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Abstract

This dissertation aims to research the possibility of implementing and executing Artificial

Intelligence (AI) methods on service robots previously developed at the Instituto de Sis-

temas e Robótica - Universidade de Coimbra (ISR-UC). These systems have strict energy

requirements in order to sustain services for long periods of time before they need recharged

batteries. As such, the implementation of AI methods in general purpose computer archi-

tectures implies diverse constraints and might not be viable.

A cloud computing approach, that is, the relocation of local data and processing to large,

remote data centers with more powerful computing capabilities, still implies heavy power

consumption due to the use of networking resources as well as a higher latency. As such, we

choose an edge computing paradigm, i.e. the processing of data as close as possible to the

place in which data is acquired and results are needed.

To implement this edge computing approach, a system was implemented composed by the

System on Module Jetson AGX Xavier, designed and manufactured by NVIDIA, a stereo

camera, a laser rangefinder and a mobile robot. This system aims to verify public health

measures vital to the COVID-19 pandemic using AI-based models, namely correct facial

mask usage and social distancing, while maintaining low power consumption required by

mobile platforms.
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Resumo

Esta dissertação visa investigar a implementação e execução local de métodos de Inteligência

Artificial (IA) em robôs de serviço do Instituto de Sistemas e Robótica - Universidade de

Coimbra (ISR-UC). Estes sistemas têm requisitos de autonomia energética por forma a se

manterem operáveis durante longos períodos de tempo, antes de necessitarem de recarregar

a bateria. Como tal, o uso de inteligência artificial na arquitectura implementada de Central

Processing Unit (CPU) + Graphics Processing Unit (GPU) implica diversos constrangimen-

tos técnicos, incluindo energéticos, e pode ser mesmo inviável.

Uma abordagem usando o paradigma de cloud computing, i.e. o envio de dados recolhi-

dos localmente para servidores remotos com mais recursos computacionais, implica custos

pesados de consumo de energia devido ao uso de recursos de rede bem como maior latência.

Como tal, investigaremos uma abordagem de edge computing, i.e. o processamento de dados

o mais perto possível do local em que o resultado será utilizado.

Para a implementação da abordagem de edge computing foi construído um sistema com-

posto pelo System on Module Jetson AGX Xavier, produzido pela NVIDIA, uma câmara

estereo, um laser rangefinder e robô móvel. Este sistema tem como objectivo a verificação

de normas de saúde públicas vitais durante a situação pandémica de COVID-19 recorrendo

ao uso de modelos baseados em IA, nomeadamente o uso correcto de máscaras faciais e dis-

tânciamento social, proporcionando um consumo de potência sustentável numa plataforma

robótica móvel.
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1 Introduction

1.1 Context and Motivation

Advancements in the field of Artificial Intelligence (AI) over the past decade have enabled

a vast variety of services and capabilities, such as object detection [8], face detection [9] and

recognition [10], sound recognition [11], among others. These are interesting services to be

implemented on and applied by service robots, defined by the International Organization for

Standardization as a robot “that performs useful tasks for humans or equipment excluding

industrial automation applications” [12].

Machine Learning (ML) is a subset of the field of AI and can be defined as the study

of computer algorithms that automatically improve their performance, measured by some

metric, through experience [13]. Deep Learning (DL) is then a subset of the field of ML

and is based on the use of Artificial Neural Networks (ANNs), originally developed to mimic

biological intelligence via the concepts of neurons, layers and how these are connected [14].

By connecting multiple layers of neurons, a Deep Neural Network (DNN) is created.

Graphics Processing Units (GPUs) are electronic circuits with a structure highly special-

ized towards parallel computing, which enable computations where calculations can be done

in parallel and without logical dependencies. GPUs have seen a rapid development and

are capable of accelerating parallelizable algorithms for ML applications [15] with more and

more efficiency. However, their form factor and power consumption turns them inadequate

for inclusion on board mobile service robots and in other embedded systems with power and

size constraints.
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Consequently, to implement AI methods on service robots, it is typical to resort to a cloud

computing paradigm. Data is gathered in the environment in which it is produced then

transmitted via a Local Area Network (LAN) or the Internet to a remote computational

service, commonly called the cloud, with greater computational resources such as those

provided by Amazon Web Services, Microsoft Azure and Google Cloud, among others. The

transmitted data is then processed and results are transmitted back to the deployed system.

However, this approach presents several shortcomings: higher latency, unsustainable to real-

time based applications; the network’s quality of service can be insufficient to the required

reliability; a lack of data encryption can compromise the privacy and security of sensitive

data [16]; an outage from the service provider will jeopardize the application’s quality or

functionalities [17]; among others.

In contrast, edge computing is a distributed computing paradigm designed to process and

store data closer to the physical location where it is needed [18]. This paradigm decentralizes

the processing of data, reducing data latency and required bandwidth. However, heavy pro-

cessing of data could prove to be unfeasible as deployed systems could not have appropriate

resources for the task.

1.2 Problem statement

Since the start of the COVID-19 pandemic, DL applications have been developed to eval-

uate public health measures such as social distancing [19]. However, the use of a GPU to

accelerate the execution of these networks presents problems for mobile robots: excessive

power consumption, inappropriate dimensions and weight. This dissertation aims to exploit

an edge computing paradigm in service robots, and in embedded systems in general, in

order to overcome these technical limitations encountered by GPU-based general purpose

computer architectures.

To implement an edge computing based solution, the NVIDIA System on Module (SOM)

Jetson AGX Xavier [20] provides powerful computational capabilities and was designed for

edge-based AI applications. With this device, the computational power required for AI on

service robots is achieved at a low energy expenditure with results obtained in real time.

Besides the NVIDIA SOM Jetson AGX Xavier, the following equipment was used in this

dissertation: a Pioneer P3-DX mobile robot to be used as a service robot and a ZED 2 stereo

2



camera. This hardware suite was integrated in a service robot controlled by the Jetson AGX

Xavier as a case study for the use of the edge computing paradigm in an application requiring

DL algorithms on board service robots, as well as the study of the implementation of DL

algorithms on different computer architectures.

1.3 Objectives and contributions

The overall goal of this dissertation is to engineer a service robot based on the edge com-

puting paradigm, capable of executing DL algorithms and other heavy computations required

by AI methods, as well as localization, mapping and navigation algorithms commonly used

on autonomous mobile robots, to be used and replicated in future research projects at the

Instituto de Sistemas e Robótica - Universidade de Coimbra (ISR-UC). The use of a non-

traditional computer architecture for robotic embedded systems aims to overcome current

limitations posed by mobile robots employing general purpose computers (e.g., laptops) and

to find a more practical trade-off between computational power and energy consumption,

increasing available computational resources on service robots, while avoiding prohibitive

power consumption from the robot’s batteries.

This overall goal involves the following objectives:

• To carry out a comparative evaluation in terms of available computational resources

and energy consumption of a general purpose architecture versus a SOM-based archi-

tecture in object detection using images;

• To study deep learning algorithms, their computational requirements and development

frameworks;

• To develop a prototype system based on the integration of a SOM device and a stereo

camera on a Pioneer P3-DX robot platform, employing the Robot Operating Sys-

tem (ROS) middleware to build a service robot capable of performing autonomous

navigation and advanced perception tasks based on deep learning techniques;

• To perform a proof of concept by using the SOM-based service robot prototype to

ensure COVID-19 prevention measures, namely wearing a mask and social distancing,

within an open laboratory space common to several researchers.
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1.4 Outline of the dissertation

This dissertation is composed by six chapters, each detailing different parts of the work.

Chapter 1, introduces this project, the social and academic context it is inserted in, as

well as the motivations behind it. Chapter 2 provides a brief description of fundamental

concepts and a review of the state of the art in the area of DL applied to computer vision.

Chapter 3 elaborates on the computational resources of the Jetson AGX Xavier as well as

a comparison of various performance metrics against other devices in computational loads

related to DL based functionalities, in order to contextualize the Xavier and its potential

role for service robotics. Chapter 4 describes the system proposed in order to evaluate the

assertion of this dissertation – the implementation of deep learning based services on board

service robots – containing a review of the hardware and software elements as well as a

review of relevant state-of-the-art solutions. The proposed system prototype is presented

and discussed in Chapter 5 as well as a description of the AI model developed. Chapter 6

provides a summary of the work and a conclusion of this project, while providing a base for

future projects that could be implemented at the ISR-UC in an academic context.
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2 Background and Related Work

This chapter provides a general overview of fundamental concepts in the field of DL and

of the robotics applications to be implemented over the course of this dissertation work.

2.1 Cloud computing versus edge computing

Dr. Karim Arabi, an Engineer and Vice-President at Qualcomm, defined edge computing

as "all computing outside the cloud happening at the edge of the network and more specifically

in applications where real-time processing of data is required". Dr. Karim Arabi further

defines cloud computing as operating on big data while edge computing operates on instant

data, that is, real-time data generated by sensors or users [21].

Cloud computing is a computational model designed to enable ubiquitous, convenient and

on-demand network access to a shared pool of diverse computational resources that can be

quickly distributed with minimum effort [22]. A cloud computing model is defined by the

following characteristics:

• On-demand self-service. A consumer can unilaterally and autonomously request and

obtain computational resources such as storage, processing, memory among others,

without human interaction with the service provider;

• Broad network access. Computational resources can be accessed from anywhere by a

diversity of platforms, such as laptops, mobile phones or workstations;

• Resource pooling. Computational resources are pooled in such a way as to serve

multiple consumers, being dynamically allocated according to demand;

5



• Rapid elasticity. Resources can be elastically provided and released, even automati-

cally, in order to rapidly scale to consumer demand;

• Measured service. Resources are typically controlled and optimized by the cloud system

on a pay-per-use basis. Usage can be monitored and controlled to both the consumer

and the provider of the service.

Despite its advantages, this computational paradigm has also some shortcomings and

issues, namely security vulnerabilities, higher latency, data privacy, a recurring monetary

model, constant and frequent changes to service level agreements among others [23]. Con-

sequently, despite offering the capability to use DL in mobile devices and robots, a cloud

computing approach is sometimes ill suited for these systems due to the unreliability and

latency of network connections in robotics applications.

A competing approach is the edge computing paradigm, aiming to compute data as closely

as possible to the location in which it is generated using resources located at the edge of

the Internet, such as mobile phones or laptops, in order to reduce the volume and distance

that data must travel [18]. This approach is not heavily reliant on network connections but

computational resources at the edge are not guaranteed to be capable to comply with the

requirements demanded by mobile robotics applications. To enable this approach, there has

been an investment on the development of embedded computing boards, or System on Mod-

ules (SOMs), capable of providing heavy computational resources such as GPU acceleration

in field applications.

2.2 NVIDIA Jetson family

The NVIDIA Jetson devices are a set of SOM devices designed for edge computing. The

devices feature a software stack designed to immediately enable the development and deploy-

ment of various computational tasks, such as image processing with OpenCV, DL runtime

inference acceleration with TensorRT, CUDA enabled GPU acceleration and the Vision Pro-

gramming Interface library for computer vision or image processing algorithms on CPU

or accelerated by GPU or Programmable Vision Accelerator. These devices are developed

to enable AI applications based on the edge computing paradigm and their use in robotic

systems has begun to be adopted with promising results [24].
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The NVIDIA Jetson family includes:

• Jetson Nano, the entry-level model;

• Jetson TX2;

• Jetson Xavier NX;

• Jetson AGX Xavier, the higher end model.

Among these devices, the Jetson AGX Xavier is the most powerful one and the most

interesting case study for DL-based applications on board service robots.

2.2.1 NVIDIA Jetson AGX Xavier

The nature of the NVIDIA Jetson devices aligns with the goals and objectives of this

dissertation, to enable DL applications on mobile robotics employing the edge computing

paradigm. The NVIDIA Jetson AGX Xavier features a 512 core NVIDIA Volta GPU archi-

tecture and an 8 core ARM v8.2 64-bit Central Processing Unit (CPU). Other noticeable

features are the modules dedicated to the acceleration of DL and Computer Vision appli-

cations, two NVIDIA Deep Learning Accelerator (NVDLA) and two Vision Accelerators.

However, Bluetooth and WiFi are not natively implemented, complicating the interface with

external devices and systems, and the 32GB eMMC storage is a limitating factor due to the

memory that neural network weight files commonly require (YOLOv3 requires 248MB to

store its weights for example). Furthermore, two USB 3.0 ports is typically insufficient for

robotic applications as connections to mobile platforms, stereo cameras, laser range finders

among other common hardware interfaced via USB 3.0.

In sum, the NVIDIA Jetson AGX Xavier has a powerful computer architecture capable of

executing DL tasks on the edge [25] with low power consumption. However, the limited stor-

age memory and number of USB 3.0 ports are limitations and must be taken in consideration

during system design.
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Figure 2.1: Jetson AGX Xavier Developer Kit.

2.3 Deep Learning

AI is a hard to define concept and it can be difficult to classify something as AI or not.

Shane Legg and Marcus Hutter, leading machine learning researchers at Google’s DeepMind

Technologies, offer the following definition:

“Intelligence measures an agent’s ability to achieve goals in a wide range of envi-

ronments.” [26]

Machine Learning is defined by Tom Mitchell, researcher at the Carnegie Mellon Univer-

sity’s Machine Learning Department, as follows:

"Machine Learning is the study of computer algorithms that improve automati-

cally through experience." [13]

DL is then defined as a field of Machine Learning, referring to the multi-layer networks

applied. These models are based on Artificial Neural Networks (ANNs), initially devel-

oped by Warren McCulloch and Walter Pitts in 1943 [14], in an attempt to mimic artificial

intelligence through the concepts of neurons and connections.
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Figure 2.2: Linear Neuron.

2.3.1 Neurons, Layers and Networks

An artificial neuron is the basic element of ANNs. It is a mathematical function modelled

after biological neurons. A linear neuron is composed by a set of n inputs (x1, ..., xn), a set

of n weights associated to these inputs and a scalar value b, a bias. The output of a neural

network is a weighted sum y defined as:

y =
n∑

i=0

(xiwi) + b (2.1)

Artificial neurons can be arranged into groups, defined as layers. The use of multiple

layers, where the output of one layer is the input of the layer following it, provides the basis

for Deep Neural Networks. Data is processed by being inserted in the input layer, and the

results of that layer are then fed forward to the proceeding layers. Results can then be

collected at the output layer. A visual representation of this can be seen in Figure 2.3. Each

output neuron represents a class and the value computed on a neuron represents a confidence

score. For example, in the case of image classification, the confidence score of each output

neuron represents how confident the model is that the image contains an object of the class

represented by that neuron.

The end goal for a neural network is to develop a model capable of predicting a certain

quality based on the data used to train the network. The quality to predict is the label and

the input variables are the features. Confidence scores are typically normalized in a range

of [0, 1]. By setting a value, a confidence threshold, it is possible to interpret the results of

the output network, for instance, a network detects an object when the confidence score is

greater than 0.5.
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Figure 2.3: Three layered Neural Network.

Training a model is the gradual adjustment of every neuron’s set of weights and bias in

order to infer qualities correctly. To measure the quality of a model’s predictions, its loss

function is studied. There are many variations of loss functions, such as L1 and L2 losses:

• Mean Absolute Error, L1 = 1
N

∑
(x,y)∈D

(y − y′),

• Mean Square Error, L2 = 1
N

∑
(x,y)∈D

(y − y′)2,

wherein x is the dataset’s feature, y is the known label, y′ is the predicted value of the model

and D is the training dataset.

However, a combination of linear neurons assumes a linear model, and it is common the

need to predict a non-linear quality. In this case, a linear model cannot minimize the loss

functions and has unsatisfying results. In order to imbue the model with non-linearity, each

neuron’s weighted sum output is put through an activation function, σ. Thus, the final

output of a linear neuron, a, is the weighted sum, z, through the activation function:

a = σ(z) = σ(
n∑

i=0

(xiwi) + b). (2.2)

The mathematical properties of this activation function, σ, such as monotonicity or con-

tinuous differentiability, will impact the performance of the model. However, according to
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the No Free Lunch Theorem [27], it is impossible to, a priori, compare the performance of

any two activation functions.

2.3.2 Data Augmentation

A model’s performance is dependent on variation in data used for its training. The more

varied the training dataset is, the more robust the model is and is capable of generalizing,

providing better predictions to a wider range of data that was not part of the training

dataset.

Examples of data augmentation are cropping, scaling, flipping, color distortion among

others. The data augmentation strategy must be chosen carefully. For example, in a dataset

of cars it is possible to augment it by introducing data (images) with distorted colors or

flipped by the vertical axis, as cars generally exist with a variety of colors and can be oriented

in many directions, as shown in Figure 2.4. However, to introduce data augmentation via

color distortion to a training dataset designed to detect flowers could lead to decreased

performance, as shown in Figure 2.5, as most flowers tend to be a part of a strictly defined

set of colors, no blue roses exist for example. The use of translation, rotation and flipping

for data augmentation must also be judiciously used, as shown in Figure 2.6. While cars can

be oriented in many directions, stop signs exist in a strict orientation.

Figure 2.4: Data augmentation. The car image is resilient to flipping, slight rotation and

slight color distortion.
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Figure 2.5: Data augmentation. The image of a rose, despite being resilient to affine trans-

formations, is not resilient to color distortions.

Figure 2.6: Data augmentation. The image of a stop sign is resilient to slight rotations, but

isn’t resilient to flipping. No potS signs exist and as such cannot be generalized.

2.3.3 Quality of predictions

The quality of a model is commonly defined according to its Mean Average Precision

(mAP). A model’s predictions can be True Positive (TP), True Negative (TN), False Positive

(FP) or False Negative (FN). The ratios of these predictions will define the model’s quality

according to its Accuracy and Precision. A model’s accuracy is defined as

Accuracy =
True Positives + True Negatives
Total number of predictions

. (2.3)

A model with accuracy 1 has no false positives nor false negatives. Its precision, describing

the proportion of correct predictions from all predictions, is defined as

Precision =
True Positives

TP + FP
. (2.4)
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Figure 2.7: Receiver Operating Characteristic Curve example [1].

So a model that produces no false positives has a precision of 1. Another relevant metric

is a model’s recall

Recall =
TP

TP + FN
. (2.5)

A model producing no false negatives has a recall of 1.

An ideal model has a value of 1 for each of these metrics. However, actions to increase

a model’s precision tend to decrease its recall and vice-versa. If the confidence threshold

increases in order for the model to produce less false positives, the number of false negatives

tends to increase, increasing precision but decreasing recall. If the confidence score is de-

creased in order for the model to produce less false negatives, the number of false positives

tends to increase, increasing recall but decreasing precision.

A Receiver Operating Characteristic (ROC) curve plots a model’s performance for various

classification thresholds as seen on Figure 2.7. It plots two paramenters: True Positive Rate

and False Negative Rate. These values can be defined as follows:

True Positive Rate =
TP

TP + FN
, (2.6)

False Positive Rate =
FP

FP + TN
. (2.7)
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Figure 2.8: Intersection Over Union.

To qualify different ROCs performances, it is common to use the Area Under ROC Curve

(AUC) metric. This metric represents the probability, between [0, 1], that a random positive

example will score higher than a random negative example, producing more true positives

and less false positives. A model with AUC of 0 has strictly incorrect predictions and a

model with AUC of 1 has strictly correct predictions.

A common metric to qualify a model’s performance for object detection tasks is the

Intersection Over Union (IOU). To compute this metrics, two things are required: the

ground truth bounding box of the object and the model’s bounding box prediction of the

object. If the two bounding boxes overlap, the model has detected the object perfectly ac-

cording to the ground truth. If the boxes have no overlap, the model has failed to detect

the object. This metric is common for the evaluation of predictions by YOLO models, to be

discussed in subsection 2.4.3.

Average Precision (AP) summarizes a ROC curve as the weighted mean of precisions

achieved at each threshold, or IOU, where each precision is weighted by the increase in recall

from the previous threshold,

AP =
∑
n

(Rn −Rn−1)Pn, (2.8)

where Pn and Rn are the precision and recall at the nth threshold. Calculating the AP

at various values for IOU for each class of the model, it is possible to compute the mAP.

This metric is commonly applied for challenges and competitions for deep learning applied

to computer vision, such as COCO [28] or PASCAL [29].
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Figure 2.9: Classification, Detection and Segmentation [2].

2.4 Deep Neural Networks Applied to Computer Vision

Computer Vision is a branch of computer science dedicated to the study of how computers

can obtain an understanding of digital imagery with sub-fields such as object detection,

image restoration and 3D pose estimation with applications in medicine [30], industry [31]

and military [32]. DNNs, specifically Convolutional Neural Networks (CNNs), have been

applied to computer vision with main applications in image classification, detection and

segmentation.

Image classification is the task of assigning a label to an input image from a fixed set of

classes. No information on the position of the object in the image is output. Image detection

is the labelling of one or more objects in an image as well as providing coordinates and an

area of where the object is in the input image. Image segmentation is the partitioning of

an image into multiple sets of pixels, or segments, where each set represents an object or

feature in the image. The computational complexity of each task increases with the amount

of information extracted. That is, image segmentation is more complex than image detection

which is more complex than image classification.

2.4.1 AlexNet

AlexNet, the winner of the 2012 ImageNet contest, features 60 million parameters and

650,000 neurons. The size of this network would make conventional training of the network

prohibitive but Kriezhevsky et al. circumvented this issue with the use of GPUs to accelerate

training [3]. The success of AlexNet provided a fundamental basis for the use of deeper and

bigger CNNs trained on large datasets and for their use on larger scale and higher resolution

images. AlexNet is influential in computer vision, and as such must be included in any

revision of the state of the art in computer vision.
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Figure 2.10: AlexNet architecture [3].

The network is composed by eight layers, five convolutional layers and three fully connected

layers, with the output of the last layer feeding into a 1000-way softmax layer, producing a

distribution of confidence values for each possible output label. The first convolutional layer

filters the input image, with dimensions 224×224×3 with 96 kernels of size 11×11×3. The

output of this first layer is fed into the input of the second convolutional layer and is filtered

by 256 kernels of dimensions 5×5×48. The third convolutional layer has 384 kernels of size

3× 3× 256. The fourth convolutional layer has 384 kernels of size 3× 3× 192 and the fifth

convolutional layer has 256 kernels of size 3× 3× 192.

2.4.2 R-CNN

Regions with CNN features (R-CNN) employs three modules for object detection. The

first generates a set of class-independent region proposals, where the likelihood of an object

exists is high. The second module is a large CNN designed to extract a fixed length feature

vector from each candidate region. The third module is a set of class specific linear Support

Vector Machine, associating each candidate region with an object class. A 4096-dimensional

feature vector is extracted from each candidate region employing a Caffe implementation of

the CNN employed on AlexNet for feature extraction, requiring image data in the candidate

region to be resized to a dimension of 227× 227 pixels.

Employing a large CNN requires a vast amount of training data that is usually insufficient.

A common solution for this problem is to apply unsupervised learning, where the classes of

the training dataset are unknown. Girshick et al. employ a supervised pretraining on a large

auxiliary dataset and complement it with domain-specific fine-tuning on a small dataset,

concluding that this approach improves mAP performance by 8 percentage points, scoring
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Figure 2.11: R-CNN architecture [4].

a mAP of 54% on the VOC 2010 dataset

2.4.3 YOLO

YOLO is a a DNN for object detection. It is based on one convolutional network that

accepts as input the entire image, predicting multiple bounding boxes and class probabilities

for detected objects in one operation to the image hence You Only Look Once, particularly

in contrast with R-CNN models. This approach simplifies and reduces the network’s size and

has lead to faster executions times compared to other contemporaneous networks such as R-

CNN [5]. This approach of inputting the whole image rather than applying a sliding window

over it means that the model applies global contextual information rather than information

limited by a sliding window. However, YOLO based models are known to struggle with the

detection of smaller scale objects.

Object detection in a YOLO model begins with the segmentation of the input image into

an S×S grid, where each grid cell is responsible for the detection of an object whose center

is located in it. Each cell predicts B bounding boxes and confidence scores for these boxes,

reflecting the system’s confidence on the presence of an object in the cell. Confidence is

formally defined as Pr(Object) ∗ IOU truth
pred , where Pr(Object) is the probability of an object

in the box and IOU truth
pred how accurate the bounding box predicts the object. A bounding

box is composed of 5 predictions: x, y, w, h and confidence. (x, y) represents the center of

the bounding box relatively to the grid cell, (w, h) represent then width and the height of

the bounding box. Each cell also predicts C conditional class probabilities, the probability

of a class if an object is assumed to exist, that is P (Classi|Object). By computing

Pr(Classi|Object)× Pr(Object)× IOU truth
pred = Pr(Classi) ∗ IOU truth

pred (2.9)

class-specific confidence scores for each bounding box are obtained. The output of the

network is a function of the grid dimensions S, the number of bounding boxes B and the
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Figure 2.12: YOLOv1 Model. Segmentation of image into S × S grid cells, bounding boxes

and confidence for each cell, class probability for each cell and final detections [5].

Figure 2.13: YOLOv1 Architecture [5].

number of labelled classes C, concluding to a S×S× (B ∗ 5+C) sized tensor. This process

is displayed in Figure 2.12.

The network’s architecture Darknet, inspired by GoogLeNet’s model, is composed by 24

convolutional layers followed by 2 fully connected layers, with the use of 1 × 1 reduction

layers before 3 × 3 convolutions, taking advantage of former theoretical framework [33].

For the case of the evaluation of the PASCAL VOC dataset [29] composed by 20 classes,

a 7 × 7 grid and 2 bounding boxes per grid cell, that is S = 7, B = 2, the output is a

7× 7× (2 ∗ 5 + 20) = 7× 7× 30 tensor.
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Figure 2.14: YOLOv2 bounding boxes predictions [6].

YOLOv2 [6] improves upon this model. It introduces the mechanism of anchor boxes for

detection. Rather than implementing object detection as the result of fully connected layers

with bounding boxes representing detection as relative coordinates to grid cells, (x, y, w, h),

the result is now the deformation from a set of base bounding boxes, or anchor boxes, required

to form a bounding box encompassing the detected object. However, the dimensions of these

anchor boxes have an impact on the quality of the model’s predictions, so these values must

be carefully chosen or be trained alongside the model.

Another improvement is the introduction of convolutional layers downsampling the input

image by a factor of 32, meaning that if an image with dimensions of 416× 416 is inputted

to the model, the resulting grid cell with dimensions S × S will have S = 13, or 13 × 13.

Given that for object detection it is common for an object to be in a middle, an odd value

for S will lead to one grid cell in the center of the image responsible for the detection of the

centered object, as opposed to a group of four grid cells responsible for detection near the

center.

YOLOv2 predicts 5 bounding boxes per grid cell. Each prediction is composed of 5

coordinates: (tx, ty, tw, th, to). If the cell is offset from the top left corner of the image by

(cx, cy) and the anchor box has width and height (pw, ph), then the bounding box prediction

corresponds to:
bx = σ(tx) + c

by = σ(ty) + cy

bw = pwe
tw

bh = phe
th
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Figure 2.15: Darknet-53 [7].

To improve detection at different scales, at every 10 training batches, image dimensions

are randomly chosen from a set of multiples of 32, the downsampling factor of the network,

with minimum dimensions 320 × 320 and maximum dimensions 608 × 608. These different

dimensions allow the model to train from features with different scales, placating the issue

with small scale detections displayed in the YOLOv1 model.

Another change was the Darknet network model. It now implements 19 convolutional

layers and 5 maxpooling layers creating the Darknet-19 network for feature extraction.

YOLOv3 [7] is the following iteration of YOLO-styled models. This model predicts detec-

tions at 3 different scales, extracting features from each scale. The base feature extractor is

composed by 53 convolutional layers and the implementation of residual layers, forming the

Darknet-53 network, displayed in figure 2.15. These changes improved the detection of small

scale objects with a decline in the detection of medium and large size objects, comparatively

to previous YOLO models.
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YOLOv4 [34], developed by Bochkovskiy et al. while previous versions of the YOLO model

were developed by Redmond et al., aims to generalize fast object detectors in production

systems, verifying the influence of Bag-of-Freebies and Bag-of-Specials methods, as well as

optimizations for parallel computations introducing modified state of the art methods for

object detection to more general single GPU training systems.

Bochkovskiy et al. define “bag of freebies” as “methods that only change the training strat-

egy or only increase the training cost”, offering data augmentation as an example. “Plugin

modules and post-processing methods that only increase the inference cost by a small amount

but can significantly improve the accuracy of object detection” are defined as “bag of specials”,

modules such as attention mechanisms [35] or enlarging the receptive field for each pixel [36].

The implementation of these methods resulted in an increase of AP scores by 2.7% on the

MS COCO dataset, for an increase of 0.5% in computation. The result of this work is a

state of the art detector available for conventional GPUs.

YOLOv5 [37] has been announced by Ultralytics. However, no clear relationship exists

between this entity and the developers of the preceding YOLO versions, either Redmond

et al. or Bochkovskiy et al., nor do any peer reviewed articles regarding the development

of YOLOv5. Consequently, this version of YOLO was not taken into consideration for this

dissertation.

2.5 SOMs in Edge Computing Applications

SOMs applied to DL-based applications using an edge computing paradigm typically have

the following characteristics:

• A GPU-based application to be used on the edge;

• hardware (i.e., CPU, GPU) limitations due to concerns about power consumption and

form factor;

• requirements to provide results in real-time.

An application developed to detect drowsiness in drivers has real-time requirements, as a

driver could fall asleep at any moment, endangering themselves and others, and has been

developed by Reddy et al. [38], using an AlexNet-like neural network for feature extractions
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due to a faster inference when compared to GoogleNet [39] and ResNet. Their application

was deployed for use on an Jetson TK1 board, a SOM with 192 CUDA cores on a NVIDIA

Kepler GPU architecture with a base clock speed of 870 MHz and a ARM Cortex-A15 CPU,

due to its low power consumption and lower financial investment. The study demonstrated

that detection of facial features, indicating a person’s drowsiness, can be executed on the

edge with low power consumption and fulfilling real-time requirements with a SOM.

Gu et al. [40] have developed a robotics application for the collection of tennis balls.

This application uses a DL-based service to detect tennis balls in the environment as well

as another DL-based method to minimize travel costs on path planning, abstracting the

problem as a Travelling Salesman Problem and utilizing Pointer Network models to solve it.

For deployment, a Jetson TX1 SOM board was used, featuring a NVIDIA Maxwell GPU

architecture with 256 CUDA cores and a 4 core ARM Cortex-A57 CPU complex. Detection

of tennis balls was done with a YOLOv1 model, using a USB camera to capture images of

the environment and a Kinect depth camera to produce point cloud data of the environment

in order to compute the coordinates of each tennis ball. It has been concluded that a YOLO

model is capable of detecting objects in a mobile robotics environment as well as that other

DL-based applications, such as Pointer Networks, can be executed on the edge under low

power conditions with real-time results.

Sa et al. [41] have implemented a Jetson TX2, 256 CUDA core on a NVIDIA Pascal GPU

architecture and a 4 core ARM Cortex-A57 CPU to execute semantic segmentation of multi-

spectral images in order to evaluate the conditions of weeds in agricultural environments

and to be carried in a micro aerial vehicle. A VGG16 [42] was modified for pixel wise

segmentation of a multi-spectral image, classifying each image pixel as only crop, only weed

and both crop and weed. A cloud computing approach was not implemented due to network

latency and unreliable network connection. As such, the edge computing approach was

implemented with the Jetson TX2, capable of providing results in real-time with a power

consumption of 14 W during maximum work conditions. The Jetson TX2’s metrics were

compared with the results of a NVIDIA Titan X GPU: the Titan X performed 3.6 times

faster but consumed 250 W, around 17.8 times more power than the Jetson TX2. The

conclusion is a field deployed SOM with DL-based capabilities with computations executed

locally, demonstrating low power consumption and real-time results.
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These recent works have obtained positive results from the use of various SOMs on the edge

with a low power consumption as well as the integration of the system on mobile platforms

such as unmanned aerial vehicles or ground platforms. This provides a basis of comparison

as well as precedent for the implementation of DL-based services of mobile systems on the

edge under low power consumption conditions to be explored over this dissertation.

2.6 Summary

An edge computing approach is concordant with mobile service robots applications and

the Jetson AGX Xavier was designed with this paradigm for local computations of AI ap-

plications. A general overview of the state of the art on DL applied to computer vision

was discussed and it can be concluded that TinyYOLOv4 and TinyYOLOv3 models involve

lighter computations than other suitable models such as R-CNNs while providing appropriate

mAP metrics.

The implementation of other SOMs, such as the Jetson TX1, TX2 and TK1, on various

applications on the edge to enable DL-based capabilities provides insights into this disserta-

tion, such as results for facial feature extraction and deployment of YOLO-style models on

mobile platforms, as well as a basis of comparison for the system to be implemented over

this dissertation.

A study of the Jetson AGX Xavier’s performance on object detection in previously gath-

ered data and real-time data, and performance evaluation in CPU and GPU intensive com-

putational tasks, are the logical next topics of this dissertation, which are addressed in the

following chapter.
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3 Benchmark Study

This chapter compares the computational resources and performance of a consumer-grade

laptop, an ASUS U36S with traditional CPU and GPU architecture, and the Jetson AGX

Xavier. By performing a variety of tasks designed to stress different capabilities in each

system, it becomes possible to contextualize the Jetson AGX Xavier with the resources and

systems previously employed at the ISR-UC for mobile robotic systems.

3.1 Conventional system using a laptop

The ASUS U36S is a discontinued laptop manufactured in 2011 that has been used to

drive mobile robots in research projects developed at the ISR-UC. It features as CPU an

Intel i5 2450M [43] with the following specifications:

• 32 nm lithography,

• Two CPU Cores with four total threads

• Maximum 3.10 GHz and base 2.50 GHz frequency,

• Average Power Consumption of 35 W under high-intensity workloads.

The system also features a NVIDIA GeForce 610M [44] GPU:

• 48 CUDA Cores,

• 1024 MB of DDR3 Memory,

• NVIDIA Fermi architecture, supporting CUDA up to CUDA 9.0.
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The Fermi GPU architecture has since been unsupported by NVIDIA and as such is incom-

patible with CUDA 10.x versions. DL-based computations are typically GPU accelerated

and Darknet requires at least CUDA 10.2 [45], rendering the ASUS U36S incompatible with

the DL-based applications intended to be developed over this dissertation. Consequently, for

the purposes of contextualizing the Jetson AGX Xavier’s GPU performance for DL-based

tasks, the NVIDIA GeForce 1070 will serve as basis for comparison. This GPU features [46]:

• 1920 CUDA Cores,

• 8 GB of DDR5 Memory,

• NVIDIA Pascal architecture, supporting CUDA Software Development Kit (SDK) ver-

sions from 8.0 to, as of time of writing, 11.5,

• Average power consumption of 150 W.

3.2 System using NVIDIA Jetson AGX Xavier

The NVIDIA Jetson AGX Xavier integrates:

• A CPU complex composed of four clusters of two NVIDIA Carmel ARMv8.2 CPUs,

with each core having individual L1 cache memory, L2 cache memory shared per cluster

and L3 cache memory shared by the complex,

• 512-CUDA core GPU with Volta architecture with 64 Tensor Cores – GPU cores

designed to provide superior deep learning performance over regular CUDA cores [47],

• Two Deep Learning Accelerator (DLA) engines, a specialized architecture for DL in-

ference operations [48],

• 32 GB 256-bit LPDDR memory,

• 32 GB eMMC 5.1 storage memory,

• Power budget supporting power consumption from 10 W up to 30 W.

The Volta GPU architecture supports CUDA 10.2 and cuDNN 8.0.2, a GPU-accelerated

library of primitives for deep neural networks [49], two conditions required for Darknet.

The more modern GPU architecture provides the Jetson AGX Xavier with computational
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resources for DL applications and the multi-core CPU complex is suitable for the multi-

process nature of mobile robotics applications, consequently, it is to be expected that the

Jetson AGX Xavier will outperform the ASUS U36S on CPU and GPU applications namely

integer or floating-point operations and DL-based applications.

3.3 Testbed description

The open-source benchmark tool UnixBench [50] provides an indicator of the performance

of an Unix system in tasks such as integer and floating point operation, process spawning,

inter-process communication and data transfer. This benchmark’s suit test scores compare

the tested system with the baseline system "George", a SPARCstation 20-61 with 128 MB

RAM, a SPARC Storage Array, and Solaris 2.3, whose ratings were set at 10.0, ever since

1995. As such, a test score of 100.0 indicates that there is a 10x performance enhancement

compared to "George". The test suite is composed of the following tests:

• Dhrystone: Designed to measure CPU performance, mainly based on string handling

operations,

• Whetstone: Designed to measure CPU performance, based on integer and floating-

point C operations,

• Execl Throughput: Designed to measure the speed of CPU process context swaps,

• File Copy: Designed to measure the rate at which data can be transferred between

files,

• Pipe Throughput: Designed to measure performance of inter-process communication

of 512 bytes via a pipe,

• Process Creation: Designed to measure the cost of spawning a child process and ter-

minating it,

• Shell Scripts: Quantifies the number of times a process can start a set of shell scripts

designed to manipulate a data file,

• System Call Overhead: Designed to measure the computational cost of operating sys-

tem calls.
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To complement the UnixBench tests, both systems were tasked and evaluated on object

detection using a YOLOv3 model pre-trained on the Common Objects in COntext (COCO)

dataset. A YOLOv3 model was used over a YOLOv4 model due to the lower GPU and

CUDA requirements, facilitating the execution of a DL-based application on both systems.

The UnixBench test suite was executed three times with the following Linux bash com-

mand:

1 $ for i in {1..3}; do mkdir -p ~/unixbench -testing/$i; ./run.sh --output

~/unixbench -testing/$i; done

Results were stored and analyzed on a Comma-Separated Value (CSV) document.

As robotic algorithms’ tend to be composed of long sequences of mathematical operations,

particular attention is assigned to CPU and GPU performance.

3.4 Comparative results and discussion

The testbed was executed on both systems and the results aggregated and analyzed.

Observing the results in Tables 3.1 and 3.2, indicating the single-core and multi-core test runs

visualized in Figures 3.1 and 3.2, it can be concluded the Xavier has a superior performance

in the more relevant CPU tests, namely the Dhrystone and Whetsone tests, with 1.42x and

1.52x improvements, respectively, and an inferior performance on tests based on operating

system calls and data transfer operations.

To test the performance of GPU-accelerated DL based applications for computer vision,

various pre-trained YOLO models, acquired on Alexey Bochkovskiy’s GitHub repository

[45], were executed on both systems to perform object detection on the COCO 2017 dataset

[28].

Results on the ASUS U36S were unobtainable as the system implements a NVIDIA

GeForce 610M GPU, unsupported by CUDA 10.2, making it incompatible with GPU-

accelerated YOLO models. To circumvent this issue, CPU inference was attempted but

this approach led to the laptop’s operating system shutting down mid-execution of the test.

Similar results were noted on real-time object detection, demonstrating the inability of the

ASUS U36S to execute DL based services.
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Table 3.1: UnixBench results, one parallel process.

ASUS U36S Jetson AGX Xavier

Dhrystone 2 using register variables 2655.8 3783.9

Double-Precision Whetsone 414.8 630.9

Execl Throughput 638.8 286.3

File Copy 1024 bufsize 2000 maxblocks 1524.0 1346.0

File Copy 256 bufsize 500 maxblocks 1088.9 971.3

File Copy 4096 bufsize 8000 maxblocks 2835.8 2201.3

Pipe Throughput 866.1 627.3

Process Creation 871.0 123.9

Shell Scripts (1 concurrent) 2011.7 781.9

Shell Scripts (8 concurrent) 3317.4 1592.0

System Call Overhead 605.2 354.0

Figure 3.1: Unix Bench results, one parallel process.
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Table 3.2: UnixBench results, four parallel processes.

ASUS U36S Jetson AGX Xavier

Dhrystone 2 using register variables 5029.6 11506.1

Double-Precision Whetsone 1408.4 2425.8

Execl Throughput 1996.7 804.6

File Copy 1024 bufsize 2000 maxblocks 2112.9 1223.7

File Copy 256 bufsize 500 maxblocks 1446.2 810.2

File Copy 4096 bufsize 8000 maxblocks 3997.4 2467.1

Pipe Throughput 2176.7 2417.7

Process Creation 1907.3 530.0

Shell Scripts (1 concurrent) 3935.6 1817.2

Shell Scripts (8 concurrent) 3682.5 1676.2

System Call Overhead 1798.4 852.9

Table 3.3: Images Per Second processed by various Darknet style neural networks and power

consumed. Results from GeForce GTX 1070 GPU.

Network Name Frames Per Second Average GPU Power Consumption (W)

TinyYOLOv3 131 100

YOLOv3 41 170

TinyYOLOv4 125 100

YOLOv4 19.2 180

Given the nature of the results obtained on object-detection on the ASUS U36S, the test

was conducted on a different desktop machine with a AMD Ryzen 5 3600 6 Core CPU and

a NVIDIA GeForce GTX 1070 GPU.

Figure 3.3 is a set of histograms describing the occupancy of the GPU, the percentage

of time over the past sample period during which at least one kernel was executing on the

device, with a sampling period of one second. Table 3.3 displays the time elapsed for object

detection on the COCO 2017 dataset.
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Figure 3.2: Unix Bench results, four parallel processes.

(a) TinyYOLOv3 and YOLOv3.

(b) TinyYOLOv4 and YOLOv4.

Figure 3.3: GPU metrics of the GeForce 1070 during object detection on the MSCOCO 2017

dataset.
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Table 3.4: Default power budgets [51].

Power Budget (W) Active CPU Cores Max CPU Frequency (MHz) Max GPU Frequency (MHz)

10 2 1200 520

15 4 1200 670

30 8 1200 900

From this data, it is concluded that the GeForce 1070 GTX has the computational re-

sources to process TinyYOLOv3 and TinyYOLOv4 models with strict real-time restrictions.

YOLO models are also possible to be executed in real-time but present a higher load on

the system, with GPU occupation values majorly in the 90-100% range. Power consump-

tion metrics, as seen on Figure 3.3, display prohibitive values for every YOLO-based model,

concluding that a traditional general purpose computer with GPU is not feasible for use in

mobile service robots.

To test real-time applications, object detection was implemented on a video stream pro-

vided by a USB web camera. On every network tested, on the computer based on the

GeForce 1070 GPU was used to process an average of 5 Frames Per Second (FPS). It can

then be concluded that the limiting factor is not GPU capability, but data transfer over USB

and miscellaneous overhead costs.

The same models were executed on the AGX Xavier on varied CPU and GPU clock

frequencies designed for a consumed power budget of 10 W, 15 W and 30 W. Table 3.4

describes the CPU and GPU frequency and active CPU cores.

From the histograms represented in Figures 3.4, 3.5 and 3.6, demonstrating GPU occu-

pancy, it is concluded that YOLOv3 and YOLOv4 nearly saturate the GPU, occupying

consistently mostly 90% of the GPU, regardless of power mode. Object detection with

TinyYOLOv3 and TinyYOLOv4 models do not saturate the GPU and display a more evenly

distributed GPU occupation. However, TinyYOLOv4 tends to mostly occupy the GPU for

over 90% between samples.

From Tables 3.5, 3.6 and 3.7, which show the average frame rate (in FPS) the power

consumption for object detection for the AGX Xavier in various power modes, it can be seen
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(a) TinyYOLOv3 and YOLOv3, 10W.

(b) TinyYOLOv4 and YOLOv4, 10W.

Figure 3.4: AGX Xavier’s GPU statistics during object detection on the MSCOCO 2017

dataset, 10W power mode.

Table 3.5: Images Per Second processed by various Darknet style neural networks and power

consumed. AGX Xavier, 10W power mode.

Network Name Frames Per Second Average GPU Power Consumption (W)

TinyYOLOv3 12.9 1.2

YOLOv3 4.2 2.3

TinyYOLOv4 15.4 1.3

YOLOv4 2.1 2.3
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(a) TinyYOLOv3 and YOLOv3, 15W.

(b) TinyYOLOv4 and YOLOv4, 15W.

Figure 3.5: AGX Xavier’s GPU statistics during object detection on the MSCOCO 2017

dataset, 15W power mode.

Table 3.6: Images Per Second processed by various Darknet style neural networks and power

consumed. AGX Xavier, 15W power mode.

Network Name Frames Per Second Average GPU Power Consumption (W)

TinyYOLOv3 29.5 2.3

YOLOv3 9.3 4.3

TinyYOLOv4 27.0 2.2

YOLOv4 4.7 4.8
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(a) TinyYOLOv3 and YOLOv3, 30W.

(b) TinyYOLOv4 and YOLOv4, 30W.

Figure 3.6: AGX Xavier’s GPU statistics during object detection on the MSCOCO 2017

dataset, 30W power mode.

Table 3.7: Images Per Second processed by various Darknet style neural networks and power

consumed. AGX Xavier, 30W power mode.

Network Name Frames Per Second Average GPU Power Consumption (W)

TinyYOLOv3 33.3 2.8

YOLOv3 11.2 6.8

TinyYOLOv4 35.7 2.9

YOLOv4 6.0 7.9
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that TinyYOLO models have decreased Average Power Consumption and greater FPS when

compared to their YOLO counterparts.

From these results it is concluded that real-time object detection can be executed with

power consumption up to 10 W in the NVIDIA Jetson AGX Xavier. TinyYOLOv4 scored

the FPS and the lowest power consumption leading to the conclusion that a TinyYOLOv4

model should be implemented in the system for DL applied to Computer Vision purposes.

3.5 Summary

The Jetson AGX Xavier’s CPU complex has an approximate 2x improvement on integer

and floating-point operations compared to traditional consumer-grade computer architec-

tures. The Jetson AGX Xavier’s GPU is capable of executing various YOLO and TinyYOLO

models without saturation on 15 W and 30 W power modes and with GPU saturation on

a 10 W operation mode. After comparing performance metrics such as FPS on execution

of varied YOLO models, it is concluded that due to the highest FPS and low GPU power

consumption, TinyYOLOv4 is the most suitable model to base a DL application on mobile

systems.

After the contextualization provided in this chapter of the Jetson AGX Xavier with tradi-

tional consumer-grade computer architectures used at the ISR-UC, it is possible to design a

mobile robotics system implementing a computational workload composed of typical robotics

algorithms for mapping, localization and navigation as well as a concurrent GPU and DL-

based workload. This system is studied and explored in the next chapter.
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4 Proposed System

This chapter intends to describe the various elements, hardware and software, composing

the robotic system to be implemented for this dissertation and a contextualization of these

elements in the relevant state of the art.

4.1 Overall System Architecture

The system comprises the SOM Jetson AGX Xavier, the Pioneer P3-DX mobile robot and,

the ZED 2 stereo camera. If the point cloud data produced by the ZED 2 camera proves to

be unsuitable for navigation, the Hokuyo URG-04LX laser range finder can be implemented

into the system, generating laser scan data for the robot navigation algorithms. The Pioneer

P3-DX is the mobile platform responsible for the locomotion of the system. Data of the

environment is provided by the ZED 2 stereo camera: a point cloud describing the distance

of various objects to the system and RGB image captures of the surrounding environment.

The Jetson AGX Xavier is to process the point cloud produced by the ZED 2 camera using

various robotics algorithms, such as Simultaneous Localization and Mapping (SLAM) [52]

and Adaptive Monte Carlo Localization (AMCL) [53] for simultaneous mapping and local-

ization, and for robot navigation with respect to an a priori map, as well as to perform

object detection on the captured images via a TinyYOLOv4 model trained for the detection

of faces with or without facial masks. The Jetson AGX Xavier is also responsible for the com-

munication with the Pioneer P3-DX platform’s microcontroller enabling locomotion using

the AriaCoda library [54], based on the previous ARIA library maintained by OmronAdept

Technologies, Inc.

These system software components are integrated by using the ROS middleware, with vari-

ous ROS nodes responsible for the communication between the multiple processes computing
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Figure 4.1: Pioneer P3-DX mobile robot.

Figure 4.2: ZED 2 Stereo Camera.

data and system components.

4.1.1 Pioneer P3-DX

The Pioneer P3-DX is a now discontinued small lightweight two-wheel two-motor differ-

ential drive robot, designed for research and industrial use, formerly manufactured by Adept

Technologies, now Omron Adept after Omron acquisition of Adept Technologies in 2015 [55].

It is a 9 kg, capable of reaching speeds of up to 1.6 m/s, with an 8 to 10 hours of operational

time supported by up to three 12 V lead-acid batteries, each with a capacity of 9 Ah. This

model has been used for research projects conducted by multiple students and researchers at

ISR-UC, e.g. [56] [57] [58] [59], and will be used in this dissertation as a platform example

for the implementation of AI methods based on DL on service robots.

4.1.2 ZED 2 Stereo Camera

The ZED 2 is a stereo camera providing high definition three dimensional video and neural

depth perception of the environment [60], powered over Universal Serial Bus (USB) 3.0. It

is capable of capturing depth up to 20 meters with a frame rate as high as 100 FPS and a
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Field of View (FOV) of up to 110º(H) x 70º (V). Its SDK implements visual SLAM in order

to track its position and orientation in space and has native support for the NVIDIA Jetson

device family, including the Jetson AGX Xavier.

The ZED 2’s deep learning support applied to robotics makes it a powerful device for the

purposes not only of the system studied in this dissertation, but as well as for future robotic

applications developed at the ISR-UC.

4.2 System Integration

The Jetson AGX Xavier was affixed with velcro straps to a platform one meter above

the Pioneer P3-DX as seen on Figure 4.3a. A stand for the ZED 2 has been 3-D printed,

using schematics available on the Thingiverse repository [61], and affixed to the Jetson AGX

Xavier’s carrier board.

The Pioneer P3-DX microcontroller, responsible for the actuators and sensors in the plat-

form, and the ZED 2 camera are connected to the Jetson AGX Xavier via USB 3.0. In order

to enable teleoperation with a Wii game console controller via Bluetooth and local network

communication an Intel 8265 M.2 Wireless Network card was integrated. The system can

then be interacted in real time by a computer connected to the same local network as the

Jetson AGX Xavier by remotely connecting to a Virtual Network Computing (VNC) server

set up on the Xavier.

A filesystem derived from Ubuntu 18.04, part of JetPack 4.4 [62], and ROS Melodic

middleware suite were installed in the Jetson AGX Xavier in order to provide a software

basis for the multiple algorithms implementing the system’s functions. The ROS system is

depicted in Figure 4.4. The ROS nodes can be described as follows:

• The zed2 node is responsible for publishing data produced by the ZED 2, such as

visual RGB data of the surrounding environment and constructed point cloud over the

rgb/image_rect_color and point_cloud/cloud_registered topics, respectively;

• the ROSARIA, move_base, amcl, estop and map_server nodes are responsible for

issuing motion directives to the Pioneer P3-DX’s microcontroller and for the mapping,

localization and navigation of the system in the environment;
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(a) Side view of the system. (b) Top down view of the system.

Figure 4.3: Service robot prototype.

• the wiimote node is responsible for Bluetooth communication with a Wii game console

remote to be used for teleoperation of the mobile platform;

• the urg_node is responsible for aggregating the data collected by the Hokuyo laser

rangefinder;

• the RGB_Depth_DL node that subscribes to topics published by the zed2 node and

executes the YOLOv4 model that detects faces with and without facial masks, as

well as the computation of distances between detections, verifying social distancing

measures.

Powering the Jetson AGX Xavier from the robotic platform’s batteries proved to be labo-

rious due to tight electrical requirements for proper powering of the SOM device:

• An input voltage between 9 and 19 V;

• the input voltage cannot suffer fluctuations greater than 0.5 V/s.

Power efficiency and voltage fluctuation are both inversely proportional with the input

voltage, meaning that energy efficiency is higher with lower voltages and that more pro-

nounced deviations in the input signal occur with lower voltage supply. Therefore, there is a

trade-off: to choose a suitable voltage in order to produce a stable power signal (dV
dt
≤ 0.5V/s)
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Figure 4.4: ROS workspace composed by various nodes responsible for sensors, actuators

and data processing.

while maximizing efficiency. To note, during system boot-up and during the instantiation

of the ROS system multiple processes start up in a limited time frame, causing significant

current spikes and voltage drops.

The first explored approach was to power the Jetson AGX Xavier with the 12 V lead acid

batteries that power the Pioneer P3-DX mobile platform. This approach could not provide

a stable voltage signal in laboratory tests, despite measures to enhance the electrical circuit

with the implementation of a DC-DC converter, an electrolytic 4.7 mF capacitor and a 10

µF plastic dielectric capacitor. Despite improving the battery’s output voltage by reducing

voltage deviations, the Jetson AGX Xavier’s electrical requirements could not be satisfied

with this approach as the embedded computer could not boot successfully due to sudden

voltage drops as seen on Figure 4.5.

Therefore, a dedicated power source for the Xavier was implemented. Two 12 V lead-acid

batteries in series, producing a 24 V voltage source, modulated down to 18.5 V via the

DC-DC converter and both capacitors connected in parallel with the Xavier’s input power

port. This electrical montage provided a suitable power signal for operation of the Jetson

AGX Xavier with a maximal GPU frequency of 670 MHz, corresponding to the 15 W power

budget as per Table 3.4. Its schematic is included in Annex A.
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Figure 4.5: Voltage drops during laboratory tests. 2 Volts per division. The output voltage

of the DC-DC converter is in yellow and the capacitor voltage, parallel to the Jetson AGX

Xavier power port, is in cyan.

4.3 Preliminary Functional Tests

All hardware was successfully integrated into a cohesive system. The Pioneer P3-DX

microcontroller, the ZED 2 camera and the Hokuyo laser range finder are connected to the

Jetson AGX Xavier via a USB 3.0 hub. The RosAria [54] library was built from source

and installed, allowing the interface of the Pioneer P3-DX platform from the Jetson AGX

Xavier. The Intel 8265 M.2 Wireless Network card operates correctly, providing Bluetooth

communication and remote desktop streaming via a VNC server. The RVIZ viewer, a 3D

visualization tool integrated in ROS, also executes correctly on the system, allowing the

visualization of the environment map, sensor input data and to set target poses in the

mapped environment, providing target navigation poses.

Environment data for the navigation stack was aggregated by the point cloud generated

by the ZED 2 stereo camera. This 3D data was collapsed into 2D data, on a plane parallel

to the floor, in order to be processed by the mapping stack. However, this approach did not

lead to acceptable navigation in the environment: navigation around corners and through

tight corridors would occasionally lead to collisions, risking serious damage to the system.

Consequently, the Hokuyo laser range finder is used to provide reliable 2D data of the

surrounding environment. This approach lead to more robust navigation.
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Darknet [45] was built from source with GPU, CUDNN [49] and OpenCV support. To

facilitate the implementation of Darknet-based YOLO-style models in C++ applications,

the open-source third-party library DarkHelp [63] was installed and successfully tested.

Remote desktop streaming with a 15 W power budget, with 4 active CPU cores, was also

successfully implemented but had issues: difficult user interface and data visualization due to

low frame rate remote desktop streaming. To provide a stable and responsive user interface

with the system, the power budget was increased to accommodate the multi-process system

by powering a total of 8 CPU cores, increasing the power budget of the system to around

19 W.

The robot navigation with respect to an a priori map of the environment was successful.

However, the Jetson AGX Xavier would occasionally get out of range of the local area net-

work access point and consequently disconnected from the network, denying remote desktop

streaming until the system reconnected to the network via a different access point.

4.4 Summary

This chapter provided insight into the various hardware and software components com-

posing the overall system, as well as describing the various difficulties in integration and how

they were overcome.

As SOM computational architectures become more complex, their electrical requirements

become stricter. Consequently, DL-based applications, as well as other complex GPU-based

applications, depend not only on the computational resources available on the edge but also

on electrical resources for system power.

The software stack was successfully implemented and tested on the system. Some appli-

cations, such as the AriaCoda library on which ROSARIA is based on, did not provide a

suitable .deb file for installation on Unix-based ARM64 systems, meaning that they must be

built from source or that suitable alternatives must be chosen instead.

A basic ROS-based navigation system for a service robot was successfully implemented and

executed, demonstrating the possibility of concurrent execution of tasks such as mapping,

inter-process communication and DL-based object detection in real-time.
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The ZED 2 camera provides suitable RGB image data of the surrounding environment

allowing object detection. However, 2D data provided by the Hokuyo laser range finder

proved to be more suitable for mapping and navigation when compared to 2D data generated

from the collapse of the 3D point cloud data captured by the ZED 2 camera as it strongly

reduces the possibility of collision of the robot with obstacles, namely at corners.

Operation of the Pioneer P3-DX was also successful, leading to correct implementation of

all hardware components into the system.

In the following chapter, the DL-based system for the enforcement of COVID-19 prevention

measures is presented, providing insight into the workflow of a Darknet based model and a

discussion on the results of the trained TinyYOLOv4 model.
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5 Prototype to automatically check COVID-

19 prevention measures

This chapter aims to describe the behavior and requirements of the system for checking the

fulfillment of COVID-19 prevention measures: proper facial mask usage and social distancing

– two meters in accordance with the Portuguese national health authority.

Power consumption is to be minimized while avoiding CPU and GPU saturation. It is

required for the system to process at least five frames per second as given the nature of

COVID-19 prevention measures. A high rate of processed frames is not required as failure

to maintain social distancing must be prolonged in order for infection to possibly occur. The

system is non-critical as failure to oblige task scheduling does not lead to damage to the

environment, to people or to the system itself.

5.1 System Description and Requirements

The evaluation of facial masks is to be done with a custom trained TinyYOLOv4, to

be executed and GPU-accelerated on the Jetson AGX Xavier. Social distance is to be

evaluated by resorting to the point cloud generated by the ZED 2 stereo camera. By detecting

correctly or incorrectly worn facial masks via DL, it is possible to determine the (x, y, z)

world coordinates, centered on the left ZED 2 camera lens, corresponding to the (u, v) image

coordinates of the detected faces. By computing the Euclidean distance of every pair of

detected faces, it is possible to determine whether or not social distancing measures are

being practiced. The navigation of this system in the environment is to be done via the

Pioneer P3-DX mobile platform by a user inputting target poses, position and orientation,

on the a priori mapped floor 0 of the environment used for the tests conducted.
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Figure 5.1: Sample of the training dataset.

5.2 Neural network tailored for the target application

A TinyYOLOv4 model was custom trained for this system with assistance of the open-

source DarkMark [64] application. The training data set was obtained on the online platform

Kaggle [65] and is composed of 853 images of faces with correctly worn facial masks, faces

with incorrectly worn facial masks and maskless faces. The set of faces with incorrectly worn

facial masks and of maskless faces was merged into a single class in order to simplify the

model.

The model was trained for 9000 batches, with 64 images per batch and subdivisions of 16

images. That is, the dataset was arranged into 9000 groups of 64 randomly selected images,

and 16 images were loaded onto the GPU at a time. After training a full batch of images,

the model’s weights are updated. Data was augmented by enabling color manipulation,

symmetries on a vertical axis and arrangement of images in mosaics, producing a larger,

more diverse training dataset and consequently a more generalized trained model. Training

occurred on a GeForce 1070 GTX GPU. Annex C.3 provides more detailed information
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Figure 5.2: Training loss, mAP score of custom trained TinyYOLOv4 model.

about the procedure that was used to train a customized YOLO model.

The model’s best mAP@50% score during training was 79% and the weights correspond-

ing to this performance were used on the final system. During training, loss consistently

decreased until asymptotically reaching a value of 0.5 indicating that the model did not

underfit, that is, the model is complex enough to be able to extract features of input data

and produce a valid relationship between input data and class output.

5.3 Experimental tests

The TinyYOLOv4 model was tested with images, provided by a USB camera, of different

faces, with and without facial masks under different sets of circumstances such as lighting,

distance and facial mask color.

The floor 0 of the ISR-UC was first patrolled manually using Bluetooth-based teleoperation

of the system. Afterwards, a set of poses was defined via the RVIZ tool in order to initiate

autonomous navigation. The tests were repeated with the additional computational workload

of the TinyYOLOv4 model and the verification of social distancing. The experimental tests

can be seen in Figures 5.3a and 5.3b. All 8 available CPU cores of the Jetson AGX Xavier
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(a) System autonomously navigating around the

environment.

(b) Manually navigating the system around the

environment.

Figure 5.3: Experimental tests – navigation of an a priori known environment manually and

autonomously.

were powered and used with 1200 MHz maximal frequency. The GPU’s maximal frequency

was set to 670 MHz. Object detection operated at an average of 10 frames per second. The

system is expected to navigate through the a priori known environment, both manually and

autonomously, while processing visual and point cloud data generated by the ZED 2 stereo

camera, or alternatively data produced by the Hokuyo laser rangefinder, concurrently with

the trained TinyYOLOv4 model GPU-based workload under 20 W of power consumption.

5.4 Results and discussion

CPU workload, related to the robot navigation and inter-process communication in ROS,

was evenly distributed along each core by the Unix task scheduler with each core operating

at an average occupancy of around 70%, as seen on Figure 5.5. Workload distribution was

mostly even, i.e. each core had approximately the same occupancy rate.
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The Jetson AGX Xavier’s GPU did not saturate but did display an erratic behaviour over

time, as seen on figure 5.6. Despite this, object detection maintained a rate of processed

frames per second above 5, satisfying system requirements.

Navigation of the environment using the point cloud data generated by the ZED 2 had

issues: the system would occasionally encounter difficulties navigating, namely through cor-

ners, and there was an elevated risk of collision. For this reason, the Hokuyo laser rangefinder

was implemented into the system to provide environmental data as initially postulated.

Navigation with the Hokuyo laser rangefinder was possible and the mobile platform was

capable of traversing all of the known environment without issues, as seen on Figures 5.4b

and 5.4a. Route planning and obstacle detection were processed in such a way as to provide

real-time navigation.

(a) System autonomously navigating through a

corridor.

(b) System autonomously navigating around a

corner.

Figure 5.4: Experimental tests – navigation of an a priori known environment manually and

autonomously.

The system consumed under 20 W of power while executing a DL-based, GPU-accelerated

service in parallel with a CPU-based system composed of robotics algorithms and data

acquisition of USB-connected peripherals, providing a basis for more complex DL-based

applications.

The custom trained TinyYOLOv4 model detects faces during practical applications and

the system can successfully compute the distance between detected objects, as seen on figure

5.7. However, environmental lighting as well as the shape and color of facial masks are factors

that influence the confidence scores and classification of the model. A YOLOv3 or YOLOv4

48



Figure 5.5: Workload distribution over all 8 CPU cores.

Figure 5.6: GPU occupancy during navigation.
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Figure 5.7: Practical application of facial mask detection and social distance evaluation.

All three people are wearing masks, as indicated by the green squares. A green line indi-

cates a valid social distance whereas a red line indicates an invalid social distance between

individuals.

model would provide resiliency to these factors by extracting more complex features of input

data at the cost of longer execution times, higher GPU workload, bigger model weights and

higher power consumption.

5.5 Summary

This chapter described the execution and results of the prototype system. The trained

TinyYOLOv4 model successfully detects correctly masked faces and maskless faces as in-

tended but can be disturbed by environmental variables, such as lighting, and due to masks

different to those present in the training dataset, such as masks with graphical designs.

The point cloud generated by the ZED 2 stereo camera could not provide good navigation

on the a priori known environment. To solve this issue, the Hokuyo laser range finder was

implemented to provide environmental data necessary for the navigational ROS stack.

The final chapter intends to provide a conclusion of this dissertation and to provide a

direction for future work to be elaborated over this system.
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6 Conclusion

In this dissertation, the possibility of implementing DL-based applications on mobile ser-

vice robots employing an edge computing approach was explored and a prototype was suc-

cessfully developed. As AI applications become more common place in the modern world, it

becomes important to explore possibilities and approaches to implement DL-based applica-

tions in mobile robots on the edge.

The developed prototype system is composed of a Jetson AGX Xavier, a SOM designed

and manufactured by NVIDIA, a ZED 2 stereo camera, a Hokuyo URG-04LX laser range

finder and a Pioneer P3-DX mobile platform. A CPU-based robotics system is executed con-

currently with a GPU-accelerated DL-based application in order to implement system func-

tionality, i.e. environment navigation and COVID-19 prevention measures, while fulfilling

system requirements without relocating any computational workload to external computers

on the cloud.

This dissertation was based on six stages: an exploration of the Jetson AGX Xavier;

contextualizing the Jetson AGX Xavier’s capabilities with other machines used for similar

systems; a study of DL and AI; a comparison of various DL models applied to computer

vision and deciding which model is most suitable to this prototype system; an exploration of

electrical setups in order to satisfy electrical requirements for mobile powering of the Jetson

AGX Xavier; and field deployment of the system by manually patrolling an a priori known

environment.

The system locally executed a robotics-based application concurrently with GPU-accelerated

DL-based services without prohibitive power consumption, providing a hardware and soft-

ware basis for more complex applications on the edge to be developed.
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6.1 Future work

Over this dissertation, various possibilities were discussed but could not be explored with-

out risking digressing the main objective of this dissertation. These include exploring the

heterogeneous architecture of the Jetson AGX Xavier, namely the NVDLAs [48] modules,

accelerating the TinyYOLOv4 model via TensorRT [66], deploying and using models based

on a ONNX [67] framework in order to minimize the effects of the fragmentation of the DL

community divided into multiple frameworks and libraries – such as TensorFlow, Keras or

PyTorch.

It is possible to integrate the ZED 2 stereo camera more intimately into the system, such

as utilizing the produced depth map to detect noticeable differences between the a priori

point cloud data and the locally generated point cloud data. By detecting the presence of

an unknown object via the depth map, it is possible to change the DL service from object

detection to image classification, a typically less intensive problem.

In order to facilitate further development of this system and deployment, this system was

integrated into a Docker container and is available at a Docker repository [68].
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Appendix A

Electrical Requirements

The Jetson AGX Xavier must be powered with a voltage level between 9 and 19 V and

without voltage fluctuations over 0.5 V/s. The Pioneer P3-DX mobile platform is powered

by a set of three 12 V lead-acid batteries and is responsible to power the platform’s micro-

controller and to power the various sensors and actuators, such as motors. This is not a

constant load on the battery pack as not only the motors are not guaranteed to be powered

at a constant rate over a long period time but motors are also an inductive load, meaning

that the powering voltage will suffer fluctuations over time. Consequently, despite the 12 V

provided by the mobile platform being of sufficient value, the characteristics of the batteries

and the load they power make it impossible for them to be used to power the Jetson AGX

Xavier as well.

To solve this issue, two 12 V lead-acid batteries were acquired. By connecting the batteries

in parallel, a dedicated 24 V signal is obtained and then modulated down to 19 V via a DC-

DC converter. However, these batteries are not regulated and as such a sudden change, such

as the sudden start of multiple processes responsible for the booting up of the Jetson AGX

Xavier, in the output load will cause fluctuations on the voltage source. An electrolytic 4.7

mF and a 10 µF polyester dielectric capacitor were connected in parallel with the Jetson AGX

Xavier’s 2.5mm x 5.5mm barrel connector in order to reduce high frequency fluctuations in

the voltage source due to sudden load changes. The diagram is represented in Figure A.1

and its circuit diagram in Figure A.2.

As lead-acid batteries have considerable weight, a different approach should be considered

in the future. It is suggested to investigate the usage of Lithium Polymer, or LiPo, batteries

with 5 cells as it is possible to obtain around 18 V of voltage but with a significantly lower
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Figure A.1: Electrical montage for portable power source for the Jetson AGX Xavier.

mass and form factor.

Figure A.2: Electrical diagram for circuit powering the Jetson AGX Xavier.
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Appendix B

System Dockerfile

A Docker container is an operating system level virtualization that allows the deployment

of software in a standardized environment. Over the course of this dissertation a Docker con-

tainer was constructed in order to encapsulate the operation of the Pioneer P3-DX platform

by a system with an ARM64 architecture. However, it must be noted that the AriaCoda

library is an open-source project still in development. Consequently for each future release

of this software, the Dockerfile from which this Docker container is constructed should be

revisited and edited accordingly.

It would also be interesting to encapsulate the ZED 2 SDK and the developed TinyY-

OLOv4 model. However, this would require the installation of OpenCV 4.3 (or subsequent

releases) in the Docker environment. As OpenCV is a heavy investment in storage memory,

around 4 GB, to have it installed in two environments (in the Docker container and in the

base Jetson AGX Xavier system) is not considered to be worth the investment given that

storage memory is a limiting factor of the Jetson AGX Xavier as it has 32 GB of storage

memory.

To use this Docker container, you should first pull it from Docker Hub. Open a terminal

and input:

1 $ Docker pull pedrr/isr_xavier :1.1

After which, you can start the container with the following bash command:

1 $ Docker run -it --rm --net=host --priviliged --runtime nvidia -e

DISPLAY=$DISPLAY --device =/dev/ttyUSB0 -v /tmp/.X11 -unix /:/ tmp/.X11 -

unix pedrr/isr_xavier :1.1

Here is a brief explanation of the command:
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• The -it flag starts the container in interactive mode,

• the –rm flag removes the container after it is stopped,

• –net=host allows the container to share the host’s network namespace,

• the –priviliged flag concedes root permissions to the container,

• the –runtime nvidia option allows the use of NVIDIA GPUs,

• –device=/dev/ttyUSB0 connects the Pioneer P3-DX’s microcontroller to the container

via USB

Then you must install the AriaCoda library:

1 cd src/AriaCoda && make install -j8

As of time of writing, the "make install" rule fails to complete successfully, it is possible

that future releases of the AriaCoda library will solve the issue and the installation can be

fully integrated in the Dockerfile. In its current state, despite the error in the installation

process, it is possible to operate the Pioneer P3-DX mobile platform. You can now build

the ROS environment:

1 cd /workspace && catkin_make

After constructing the ROS environment, you can start the RosAria and teleoperation

stack:

1 roslaunch mrl_pioneer pioneer_wii.launch

The roslaunch process in the Docker container can be connected to by other ROS nodes

outside the container. As such, in a different terminal, you can launch the ZED 2 and the

DL-based application’s ROS nodes:

1 roslaunch zed_wrapper zed2.launch

1 rosrun cv_node cv_node
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Appendix C

How to develop a custom YOLO model

This appendix aims to provide a tutorial to the installation of the Darknet framework,

the DarkHelp helper library and the DarkMark application to generate the necessary files

for custom training. This tutorial assumes a Linux system.

C.1 Installing Darknet, DarkHelp, DarkMark

Darknet is currently hosted on a GitHub repository and maintained, as of time of writing,

by Alexey Bochkovskiy: https://github.com/AlexeyAB/darknet. The requirements are as

follows:

• CMake version 3.18 or more recent,

• CUDA version 10.2 or more recent,

• OpenCV version 2.4 or more recent,

• cuDNN version 8.0.2 or more recent,

• a GPU with compute capabilities 3.0 or better [69]

• Git installed.

Installation of Darknet is as simple as pulling the Darknet repository to a source folder

and editing the Makefile for the appropriate flags.

1 mkdir ~/src && cd ~/src

2 git clone https :// github.com/AlexeyAB/darknet

3 cd darknet
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4 vim Makefile # Use whatever IDE you ’d like to set the GPU , CUDNN ,

CUDNN_HALF , OPENCV and LIBSO flags to 1

5 make

6 sudo cp libdarknet.so /usr/local/lib

7 sudo cp include/darknet.h /usr/local/include

8 sudo ldconfig

To check correct installation, try running the darknet executable file:

1 ./ darknet

The output should be:

1 usage: ./ darknet <function >

DarkHelp and DarkMark are two helper library and applications for Darknet. As docu-

mentation and examples for the original C Darknet are scarce, these libraries are very helpful

to integrate YOLO-based models into a custom C++ application or to custom train a model.

https://www.ccoderun.ca/DarkHelp/api/Building.html provides the instructions to in-

stall DarkHelp and are relayed to here:

1 cd ~/src

2 git clone https :// github.com/stephanecharette/DarkHelp.git

3 cd DarkHelp

4 mkdir build

5 cd build

6 cmake -DCMAKE_BUILD_TYPE=Release ..

7 make

8 make package

9 sudo dpkg -i darkhelp -*.deb

https://www.ccoderun.ca/darkmark/Building.html provides instructions to install Dark-

Mark, a helper tool to annotate and verify training data.

1 cd ~/src

2 git clone https :// github.com/stephanecharette/DarkMark.git

3 cd DarkMark

4 mkdir build

5 cd build

6 cmake -DCMAKE_BUILD_TYPE=Release ..
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7 make

8 make package

9 sudo dpkg -i darkmark *.deb

C.2 Start training

After annotating and verifying the training data with DarkMark it is possible to generate

scripts that will initiate GPU training of the model. The Darknet GitHub repository offers

the following instructions:

• Change batch to 64,

• change subdivisions to 16,

• change max_batches 2000 times the number of classes but not under the number of

training images and at least 6000,

• set network size, width and height, to 416, 416 or any multiple of 32.

After executing the scripts generated by DarkMark, model training will begin. The model

can then be integrated in a C++ application via DarkHelp.

C.3 Tutorial Example

For tutorial purposes, a YOLOv4 model to detect a Magic: The Gathering card will be

trained. A trivial dataset was aggregated by recording a short video of the object to be

detected: a Lightning Bolt card from the trading card game Magic: The Gathering. 50

frames from the video recording were annotated using DarkMark.

Figure C.1: Training dataset images to be annotated.
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Figure C.2: Annotated training dataset images.

After annotating the dataset, right-click and select “Create darknet files” and define train-

ing hyperparameters. In this tutorial example, the instructions in the Darknet Github repos-

itory, described above, were followed. Training can begin by executing the bash command:

1 ./ bolt_training.sh

After training, the model can be implemented in a C++ program with the use of the

DarkHelp library. Here follows a program that takes a USB camera video feed as the input

to the trained neural network and displays the results in a OpenCV window.

1 #include <DarkHelp.hpp >

2 #include <iostream >

3

4

5 int main(int argc , char *argv []) {

6 DarkHelp dh_tinyyolo("bolt.cfg", "bolt_final.weights", "bolt.names");

7 cv::Mat mat , dst;

8 cv::Size size (416, 416);

9

10 cv:: VideoCapture camera (0);

11 cv::Mat img_capture;

12

13 if (! camera.isOpened ()) {

14 std::cout << "Camera isn’t open.\n";

15 return -1;

16 }

17

18 while (1) {

19 camera >> img_capture;

20 auto results = dh_tinyyolo.predict(img_capture);

21 mat = dh_tinyyolo.annotate ();
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Figure C.3: Training hyperparameters as defined in DarkMark.

22 cv:: resize(mat , dst , size , 0, 0, cv:: INTER_LINEAR);

23 cv:: imshow("Prediction", dst);

24 cv:: waitKey (20);

25 }

26 }

To build this program, the OpenCV library, libdarknet.so and libdarkhelp.so must be

linked. The following “CMakeLists.txt” file generates the necessary Makefile to build an

executable named “bolt” in a folder named “darkhelptest”:

1 CMAKE_MINIMUM_REQUIRED (VERSION 3.0)

2

3 PROJECT (darkhelptest C CXX)

4

5 SET (CMAKE_BUILD_TYPE Release)

6 SET (CMAKE_CXX_STANDARD 17)

7 SET (CMAKE_CXX_STANDARD_REQUIRED ON)

8

9 ADD_DEFINITIONS ("-Wall -Wextra -Werror -Wno -unused -parameter ")

10
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Figure C.4: Test of the trained tutorial Yolov4 model.

11 FIND_PACKAGE (Threads REQUIRED)

12 FIND_PACKAGE (OpenCV REQUIRED)

13 FIND_LIBRARY (DARKHELP darkhelp)

14 FIND_LIBRARY (DARKNET darknet )

15

16 INCLUDE_DIRECTORIES (${OpenCV_INCLUDE_DIRS })

17

18 FILE (GLOB SOURCE *.cpp)

19 LIST (SORT SOURCE)

20

21 ADD_EXECUTABLE ( bolt ${SOURCE })

22 TARGET_LINK_LIBRARIES (bolt Threads :: Threads ${DARKHELP} ${DARKNET} ${

OpenCV_LIBS })

Execute the command

1 cmake .

in the folder containing “CMakeLists.txt”. Then execute

1 make

to build the “bolt” executable file. Test the program by executing it with

1 ./bolt

69



Appendix D

Results of custom TinyYOLOv4 model

Here follows some examples of the results obtained via the custom trained TinyYOLOv4

neural network model for detection of facial masks. It can be asserted that the color of the

facial mask, environmental lighting, facial hair among other factors can influence the results

of the model and cause erroneous predictions.

Figure D.1: The model predicts a masked face.
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Figure D.2: The model does not predict a correctly worn facial mask, possibly due to its

color.

Figure D.3: The model wrongly predicts a correctly worn facial mask due to the subject’s

facial hair with a confidence score of 86%.

Figure D.4: The model predicts two overlapped faces one with a facial mask and one without

a facial mask with confidence scores 34% and 76%, respectively.
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