].

For Disparate Impact, the best results were achieved from MNAR data, followed by MCAR
and, lastly MAR. However, the confidence intervals from MNAR and MCAR runs overlap,
as can be seen in figure 4.2. The CV metric achieved similar results to Disparate Impact,
with the exception that the overlapping confidence intervals now belonged to the MCAR
and MAR. We believe that the MNAR mechanism can score so highly on these metrics
because, as data is removed according to unobservable values (including in the cases of
numerical and categorical ordinal data, being removed according to its own feature), the
distribution of data becomes less varied. Since the missing data is connected to unobserv-
able data, it cannot be accurately imputed, resulting in an increase in the similarity of
protected groups for imputed features. This causes the results of the classifiers to be more
similar between the protected groups. Statistical parity is a definition of fairness that does
not require the predictor to be accurate, only that its positive predictions be distributed
equally among the protected groups. As a result, despite having lower accuracy and a
lower F1-score, MNAR data can achieve the best results in the Disparate Impact and
CV metric.

Figure 4.2: Means and 95% Confidence Intervals for the Accuracy, F1-Score, DI and CV
for the MCAR, MAR and MNAR missing mechanisms

As can be seen in the figure 4.3, for Equal Opportunity the missing mechanism which
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achieved the best results was MCAR, followed by MAR and finally MNAR. It is important
to note that the confidence intervals for each of the missing mechanisms overlap. The Equal
Opportunity metric requires that the true positive rate be equal between the protected
groups. Therefore, according to Equal Opportunity, for a predictor to be perfectly fair
it needs to be accurate. This results in a mechanism with higher performance having
better results. For the Equal Mis-Opportunity metric, the MNAR mechanism achieved
the best results. The second best mechanism was MCAR with the MAR mechanism
performing the worst. For a predictor to be fair under Equal Mis-Opportunity it needs to
have an equal false positive rate for all protected groups. We believe that as MNAR data
causes features to be more uniform between protected groups and worsens the performance
of the classifiers, the false positives increase and become more spread out among the
different protected groups, increasing Equal Mis-Opportunity for this mechanism. The
MAR mechanism causes data to be deleted in accordance with observable data, therefore,
it is possible to obtain the patterns responsible for creating missing data during imputation.
For this reason, imputed data from this mechanism resembles the original data more than
data imputed from MNAR missing data, even if it still possesses a higher imputation error
than the MAR error. This could be increasing the bias between the groups increasing the
Equal Mis-Opportunity of MAR data.

The Calibration metrics show similar results to the above-stated metrics. The Positive
Calibration results, which can be seen on 4.3, show that MCAR and MAR runs achieved
similar results with MCAR runs performing slightly better. The MNAR mechanism ob-
tained significantly worst results than the other two. Positive Calibration requires that the
probability of a given positive prediction be correct to be the same for protected groups.
Through this, we can surmise that the MNAR mechanism is causing the correct positive
predictions to be unfairly distributed through the protected groups. For Negative Cali-
bration, the best outcomes were attained by MNAR, then MCAR, and lastly MAR. For
Negative Calibration, a predictor is fair if the probability of a negative prediction being
wrong is the same for all protected groups. We contend that MNAR’s uniformization of
values across protected groups leads to a higher prevalence of inaccurate predictions across
all protected groups. The difference between MAR and MCAR does not have statistical
significance for a p-value of 0.05, but it might be due to similar reasons to the results
obtained for Equal Mis-Opportunity.

Figure 4.3: Means and 95% Confidence Intervals for the Equal Opportunity, Equal Mis-
Opportunity, Positive Calibration and Negative Calibration for the MCAR, MAR and
MNAR missing mechanisms

When it comes to Individual Fairness, the results obtained in the Generalised Entropy
Index can be seen in the figure 4.4. Through its analysises, we can infer that the best
results were obtained by the MCAR mechanism, followed by the MAR mechanism and
then MNAR mechanism. Furthermore, the difference in the means of the MAR and MNAR
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mechanisms failed to be statistically significant. Because the Generalized Entropy Index
considers predictor accuracy, it stands to reason that MCAR, the most mechanism that
induces the least amount of error, would perform best in this metric.

Figure 4.4: Means and 95% Confidence Intervals for the Generalized Entropy Index for
the MCAR, MAR and MNAR missing mechanisms

4.3 Does the imputation method affect fairness results?

We will now examine how various imputation techniques affect the fairness metrics we
used. Similar to the approach taken for the previous Research Question, our analysis will
be focused on runs with a 40% missing rate, since the effects of the imputation process will
increase the amount of data imputed and will be relatively minor at lower missing rates.
The means and 95% confidence intervals of our results will be used to analyze the results.

Figures 4.5, 4.6 and 4.7 show the results for the performance and fairness metrics were not
significantly affected by the use of different imputation techniques. For most metrics, with
a few notable exceptions, the differences between the results of the runs conducted using
the different imputation methods were not statistically significant. We will go over each of
the used metrics, highlighting cases where there were some noticeable differences caused
by the different imputation methods.

For the performance metrics, Accuracy, Recall and F1-Score did not show a statistically
significant difference between any of the imputation methods, as can be seen in figure
4.5. Although the results were pretty similar, for both Accuracy and F1-Score, the
best results were obtained by the MICE algorithm, followed by the KNN algorithm and
finally the Mean/Mode imputation method. On the other hand, the imputation method
that achieved the best results in the Recall metric was KNN method followed by the
Mean/Mode method and finally the MICE method. The best results for the Precision
metric were achieved by the MICE method, followed by the Mean/Mode method and finally
the KNN method. For this metric, there was a statistically significant distinction between
the outcomes of the MICE and KNN methods.

The KNN imputation method achieved the best result for the metrics based on Statistical
Parity, Disparate Impact, and CV, as can be seen in figure 4.6. The second best
imputation method was Mean/Mode imputation and finally, MICE achieved the worst
results. For both Disparate Impact and CV metrics there was no overlap between the 95%
confidence intervals of the KNN and MICE methods. Statistical Parity does not require
accuracy, only that the positive classifications be equally distributed among the different
protected groups. KNN imputation caused our classifiers to give positive predictions more
proportionally throughout the protected groups. This is probably the cause for it’s worse
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Figure 4.5: Means and 95% Confidence Intervals for the metrics Accuracy, F1-score, Pre-
cision and Recall for each Imputation Method

performance in the precision metric.

There was no significant difference between the different imputation methods for the Equal
Opportunity metric. Despite the mean of the runs conducted using the different imputa-
tion methods displaying big differences for the Equal Mis-Opportunity, like the previ-
ous metric, there was no statistically significant difference between the different imputation
methods.

Figure 4.6: Means and 95% Confidence Intervals for the metrics Disparate Impact, CV,
Equal Opportunity and Equal Mis-Opportunity for each Imputation Method

For the Positive Calibration metric, MICE imputation method achieved the best results
followed by the Mean/Mode imputation method and finally the KNN imputation method.
It is also important to point out that the confidence interval for the MICE imputation
method does not overlap with the confidence interval of the other two imputation methods.
According to Positive Calibration, for a classifier to be completely fair the probability of a
given positive prediction being true must be equal for all protected groups. This suggests
that the MICE imputation method yields fairer results when it comes to making positive
predictions. This is corroborated by MICE achieving better results at the precision metrics.

Both Negative Calibration and Generalized Entropy Index metrics do not present
any significant difference in their results between the three imputation methods used, as
supported by figure 4.7.
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Figure 4.7: Means and 95% Confidence Intervals for the metrics Positive Calibration,
Negative Calibration and Generalized Entropy Index for each Imputation Method
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Chapter 5

Conclusion

The use of Machine learning in real scenarios has highlighted the significance of fairness in
machine learning, or, more specifically, the ability of decision-making systems to function
without prejudice toward any specific group or individual. Data quality is a fundamental
requirement for Data Mining models to perform well. For this reason, a lot of datasets
require data imputation before being able to be used. The effects of imputed data on the
fairness of classifiers are, however, less well known.

In this work, we study the effects that the imputation of missing data has on the fairness of
machine learning models, in order to provide some insights regarding three main research
questions:

1. How does the percentage of data imputed affect the fairness and performance of a
system?

2. Do different types of missing data mechanisms produce different fairness results after
imputation? If so, which?

3. Does the imputation method affect fairness results?

In order to answer these questions, we developed a pipeline that would allow us to measure
the effects of different missing data mechanisms, imputation methods, and missing rates
on the fairness of machine learning models. Through our experiments, we arrived at the
following conclusions.

The effects of missing data are very dependent on the fairness metric and therefore fairness
definition being used. Metrics based on statistical parity, report an increase in fairness
the higher the percentage of data imputed. According to the Generalized Entropy Index
metrics, on the other, classifiers become less fair the higher the missing rate of their training
data. The more metrics that require an algorithm to be accurate in order to be fair, the
more negative the impact of missing data.

The missing mechanism MNAR proved to achieve the best results in fairness metrics which
did not require accuracy or measured the fairness of wrong predictions. For metrics that
required accuracy or measure true predictions, MCAR data obtained the best results. For
both cases, MAR data never outperformed MCAR data.

When it comes to imputation methods, we found that the imputation methods we used
caused no significant difference in the results of our models for most fairness metrics.
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For future work, repeating the experiment with different imputation methods could pro-
vide a better insight into how imputation methods affect the fairness of machine learning
systems. Implementing and testing stronger classification algorithms such as Deep Neural
Networks in order to study larger datasets. Finally, utilizing incomplete datasets with data
missing from natural processes could provide a complimentary estimation of the effects of
imputation on real-world datasets.
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A
ppendix

Mechanism Algorithm MissingRate Mean Accuracy Mean Precision Mean Recall Mean F1-Score Mean DI BI Mean Equal Opportunity Mean Equal Mis-Opportunity Mean CV Mean Calibration+ Mean Calibration- Mean Generalized_Entropy_Index

MCAR SVM 0.0 0.7675 + - 0.0574 0.8529 + - 0.1592 0.685 + - 0.1936 0.7216 + - 0.0737 0.8307 + - 0.6958 1.0964 + - 0.4287 0.9325 + - 0.1152 0.8456 + - 0.1823 0.962 + - 0.2322 0.6976 + - 0.213 0.1274 + - 0.0586
MCAR SVM 0.05 0.795 + - 0.0617 0.7885 + - 0.1396 0.8342 + - 0.1883 0.7804 + - 0.0698 0.7132 + - 0.2169 1.0052 + - 0.262 0.9286 + - 0.1445 0.8283 + - 0.1246 0.9181 + - 0.2114 0.8461 + - 0.1897 0.0919 + - 0.0535
MCAR SVM 0.1 0.82 + - 0.0679 0.8736 + - 0.0915 0.7704 + - 0.1726 0.8005 + - 0.081 0.5754 + - 0.2412 1.0883 + - 0.1918 0.9089 + - 0.1266 0.7854 + - 0.1159 1.0201 + - 0.1628 0.7516 + - 0.2265 0.0995 + - 0.0538
MCAR SVM 0.2 0.7758 + - 0.0933 0.7444 + - 0.1973 0.8251 + - 0.1509 0.7494 + - 0.0937 0.8344 + - 0.339 1.0188 + - 0.2141 1.0271 + - 0.1886 0.9067 + - 0.1726 0.8075 + - 0.255 0.8412 + - 0.1299 0.0853 + - 0.0357
MCAR SVM 0.4 0.6824 + - 0.0886 0.8124 + - 0.1786 0.5873 + - 0.1695 0.6462 + - 0.0823 0.8657 + - 0.3601 1.22 + - 0.2268 0.9624 + - 0.0779 0.9331 + - 0.1171 0.9423 + - 0.1746 0.6675 + - 0.2088 0.1854 + - 0.0761
MCAR Random_Forest 0.0 0.9875 + - 0.0126 0.9898 + - 0.0209 0.9825 + - 0.0272 0.9857 + - 0.0147 0.4419 + - 0.1656 0.9233 + - 0.2156 0.9764 + - 0.0476 0.6562 + - 0.1116 1.0129 + - 0.026 0.97 + - 0.0461 0.0062 + - 0.0062
MCAR Random_Forest 0.05 0.985 + - 0.0167 0.9854 + - 0.0285 0.9849 + - 0.0267 0.9846 + - 0.0171 0.6624 + - 0.2217 0.9742 + - 0.1645 0.9653 + - 0.0672 0.7855 + - 0.1522 1.0194 + - 0.0377 0.9749 + - 0.0436 0.0072 + - 0.0079
MCAR Random_Forest 0.1 0.9733 + - 0.0373 0.9701 + - 0.0531 0.9769 + - 0.047 0.9725 + - 0.0406 0.5384 + - 0.1527 0.8857 + - 0.2221 0.9558 + - 0.0872 0.7218 + - 0.1164 1.0058 + - 0.1202 0.9817 + - 0.0446 0.0126 + - 0.0181
MCAR Random_Forest 0.2 0.9875 + - 0.0203 0.982 + - 0.0345 0.9931 + - 0.0182 0.9871 + - 0.02 0.4476 + - 0.1393 1.0088 + - 0.023 0.9506 + - 0.1086 0.6523 + - 0.12 1.0222 + - 0.0424 0.9806 + - 0.0559 0.0058 + - 0.0093
MCAR Random_Forest 0.4 0.9442 + - 0.048 0.954 + - 0.0647 0.9347 + - 0.09 0.9401 + - 0.055 0.4319 + - 0.1349 0.9504 + - 0.1622 0.9225 + - 0.1204 0.6341 + - 0.1092 0.9972 + - 0.1081 0.9538 + - 0.0715 0.0278 + - 0.0253
MAR SVM 0.0 0.7925 + - 0.0795 0.8513 + - 0.1434 0.7722 + - 0.2046 0.7752 + - 0.0842 0.6499 + - 0.2849 1.1398 + - 0.1847 0.9323 + - 0.126 0.814 + - 0.128 0.9538 + - 0.1946 0.7893 + - 0.1885 0.1038 + - 0.0672
MAR SVM 0.05 0.8411 + - 0.0479 0.8572 + - 0.1236 0.8249 + - 0.1234 0.8256 + - 0.0549 0.6192 + - 0.1732 1.137 + - 0.125 0.9333 + - 0.1067 0.7845 + - 0.1188 0.9477 + - 0.1474 0.7579 + - 0.1571 0.076 + - 0.0271
MAR SVM 0.1 0.8011 + - 0.1043 0.8475 + - 0.128 0.7904 + - 0.2132 0.7857 + - 0.1107 0.7847 + - 0.2174 1.1226 + - 0.0888 0.9944 + - 0.1348 0.8707 + - 0.1418 0.8997 + - 0.221 0.8047 + - 0.1603 0.1066 + - 0.0809
MAR SVM 0.2 0.7289 + - 0.0845 0.6547 + - 0.1614 0.9221 + - 0.1478 0.7372 + - 0.058 1.0775 + - 0.2206 1.0038 + - 0.3118 1.1165 + - 0.2699 1.0347 + - 0.1382 0.7485 + - 0.1752 0.9682 + - 0.2586 0.0736 + - 0.0285
MAR SVM 0.4 0.6312 + - 0.1801 0.6202 + - 0.1978 0.9201 + - 0.1477 0.7045 + - 0.1155 0.8788 + - 0.1869 1.0644 + - 0.1281 1.0212 + - 0.1145 0.9324 + - 0.1061 0.7269 + - 0.1839 0.9637 + - 0.3121 0.0724 + - 0.0472
MAR Random_Forest 0.0 0.9925 + - 0.0115 0.9897 + - 0.0206 0.995 + - 0.0151 0.9922 + - 0.012 0.4167 + - 0.1677 0.9562 + - 0.1541 0.975 + - 0.0503 0.6241 + - 0.1229 1.0121 + - 0.0244 0.9875 + - 0.0377 0.0036 + - 0.0055
MAR Random_Forest 0.05 0.9939 + - 0.0126 1.0 + - 0.0 0.9874 + - 0.0256 0.9935 + - 0.0133 0.4378 + - 0.1399 0.8135 + - 0.2592 1.0 + - 0.0 0.6513 + - 0.1217 1.0 + - 0.0 0.9772 + - 0.043 0.0032 + - 0.0066
MAR Random_Forest 0.1 0.9819 + - 0.0231 0.979 + - 0.0371 0.9855 + - 0.0286 0.9816 + - 0.0226 0.3916 + - 0.1151 0.9111 + - 0.2106 0.9469 + - 0.0904 0.6305 + - 0.0811 1.0261 + - 0.0459 0.9813 + - 0.0378 0.0085 + - 0.0111
MAR Random_Forest 0.2 0.9797 + - 0.0245 0.9844 + - 0.0267 0.9721 + - 0.0516 0.9772 + - 0.0289 0.5055 + - 0.0935 0.9983 + - 0.0703 0.9604 + - 0.0661 0.7124 + - 0.0586 1.0233 + - 0.0398 0.981 + - 0.0471 0.0102 + - 0.0129
MAR Random_Forest 0.4 0.9703 + - 0.0318 0.971 + - 0.0392 0.9712 + - 0.0566 0.9696 + - 0.0343 0.4361 + - 0.1246 0.8888 + - 0.2159 0.929 + - 0.0963 0.6466 + - 0.0796 1.038 + - 0.0504 0.9774 + - 0.0649 0.0145 + - 0.0165

MNAR SVM 0.0 0.7925 + - 0.0763 0.8514 + - 0.1564 0.7511 + - 0.2277 0.7578 + - 0.1082 0.6935 + - 0.3875 0.9297 + - 0.2546 1.0404 + - 0.1486 0.858 + - 0.1711 0.8823 + - 0.2533 0.8115 + - 0.2256 0.107 + - 0.0616
MNAR SVM 0.05 0.8033 + - 0.087 0.7731 + - 0.149 0.8854 + - 0.1172 0.8076 + - 0.0701 0.7538 + - 0.2473 0.9957 + - 0.1771 1.0062 + - 0.1525 0.8532 + - 0.1492 0.8573 + - 0.2114 0.8563 + - 0.1397 0.0707 + - 0.0237
MNAR SVM 0.1 0.7556 + - 0.0834 0.7216 + - 0.1691 0.8605 + - 0.1104 0.7619 + - 0.074 0.8886 + - 0.1772 1.0607 + - 0.1861 1.0366 + - 0.1648 0.9346 + - 0.1103 0.7914 + - 0.2466 0.8079 + - 0.0803 0.0843 + - 0.0227
MNAR SVM 0.2 0.6142 + - 0.0915 0.5905 + - 0.1152 0.8782 + - 0.0861 0.6979 + - 0.0718 0.9409 + - 0.1345 0.9331 + - 0.2498 1.026 + - 0.15 0.9562 + - 0.0991 0.6583 + - 0.2154 0.9525 + - 0.3753 0.0954 + - 0.0254
MNAR SVM 0.4 0.4982 + - 0.082 0.4972 + - 0.0711 0.9221 + - 0.0887 0.6413 + - 0.062 0.9974 + - 0.1366 0.8686 + - 0.2119 0.9206 + - 0.2684 0.9958 + - 0.1156 0.6648 + - 0.177 1.1839 + - 0.3203 0.0804 + - 0.0323
MNAR Random_Forest 0.0 0.99 + - 0.0167 0.9913 + - 0.0262 0.9882 + - 0.0238 0.9894 + - 0.0168 0.5458 + - 0.2537 0.9188 + - 0.2139 0.98 + - 0.0603 0.7033 + - 0.1554 1.0111 + - 0.0335 0.9842 + - 0.0322 0.0047 + - 0.0076
MNAR Random_Forest 0.05 0.9875 + - 0.0203 0.9937 + - 0.0239 0.9813 + - 0.0361 0.9869 + - 0.0214 0.5287 + - 0.2398 0.967 + - 0.1376 0.9889 + - 0.0418 0.7039 + - 0.1499 1.0095 + - 0.0358 0.9581 + - 0.0723 0.0062 + - 0.0102
MNAR Random_Forest 0.1 0.9892 + - 0.0202 0.9922 + - 0.0305 0.9835 + - 0.0317 0.9874 + - 0.024 0.4718 + - 0.0824 0.9456 + - 0.1705 0.9879 + - 0.0514 0.6876 + - 0.0737 1.0108 + - 0.0419 0.9901 + - 0.0478 0.0053 + - 0.0096
MNAR Random_Forest 0.2 0.9633 + - 0.0493 0.9838 + - 0.0465 0.938 + - 0.0849 0.958 + - 0.0571 0.5134 + - 0.1453 0.929 + - 0.1423 0.9721 + - 0.0737 0.714 + - 0.1097 1.0191 + - 0.0536 0.9947 + - 0.0736 0.0195 + - 0.0279
MNAR Random_Forest 0.4 0.7275 + - 0.2201 0.7309 + - 0.2329 0.9099 + - 0.0881 0.7859 + - 0.1493 0.6612 + - 0.3188 0.8799 + - 0.2175 0.9014 + - 0.1406 0.7865 + - 0.2062 0.9228 + - 0.2129 0.9905 + - 0.22 0.0562 + - 0.0332

Table A1: Mean and STD of the means of runs conducted using the Ricci dataset for the Missing Mechanism, Classification Algorithm and Missing Rate50



Mechanism Algorithm MissingRate Mean/STD Acc. Mean/STD Precision Mean/STD Recall Mean/STD F1-Score Mean/STD DI Mean/STD Equal Opp. Mean/STD Equal Mis-Opp. Mean/STD CV Mean/STD Cal.+ Mean/STD Cal.- Mean/STD GEI

MCAR SVM 0.0 0.6458 ± 0.0 0.6962 ± 0.0 0.8689 ± 0.0 0.7728 ± 0.0 0.9607 ± 0.0193 0.9932 ± 0.0234 0.9256 ± 0.0144 0.9652 ± 0.0169 0.9067 ± 0.0239 0.7741 ± 0.0656 0.1181 ± 0.0
MCAR SVM 0.05 0.6531 ± 0.001 0.7128 ± 0.0006 0.8613 ± 0.0008 0.7798 ± 0.0007 0.9535 ± 0.0113 0.9608 ± 0.015 0.9558 ± 0.0056 0.9585 ± 0.0102 0.8954 ± 0.0155 0.8823 ± 0.0375 0.123 ± 0.0004
MCAR SVM 0.1 0.6332 ± 0.0013 0.6892 ± 0.0004 0.858 ± 0.002 0.7635 ± 0.0011 0.9706 ± 0.0142 0.9728 ± 0.0083 0.9774 ± 0.0243 0.9743 ± 0.0123 0.8851 ± 0.0248 0.8986 ± 0.0236 0.1235 ± 0.001
MCAR SVM 0.2 0.6451 ± 0.0082 0.7044 ± 0.0023 0.8604 ± 0.0128 0.7742 ± 0.0067 0.9592 ± 0.0206 0.9693 ± 0.02 0.9556 ± 0.016 0.9635 ± 0.0185 0.9417 ± 0.0166 0.9152 ± 0.0233 0.1237 ± 0.0064
MCAR SVM 0.4 0.6412 ± 0.0113 0.6988 ± 0.0021 0.8581 ± 0.022 0.77 ± 0.01 0.9696 ± 0.008 0.9715 ± 0.0096 0.9715 ± 0.0175 0.9728 ± 0.0069 0.9036 ± 0.0186 0.9159 ± 0.0369 0.1242 ± 0.0107
MCAR Random_Forest 0.0 0.7559 ± 0.0008 0.7853 ± 0.0 0.8911 ± 0.0 0.8344 ± 0.0 0.9187 ± 0.0344 0.9493 ± 0.0343 0.9837 ± 0.0136 0.9339 ± 0.0273 0.907 ± 0.0391 0.9676 ± 0.0378 0.0984 ± 0.0013
MCAR Random_Forest 0.05 0.7722 ± 0.0022 0.8157 ± 0.001 0.8842 ± 0.0009 0.8478 ± 0.0003 0.8957 ± 0.0324 0.9503 ± 0.0374 0.9448 ± 0.0347 0.9164 ± 0.0249 0.9235 ± 0.0321 0.9333 ± 0.0583 0.0994 ± 0.0012
MCAR Random_Forest 0.1 0.7563 ± 0.0039 0.7856 ± 0.0013 0.8974 ± 0.0019 0.8372 ± 0.0015 0.9195 ± 0.0318 0.9461 ± 0.0408 0.9884 ± 0.025 0.9348 ± 0.0251 0.909 ± 0.0223 0.9809 ± 0.061 0.0968 ± 0.0019
MCAR Random_Forest 0.2 0.7576 ± 0.0027 0.7985 ± 0.004 0.8838 ± 0.0056 0.8383 ± 0.0006 0.881 ± 0.0524 0.9201 ± 0.0412 0.9408 ± 0.0275 0.903 ± 0.0418 0.9077 ± 0.0292 0.9772 ± 0.0188 0.102 ± 0.0022
MCAR Random_Forest 0.4 0.7497 ± 0.005 0.7752 ± 0.0007 0.8993 ± 0.0075 0.8323 ± 0.0036 0.9411 ± 0.0385 0.9579 ± 0.0295 1.0041 ± 0.0215 0.9518 ± 0.0311 0.9132 ± 0.024 0.9886 ± 0.0271 0.0965 ± 0.0036
MAR SVM 0.0 0.6524 ± 0.0 0.7024 ± 0.0 0.8757 ± 0.0 0.7793 ± 0.0 0.9714 ± 0.0052 0.9694 ± 0.0062 0.9813 ± 0.0049 0.9743 ± 0.0048 0.8842 ± 0.0323 0.9058 ± 0.0281 0.1152 ± 0.0
MAR SVM 0.05 0.6459 ± 0.0068 0.6971 ± 0.0091 0.8694 ± 0.0021 0.7736 ± 0.0054 0.9479 ± 0.0056 0.95 ± 0.0141 0.9521 ± 0.0317 0.9529 ± 0.0054 0.8751 ± 0.0306 0.8794 ± 0.0873 0.1181 ± 0.0013
MAR SVM 0.1 0.6424 ± 0.001 0.7078 ± 0.0103 0.8487 ± 0.0139 0.7713 ± 0.0004 0.9727 ± 0.0205 0.9753 ± 0.0067 0.9759 ± 0.0376 0.976 ± 0.0175 0.8954 ± 0.0532 0.9084 ± 0.0281 0.1299 ± 0.0081
MAR SVM 0.2 0.6331 ± 0.005 0.6913 ± 0.0054 0.8573 ± 0.0054 0.7652 ± 0.0053 0.9592 ± 0.0216 0.9561 ± 0.0276 0.965 ± 0.0131 0.9636 ± 0.0193 0.9174 ± 0.0251 0.9369 ± 0.0237 0.1242 ± 0.0021
MAR SVM 0.4 0.6388 ± 0.0067 0.6974 ± 0.0025 0.8524 ± 0.0118 0.7651 ± 0.0089 0.9614 ± 0.0201 0.9778 ± 0.0154 0.9505 ± 0.0239 0.9651 ± 0.0177 0.9051 ± 0.0149 0.8512 ± 0.0221 0.1293 ± 0.0096
MAR Random_Forest 0.0 0.7576 ± 0.0017 0.8004 ± 0.0 0.8749 ± 0.0 0.8354 ± 0.0 0.9172 ± 0.042 0.9624 ± 0.0362 0.9613 ± 0.0183 0.9346 ± 0.0326 0.9203 ± 0.043 0.9252 ± 0.0189 0.1046 ± 0.0007
MAR Random_Forest 0.05 0.7597 ± 0.0012 0.7964 ± 0.0015 0.8841 ± 0.0023 0.8378 ± 0.0018 0.9123 ± 0.0353 0.9626 ± 0.0276 0.9788 ± 0.017 0.9298 ± 0.0283 0.8978 ± 0.0254 0.918 ± 0.0404 0.1011 ± 0.0007
MAR Random_Forest 0.1 0.7565 ± 0.0009 0.7985 ± 0.003 0.8765 ± 0.0028 0.8352 ± 0.0007 0.9274 ± 0.034 0.968 ± 0.0345 0.9653 ± 0.0374 0.9423 ± 0.0268 0.9244 ± 0.0453 0.9301 ± 0.0403 0.1045 ± 0.0011
MAR Random_Forest 0.2 0.7514 ± 0.0025 0.7943 ± 0.0052 0.8749 ± 0.009 0.8322 ± 0.0014 0.9154 ± 0.0294 0.9632 ± 0.0343 0.9821 ± 0.0451 0.9325 ± 0.0237 0.8765 ± 0.0405 0.8854 ± 0.069 0.1057 ± 0.0024
MAR Random_Forest 0.4 0.7232 ± 0.012 0.774 ± 0.0209 0.8546 ± 0.0212 0.8095 ± 0.0089 0.9058 ± 0.0512 0.9424 ± 0.0418 0.9507 ± 0.0274 0.9285 ± 0.0379 0.9396 ± 0.024 0.9668 ± 0.0682 0.1179 ± 0.0083

MNAR SVM 0.0 0.6425 ± 0.0 0.6989 ± 0.0 0.8641 ± 0.0 0.7723 ± 0.0 0.9683 ± 0.031 0.979 ± 0.0336 0.975 ± 0.0086 0.9716 ± 0.027 0.894 ± 0.0257 0.8776 ± 0.0731 0.1215 ± 0.0
MNAR SVM 0.05 0.6407 ± 0.0005 0.7039 ± 0.0002 0.85 ± 0.0019 0.7698 ± 0.0007 0.9547 ± 0.0239 0.9665 ± 0.0293 0.9575 ± 0.0056 0.9597 ± 0.0209 0.9189 ± 0.0127 0.9017 ± 0.0518 0.1283 ± 0.0009
MNAR SVM 0.1 0.6336 ± 0.0053 0.6868 ± 0.0015 0.8659 ± 0.0097 0.7655 ± 0.0046 0.9578 ± 0.0111 0.9697 ± 0.0094 0.941 ± 0.015 0.9624 ± 0.01 0.8982 ± 0.0124 0.832 ± 0.0239 0.1199 ± 0.0046
MNAR SVM 0.2 0.6484 ± 0.0075 0.6887 ± 0.0014 0.8954 ± 0.0153 0.7783 ± 0.0064 0.9855 ± 0.008 0.9868 ± 0.0055 0.9831 ± 0.0186 0.9869 ± 0.007 0.9208 ± 0.0251 0.9079 ± 0.0801 0.106 ± 0.0068
MNAR SVM 0.4 0.6709 ± 0.0075 0.7018 ± 0.0023 0.9247 ± 0.0126 0.7977 ± 0.0058 1.017 ± 0.0056 1.023 ± 0.0036 1.0005 ± 0.0115 1.0153 ± 0.0047 0.9045 ± 0.0162 0.8628 ± 0.0853 0.0938 ± 0.0055
MNAR Random_Forest 0.0 0.7583 ± 0.002 0.7936 ± 0.0 0.8801 ± 0.0 0.834 ± 0.0 0.909 ± 0.0345 0.9457 ± 0.0355 0.981 ± 0.0081 0.9275 ± 0.0269 0.8994 ± 0.0272 0.9552 ± 0.0354 0.1019 ± 0.0012
MNAR Random_Forest 0.05 0.7569 ± 0.0021 0.805 ± 0.002 0.8671 ± 0.0018 0.8344 ± 0.0018 0.8859 ± 0.042 0.9349 ± 0.0415 0.9337 ± 0.0169 0.9095 ± 0.0322 0.9337 ± 0.0302 0.9618 ± 0.0419 0.1076 ± 0.001
MNAR Random_Forest 0.1 0.7548 ± 0.0027 0.7902 ± 0.0016 0.88 ± 0.0038 0.832 ± 0.0024 0.909 ± 0.031 0.9416 ± 0.0265 0.9586 ± 0.0328 0.9274 ± 0.0245 0.9361 ± 0.0123 0.9928 ± 0.0272 0.1016 ± 0.0018
MNAR Random_Forest 0.2 0.7429 ± 0.0029 0.7978 ± 0.0048 0.8573 ± 0.0061 0.826 ± 0.0016 0.914 ± 0.0293 0.9466 ± 0.0303 0.9706 ± 0.0265 0.9322 ± 0.0226 0.9256 ± 0.0175 0.9597 ± 0.0371 0.1144 ± 0.0024
MNAR Random_Forest 0.4 0.7191 ± 0.0035 0.7892 ± 0.0089 0.8219 ± 0.021 0.8024 ± 0.0056 0.9303 ± 0.0421 0.9498 ± 0.0419 1.0025 ± 0.0297 0.9492 ± 0.0289 0.902 ± 0.0534 0.9399 ± 0.0296 0.1323 ± 0.0094

Table A2: Mean and STD of the means of runs conducted using the German dataset for the Missing Mechanism, Classification Algorithm and Missing Rate
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Mechanism Algorithm MissingRate Mean Accuracy Mean Precision Mean Recall Mean F1-Score Mean DI BI Mean Equal Opportunity Mean Equal Mis-Opportunity Mean CV Mean Calibration+ Mean Calibration- Mean Generalized_Entropy_Index

MCAR SVM 0.0 0.6225 + - 0.0331 0.7143 + - 0.0436 0.7251 + - 0.0552 0.7175 + - 0.0311 0.9478 + - 0.1458 0.9522 + - 0.12 1.0298 + - 0.148 0.9588 + - 0.098 0.845 + - 0.102 0.8949 + - 0.1566 0.1855 + - 0.0348
MCAR SVM 0.05 0.6376 + - 0.0391 0.7296 + - 0.0378 0.7384 + - 0.0585 0.7325 + - 0.0363 0.9579 + - 0.133 0.9793 + - 0.0987 1.0005 + - 0.1803 0.9639 + - 0.0912 0.8649 + - 0.0987 0.8623 + - 0.1742 0.1793 + - 0.0349
MCAR SVM 0.1 0.6212 + - 0.0387 0.7151 + - 0.0436 0.7206 + - 0.0544 0.716 + - 0.034 0.9203 + - 0.1213 0.9411 + - 0.1036 0.9885 + - 0.1625 0.9401 + - 0.0852 0.8519 + - 0.1054 0.8867 + - 0.1724 0.1881 + - 0.0342
MCAR SVM 0.2 0.6245 + - 0.0377 0.7114 + - 0.0413 0.738 + - 0.0564 0.7227 + - 0.0331 0.9491 + - 0.13 0.9655 + - 0.105 1.0129 + - 0.1752 0.9598 + - 0.0907 0.8468 + - 0.0957 0.8692 + - 0.1772 0.1785 + - 0.0318
MCAR SVM 0.4 0.6199 + - 0.0447 0.7208 + - 0.0487 0.7205 + - 0.07 0.718 + - 0.0427 0.9614 + - 0.1313 0.9724 + - 0.1019 1.0188 + - 0.1779 0.9689 + - 0.0872 0.8495 + - 0.1037 0.8675 + - 0.1675 0.1911 + - 0.0438
MCAR Random_Forest 0.0 0.681 + - 0.0308 0.7078 + - 0.0403 0.8837 + - 0.0377 0.7847 + - 0.0231 0.9604 + - 0.0999 0.9554 + - 0.0845 1.0464 + - 0.1621 0.9641 + - 0.0833 0.8403 + - 0.0918 0.9752 + - 0.2172 0.1076 + - 0.0164
MCAR Random_Forest 0.05 0.684 + - 0.0282 0.7167 + - 0.0385 0.8763 + - 0.0385 0.7873 + - 0.0235 0.964 + - 0.1079 0.9534 + - 0.0827 1.0464 + - 0.1668 0.9673 + - 0.089 0.8499 + - 0.0782 0.958 + - 0.2018 0.1122 + - 0.0175
MCAR Random_Forest 0.1 0.6882 + - 0.0295 0.7157 + - 0.0346 0.8892 + - 0.0401 0.792 + - 0.0235 0.9657 + - 0.0923 0.9787 + - 0.0693 1.0064 + - 0.1591 0.9685 + - 0.0786 0.8751 + - 0.0817 0.9207 + - 0.2104 0.1061 + - 0.0196
MCAR Random_Forest 0.2 0.6743 + - 0.0313 0.7098 + - 0.0375 0.8691 + - 0.0382 0.7803 + - 0.0255 0.9671 + - 0.1164 0.9645 + - 0.0734 1.0229 + - 0.1845 0.9692 + - 0.0946 0.8727 + - 0.0866 0.9555 + - 0.2304 0.115 + - 0.017
MCAR Random_Forest 0.4 0.6749 + - 0.0289 0.7133 + - 0.0338 0.8665 + - 0.0531 0.7809 + - 0.0246 0.9469 + - 0.0992 0.9505 + - 0.089 1.0017 + - 0.1617 0.9528 + - 0.0819 0.8602 + - 0.0784 0.9582 + - 0.2778 0.1162 + - 0.0263
MAR SVM 0.0 0.6437 + - 0.038 0.7352 + - 0.0354 0.7445 + - 0.0626 0.7378 + - 0.0342 0.9557 + - 0.1101 0.9858 + - 0.0881 1.0072 + - 0.168 0.9651 + - 0.0765 0.869 + - 0.1047 0.8604 + - 0.1757 0.1765 + - 0.0389
MAR SVM 0.05 0.6329 + - 0.0376 0.7239 + - 0.0363 0.7359 + - 0.0489 0.7287 + - 0.0314 0.9485 + - 0.1171 0.9698 + - 0.0961 1.0145 + - 0.1512 0.9595 + - 0.0842 0.8456 + - 0.0943 0.858 + - 0.1415 0.1801 + - 0.0302
MAR SVM 0.1 0.6352 + - 0.0345 0.7198 + - 0.0405 0.7478 + - 0.0531 0.7317 + - 0.0296 0.9479 + - 0.1301 0.97 + - 0.109 0.9998 + - 0.1535 0.9576 + - 0.0932 0.8441 + - 0.1009 0.8475 + - 0.1643 0.1735 + - 0.0313
MAR SVM 0.2 0.6139 + - 0.043 0.7175 + - 0.0468 0.7094 + - 0.0654 0.7109 + - 0.0393 0.9444 + - 0.1328 0.9767 + - 0.1052 0.9835 + - 0.1769 0.9575 + - 0.0906 0.8526 + - 0.1047 0.8307 + - 0.1638 0.1968 + - 0.0418
MAR SVM 0.4 0.5974 + - 0.0529 0.7164 + - 0.0414 0.6708 + - 0.0845 0.6901 + - 0.0537 0.9435 + - 0.1491 0.9725 + - 0.1165 0.987 + - 0.1815 0.958 + - 0.0971 0.8681 + - 0.1068 0.856 + - 0.1695 0.2219 + - 0.055
MAR Random_Forest 0.0 0.694 + - 0.0324 0.7298 + - 0.0345 0.8781 + - 0.0366 0.7962 + - 0.0236 0.9463 + - 0.1001 0.9542 + - 0.0786 1.0336 + - 0.1816 0.9524 + - 0.0845 0.8346 + - 0.1029 0.9299 + - 0.2286 0.1097 + - 0.0166
MAR Random_Forest 0.05 0.6848 + - 0.0315 0.7178 + - 0.034 0.8787 + - 0.0476 0.7889 + - 0.0252 0.9617 + - 0.1069 0.976 + - 0.0734 1.0061 + - 0.1792 0.9643 + - 0.0888 0.8479 + - 0.0958 0.8692 + - 0.2264 0.1108 + - 0.0238
MAR Random_Forest 0.1 0.6806 + - 0.035 0.7122 + - 0.0374 0.8779 + - 0.0571 0.7849 + - 0.0305 0.9685 + - 0.0983 0.9717 + - 0.0775 1.0146 + - 0.1561 0.9711 + - 0.0806 0.8805 + - 0.0781 0.9427 + - 0.2257 0.111 + - 0.026
MAR Random_Forest 0.2 0.6728 + - 0.0376 0.7112 + - 0.0336 0.8563 + - 0.056 0.7758 + - 0.0324 0.9369 + - 0.0938 0.9555 + - 0.0854 0.9801 + - 0.1579 0.9458 + - 0.0772 0.8571 + - 0.0858 0.894 + - 0.2206 0.1198 + - 0.0257
MAR Random_Forest 0.4 0.6391 + - 0.0592 0.7133 + - 0.043 0.7708 + - 0.1352 0.7335 + - 0.0714 0.9464 + - 0.1273 0.9721 + - 0.0886 0.9741 + - 0.1727 0.9559 + - 0.0893 0.8705 + - 0.0923 0.8559 + - 0.1982 0.1674 + - 0.0788

MNAR SVM 0.0 0.6334 + - 0.033 0.729 + - 0.0379 0.7262 + - 0.0518 0.7259 + - 0.03 0.9037 + - 0.1169 0.9379 + - 0.1098 0.9694 + - 0.1506 0.9283 + - 0.0853 0.8717 + - 0.1014 0.8888 + - 0.1732 0.1848 + - 0.033
MNAR SVM 0.05 0.6255 + - 0.0336 0.7143 + - 0.0342 0.7298 + - 0.0523 0.7208 + - 0.0328 0.9612 + - 0.1259 0.9825 + - 0.096 0.9959 + - 0.1744 0.9676 + - 0.0886 0.8588 + - 0.1058 0.8507 + - 0.1592 0.1825 + - 0.0291
MNAR SVM 0.1 0.6292 + - 0.0431 0.7269 + - 0.0441 0.7184 + - 0.0656 0.7206 + - 0.0413 0.9567 + - 0.1196 0.9837 + - 0.0989 1.0053 + - 0.1554 0.9659 + - 0.0792 0.871 + - 0.1055 0.8622 + - 0.1676 0.1895 + - 0.0398
MNAR SVM 0.2 0.6032 + - 0.0454 0.7079 + - 0.0468 0.691 + - 0.0807 0.696 + - 0.0477 0.9527 + - 0.1333 0.9692 + - 0.0963 1.0058 + - 0.1656 0.9628 + - 0.0888 0.8656 + - 0.0986 0.8809 + - 0.1625 0.2062 + - 0.0496
MNAR SVM 0.4 0.5719 + - 0.0571 0.6992 + - 0.0488 0.6419 + - 0.1446 0.6593 + - 0.0758 0.9413 + - 0.1665 0.9624 + - 0.1239 0.9806 + - 0.1518 0.957 + - 0.0929 0.8585 + - 0.1005 0.8737 + - 0.1868 0.2458 + - 0.0909
MNAR Random_Forest 0.0 0.6871 + - 0.0272 0.7201 + - 0.034 0.8734 + - 0.0444 0.7882 + - 0.0229 0.9562 + - 0.1012 0.9558 + - 0.0715 1.041 + - 0.1885 0.9608 + - 0.0826 0.8549 + - 0.0899 0.9696 + - 0.2237 0.1126 + - 0.0205
MNAR Random_Forest 0.05 0.6833 + - 0.0294 0.7293 + - 0.0361 0.8508 + - 0.0368 0.7842 + - 0.02 0.9578 + - 0.1164 0.9653 + - 0.0928 1.014 + - 0.1715 0.9622 + - 0.0952 0.8562 + - 0.0908 0.8886 + - 0.2067 0.1213 + - 0.0189
MNAR Random_Forest 0.1 0.6873 + - 0.0258 0.722 + - 0.0412 0.8702 + - 0.0429 0.7874 + - 0.0197 0.937 + - 0.1198 0.9535 + - 0.0887 0.9867 + - 0.197 0.9448 + - 0.1001 0.8645 + - 0.0966 0.9185 + - 0.2359 0.1133 + - 0.0203
MNAR Random_Forest 0.2 0.6818 + - 0.0342 0.7183 + - 0.0389 0.8635 + - 0.0596 0.7822 + - 0.0296 0.9456 + - 0.1067 0.9568 + - 0.092 1.0111 + - 0.1849 0.9529 + - 0.0897 0.8428 + - 0.0937 0.9046 + - 0.2601 0.1172 + - 0.0285
MNAR Random_Forest 0.4 0.6593 + - 0.0339 0.71 + - 0.0407 0.8337 + - 0.0852 0.7632 + - 0.0335 0.9435 + - 0.1137 0.9598 + - 0.0894 1.0033 + - 0.1599 0.9533 + - 0.0871 0.8602 + - 0.0839 0.9212 + - 0.2189 0.1338 + - 0.04

Table A3: Mean and STD of the means of runs conducted using the Student-Mat dataset for the Missing Mechanism, Classification Algorithm and Missing Rate52



Mechanism Algorithm MissingRate Mean Accuracy Mean Precision Mean Recall Mean F1-Score Mean DI BI Mean Equal Opportunity Mean Equal Mis-Opportunity Mean CV Mean Calibration+ Mean Calibration- Mean Generalized_Entropy_Index

MCAR SVM 0.0 0.8203 + - 0.0208 0.8784 + - 0.0172 0.914 + - 0.0229 0.8956 + - 0.0134 0.9609 + - 0.068 0.9772 + - 0.0497 0.8694 + - 0.1636 0.9634 + - 0.061 1.0086 + - 0.058 0.933 + - 0.2245 0.0834 + - 0.0123
MCAR SVM 0.05 0.8197 + - 0.0214 0.8824 + - 0.0224 0.9088 + - 0.0197 0.8951 + - 0.0131 0.964 + - 0.07 0.9748 + - 0.0496 0.8939 + - 0.1895 0.9662 + - 0.0619 1.0062 + - 0.0624 0.974 + - 0.2116 0.0851 + - 0.0109
MCAR SVM 0.1 0.8167 + - 0.0239 0.8838 + - 0.0252 0.903 + - 0.0264 0.8928 + - 0.0149 0.9531 + - 0.0703 0.9677 + - 0.0523 0.8795 + - 0.1717 0.9569 + - 0.0622 1.006 + - 0.0625 0.9694 + - 0.2152 0.0879 + - 0.014
MCAR SVM 0.2 0.8051 + - 0.0249 0.881 + - 0.0235 0.8904 + - 0.0256 0.8853 + - 0.0159 0.966 + - 0.075 0.9764 + - 0.0543 0.8995 + - 0.1691 0.9684 + - 0.065 1.0085 + - 0.0569 0.9709 + - 0.2 0.0955 + - 0.0146
MCAR SVM 0.4 0.7923 + - 0.0293 0.8811 + - 0.0244 0.8733 + - 0.0436 0.8762 + - 0.0203 0.965 + - 0.0766 0.9767 + - 0.0525 0.9053 + - 0.1804 0.9687 + - 0.0641 1.0097 + - 0.0577 0.966 + - 0.201 0.1056 + - 0.0236
MCAR Random_Forest 0.0 0.8476 + - 0.0196 0.867 + - 0.0236 0.9681 + - 0.0142 0.9145 + - 0.0119 0.9553 + - 0.0457 0.9755 + - 0.0299 0.8302 + - 0.1471 0.9565 + - 0.044 1.016 + - 0.0662 0.9363 + - 0.3531 0.0586 + - 0.0066
MCAR Random_Forest 0.05 0.8506 + - 0.0199 0.8697 + - 0.0248 0.9706 + - 0.0157 0.917 + - 0.0115 0.9577 + - 0.049 0.9747 + - 0.0364 0.8422 + - 0.1578 0.9586 + - 0.0473 1.0116 + - 0.0599 0.9227 + - 0.3706 0.0574 + - 0.0063
MCAR Random_Forest 0.1 0.8522 + - 0.0197 0.8717 + - 0.0218 0.9682 + - 0.0167 0.9171 + - 0.0109 0.9569 + - 0.0495 0.9784 + - 0.0346 0.8154 + - 0.1482 0.958 + - 0.0476 1.0252 + - 0.0618 0.8865 + - 0.336 0.0576 + - 0.0076
MCAR Random_Forest 0.2 0.8513 + - 0.0207 0.8724 + - 0.0249 0.9669 + - 0.0178 0.9168 + - 0.0118 0.952 + - 0.0569 0.9711 + - 0.0419 0.8248 + - 0.1564 0.9533 + - 0.0544 1.0176 + - 0.0646 0.9546 + - 0.3624 0.0585 + - 0.008
MCAR Random_Forest 0.4 0.8492 + - 0.0191 0.8698 + - 0.022 0.9671 + - 0.0205 0.9155 + - 0.0118 0.9575 + - 0.0577 0.9746 + - 0.0409 0.8392 + - 0.1564 0.9588 + - 0.0548 1.0156 + - 0.0619 0.9082 + - 0.3363 0.0591 + - 0.009
MAR SVM 0.0 0.8202 + - 0.0206 0.8782 + - 0.0185 0.9145 + - 0.024 0.8956 + - 0.0128 0.9551 + - 0.0727 0.9647 + - 0.0589 0.897 + - 0.18 0.958 + - 0.0658 1.0019 + - 0.0672 0.9745 + - 0.2355 0.0833 + - 0.0124
MAR SVM 0.05 0.8188 + - 0.0201 0.8859 + - 0.02 0.9039 + - 0.0246 0.8944 + - 0.0126 0.9657 + - 0.0809 0.9696 + - 0.0581 0.901 + - 0.1718 0.9677 + - 0.0706 1.0095 + - 0.0631 0.9906 + - 0.1915 0.0872 + - 0.0125
MAR SVM 0.1 0.8183 + - 0.0202 0.8873 + - 0.0221 0.9014 + - 0.0292 0.8937 + - 0.0134 0.9572 + - 0.0794 0.966 + - 0.0602 0.9042 + - 0.1804 0.9605 + - 0.0687 1.0003 + - 0.0591 0.9979 + - 0.2326 0.0882 + - 0.0144
MAR SVM 0.2 0.7988 + - 0.0218 0.8773 + - 0.024 0.8859 + - 0.0328 0.8809 + - 0.0148 0.9678 + - 0.0781 0.9825 + - 0.0585 0.8845 + - 0.1706 0.9696 + - 0.066 1.0079 + - 0.0607 0.9305 + - 0.1961 0.0987 + - 0.0163
MAR SVM 0.4 0.7577 + - 0.0551 0.8741 + - 0.0236 0.831 + - 0.0802 0.8495 + - 0.0429 0.9667 + - 0.0934 0.98 + - 0.0655 0.9036 + - 0.1903 0.9714 + - 0.0717 1.0072 + - 0.0591 0.9581 + - 0.1897 0.1341 + - 0.0526
MAR Random_Forest 0.0 0.8517 + - 0.0188 0.8722 + - 0.0215 0.9676 + - 0.0154 0.9172 + - 0.0113 0.9534 + - 0.0471 0.9734 + - 0.0381 0.822 + - 0.1453 0.9546 + - 0.0453 1.018 + - 0.0634 0.908 + - 0.361 0.0581 + - 0.0071
MAR Random_Forest 0.05 0.8521 + - 0.0195 0.8733 + - 0.0218 0.9671 + - 0.016 0.9175 + - 0.0111 0.9567 + - 0.0524 0.973 + - 0.0382 0.832 + - 0.1643 0.9578 + - 0.0502 1.02 + - 0.068 0.9522 + - 0.3506 0.0581 + - 0.0072
MAR Random_Forest 0.1 0.8491 + - 0.0201 0.8689 + - 0.0224 0.9674 + - 0.0192 0.9152 + - 0.0124 0.9527 + - 0.0584 0.9733 + - 0.0427 0.8384 + - 0.148 0.954 + - 0.0558 1.0118 + - 0.0594 0.9229 + - 0.3518 0.0587 + - 0.0085
MAR Random_Forest 0.2 0.8501 + - 0.02 0.873 + - 0.0203 0.9642 + - 0.0195 0.9161 + - 0.0119 0.9538 + - 0.0531 0.9713 + - 0.0395 0.8395 + - 0.1577 0.9553 + - 0.0506 1.0175 + - 0.0672 0.9461 + - 0.3296 0.0597 + - 0.0092
MAR Random_Forest 0.4 0.8306 + - 0.0328 0.8747 + - 0.027 0.934 + - 0.0484 0.9022 + - 0.022 0.9578 + - 0.0755 0.9718 + - 0.0518 0.8553 + - 0.1774 0.9601 + - 0.0665 1.0204 + - 0.0585 0.9651 + - 0.2828 0.0744 + - 0.0248

MNAR SVM 0.0 0.8206 + - 0.0205 0.8797 + - 0.0199 0.9136 + - 0.0249 0.896 + - 0.0129 0.9666 + - 0.0716 0.972 + - 0.0518 0.9112 + - 0.1807 0.9688 + - 0.0641 1.0059 + - 0.0601 0.9978 + - 0.2047 0.0835 + - 0.0126
MNAR SVM 0.05 0.8179 + - 0.0228 0.887 + - 0.0205 0.9004 + - 0.0256 0.8933 + - 0.015 0.9615 + - 0.0794 0.9775 + - 0.0567 0.861 + - 0.1746 0.9645 + - 0.0694 1.0172 + - 0.0571 0.9399 + - 0.2165 0.0885 + - 0.0139
MNAR SVM 0.1 0.8131 + - 0.0234 0.8844 + - 0.021 0.8968 + - 0.028 0.8902 + - 0.0156 0.961 + - 0.0774 0.9757 + - 0.0551 0.8817 + - 0.1795 0.9641 + - 0.0674 1.0057 + - 0.0592 0.9374 + - 0.1952 0.0911 + - 0.0148
MNAR SVM 0.2 0.8026 + - 0.0304 0.8875 + - 0.0251 0.8801 + - 0.0417 0.8829 + - 0.0204 0.9538 + - 0.0776 0.9689 + - 0.0536 0.8714 + - 0.1822 0.959 + - 0.0666 1.0095 + - 0.0602 0.9717 + - 0.2146 0.1002 + - 0.0224
MNAR SVM 0.4 0.7639 + - 0.0648 0.8695 + - 0.0258 0.8487 + - 0.0925 0.8558 + - 0.0498 0.9683 + - 0.0835 0.9739 + - 0.0601 0.9474 + - 0.1822 0.9716 + - 0.0638 0.9942 + - 0.0704 0.9985 + - 0.2222 0.127 + - 0.0604
MNAR Random_Forest 0.0 0.8497 + - 0.0224 0.8693 + - 0.0215 0.9668 + - 0.0157 0.9153 + - 0.0132 0.9603 + - 0.0476 0.9759 + - 0.0356 0.8593 + - 0.1523 0.9614 + - 0.0457 1.0059 + - 0.0634 0.9278 + - 0.3267 0.0585 + - 0.0085
MNAR Random_Forest 0.05 0.8517 + - 0.0202 0.8732 + - 0.0248 0.967 + - 0.0161 0.9174 + - 0.0122 0.9594 + - 0.0475 0.9777 + - 0.0364 0.8355 + - 0.157 0.9606 + - 0.0454 1.02 + - 0.0682 0.9224 + - 0.3504 0.0581 + - 0.0072
MNAR Random_Forest 0.1 0.8449 + - 0.0185 0.8655 + - 0.0196 0.9664 + - 0.0155 0.913 + - 0.0112 0.954 + - 0.0467 0.9747 + - 0.036 0.8255 + - 0.1447 0.9552 + - 0.0452 1.0233 + - 0.0657 0.8938 + - 0.3436 0.06 + - 0.0073
MNAR Random_Forest 0.2 0.8487 + - 0.0184 0.8655 + - 0.0204 0.9711 + - 0.0153 0.915 + - 0.0103 0.9564 + - 0.0563 0.977 + - 0.0416 0.829 + - 0.1602 0.9573 + - 0.0542 1.0155 + - 0.0647 0.9173 + - 0.3863 0.0576 + - 0.0069
MNAR Random_Forest 0.4 0.843 + - 0.0203 0.8571 + - 0.0218 0.9771 + - 0.0185 0.9129 + - 0.0125 0.9841 + - 0.0472 0.9877 + - 0.0321 0.939 + - 0.1369 0.984 + - 0.0448 1.0074 + - 0.0684 1.0387 + - 0.4071 0.0568 + - 0.0078

Table A4: Mean and STD of the means of runs conducted using the Student-Por dataset for the Missing Mechanism, Classification Algorithm and Missing Rate53
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Imp. Method Algorithm MissingRate Mean/STD Acc. Mean/STD Precision Mean/STD Recall Mean/STD F1-Score Mean/STD DI Mean/STD Equal Opp. Mean/STD Equal Mis-Opp. Mean/STD CV Mean/STD Cal.+ Mean/STD Cal.- Mean/STD GEI

mean SVM 0.0 0.7842 + - 0.0727 0.8519 + - 0.1532 0.7361 + - 0.2124 0.7515 + - 0.0926 0.7247 + - 0.4945 1.0553 + - 0.3202 0.9684 + - 0.1403 0.8392 + - 0.1632 0.9327 + - 0.2308 0.7661 + - 0.2154 0.1128 + - 0.0635
mean SVM 0.05 0.8086 + - 0.0647 0.8081 + - 0.1489 0.8367 + - 0.154 0.7976 + - 0.065 0.6924 + - 0.2284 1.0488 + - 0.2057 0.9634 + - 0.1385 0.8238 + - 0.1346 0.9052 + - 0.1853 0.8149 + - 0.1667 0.0819 + - 0.0367
mean SVM 0.1 0.7836 + - 0.0978 0.8163 + - 0.1537 0.7909 + - 0.1874 0.7722 + - 0.0974 0.7533 + - 0.2601 1.0892 + - 0.1912 0.9822 + - 0.1578 0.8702 + - 0.1386 0.9022 + - 0.2511 0.7804 + - 0.1731 0.1028 + - 0.0641
mean SVM 0.2 0.6833 + - 0.1107 0.6361 + - 0.1728 0.9007 + - 0.1324 0.7182 + - 0.0747 0.9867 + - 0.2506 0.9984 + - 0.2458 1.0636 + - 0.2143 0.985 + - 0.1507 0.7332 + - 0.2181 0.9936 + - 0.3721 0.0792 + - 0.028
mean SVM 0.4 0.5214 + - 0.0954 0.5417 + - 0.1623 0.8977 + - 0.2007 0.6322 + - 0.059 0.9522 + - 0.1763 0.9963 + - 0.1902 0.9443 + - 0.1927 0.9857 + - 0.065 0.7334 + - 0.1948 1.034 + - 0.3762 0.0881 + - 0.0687
mean Random_Forest 0.0 0.99 + - 0.0139 0.9903 + - 0.0227 0.9885 + - 0.0232 0.9891 + - 0.0149 0.4681 + - 0.2077 0.9328 + - 0.1973 0.9771 + - 0.0531 0.6612 + - 0.1353 1.0121 + - 0.0283 0.9806 + - 0.0398 0.0048 + - 0.0066
mean Random_Forest 0.05 0.9872 + - 0.0203 0.9953 + - 0.0188 0.9792 + - 0.0384 0.9866 + - 0.0215 0.5433 + - 0.2231 0.9172 + - 0.208 0.9884 + - 0.0453 0.7174 + - 0.1491 1.0064 + - 0.0252 0.9623 + - 0.0647 0.0065 + - 0.0105
mean Random_Forest 0.1 0.9761 + - 0.03 0.9731 + - 0.0509 0.9788 + - 0.0357 0.9748 + - 0.0312 0.4613 + - 0.1364 0.916 + - 0.1975 0.9489 + - 0.0962 0.6744 + - 0.0997 1.0299 + - 0.0557 0.9797 + - 0.0534 0.011 + - 0.0134
mean Random_Forest 0.2 0.9667 + - 0.0437 0.9773 + - 0.0431 0.9543 + - 0.0769 0.9633 + - 0.0487 0.4808 + - 0.1185 0.9699 + - 0.1163 0.9469 + - 0.1022 0.6887 + - 0.1037 1.0286 + - 0.053 0.9748 + - 0.0825 0.0172 + - 0.0251
mean Random_Forest 0.4 0.8514 + - 0.2095 0.8439 + - 0.2109 0.9803 + - 0.0285 0.8895 + - 0.1413 0.5725 + - 0.2695 0.9407 + - 0.1762 0.8968 + - 0.1435 0.7175 + - 0.1875 0.9663 + - 0.1628 1.0084 + - 0.1932 0.0253 + - 0.0208
knn SVM 0.0 0.7842 + - 0.0727 0.8519 + - 0.1532 0.7361 + - 0.2124 0.7515 + - 0.0926 0.7247 + - 0.4945 1.0553 + - 0.3202 0.9684 + - 0.1403 0.8392 + - 0.1632 0.9327 + - 0.2308 0.7661 + - 0.2154 0.1128 + - 0.0635
knn SVM 0.05 0.8008 + - 0.0677 0.7886 + - 0.1395 0.8468 + - 0.1589 0.793 + - 0.066 0.7133 + - 0.2117 1.0497 + - 0.2018 0.9507 + - 0.1335 0.8333 + - 0.1247 0.9004 + - 0.2115 0.817 + - 0.1783 0.0837 + - 0.04
knn SVM 0.1 0.7796 + - 0.0943 0.7921 + - 0.1618 0.8208 + - 0.1733 0.7761 + - 0.0921 0.7676 + - 0.2302 1.09 + - 0.1545 0.9866 + - 0.1535 0.8708 + - 0.1219 0.8816 + - 0.236 0.7909 + - 0.1708 0.0951 + - 0.0563
knn SVM 0.2 0.6964 + - 0.0995 0.6562 + - 0.177 0.8658 + - 0.1414 0.7171 + - 0.0657 0.96 + - 0.2776 1.0026 + - 0.2566 1.0623 + - 0.232 0.9762 + - 0.1496 0.749 + - 0.2381 0.9014 + - 0.2205 0.0877 + - 0.0284
knn SVM 0.4 0.5243 + - 0.108 0.5512 + - 0.1755 0.8563 + - 0.1911 0.6261 + - 0.0552 0.9844 + - 0.1724 1.0068 + - 0.2325 0.9628 + - 0.1936 1.0017 + - 0.0836 0.7181 + - 0.1839 1.0624 + - 0.4113 0.0996 + - 0.0641
knn Random_Forest 0.0 0.99 + - 0.0139 0.9903 + - 0.0227 0.9885 + - 0.0232 0.9891 + - 0.0149 0.4681 + - 0.2077 0.9328 + - 0.1973 0.9771 + - 0.0531 0.6612 + - 0.1353 1.0121 + - 0.0283 0.9806 + - 0.0398 0.0048 + - 0.0066
knn Random_Forest 0.05 0.9892 + - 0.0155 0.9903 + - 0.0263 0.988 + - 0.0219 0.9888 + - 0.0159 0.5398 + - 0.2218 0.9172 + - 0.2065 0.9792 + - 0.0557 0.7094 + - 0.1528 1.0134 + - 0.0365 0.9752 + - 0.0472 0.0052 + - 0.0072
knn Random_Forest 0.1 0.98 + - 0.0346 0.9795 + - 0.0424 0.9792 + - 0.0473 0.9788 + - 0.0386 0.4711 + - 0.1372 0.9063 + - 0.2116 0.9663 + - 0.072 0.6825 + - 0.1037 0.9987 + - 0.1165 0.9845 + - 0.0321 0.0098 + - 0.0178
knn Random_Forest 0.2 0.9842 + - 0.0264 0.9882 + - 0.0234 0.9795 + - 0.0541 0.9828 + - 0.0301 0.4947 + - 0.1425 0.9779 + - 0.1047 0.9653 + - 0.0826 0.6956 + - 0.1076 1.0163 + - 0.0323 0.9928 + - 0.035 0.008 + - 0.0142
knn Random_Forest 0.4 0.8636 + - 0.169 0.8827 + - 0.1871 0.8986 + - 0.1013 0.8771 + - 0.1282 0.4979 + - 0.2472 0.8638 + - 0.2241 0.9373 + - 0.0949 0.6909 + - 0.1585 0.969 + - 0.1481 0.9539 + - 0.111 0.0438 + - 0.036
mice SVM 0.0 0.7842 + - 0.0727 0.8519 + - 0.1532 0.7361 + - 0.2124 0.7515 + - 0.0926 0.7247 + - 0.4945 1.0553 + - 0.3202 0.9684 + - 0.1403 0.8392 + - 0.1632 0.9327 + - 0.2308 0.7661 + - 0.2154 0.1128 + - 0.0635
mice SVM 0.05 0.83 + - 0.0753 0.822 + - 0.1371 0.861 + - 0.1316 0.8229 + - 0.0689 0.6806 + - 0.2243 1.0393 + - 0.2125 0.9539 + - 0.1491 0.809 + - 0.1427 0.9176 + - 0.1902 0.8284 + - 0.1625 0.073 + - 0.0372
mice SVM 0.1 0.8172 + - 0.073 0.8439 + - 0.1181 0.8042 + - 0.1673 0.802 + - 0.0825 0.7134 + - 0.2594 1.0955 + - 0.1409 0.9652 + - 0.1429 0.8423 + - 0.1504 0.939 + - 0.2003 0.7908 + - 0.1688 0.0938 + - 0.0564
mice SVM 0.2 0.7392 + - 0.1197 0.6974 + - 0.1649 0.8589 + - 0.1351 0.7493 + - 0.0906 0.9061 + - 0.2615 0.9548 + - 0.2864 1.0437 + - 0.1908 0.9364 + - 0.1439 0.7321 + - 0.2216 0.867 + - 0.1961 0.0873 + - 0.0365
mice SVM 0.4 0.7048 + - 0.1494 0.7334 + - 0.1841 0.7893 + - 0.1797 0.7278 + - 0.1115 0.8449 + - 0.2876 1.0649 + - 0.259 0.9947 + - 0.181 0.8972 + - 0.1434 0.7973 + - 0.2307 0.8676 + - 0.2422 0.1144 + - 0.0705
mice Random_Forest 0.0 0.99 + - 0.0139 0.9903 + - 0.0227 0.9885 + - 0.0232 0.9891 + - 0.0149 0.4681 + - 0.2077 0.9328 + - 0.1973 0.9771 + - 0.0531 0.6612 + - 0.1353 1.0121 + - 0.0283 0.9806 + - 0.0398 0.0048 + - 0.0066
mice Random_Forest 0.05 0.99 + - 0.0154 0.9935 + - 0.0209 0.9864 + - 0.0262 0.9896 + - 0.016 0.5458 + - 0.2304 0.9203 + - 0.2096 0.9866 + - 0.0412 0.7139 + - 0.1551 1.0092 + - 0.03 0.9727 + - 0.0519 0.0049 + - 0.0075
mice Random_Forest 0.1 0.9883 + - 0.0168 0.9888 + - 0.0294 0.9879 + - 0.0222 0.9879 + - 0.0171 0.4695 + - 0.1296 0.9201 + - 0.2017 0.9754 + - 0.0675 0.683 + - 0.0955 1.0141 + - 0.037 0.9888 + - 0.0428 0.0055 + - 0.0077
mice Random_Forest 0.2 0.9797 + - 0.0313 0.9847 + - 0.04 0.9693 + - 0.051 0.9762 + - 0.0381 0.491 + - 0.1319 0.9883 + - 0.0699 0.971 + - 0.0653 0.6944 + - 0.1 1.0196 + - 0.0482 0.9886 + - 0.0518 0.0102 + - 0.0158
mice Random_Forest 0.4 0.9269 + - 0.109 0.9294 + - 0.1143 0.9368 + - 0.0808 0.929 + - 0.0911 0.4589 + - 0.1724 0.9146 + - 0.1972 0.9189 + - 0.1164 0.6588 + - 0.1151 1.0227 + - 0.1264 0.9595 + - 0.0833 0.0294 + - 0.0318

Table A5: Mean and STD of the means of runs conducted using the Ricci Dataset for the Imputation Method, Classification Algorithm and Missing Rate54



Imp. Method Algorithm MissingRate Mean/STD Acc. Mean/STD Precision Mean/STD Recall Mean/STD F1-Score Mean/STD DI Mean/STD Equal Opp. Mean/STD Equal Mis-Opp. Mean/STD CV Mean/STD Cal.+ Mean/STD Cal.- Mean/STD GEI

mean SVM 0.0 0.6469 + - 0.0189 0.6992 + - 0.0209 0.8696 + - 0.0206 0.7748 + - 0.0148 0.9668 + - 0.0494 0.9805 + - 0.0549 0.9607 + - 0.0734 0.9704 + - 0.0434 0.895 + - 0.0597 0.8525 + - 0.1779 0.1183 + - 0.0104
mean SVM 0.05 0.6493 + - 0.0223 0.7071 + - 0.0216 0.8619 + - 0.0216 0.7766 + - 0.0164 0.9552 + - 0.0593 0.9672 + - 0.0692 0.9488 + - 0.0756 0.9597 + - 0.0524 0.8952 + - 0.0536 0.859 + - 0.167 0.1224 + - 0.0111
mean SVM 0.1 0.6393 + - 0.022 0.6967 + - 0.0269 0.8605 + - 0.0327 0.7691 + - 0.0162 0.9669 + - 0.0475 0.9734 + - 0.0519 0.9621 + - 0.0644 0.9707 + - 0.0414 0.8916 + - 0.0694 0.8671 + - 0.1585 0.1233 + - 0.0177
mean SVM 0.2 0.6504 + - 0.0284 0.6973 + - 0.0237 0.8851 + - 0.037 0.7796 + - 0.0228 0.965 + - 0.0461 0.9667 + - 0.0567 0.9684 + - 0.0651 0.9684 + - 0.0413 0.9241 + - 0.0639 0.9185 + - 0.1898 0.1114 + - 0.0172
mean SVM 0.4 0.6586 + - 0.0292 0.6999 + - 0.0156 0.8962 + - 0.0477 0.7856 + - 0.0244 0.9814 + - 0.0479 0.9885 + - 0.0535 0.9754 + - 0.0559 0.9835 + - 0.0425 0.9041 + - 0.0651 0.8799 + - 0.2127 0.1064 + - 0.0215
mean Random_Forest 0.0 0.7573 + - 0.0196 0.7931 + - 0.0271 0.882 + - 0.0256 0.8346 + - 0.0145 0.915 + - 0.0644 0.9525 + - 0.0584 0.9753 + - 0.0853 0.932 + - 0.0516 0.9089 + - 0.0644 0.9493 + - 0.1017 0.1016 + - 0.0114
mean Random_Forest 0.05 0.7629 + - 0.018 0.8054 + - 0.0236 0.8776 + - 0.0272 0.8394 + - 0.0139 0.8968 + - 0.0743 0.9472 + - 0.0637 0.9508 + - 0.1208 0.9178 + - 0.059 0.9243 + - 0.0623 0.9494 + - 0.118 0.1028 + - 0.0116
mean Random_Forest 0.1 0.7559 + - 0.0208 0.7909 + - 0.0277 0.8855 + - 0.0271 0.8349 + - 0.0158 0.9337 + - 0.0651 0.9584 + - 0.0664 0.9946 + - 0.096 0.9468 + - 0.0519 0.9132 + - 0.0626 0.9643 + - 0.1171 0.1007 + - 0.0115
mean Random_Forest 0.2 0.7512 + - 0.024 0.7992 + - 0.0279 0.8682 + - 0.0335 0.8315 + - 0.0175 0.9135 + - 0.0698 0.9389 + - 0.067 0.9908 + - 0.0929 0.931 + - 0.056 0.9018 + - 0.0651 0.9735 + - 0.0979 0.1082 + - 0.0146
mean Random_Forest 0.4 0.7345 + - 0.0242 0.7845 + - 0.0317 0.858 + - 0.0573 0.8177 + - 0.0218 0.9089 + - 0.0906 0.9423 + - 0.0775 0.9707 + - 0.1014 0.9301 + - 0.0668 0.9109 + - 0.0683 0.9493 + - 0.1326 0.115 + - 0.0253
knn SVM 0.0 0.6469 + - 0.0189 0.6992 + - 0.0209 0.8696 + - 0.0206 0.7748 + - 0.0148 0.9668 + - 0.0494 0.9805 + - 0.0549 0.9607 + - 0.0734 0.9704 + - 0.0434 0.895 + - 0.0597 0.8525 + - 0.1779 0.1183 + - 0.0104
knn SVM 0.05 0.6472 + - 0.025 0.7061 + - 0.0215 0.8591 + - 0.025 0.7749 + - 0.0185 0.9518 + - 0.0595 0.9598 + - 0.0668 0.9509 + - 0.0724 0.9567 + - 0.0525 0.8884 + - 0.0535 0.875 + - 0.153 0.1238 + - 0.0128
knn SVM 0.1 0.6359 + - 0.0211 0.6972 + - 0.0278 0.8528 + - 0.0294 0.7664 + - 0.0152 0.9733 + - 0.0456 0.975 + - 0.0476 0.9759 + - 0.0666 0.9765 + - 0.0393 0.8843 + - 0.0761 0.8913 + - 0.1435 0.1271 + - 0.0164
knn SVM 0.2 0.6401 + - 0.0194 0.6952 + - 0.0206 0.8677 + - 0.0302 0.7715 + - 0.0163 0.9606 + - 0.0489 0.9584 + - 0.0589 0.9707 + - 0.0724 0.9651 + - 0.0432 0.9262 + - 0.0646 0.9496 + - 0.1633 0.1198 + - 0.0151
knn SVM 0.4 0.6458 + - 0.0278 0.6978 + - 0.0151 0.872 + - 0.0474 0.7748 + - 0.0235 0.9824 + - 0.054 0.9924 + - 0.0547 0.9712 + - 0.0682 0.9846 + - 0.0474 0.9065 + - 0.0657 0.8844 + - 0.1889 0.1179 + - 0.0221
knn Random_Forest 0.0 0.7573 + - 0.0196 0.7931 + - 0.0271 0.882 + - 0.0256 0.8346 + - 0.0145 0.915 + - 0.0644 0.9525 + - 0.0584 0.9753 + - 0.0853 0.932 + - 0.0516 0.9089 + - 0.0644 0.9493 + - 0.1017 0.1016 + - 0.0114
knn Random_Forest 0.05 0.7623 + - 0.0184 0.8045 + - 0.0234 0.8778 + - 0.0277 0.839 + - 0.0141 0.8989 + - 0.075 0.9503 + - 0.0615 0.9525 + - 0.1219 0.9192 + - 0.0602 0.9175 + - 0.069 0.9355 + - 0.1111 0.103 + - 0.0119
knn Random_Forest 0.1 0.7572 + - 0.0224 0.7912 + - 0.0315 0.8872 + - 0.0222 0.8358 + - 0.0165 0.9192 + - 0.0603 0.9556 + - 0.0578 0.966 + - 0.1038 0.9351 + - 0.049 0.9263 + - 0.0645 0.9654 + - 0.119 0.0997 + - 0.0093
knn Random_Forest 0.2 0.75 + - 0.0215 0.7944 + - 0.0233 0.875 + - 0.0299 0.8322 + - 0.0159 0.9045 + - 0.0743 0.9495 + - 0.0701 0.9544 + - 0.0998 0.9229 + - 0.0598 0.9063 + - 0.0646 0.925 + - 0.1303 0.1065 + - 0.013
knn Random_Forest 0.4 0.7311 + - 0.0283 0.7765 + - 0.0295 0.8649 + - 0.0678 0.8159 + - 0.0256 0.9404 + - 0.0892 0.9579 + - 0.0741 1.0029 + - 0.1017 0.955 + - 0.0635 0.9157 + - 0.0726 0.9655 + - 0.1238 0.1131 + - 0.0316
mice SVM 0.0 0.6469 + - 0.0189 0.6992 + - 0.0209 0.8696 + - 0.0206 0.7748 + - 0.0148 0.9668 + - 0.0494 0.9805 + - 0.0549 0.9607 + - 0.0734 0.9704 + - 0.0434 0.895 + - 0.0597 0.8525 + - 0.1779 0.1183 + - 0.0104
mice SVM 0.05 0.6432 + - 0.0208 0.7005 + - 0.0217 0.8597 + - 0.0199 0.7717 + - 0.0149 0.9492 + - 0.0516 0.9503 + - 0.0579 0.9656 + - 0.0758 0.9548 + - 0.0455 0.9057 + - 0.0462 0.9294 + - 0.151 0.1232 + - 0.0106
mice SVM 0.1 0.634 + - 0.025 0.6899 + - 0.0283 0.8594 + - 0.0282 0.7648 + - 0.0193 0.9609 + - 0.0519 0.9694 + - 0.0564 0.9564 + - 0.0741 0.9655 + - 0.0454 0.9028 + - 0.0698 0.8806 + - 0.158 0.1229 + - 0.014
mice SVM 0.2 0.6361 + - 0.0244 0.6919 + - 0.0234 0.8604 + - 0.03 0.7667 + - 0.0206 0.9783 + - 0.054 0.9873 + - 0.0613 0.9647 + - 0.0645 0.9807 + - 0.047 0.9296 + - 0.0601 0.892 + - 0.1644 0.1226 + - 0.0143
mice SVM 0.4 0.6493 + - 0.0282 0.7003 + - 0.0175 0.8744 + - 0.0429 0.7773 + - 0.0225 0.9825 + - 0.0495 0.9909 + - 0.0525 0.9753 + - 0.0697 0.9847 + - 0.0433 0.9028 + - 0.0552 0.8655 + - 0.2099 0.1166 + - 0.0201
mice Random_Forest 0.0 0.7573 + - 0.0196 0.7931 + - 0.0271 0.882 + - 0.0256 0.8346 + - 0.0145 0.915 + - 0.0644 0.9525 + - 0.0584 0.9753 + - 0.0853 0.932 + - 0.0516 0.9089 + - 0.0644 0.9493 + - 0.1017 0.1016 + - 0.0114
mice Random_Forest 0.05 0.7636 + - 0.0162 0.8073 + - 0.025 0.88 + - 0.0242 0.8415 + - 0.0117 0.8982 + - 0.0688 0.9504 + - 0.066 0.954 + - 0.1127 0.9187 + - 0.0546 0.9132 + - 0.0687 0.9283 + - 0.1304 0.1023 + - 0.0099
mice Random_Forest 0.1 0.7544 + - 0.0226 0.7923 + - 0.0311 0.8812 + - 0.0242 0.8338 + - 0.0178 0.9031 + - 0.0646 0.9416 + - 0.0594 0.9518 + - 0.0977 0.9226 + - 0.0517 0.93 + - 0.0615 0.9741 + - 0.1063 0.1024 + - 0.0099
mice Random_Forest 0.2 0.7507 + - 0.0186 0.797 + - 0.0232 0.8729 + - 0.0275 0.8327 + - 0.0149 0.8924 + - 0.0761 0.9415 + - 0.0767 0.9483 + - 0.0965 0.9138 + - 0.0606 0.9017 + - 0.0686 0.9237 + - 0.1323 0.1074 + - 0.012
mice Random_Forest 0.4 0.7265 + - 0.0335 0.7774 + - 0.0267 0.8529 + - 0.0796 0.8105 + - 0.0331 0.9278 + - 0.0876 0.9499 + - 0.0715 0.9836 + - 0.1059 0.9444 + - 0.0619 0.9282 + - 0.0709 0.9804 + - 0.1243 0.1186 + - 0.0372

Table A6: Mean and STD of the means of runs conducted using the German Dataset for the Imputation Method, Classification Algorithm and Missing Rate55
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Imp. Method Algorithm MissingRate Mean/STD Acc. Mean/STD Precision Mean/STD Recall Mean/STD F1-Score Mean/STD DI Mean/STD Equal Opp. Mean/STD Equal Mis-Opp. Mean/STD CV Mean/STD Cal.+ Mean/STD Cal.- Mean/STD GEI

mean SVM 0.0 0.6358 + - 0.0379 0.7285 + - 0.0388 0.7345 + - 0.0622 0.7293 + - 0.0342 0.9339 + - 0.1188 0.9571 + - 0.1052 1.0054 + - 0.1539 0.9494 + - 0.0827 0.8559 + - 0.1037 0.8796 + - 0.1783 0.1815 + - 0.0399
mean SVM 0.05 0.6354 + - 0.0359 0.7234 + - 0.037 0.7408 + - 0.053 0.7308 + - 0.0336 0.9642 + - 0.1272 0.98 + - 0.0979 1.0124 + - 0.1646 0.9691 + - 0.0884 0.8528 + - 0.1005 0.8606 + - 0.1654 0.177 + - 0.0299
mean SVM 0.1 0.6251 + - 0.0346 0.7214 + - 0.0458 0.7243 + - 0.0562 0.7206 + - 0.0314 0.9329 + - 0.1252 0.9501 + - 0.1002 1.0022 + - 0.1665 0.9488 + - 0.0851 0.8528 + - 0.1039 0.8824 + - 0.1686 0.1866 + - 0.0333
mean SVM 0.2 0.6242 + - 0.0368 0.7202 + - 0.0468 0.7255 + - 0.0693 0.7198 + - 0.0353 0.9413 + - 0.1213 0.9679 + - 0.096 0.9939 + - 0.162 0.9567 + - 0.0824 0.8659 + - 0.0958 0.8661 + - 0.1695 0.1864 + - 0.0403
mean SVM 0.4 0.6069 + - 0.0533 0.7133 + - 0.0438 0.7101 + - 0.1102 0.7064 + - 0.0584 0.9506 + - 0.1348 0.9644 + - 0.1076 0.9983 + - 0.1713 0.9622 + - 0.0828 0.8576 + - 0.1064 0.8764 + - 0.185 0.202 + - 0.0663
mean Random_Forest 0.0 0.6843 + - 0.0316 0.7184 + - 0.0358 0.8753 + - 0.0396 0.7879 + - 0.0223 0.9474 + - 0.0963 0.9515 + - 0.0734 1.0284 + - 0.1713 0.9538 + - 0.0805 0.8453 + - 0.0936 0.9529 + - 0.2205 0.1119 + - 0.0183
mean Random_Forest 0.05 0.6841 + - 0.0301 0.7257 + - 0.036 0.8708 + - 0.0407 0.7904 + - 0.0209 0.9491 + - 0.1184 0.9671 + - 0.0846 0.9952 + - 0.1759 0.9545 + - 0.0967 0.8386 + - 0.0824 0.8448 + - 0.2154 0.1159 + - 0.0205
mean Random_Forest 0.1 0.6889 + - 0.0276 0.7178 + - 0.0325 0.8862 + - 0.0441 0.7918 + - 0.0187 0.9684 + - 0.1028 0.9831 + - 0.0795 1.0044 + - 0.1488 0.971 + - 0.0858 0.8714 + - 0.0959 0.9045 + - 0.2137 0.107 + - 0.0213
mean Random_Forest 0.2 0.6609 + - 0.0347 0.7029 + - 0.0335 0.8415 + - 0.0566 0.7645 + - 0.0287 0.9356 + - 0.1085 0.9454 + - 0.0822 0.9865 + - 0.1872 0.9442 + - 0.0893 0.8602 + - 0.0832 0.9342 + - 0.251 0.1257 + - 0.0277
mean Random_Forest 0.4 0.645 + - 0.044 0.7121 + - 0.0424 0.7879 + - 0.109 0.7427 + - 0.0559 0.941 + - 0.11 0.9667 + - 0.0875 0.9923 + - 0.1672 0.9523 + - 0.0799 0.8456 + - 0.0793 0.8598 + - 0.2067 0.1564 + - 0.0604
knn SVM 0.0 0.628 + - 0.0345 0.7268 + - 0.0424 0.7224 + - 0.0582 0.7222 + - 0.031 0.9258 + - 0.1415 0.9409 + - 0.119 1.0067 + - 0.1541 0.9429 + - 0.0981 0.8638 + - 0.1103 0.9114 + - 0.16 0.1881 + - 0.0368
knn SVM 0.05 0.6332 + - 0.0363 0.7234 + - 0.0364 0.7341 + - 0.0519 0.7276 + - 0.0337 0.9542 + - 0.1222 0.9716 + - 0.0938 1.0124 + - 0.173 0.9628 + - 0.0856 0.8628 + - 0.1062 0.8783 + - 0.1474 0.1803 + - 0.0296
knn SVM 0.1 0.6262 + - 0.0453 0.7178 + - 0.0442 0.726 + - 0.0664 0.7198 + - 0.042 0.9483 + - 0.1233 0.9628 + - 0.108 1.007 + - 0.143 0.959 + - 0.087 0.8499 + - 0.1043 0.8736 + - 0.1575 0.1854 + - 0.0406
knn SVM 0.2 0.6131 + - 0.038 0.7074 + - 0.0436 0.7196 + - 0.0624 0.7111 + - 0.037 0.935 + - 0.1242 0.9522 + - 0.1018 1.0066 + - 0.1719 0.9494 + - 0.0882 0.8387 + - 0.0961 0.8664 + - 0.1736 0.1892 + - 0.0379
knn SVM 0.4 0.5944 + - 0.054 0.7106 + - 0.0495 0.6684 + - 0.1035 0.6838 + - 0.0621 0.9557 + - 0.1496 0.9762 + - 0.1137 1.0076 + - 0.1741 0.9649 + - 0.0918 0.8501 + - 0.1 0.8544 + - 0.173 0.2233 + - 0.0688
knn Random_Forest 0.0 0.6888 + - 0.0279 0.7198 + - 0.0372 0.8793 + - 0.0402 0.7903 + - 0.0228 0.9607 + - 0.108 0.9601 + - 0.0745 1.0514 + - 0.1906 0.9639 + - 0.089 0.8414 + - 0.1002 0.9575 + - 0.2209 0.1094 + - 0.0183
knn Random_Forest 0.05 0.677 + - 0.0284 0.719 + - 0.0393 0.8548 + - 0.0443 0.7794 + - 0.0229 0.9659 + - 0.1067 0.9634 + - 0.0817 1.0351 + - 0.1657 0.9688 + - 0.0876 0.8608 + - 0.0838 0.9413 + - 0.2181 0.1205 + - 0.0213
knn Random_Forest 0.1 0.6838 + - 0.0327 0.7108 + - 0.0419 0.8795 + - 0.05 0.7847 + - 0.0296 0.9501 + - 0.1148 0.9626 + - 0.0775 0.9987 + - 0.1924 0.9552 + - 0.0944 0.8625 + - 0.0796 0.9118 + - 0.2229 0.1088 + - 0.0222
knn Random_Forest 0.2 0.679 + - 0.0338 0.7173 + - 0.0419 0.8689 + - 0.0511 0.7841 + - 0.0286 0.9572 + - 0.1046 0.965 + - 0.0849 1.0132 + - 0.1716 0.9624 + - 0.086 0.853 + - 0.0988 0.9045 + - 0.221 0.1156 + - 0.0246
knn Random_Forest 0.4 0.67 + - 0.0359 0.7089 + - 0.0419 0.8638 + - 0.0667 0.7763 + - 0.0311 0.962 + - 0.1014 0.9697 + - 0.0801 1.0082 + - 0.1581 0.9652 + - 0.083 0.8565 + - 0.087 0.9206 + - 0.234 0.1179 + - 0.0309
mice SVM 0.0 0.6358 + - 0.0344 0.7232 + - 0.0388 0.7388 + - 0.0497 0.7296 + - 0.0329 0.9476 + - 0.1194 0.9778 + - 0.0975 0.9943 + - 0.1646 0.9598 + - 0.0832 0.8659 + - 0.0954 0.8533 + - 0.1643 0.1772 + - 0.0292
mice SVM 0.05 0.6275 + - 0.0388 0.7209 + - 0.0365 0.7292 + - 0.0549 0.7236 + - 0.0342 0.9491 + - 0.1269 0.98 + - 0.0993 0.986 + - 0.1687 0.9592 + - 0.0899 0.8537 + - 0.0926 0.8321 + - 0.16 0.1846 + - 0.0344
mice SVM 0.1 0.6343 + - 0.0368 0.7226 + - 0.0387 0.7365 + - 0.0544 0.728 + - 0.0328 0.9437 + - 0.1252 0.9819 + - 0.1055 0.9845 + - 0.1607 0.9558 + - 0.0878 0.8643 + - 0.1049 0.8404 + - 0.1772 0.179 + - 0.033
mice SVM 0.2 0.6042 + - 0.0506 0.7092 + - 0.0441 0.6933 + - 0.0762 0.6988 + - 0.0493 0.9699 + - 0.1467 0.9913 + - 0.1052 1.0017 + - 0.1844 0.974 + - 0.0972 0.8604 + - 0.1058 0.8483 + - 0.164 0.2058 + - 0.0484
mice SVM 0.4 0.5918 + - 0.0565 0.7141 + - 0.048 0.6602 + - 0.1013 0.6817 + - 0.0643 0.9416 + - 0.1608 0.9682 + - 0.12 0.9838 + - 0.1718 0.9578 + - 0.1018 0.8677 + - 0.1049 0.8646 + - 0.1639 0.2294 + - 0.0675
mice Random_Forest 0.0 0.6891 + - 0.0321 0.7195 + - 0.0392 0.8807 + - 0.0399 0.7908 + - 0.0258 0.9548 + - 0.0966 0.9538 + - 0.0864 1.0412 + - 0.17 0.9596 + - 0.0806 0.8432 + - 0.0923 0.9643 + - 0.2308 0.1085 + - 0.0173
mice Random_Forest 0.05 0.6909 + - 0.029 0.7192 + - 0.0341 0.8802 + - 0.0404 0.7905 + - 0.0235 0.9685 + - 0.105 0.9642 + - 0.0852 1.0361 + - 0.1754 0.9705 + - 0.0879 0.8546 + - 0.0974 0.9297 + - 0.1989 0.1079 + - 0.0184
mice Random_Forest 0.1 0.6835 + - 0.0307 0.7213 + - 0.0384 0.8716 + - 0.0484 0.7878 + - 0.0253 0.9529 + - 0.0959 0.9583 + - 0.0797 1.0046 + - 0.1724 0.9581 + - 0.0819 0.8862 + - 0.08 0.9656 + - 0.2317 0.1146 + - 0.0227
mice Random_Forest 0.2 0.689 + - 0.0292 0.719 + - 0.0326 0.8784 + - 0.0409 0.7898 + - 0.0246 0.9568 + - 0.1058 0.9665 + - 0.0834 1.0143 + - 0.1707 0.9614 + - 0.0875 0.8595 + - 0.0858 0.9153 + - 0.2436 0.1106 + - 0.0168
mice Random_Forest 0.4 0.6585 + - 0.0507 0.7158 + - 0.0327 0.8198 + - 0.1174 0.7589 + - 0.0573 0.9336 + - 0.1272 0.9457 + - 0.098 0.9786 + - 0.1694 0.9444 + - 0.0937 0.889 + - 0.0829 0.9559 + - 0.2604 0.1429 + - 0.0668

Table A7: Mean and STD of the means of runs conducted using the Student-Mat Dataset for the Imputation Method, Classification Algorithm and Missing Rate56



Imp. Method Algorithm MissingRate Mean/STD Acc. Mean/STD Precision Mean/STD Recall Mean/STD F1-Score Mean/STD DI Mean/STD Equal Opp. Mean/STD Equal Mis-Opp. Mean/STD CV Mean/STD Cal.+ Mean/STD Cal.- Mean/STD GEI

mean SVM 0.0 0.8189 + - 0.0205 0.8793 + - 0.0206 0.9117 + - 0.0238 0.8949 + - 0.0128 0.9623 + - 0.0688 0.973 + - 0.0543 0.8918 + - 0.1683 0.965 + - 0.0617 1.0068 + - 0.0638 0.9634 + - 0.2074 0.0845 + - 0.012
mean SVM 0.05 0.8175 + - 0.0235 0.8896 + - 0.0203 0.8971 + - 0.0229 0.893 + - 0.0149 0.9697 + - 0.0833 0.9744 + - 0.0577 0.8998 + - 0.1906 0.9716 + - 0.0721 1.0101 + - 0.062 0.9952 + - 0.1959 0.0898 + - 0.0134
mean SVM 0.1 0.8133 + - 0.0222 0.8865 + - 0.022 0.8957 + - 0.0288 0.8905 + - 0.0142 0.9535 + - 0.0813 0.9663 + - 0.0612 0.8863 + - 0.1872 0.9573 + - 0.0706 0.9978 + - 0.0631 0.9557 + - 0.1997 0.0916 + - 0.0149
mean SVM 0.2 0.8002 + - 0.0258 0.8898 + - 0.0222 0.8748 + - 0.036 0.8815 + - 0.0172 0.9573 + - 0.0787 0.9739 + - 0.0518 0.8779 + - 0.1765 0.9617 + - 0.0667 1.0083 + - 0.055 0.955 + - 0.1909 0.1028 + - 0.0193
mean SVM 0.4 0.7665 + - 0.0502 0.8849 + - 0.0241 0.8333 + - 0.0743 0.856 + - 0.0387 0.9621 + - 0.0965 0.975 + - 0.0601 0.8949 + - 0.2022 0.9662 + - 0.0721 1.0077 + - 0.0583 0.9642 + - 0.1936 0.1302 + - 0.0466
mean Random_Forest 0.0 0.8496 + - 0.0203 0.8702 + - 0.0227 0.9672 + - 0.0148 0.9159 + - 0.0119 0.9518 + - 0.0467 0.9715 + - 0.0354 0.8244 + - 0.1472 0.9531 + - 0.045 1.0173 + - 0.0635 0.9244 + - 0.341 0.0586 + - 0.0071
mean Random_Forest 0.05 0.8513 + - 0.0196 0.8734 + - 0.0229 0.9667 + - 0.0144 0.9174 + - 0.0114 0.9592 + - 0.0497 0.9765 + - 0.0362 0.8277 + - 0.1679 0.9602 + - 0.0474 1.0226 + - 0.0654 0.8942 + - 0.3587 0.0583 + - 0.0066
mean Random_Forest 0.1 0.8464 + - 0.0193 0.8689 + - 0.0217 0.9636 + - 0.0201 0.9135 + - 0.0115 0.9492 + - 0.0522 0.9759 + - 0.0373 0.8063 + - 0.1444 0.9509 + - 0.0498 1.0187 + - 0.0636 0.8749 + - 0.3511 0.0606 + - 0.0085
mean Random_Forest 0.2 0.8477 + - 0.0189 0.8738 + - 0.0224 0.9608 + - 0.0195 0.9149 + - 0.0113 0.9467 + - 0.0578 0.9688 + - 0.0414 0.7961 + - 0.1689 0.9485 + - 0.0551 1.0343 + - 0.0591 0.9508 + - 0.356 0.0613 + - 0.0086
mean Random_Forest 0.4 0.8373 + - 0.0265 0.8674 + - 0.0291 0.9544 + - 0.0413 0.9078 + - 0.0173 0.9609 + - 0.0629 0.9756 + - 0.0414 0.8602 + - 0.1677 0.963 + - 0.0569 1.0206 + - 0.0661 1.005 + - 0.3495 0.0658 + - 0.0183
knn SVM 0.0 0.8227 + - 0.0181 0.8817 + - 0.0169 0.9141 + - 0.022 0.8973 + - 0.0114 0.9663 + - 0.0726 0.9735 + - 0.0539 0.9089 + - 0.1927 0.9682 + - 0.0652 1.0044 + - 0.063 0.9749 + - 0.2306 0.0828 + - 0.0112
knn SVM 0.05 0.8201 + - 0.0195 0.8833 + - 0.021 0.9089 + - 0.0224 0.8955 + - 0.0122 0.9563 + - 0.0742 0.9684 + - 0.0518 0.8779 + - 0.1738 0.9595 + - 0.0658 1.0105 + - 0.0593 0.9651 + - 0.1909 0.0851 + - 0.0112
knn SVM 0.1 0.8178 + - 0.022 0.8834 + - 0.023 0.9047 + - 0.0261 0.8935 + - 0.0144 0.9579 + - 0.0711 0.9668 + - 0.0538 0.9007 + - 0.159 0.9611 + - 0.0627 1.0045 + - 0.0554 0.9964 + - 0.2209 0.087 + - 0.0133
knn SVM 0.2 0.8045 + - 0.0272 0.8753 + - 0.0249 0.8954 + - 0.0287 0.8848 + - 0.0179 0.9592 + - 0.0744 0.9729 + - 0.0564 0.8754 + - 0.1745 0.9624 + - 0.0655 1.0096 + - 0.0641 0.9564 + - 0.2222 0.0937 + - 0.0162
knn SVM 0.4 0.7893 + - 0.0423 0.8698 + - 0.0214 0.8826 + - 0.0577 0.875 + - 0.0307 0.9754 + - 0.0683 0.9797 + - 0.0532 0.95 + - 0.1765 0.9774 + - 0.0583 0.9963 + - 0.0635 0.9911 + - 0.2228 0.104 + - 0.0355
knn Random_Forest 0.0 0.8529 + - 0.0194 0.8702 + - 0.0222 0.9704 + - 0.0126 0.9174 + - 0.0116 0.9632 + - 0.0475 0.981 + - 0.0314 0.8497 + - 0.1578 0.964 + - 0.0457 1.0119 + - 0.0666 0.9219 + - 0.3475 0.0566 + - 0.0061
knn Random_Forest 0.05 0.851 + - 0.0196 0.8708 + - 0.0226 0.9686 + - 0.0175 0.9168 + - 0.0117 0.9611 + - 0.0513 0.9764 + - 0.0383 0.8507 + - 0.1586 0.9619 + - 0.0494 1.015 + - 0.0627 0.9638 + - 0.3695 0.0579 + - 0.0076
knn Random_Forest 0.1 0.8491 + - 0.0195 0.8683 + - 0.0201 0.9683 + - 0.0151 0.9153 + - 0.0112 0.9557 + - 0.0524 0.974 + - 0.0396 0.8277 + - 0.1457 0.9568 + - 0.0504 1.0235 + - 0.0625 0.9328 + - 0.3274 0.0584 + - 0.0076
knn Random_Forest 0.2 0.851 + - 0.0194 0.8709 + - 0.0231 0.9682 + - 0.0161 0.9166 + - 0.011 0.9524 + - 0.0562 0.9709 + - 0.0434 0.8296 + - 0.1523 0.9535 + - 0.0537 1.0175 + - 0.0623 0.926 + - 0.3642 0.058 + - 0.007
knn Random_Forest 0.4 0.8479 + - 0.0202 0.8666 + - 0.0223 0.9703 + - 0.0186 0.9152 + - 0.0116 0.9677 + - 0.0555 0.9771 + - 0.0415 0.8835 + - 0.1526 0.9683 + - 0.0529 1.0115 + - 0.0627 0.973 + - 0.3665 0.0582 + - 0.0081
mice SVM 0.0 0.8195 + - 0.0229 0.8753 + - 0.0175 0.9164 + - 0.0256 0.8951 + - 0.0145 0.9539 + - 0.0708 0.9674 + - 0.0531 0.877 + - 0.1636 0.957 + - 0.0639 1.0053 + - 0.0589 0.967 + - 0.2317 0.0828 + - 0.0138
mice SVM 0.05 0.8188 + - 0.0212 0.8823 + - 0.0213 0.9071 + - 0.024 0.8942 + - 0.0135 0.9652 + - 0.0723 0.9792 + - 0.0548 0.8781 + - 0.1731 0.9673 + - 0.0635 1.0122 + - 0.0619 0.9442 + - 0.2313 0.0859 + - 0.0125
mice SVM 0.1 0.817 + - 0.0235 0.8855 + - 0.0236 0.9008 + - 0.0282 0.8926 + - 0.0154 0.96 + - 0.0747 0.9763 + - 0.0525 0.8784 + - 0.1845 0.9631 + - 0.065 1.0096 + - 0.0617 0.9527 + - 0.2247 0.0886 + - 0.0148
mice SVM 0.2 0.8019 + - 0.025 0.8808 + - 0.0243 0.8861 + - 0.0344 0.8828 + - 0.0166 0.9712 + - 0.0776 0.981 + - 0.0586 0.9021 + - 0.171 0.9728 + - 0.0653 1.008 + - 0.0585 0.9616 + - 0.1995 0.0979 + - 0.0179
mice SVM 0.4 0.7581 + - 0.0628 0.8701 + - 0.0264 0.8371 + - 0.0861 0.8505 + - 0.0485 0.9626 + - 0.0865 0.9758 + - 0.065 0.9114 + - 0.1719 0.9681 + - 0.0682 1.007 + - 0.0662 0.9674 + - 0.1977 0.1324 + - 0.0591
mice Random_Forest 0.0 0.8465 + - 0.021 0.8681 + - 0.022 0.9649 + - 0.0171 0.9137 + - 0.0127 0.954 + - 0.0458 0.9723 + - 0.0364 0.8375 + - 0.1407 0.9553 + - 0.0438 1.0106 + - 0.0633 0.9258 + - 0.3537 0.06 + - 0.0086
mice Random_Forest 0.05 0.8521 + - 0.0204 0.872 + - 0.026 0.9693 + - 0.0159 0.9177 + - 0.0118 0.9536 + - 0.0477 0.9726 + - 0.0365 0.8313 + - 0.1516 0.9549 + - 0.0461 1.014 + - 0.0682 0.9394 + - 0.3405 0.0575 + - 0.0065
mice Random_Forest 0.1 0.8508 + - 0.0199 0.869 + - 0.0225 0.9701 + - 0.0154 0.9165 + - 0.0121 0.9587 + - 0.0504 0.9765 + - 0.0369 0.8454 + - 0.1491 0.9596 + - 0.0486 1.0181 + - 0.0618 0.8956 + - 0.3511 0.0573 + - 0.0071
mice Random_Forest 0.2 0.8514 + - 0.0207 0.8663 + - 0.0206 0.9732 + - 0.0154 0.9164 + - 0.0117 0.9631 + - 0.0511 0.9796 + - 0.0375 0.8676 + - 0.1443 0.9639 + - 0.0491 0.9988 + - 0.0698 0.9412 + - 0.361 0.0564 + - 0.0079
mice Random_Forest 0.4 0.8376 + - 0.0293 0.8676 + - 0.0226 0.9534 + - 0.0435 0.9076 + - 0.0202 0.9709 + - 0.0681 0.9814 + - 0.0455 0.8899 + - 0.1689 0.9716 + - 0.0614 1.0113 + - 0.0606 0.934 + - 0.3292 0.0663 + - 0.0224

Table A8: Mean and STD of the means of runs conducted using the Student-Por Dataset for the Imputation Method, Classification Algorithm and Missing Rate57
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