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Abstract

One of the major current goals is to obtain clean energy sources and to replace petroleum-derived fuel by biodiesel, which is
made from biodegradable and renewable biomass such as vegetable oils. In particular, olive oil contains large amounts of oleic
acid (OA), which is a monounsaturated fatty acid used for energy production and also for biosensors, nutritional products,
pharmaceuticals and cosmetics. Since oleic acid is particularly abundant in olive oil, large concentrations of this fatty acid
may exist in the effluents of olive mill production units, which need to be treated in order to avoid water contaminations
and undesirable effects in the ecosystem. Indeed, this type of organic waste, which is potentially useful in the production of
biodiesel, in excess may be toxic and cause neurodegeneration, through the production of cellular reactive oxygen species
(ROS). The effect of 10–100 µM of oleic acid on neuronal ROS production was evaluated in brain slices incubated with the

ermeant fluorescent ROS indicator H2DCFDA. The experiments revealed that the amplitude of the ROS signals, corrected
or the autofluorescence, increased slightly for the OA concentrations in the range 60–100 µM.
c 2019 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Biodiesel is more beneficial than petroleum-derived fuel, from the environment point of view, because it is
biodegradable and non-polluting and is produced from biomass sources consisting of vegetable oils, including
waste cooking oils, animal fats and algae [1,2], which are renewable. The current methods used in its production,
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by transesterification processes, are mediated by alkaline, acidic or enzymatic catalysts. These processes may be
expensive and/or not environmental friendly, existing a large interest in improving specially the latter one [2]. From
the vegetable oils, olive oil is composed mainly of oleic acid (OA) that is a monounsaturated fatty acid (MUFA)
with great nutritional value [3]. Thus, the effluents of olive mill production units are susceptible to having large
concentrations of this fatty acid and even the sewers can be contaminated with cooking oils from houses [4].

Although OA is considered to provide a lot of benefits, as part of the Mediterranean diet, it can be harmful
when consumed in large amounts [3,5,6]. In fact, previous studies indicated OA as a highly toxic compound to
microorganisms, which results in difficulties in the treatment of olive mill wastewaters [7,8]. Residues coming
from olive oil production are of special concern due to their potentially toxic composition, which causes, in large
concentrations, adverse effects to ecosystems. Within these, the olive mill wastewater (gray waters) and the wet
pomace should be stressed as sources of oleic acid, which show high potential to be used in other industries [9].
For these reasons it is important to investigate possible effects in biological systems, associated with an eventual
exposure to this substance.

OA is thought to be involved in the formation of cellular reactive oxygen species (ROS). It can modulate NMDA
channels (that are related to functions such as neural plasticity, memory and cognition), activate PKC that is a protein
responsible for the phosphorylation of other proteins, and be oxidized in the Krebs cycle [10–13]. ROS play an
important role in various mechanisms in the organism. However, when present in elevated intracellular amounts they
can be neurotoxic and cause neurodegeneration [14]. Therefore, the presence of oleic acid in effluents generates a
major concern for human health.

The aim of this work was to investigate the effect of OA on neuronal ROS formation in the hippocampal
CA3 area. To assess the neurotoxicity, hippocampal slices were perfused with different concentrations of OA
and fluorescence signals were measured using the fluorescent ROS indicator H2DCFDA. Autofluorescence signals

riginating from flavoproteins activity in the mitochondria, were also measured and were used to correct the total
uorescence signals detected in incubated slices.

Oleic acid has many current applications and more are being found in connection to a wide variety of areas,
ncluding cosmetics, pharmaceuticals and biosensors [15,16], and the optimization of methane and energy production
uch as biodiesel [17–19].

. Materials and methods

Hippocampal slices were prepared from pregnant Wistar rats (8–16 weeks old; 16–18 days of gestation) sacrificed
y cervical dislocation under anaesthesia. Transverse slices (400 µm thick) were placed in an oxygenated (95% O2,
% CO2) artificial cerebrospinal fluid (ACSF) prepared with ultrapure water and containing (in mM): 124.0 NaCl,
.5 KCl, 24 NaHCO3, 1.25 NaH2PO4, 2.0 CaCl2, 2.0 MgCl2, 10.0 D-glucose. Some slices were incubated (1 h) in an
xygenated ACSF solution containing the cell-permeant ROS indicator H2DCFDA (2′,7′-dichlorodihydrofluorescein
iacetate), at 20 mM. For the experiments, the slices were moved into an immersion-type recording chamber and
ere perfused at a rate of 1.5–2 mL/min with an oxygenated medium, at 32 ◦C. Different OA concentrations (10
M, 20 µM, 40 µM, 60 µM and 100 µM) were applied. A stock solution of oleic acid (10 mM) was prepared by
dding 4.7 µL of oleic acid in ultra-pure ethanol (100%) under a nitrogen atmosphere, applied for 3 min. Several
ials of 1.5 mL were prepared and stored in the fridge, protected from the light, and when opened were only used
nce. The final solutions were prepared diluting a certain volume of the oleic acid stock solution in ACSF.

The optical signals were recorded using a fluorescence microscope (Zeiss, Axioskop), equipped with a tungsten/
alogen lamp (12 V, 100 W) and a silicon photodiode (Hamamatsu, 1 mm2). The light was focused at the preparation
y means of a water immersion lens (40x, N.A. 0.75; working distance, 1.6 mm), targeted to the CA3 region of the
ippocampal slice. The excitation and emission wavelengths were selected through a 480 nm narrow band (10 nm)
nterference filter and a high pass (>500 nm) emission filter, respectively.

The signals were obtained using a 16 bit A/D converter (National Instruments) and processed with the software
ignal Express (National Instruments). The data were normalized by the average of the 10 baseline points. The points

n the graphs correspond to the results of various experiments and represent the mean ± S.E.M. Data acquisition
as made recording 100 points per minute and plotting only their mean value.
Drugs used were NaCl, KCl, NaHCO3, NaH2PO4, CaCl2, MgCl2, D-glucose, Oleic acid (Sigma-Aldrich) and

2DCFDA (Invitrogen by Thermo Fisher Scientific).
All experiments were carried out in accordance with the Directive 2010/63/EU of the European Parliament and

ouncil. All efforts were made to minimize animal suffering and to use only the number of animals necessary to

roduce reliable scientific data.
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. Results and discussion

The effects of oleic acid, a major constituent of olive oil, found in abundance in olive mill wastewaters, were
etermined through optical recordings. These were performed in the mossy fibers-CA3 pyramidal cells synaptic
ystem of hippocampal slices, using the fluorescence ROS indicator H2DCFDA. The data are represented, at 1 min
ntervals, in the figures, where the first 10 points in ACSF form the baseline. In this study, fluorescence changes
voked by the application of OA were measured both from nonincubated and from H2DCFDA loaded slices.

Fig. 1. Fluorescence signal obtained with H2DCFDA, for different concentrations of OA applied in a neuronal system. a. 10 µM OA (n =

3), b. 20 µM OA (n = 3), c. 40 µM OA (n = 3), d. 60 µM OA (n = 3). e. 100 µM OA (n = 3). All values were normalized by the
average of the first 10 responses and represent the mean ± SEM. FT/FT0, FT, total fluorescence, FT0, basal total fluorescence.

Taking into account the spectral characteristics of the intrinsic fluorescence of FAD and of ROS-H2DCDFA
complexes, the fluorescence signals obtained from slices incubated in H2DCFDA, using excitation light of 480 nm
and recording above 500 nm, have two different components: autofluorescence and the fluorescence of the
ROS-H2DCDFA complexes. The combined signals (total fluorescence), can be observed in Fig. 1, for different
concentrations of OA. The amplitude of the optical responses increases with the OA concentration being only
significant for the 40 µM, 60 µM and 100 µM OA media. In these cases, the signals become irreversibly potentiated
since they do not recover upon removal of the OA solutions.

Thus, in the presence of 10 µM (Fig. 1a) and 20 µM (Fig. 1b) OA, the signals remained close to the baseline
level. The perfusion of the 40 µM OA medium caused a rise in the total fluorescence (FT) signals of 4.6 ± 1.5% of
control, in the period 10–40 min (Fig. 1c) and in the final 30 min, corresponding to the second application of ACSF,
the signal is maintained at the same level. In the presence of 60 µM OA (Fig. 1d) there was a higher enhancement
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of the ROS signals, of 5.7 ± 1.7% in the period 40–70 min. The application of 100 µM OA (Fig. 1e) reveals a
similar behavior to that observed for the 40 µM and 60 µM OA, with a maximum rise of 8.6 ± 1.2% and a partial
recovery upon returning to ACSF, to approximately the same values as with 60 µM OA (Fig. 1d).

The characterization of autofluorescence has been largely addressed in fluorimetric studies performed in cultured
cells or in monolayers incubated with an indicator. However, the situation is very different in brain slices, with widths
ranging from about 300 to 400 nm, due to their thickness. In these cases, the large number of cells in the optical
path leads to large autofluorescence changes that can mask significantly the dye-associated signals. Usually, that
component, which is evaluated in the region of interest of non-incubated slices, is considered constant, being the
same value subtracted from all raw fluorescence data points. However, the time varying nature of autofluorescence
in brain slices has already been pointed out and needs to be taken into account in the correction procedure [20].

In this study autofluorescence signals (FA) were recorded for the OA concentrations corresponding to the larger
signals (60 µM and 100 µM OA) (Fig. 2a and c) and subtracted point to point from the corresponding signals in
Fig. 1. These analysis was thus designed to extract the real ROS signals, shown in Fig. 2b and d, from the recorded
signals obtained from the incubated slices.

Fig. 2. Autofluorescence and ROS signals evoked by OA. a. 60 µM induced changes in autofluorescence (n = 2). b. ROS signals obtained as
the difference between data in Fig. 1 and in the panel a. c. 100 µM OA induced changes in autofluorescence (n = 3) d. ROS signals obtained
s the difference between data in Fig. 1 and in the c panel. The application of OA (60 µM and 100 µM) was made at the times indicated

by the bars. All values were normalized by the average of the first 10 responses and represent the mean ± SEM. FA, autofluorescence; F,
fluorescence of the ROS signals; FA0, F0 basal auto and ROS fluorescences, respectively.

The autofluorescence data (Fig. 2a and c) reveal that the OA (60 µM and 100 µM) solutions cause an increase of
the signals of 4.1 ± 1.4% and 6.2 ± 2.3, respectively, above baseline, in the period 35–40 min. The autofluorescence
traces for these two OA concentrations showed a similar time course to that of the corresponding total fluorescence
records (Fig. 1d, e) but with about half the amplitude (5% and 10% increases, respectively).

Thus, it can be observed that the ROS signals obtained after correcting the total fluorescence traces for the
autofluorescence (Fig. 2b and d) had changes measuring about 2% and 3% in the cases of the 60 µM and 100 µM
OA concentrations, respectively. It can also be noticed that these signals do not recover following the removal of
OA. and that the larger component of the total fluorescence is autofluorescence.

OA can modulate NMDA channels leading to an influx of calcium that may cause an increase in the production

of ROS such as hydrogen peroxide, through mitochondria and ROS generating enzymes [21,22]. The amount of
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alcium entry is related to the intensity of autofluorescence because increased intracellular calcium can trigger an
ncrease in FAD (flavoprotein) and NAD, as well as in the oxidation of FADH2 and NADH [23–25]. Considering
he spectral properties of FAD, since an excitation filter of 480 nm was used, being the emission light collected
bove 500 nm, the autofluorescence signals detected should have essentially flavoprotein origin. The redox couple
AD/FADH2 operates in the citric acid cycle and respiratory chain, and it is therefore of no surprise that, at least
n neuronal tissues, this autofluorescence component might originate mostly, if not exclusively from mitochondria
26–28].

Consequently, hydrogen peroxide, one type of postsynaptic ROS can travel and activate presynaptic PKCs, which
A can also activate. This may lead to an increase of the calcium influx and the release of more glutamate, causing

he induction of a potentiation [10–13,29] as was observed during the application of the second ACSF. in both
xperiments. Furthermore, the activation of PKC by superoxide or OA resulting in higher glutamate release could
xplain the maintenance of the ROS signals observed upon washout (Figs. 1 and 2). The origin of the observed
OS signals is considered to have essentially a postsynaptic origin, since presynaptic mitochondria are smaller in
iameter than postsynaptic mitochondria [30].

The observed enhancements of low concentrations, in the micromolar range, of oleic acid on both the
utofluorescence and true ROS signals, draw the attention for the need to reduce the organic load of the olive
ill wastewaters, part of which may be used for biodiesel production.

. Conclusions

The set of experiments related to the induction of neuronal ROS changes by OA revealed total fluorescence
ignals with two components: autofluorescence and the fluorescence of the ROS-H2DCDFA complex. The activation
f NMDA channels leads to calcium influx and consequently to an increase in ROS production. PKC in the
ostsynaptic region can be activated both by ROS and by OA. The same protein can also be activated in the
resynaptic region by ROS traveling from the postsynaptic area. This leads to an increase in the release of glutamate
hich can explain the irreversible part of the signals.
This study serves to reinforce the idea of the need to improve the methods of treatment of mill waste waters as

ow OA concentrations (micromolar) may induce damage in ecosystems by, for example, the production of ROS
n animals and other living beings, which can cause disease. Gray waters are the main environmental problems
aused by olive production industries, as the forms of treatment of those effluents are not efficient or viable in
conomic terms, leading to its unload in the environment [9]. The recovery of substances with increased value
rom olive mill wastewaters leads to a decrease in the organic pollutant load and can be a profitable activity since
hose substances may be used to produce biodiesel and increase the efficiency of other industrial processes like

ethane production [17,19]. The demand for cleaner and non-toxic fuels, in order to decrease the CO2emissions
nd environmental pollution, called the attention to oleic acid enriched vegetable oils, which have a great potential
n biodiesel production.
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