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Abstract: In the last decades, all technology production sectors reached a high level of development,
without neglecting the attention to environmental aspects and safeguarding energy resources.
Moreover, in the sector of pavement industry, some alternatives of bituminous mixtures were
proposed to reduce the greenhouse gas emissions. One of these is the warm mix asphalt (WMA),
a mixture produced and compacted at lower temperatures compared to traditional hot mix asphalt
(HMA) (about 40 ◦C less), to allow a reduction of emissions into the atmosphere and the costs.
Other operative benefits concern the health of workers during the whole road construction process,
the reduction of distances to which the mixture can be transported, and therefore also the positioning
of the plants. However, it is not all benefits, since reduced production temperatures can bring short-
and long-term water sensitivity issues, which could threaten the pavement performance. This paper
evaluated the performance (water sensitivity, stiffness, fatigue, and permanent deformation) of a
WMA produced using a warm mix fabrication bitumen and compared it with an HMA tested
in parallel. In general, except for the resistance to permanent deformation, the WMA presented
performances comparable to HMA. Regarding the fatigue behavior of asphalt mixtures, the WMA
was less affected by ageing conditions, despite it showing lower performance than HMA.

Keywords: warm mix asphalt; performance; ageing; water sensitivity; permanent deformation;
stiffness; fatigue

1. Introduction

The technologies and the methods for the production and spread of traditional bituminous
mixtures, classified as hot mix asphalt (HMA), have experienced a remarkable development over the
years, passing from manual to modern high-level automated equipment.

During this time, in these production processes, the temperature control is a crucial factor to reach
high performances. In fact, the choice of temperature can affect the coating of aggregates by bitumen,
the stability of the mixture, the compaction of layers and, finally, can ensure good performance of the
long-term pavement road.

For the traditional bituminous mixtures, the control of the temperature, normally in the range
140–170 ◦C, involves various phases, from the production to the compaction. In case of surpassing the
correct temperature, the mixture can overheat and accelerate the binder ageing process; high temperature
can also affect long-term performance and determine an increase in fuel and energy consumption,
emissions, and harmful fumes, both at the production plant and at the site of interest. On the contrary,
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low temperatures applied on traditional bituminous mixtures, even if they reduce oxidative hardening
which should reduce susceptibility to cracking by improving pavement flexibility and longevity,
can produce low compaction reducing pavement life.

Researchers have carried out studies to reduce the mixing/compaction temperature in the
mixtures since the 1970s [1] by utilizing moisture in the aggregate, foaming the binder, and, of course,
using emulsified asphalts.

The technology of warm mix asphalt (WMA) and its potential benefits initiated significant
interest in the last two decades both in Europe [2] and in other countries interested in economical,
environmentally friendly paving materials [3–5].

The benefits deriving from the use of WMA are many, starting from the reduction in energy
consumption due to lower temperatures. Considering energy save during mix production, Hasan et al. [6]
observed that savings between 23% and 29% can be obtained by using WMA rather than HMA.

HMA, on the other hand, requires heating the binder to high temperatures to ensure that
it is fluid enough to be able to completely coat the aggregates, to allow easy workability of the
mixture during laying and compaction, and for durability of the road pavement over the years [7].
WMA technologies allow the reduction in manufacturing and compaction temperatures. With the
use of WMA, it is therefore possible to reduce emissions, harmful fumes resulting in a lower risk
to workers’ health. However, reduced manufacturing temperatures can affect the drying process of
the aggregates before mixing, and proper aggregates–bitumen adhesion/coating, and consequently
it is a WMA issue. Numerous studies have addressed it by quantifying water sensitivity, some use
mixture properties [8–11], while others use aggregates–bitumen interface properties [12–14]. There are
different methods that can be used to reduce the viscosity of the bitumen at lower temperatures [15]:
foamed methods, organic additives and waxes, and chemical additives, and consequently water
sensitivity depends on it [16]. In addition, it is important to evaluate the ageing effect on it [17].
In foamed methods, additional additives (such as antistripping agents) are sometimes used to improve
coating [18]. The other two methods usually do not require those antistripping agents [16].

In the search for more sustainable pavements, many studies have been developed regarding
WMA technologies. For instance, Mallick et al. [19] studied the use of reclaimed asphalt pavement
(RAP) in WMA to avoid deterioration of the aged binder. It is known that RAP should not be exposed
to relatively high temperatures, so the WMA solution seemed to be a good opportunity. Furthermore,
Guo et al. [20] investigated the performance of WMA containing RAP mixtures. The use of other
particular components in the mixes has led many researchers to experiment with the application
of WMA technology: Ameri et al. [21] proposed the possibility of using electric arc furnace (EAF)
steel slag (SS) as a substitution for natural limestone (LS) aggregates. Cheng et al. [22] investigated
the size effect of hydrated lime on the moisture susceptibility of WMA mixtures with selected
additives. Capitão et al. [23] summarized the main aspects involved in WMA technology, including
constituent materials, mix design, and mechanical performance issues, as well as technological
specificities. Other research [24] highlighted the reduction of susceptibility to thermal cracking
regardless of the WMA additive or process used. The behavior of WMA mixtures with respect to
permanent deformations resulting from load repetitions highlights some controversial aspects [25,26]:
some studies revealed a quite controversial rutting behavior which cannot be explained considering
only the laboratory data [27]. The contribution of ageing regarding the behavior of the mixtures to
permanent deformation cannot be neglected. In some research, most aged WMA pavements showed
increased “rutting”, but in other results lower rut depths could be found in WMA mixtures. As opposed
to these results, fatigue and stiffness of aged WMA mixtures samples compared to unaged samples
improved significantly. Some attempts to address this behavior regarding the permanent deformation
of WMA mixtures were conducted. For example, the use of additives can decrease their susceptibility
to rutting [28] or lower the production temperatures of WMA [29].

While many studies have been conducted to demonstrate that some component can be added
without significantly affecting the mechanical properties of WMA, many questions and concerns
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regarding the environmental benefits they offer have yet to be addressed. Alloza et al. [30] conducted
a comprehensive hybrid life cycle assessment of WMA production in order to accurately evaluate
and quantify the potential benefits of WMA technology by assessing the environmental impacts of its
production associated with energy consumption and greenhouse gas (GHG) emissions.

The main objective of this article is to evaluate the performance of a WMA produced using a
warm-mix fabrication bitumen (compacted at 120 ◦C) and compare it with the results of a HMA tested
in parallel (compacted at 160 ◦C). As temperature reduction might influence aggregates–bitumen
adhesion/coating, water sensitivity was quantified as well as other pavement performance properties
(stiffness, fatigue resistance, and permanent deformation resistance) considering aged and aged
specimens. This research aims to contribute to the understanding of the complex issue of the mixture
ageing and water sensitivity by addressing the evaluation of pavement performance.

2. Materials and Methods

This research considers asphalt concrete (AC) mixtures of the type AC 20 bin/reg/base [31].
Two mixtures were considered, a WMA mixture and a typical HMA mixture. The first one was
produced with a bitumen designed for warm mix fabrication, while the second one was produced
with a conventional bitumen, both with a 35/50 penetration grade. The aggregates blending was the
same for the two mixes.

To evaluate the performance of the two mixes and to compare them, several specimens were
prepared and then tested to evaluate:

• Water sensitivity—by determining the indirect tensile strength ratio (ITSR);
• permanent deformation—by using the wheel-tracking test (WTT);
• stiffness—by using the four-point bending (4PB) test; and
• resistance to fatigue—by using the four-point bending (4PB) test.

As ageing has a significant effect on performance, each test was conducted on aged and
unaged specimens.

2.1. Aggregates

Limestone aggregates were used in this study; more precisely four coarse aggregate fractions
where considered to produce an Asphalt Concrete AC 20 bin/reg/base (EN 13108-1) [31]. Table 1
presents the aggregates’ properties and Figure 1 depicts the aggregates gradation as well as the upper
and lower limits of the grading envelope.

Table 1. Aggregates’ properties.

Properties Standard
Aggregates (mm)

11–22 8–15 4/8 0/4

Assessment of fines EN 933-9 [32] f1 f1 f3 f10
Methylene blue EN 933-9 [32] – – – MBF10

Density after drying (Mg/m3) EN 1097-6 [33] 2.66 2.66 2.65 2.65
Water absorption (%) EN 1097-6 [33] 0.9 0.9 0.9 0.9

Flakiness index EN 933-3 [34] FI10 FI15 – –
Micro-Deval EN 1097-1 [35] MDE15 MDE15 – –
Los Angeles EN 1097-2 [36] LA35 LA35 – –
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Figure 1. Grading curve of the mixture.

2.2. Asphalt Binder

Two types of asphalt binder were used in this research, namely a “conventional bitumen” for the
HMA and a “warm-mix fabrication bitumen” for the WMA. The bitumen used for WMA was an asphalt
binder designed for warm mix fabrication. It included waxes for viscosity reduction at high temperatures
in order to reduce fabrication temperatures as well as energy consumption and GHG emissions. Table 2
presents its properties. Both asphalt binders consisted of a 35/50 penetration grade binder.

Table 2. Properties of the warm-mix fabrication bitumen.

Properties Standard Minimum Maximum

Penetration 25 ◦C (0.1 mm) EN 1426 [37] 35 50
Penetration Index EN 12591 [38] −1.5 0.7

Softening point (ring and ball) (◦C) EN 1427 [39] 50 58
Fraass point (◦C) EN 12593 [40] – −5

Solubility in xylene (%) EN 12592 [41] 99.0 –
Flash point (◦C) EN ISO 2592 [42] 240 –

Resistance to hardening 163 ◦C (EN 12607-1)

Mass loss (%) EN 12607-1 [43] – 0.5
Retained penetration (%) EN 1426 [37] 53 –

Increase in softening point (Ring
and Ball) (◦C) EN 1427 [39] – 11

To verify the binder characteristics, according to EN 12591 [38], the following two tests were
conducted in the laboratory:

• Determination of the needle penetration (EN 1426) [37]—Figure 2a.
• Determination of the softening point—ring and ball method (EN 1427) [39]—Figure 2b.

For each bitumen used, two penetration tests and two “ring and ball” tests were conducted to
verify the characteristics of bitumen. Table 3 presents the measures obtained.
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Figure 2. Test equipment to characterize the bitumen. (a) Needle penetration test; (b) Softening point test.

Table 3. Results of the bitumen tests.

Property Standard Conventional Bitumen Warm-Mix Fabrication Bitumen Min Max

Penetration at 25 ◦C (0.1 mm) EN 1426 35 38 39 39 35 50
Softening point (◦C) (ring and ball) EN 1427 53 54 53 54 50 58

2.3. Specimens Preparation

For each test, different specimens were prepared. The content of bitumen used for all specimens
was 5%, while the content of aggregates was defined by the grading curve described before (see Figure 1).
The HMA and WMA specimens were prepared at different temperatures as depicted in the Table 4.

Table 4. Temperatures for hot mix asphalt (HMA) and warm mix asphalt (WMA) specimens’
preparation (in ◦C).

Mixture Aggregates Bitumen Compaction

HMA 180 160 160
WMA 140 120 120

2.3.1. Water Sensitivity

To determine the water sensitivity of the mixes, a set of eight specimens, four “dry” and four
“wet” (immersed in water in according to EN 12697-12 [44]), for each mix (HMA unaged, HMA aged,
WMA unaged, and WMA aged) were prepared, making a total of 32 Marshall specimens. All the
specimens were compacted with 75 blows of the “impact compactor” in each face, following the
standard procedure EN 12697-30 [45].

Once the specimens were prepared, the bulk density of the specimens was determined according
to the procedure specified in the standard EN 12697-6 [46], more specifically the procedure B,
named “saturated surface dry” (SSD) and used for specimens with a closed surface as in this case.
In procedure B, the specimen was saturated preliminary with water, after which the surface was blotted
dry with a damp Chamois.

Figure 3 presents average bulk densities of the specimens prepared for the water sensitivity Test
considering both aged/unaged and dry/wet conditions.
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Figure 3. Average bulk densities of water sensitivity tests’ specimens.

2.3.2. Permanent Deformation

The second type of specimen considered in this research were the slabs (300 mm × 370 mm ×
60 mm), prepared to evaluate the permanent deformation with the “wheel tracking test”. The slabs
were compacted with the hand driven roller compactor of the Coimbra Institute of Engineering (ISEC)
following the standard EN 12697-33 [47]. A total of eight “wheel tracking” slabs were prepared, four for
each mix (HMA and WMA) subjected or not to the ageing procedure. Figure 4 presents the average
bulk densities of the slabs.

Coatings 2020, 10, x FOR PEER REVIEW 6 of 17 

 

Figure 3 presents average bulk densities of the specimens prepared for the water sensitivity Test 
considering both aged/unaged and dry/wet conditions. 

 
Figure 3. Average bulk densities of water sensitivity tests’ specimens. 

2.3.2. Permanent Deformation 

The second type of specimen considered in this research were the slabs (300 mm × 370 mm × 60 mm), 
prepared to evaluate the permanent deformation with the “wheel tracking test”. The slabs were 
compacted with the hand driven roller compactor of the Coimbra Institute of Engineering (ISEC) 
following the standard EN 12697-33 [47]. A total of eight “wheel tracking” slabs were prepared, four 
for each mix (HMA and WMA) subjected or not to the ageing procedure. Figure 4 presents the 
average bulk densities of the slabs. 

 
Figure 4. Average bulk densities of wheel tracking slabs. 

2.3.3. Stiffness and Fatigue Resistance 

The third and last type of specimen considered in this research was the beams, obtained by 
cutting 550 mm × 500 mm × 60 mm asphalt mix slabs. Those slabs were also prepared in laboratory 
using the hand driven roller compaction following the standard EN 12697-33 [47]. The slabs’ borders 
were removed to take into consideration only the central part of it, taking into account the best 
conditions of compaction, after which each slab was cut into eight beams of 420 mm × 60 mm × 60 

2380
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490

Dry Wet Dry Wet Dry Wet Dry Wet

HMA WMA HMA WMA

UNAGED AGED

D
en

si
ty

 (k
g/

m
3 )

2290

2300

2310

2320

2330

2340

2350

2360

2370

2380

2390

HMA WMA HMA WMA

UNAGED AGED

D
en

si
ty

 (k
g/

m
3 )

Figure 4. Average bulk densities of wheel tracking slabs.

2.3.3. Stiffness and Fatigue Resistance

The third and last type of specimen considered in this research was the beams, obtained by cutting
550 mm × 500 mm × 60 mm asphalt mix slabs. Those slabs were also prepared in laboratory using
the hand driven roller compaction following the standard EN 12697-33 [47]. The slabs’ borders were
removed to take into consideration only the central part of it, taking into account the best conditions of
compaction, after which each slab was cut into eight beams of 420 mm × 60 mm × 60 mm. Figure 5
presents the average bulk densities of the tested beams (used in stiffness and fatigue resistance tests).
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2.3.4. Ageing Procedure

As ageing influences the properties of AC mixture (both in HMA and WMA [48], half of the
specimens were tested after being subjected to a long-term ageing procedure in an oven. For that,
the AASHTO R 30-02 test protocol [49], though with certain limitations [50], was selected due to its
simplicity and widespread use [51–54]. This protocol establishes that the specimens must be placed in
an oven at 85 ◦C for 120 h (5 days). After that time, the oven is turned off and the door is left open to
let the specimens cool down to room temperature.

2.4. Laboratory Tests

2.4.1. Water Sensitivity (ITSR Test)

After having prepared the specimens, the water sensitivity of them were determined. This test
method was done to evaluate the effect of saturation and accelerated water conditioning on the indirect
tensile strength.

A set of cylindrical test specimens was divided into two equally sized subsets and conditioned.
One subset was maintained dry at room temperature while the other subset was saturated and stored
in water at elevated conditioning temperature, 40 ◦C, for 72–88 h.

After conditioning, the indirect tensile strength (ITS) of each of the two subsets was determined
in accordance with EN 12697-23 [55] at the specified test temperature. The ratio of the ITS of the
water conditioned subset compared to that of the dry subset was determined and expressed in percent
(EN 12697-12 [44]). The ITS values (in GPa) were calculated using Equation (1).

ITS =
2P

π×D×H
(1)

where:

P is the peak load (kN);
D is the diameter of the specimen (mm); and
H is the height of the specimen (mm).

Then, the ITSR values (in %) were calculated using Equation (2).

ITSR = 100×
ITSw

ITSd
(2)
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where:

ITSw is the average ITS of the wet group (kPa); and
ITSd is the average ITS of the dry group (kPa).

2.4.2. Permanent Deformation (WTT)

This test was conducted according to EN 12697-22 [56]. This European Standard describes
test methods for determining the susceptibility of bituminous materials to deform under load.
The susceptibility of bituminous materials to deformation is assessed by the rut formed by repeated
passes of a loaded wheel at constant temperature of 60 ◦C (the test temperature specified by the
Portuguese Road Administration [57].

In the tests carried out in the laboratory, a small-sized device (Wessex S-867 machine,
Wessex Engineering Ltd, Weston-Super-Mare, UK) was used, following procedure B in air. For this
case, the minimum number of specimens to test was two. The wheel load, achieved by the use of a
weighted cantilever arm, was about 700 N.

The thickness of the specimen was chosen according to the EN 12697-22 [56] and it was a function
of the type of device and the upper sieve size of the mixture. In this study (small-sized device and AC
20), a 60 mm thickness was chosen.

The slabs were conditioned in the oven for 4 h at the test temperature (60 ◦C), as explained in
the standard EN 12697-22 [56]. After this, the test began and the vertical position of the wheel was
measured. The test ran until 10,000 load cycles were applied or until a rut depth of 20 mm was reached,
whichever was the shorter.

The main parameters obtained from this test were the rut depth at the end of test (RDair),
the proportional rut depth (PRDair), i.e., the ratio between the RDair and the thickness of the specimen,
and the wheel-tracking slope (WTSair) calculated by Equation (3).

WTSair =
(d10,000 − d5000)

5
(3)

where:

WTSair is the wheel-tracking slope (mm per 103 load cycles);
d10,000 , d5000 is the rut depth after 10,000 load cycles and 5000 load cycles, in mm.

2.4.3. Stiffness (4PB Test)

The stiffness of the bituminous mixtures was found according to the standard test EN
12697-26 [58], more precisely using the four-point bending test on prismatic specimens (4PB-PR)
under strain-controlled conditions. The amplitude of the load was such that no damage could be
generated during the measurements. Experiments with many test methods have shown that for most
bituminous mixtures, strains should be kept at a level lower than 50 micro strains to prevent fatigue
damage (EN 12697-26 [58]). The range of frequencies is device dependent.

The maximum frequency allowed by the machine is 10 Hz. We decided to choose from the typical
set of frequencies proposed by the standard procedure 1, 2, 4, 6, 8, 10, and 1 Hz. If the difference
between stiffness on the specimen at the first and last measurements at identical frequency and at the
same temperature was greater than 3%, it could be concluded that the specimen was damaged and,
therefore, could not be used for further testing. The tests were conducted at 20 ◦C.

2.4.4. Fatigue Resistance (4PB Test)

Fatigue cracking resistance was also evaluated using the 4PB (four-point bending) test, according
to standard EN 12697-24 [59]. The test was carried out under strain-controlled conditions at a test
temperature of 20 ◦C, a temperature that represents the Portuguese conditions [60], on the specimens
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primarily subjected to the stiffness determination. The three strain levels applied at a frequency of
10 Hz were 100, 200, and 300 µm/m. The chosen failure criterion was specified in EN 12697-24 [59],
i.e., a 50% reduction of the initial stiffness modulus.

The 4PB test results are usually plotted in a log-log scale. Then, a fatigue law is determined by
fitting a regression line according to the regression described by Equation (4).

ε = A×NB (4)

where:

ε is the failure strain in mm/m;
N is the number of load repetitions; and
A and B are regression coefficients.

3. Results and Discussion

3.1. Water Sensitivity (ITSR Test)

Figure 6 presents the indirect tensile strength (ITS) results for both unconditioned (dry)
and conditioned (wet) specimens, and unaged and aged specimens. Figure 7 depicts the indirect tensile
strength ratio (ITSR).

Figure 6 shows that the WMA presents lower ITS values than the HMA in both dry and wet
specimens. Saturation and accelerated water conditioning decreased ITS values of unaged specimens
(ITSR values higher than 100%) and contrarily increased ITS values of aged specimens (ITSR values
higher than 100%). The values for both mixes were higher than 85%. Thus, it is likely that the reduced
manufacturing temperature did not compromise the aggregates-bitumen adhesion/coating. It is noted
that the used warm-mix fabrication bitumen was developed to provide cohesion while reducing
production temperature.
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3.2. Permanent Deformation (WTT)

Aside from low-temperature and fatigue cracking, permanent deformation is another major
distress of asphalt pavements. Figure 8 presents the evolution of rut depth against the number of
loading cycles and Table 5 summarizes the results of all the parameters calculated.
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Table 5. Wheel tracking test parameters.

Mixture RDair (mm) PRDair (%) WTSair (mm/103 Load Cycles)

HMA
Unaged 4.9 8.1 0.338

Aged 4.8 7.9 0.446

WMA
Unaged 13.8 22.7 1.165

Aged 10.3 16.7 1.023

The resistance to permanent deformation (wheel tracking test) of the WMA slabs was not as
good as the HMA slabs. The WMA aged slabs show better behavior than the unaged. Nevertheless,
the values of the WMA slabs were not so bad (rut depth lower than 15 mm), as the tests did not stop
before 10,000 cycles, even at 60 ◦C. The results highlight the benefits of ageing. When the asphalt is
aged, it gets stronger because aggregates and bitumen increase their bond, due to bitumen hardening.
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3.3. Stiffness (4PB Test)

Stiffness modulus established with samples prepared in the laboratory and by 4PB tests are usually
used as a reference for behavior/quality control analysis of the samples coming from the construction
site. Figure 9 presents the variation of stiffness with frequency.Coatings 2020, 10, x FOR PEER REVIEW 11 of 17 
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Figure 9. Results of stiffness.

From Figure 9, it is possible to conclude that for the unaged beams, stiffness is almost the same for
low load frequency, and it does not differ a lot for higher frequencies. The aged beams presented a
higher stiffness compared to the unaged ones, because of bitumen hardening. In addition, in this case,
the performance of WMA, although smaller, was comparable to those of HMA. All the values were
higher than 5000 MPa, which is a reasonable value for low-to-high volume roads.

3.4. Fatigue Resistance (4PB Test)

To complete the characterization of the mechanical performance of the mixtures studied,
the four-point fatigue bending beam (4PB) test method was conducted at 20 ◦C using a loading
frequency of 10 Hz, according to EN 12697-24 [59]. Figure 10 presents the 4PB test results and
the corresponding fitting fatigue laws (in a bi-logarithmic scale), whose parameters of Equation (4)
are presented in Table 6.

Thus, it can be seen in Figure 10 that, for the strain–fatigue levels tested, all the mixes showed
not comparable fatigue slopes, suggesting that they did not have an equivalent sensitivity to strain
in terms of fatigue life. In detail, it is possible to see, for great strain level (300 µm/m), comparable
values of cycles both WMA and HMA, and higher values of the unaged beams compared to the aged
(differences unaged/aged less than 10,000 cycles). For small strain level (100 µm/m), HMA presented
higher values of cycles than WMA. This means that the slope of the fatigue lines for WMA were higher
than HMA, which suggests that the mixtures with warm-mix fabrication bitumen are more sensitive to
change of strain level. Through the equations of each curve, it is possible to obtain the strain level at
which the asphalt reaches 50% of the resistance after 1 million cycles. Table 7 presents the classical
strain level value, ε6, which indicates the strain failure at one million cycles.
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Table 6. Fitting fatigue laws’ parameters.

Mixture A B Adjusted R2 (%)

HMA
Unaged 3175.6 −0.245 87.2

Aged 1826.8 −0.209 92.1

WMA
Unaged 6636.7 −0.317 95.9

Aged 3579.1 −0.271 92.1

A: y-intercept of regression line; B: slope of regression line; R: coefficient of determination.

Table 7. Strains at one million cycles (ε6 in µm/m).

HMA WMA

Unaged Specimens Aged Specimens Unaged Specimens Aged Specimens

107.6 101.8 83.2 84.7

Table 7 highlights how, for HMA, the levels of strain deformation were higher than WMA.
The ageing procedure brought improvements for WMA beams in terms of fatigue despite HMA
traditional asphalt.

Further investigation of the results can be made by considering, for the two mixtures (HMA and
WMA), the differences between the number of cycles in the unaged and aged conditions.

In Figure 11, the differences in the number of cycles between unaged and aged conditions are
plotted in the range of strain-level considered. For 300 µm/m, these differences were comparable
for HMA and WMA. In the range considered, the unaged-aged WMA difference was quite constant
with respect to the analogous curve calculated for HMA, which increased from 300 to 100 µm/m.
In consequence, for a 100 µm/m strain level, the HMA difference was about 15 times higher than the
WMA difference. From these results, it seems that WMA, despite having lower fatigue resistance than
HMA, was less affected by ageing conditions.

Another interesting result can be highlighted considering the differences in terms of strain level
between the HMA and WMA (unaged-aged). Figure 12 shows these differences after varying numbers
of cycles.

It can be noted that ageing produces a different effect on HMA and WMA resulting in a greater
unaged-aged difference for HMA compared to WMA. This could lead to the conclusion that, in addition
to the evidently known better behavior with respect to fatigue of HMA, the WMA tends to have a
lower performance in terms of fatigue, but also a confirmed lower sensitivity by ageing.
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Figure 12. HMA and WMA sensitivity to aged condition varying number of cycles.

Beyond 70,000 cycles, the WMA differences (unaged-aged) assumed values very close to 0.
This result would show that for WMA, beyond a certain value of load cycles, there are no differences in
behavior between unaged and aged specimens in terms of strain level.

To complete the comparisons in terms of fatigue laws, Figure 13 shows the differences in terms of
strain level between (HMA-WMA) in unaged and aged conditions.

It was observed that the difference in terms of fatigue between a HMA and a WMA always
determines better performance for HMAs with a trend that shows, for low numbers of load cycles,
a smaller difference in terms of strain (HMA-WMA). This difference stands at a constant-asymptotic
value over a certain number of cycles (over 500,000 cycles for unaged conditions).

Similar behavior is also found for aged specimens with minor differences compared to the
unaged situation.
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4. Conclusions

In the present study, the performance of WMA and HMA were compared in terms of water
sensitivity, permanent deformation, stiffness, fatigue, and ageing effects. WMA showed lower indirect
tensile strength values than HMA but similar water sensitivity. Ageing resulted in higher ITS values
and these ITS increases were higher in the water conditioned specimens, which resulted in ITSR values
higher than 100%. It could lead to the conclusion that the reduced manufacturing temperature did not
compromise the aggregates-bitumen adhesion/coating.

In what concerns the other evaluated pavement performance characteristics, ageing also increased
dynamic modulus, but this is not an improvement as both WMA and HMA aged mixtures showed
lower fatigue resistance than unaged ones. From the comparisons between the fatigue laws, it emerged
that WMA, despite having lower performance than HMA, was less affected by ageing conditions;
the strain level that caused the failure at 106 cycles for WMA unaged was similar to WMA aged, while it
was 5.7% higher for unaged HMA than aged ones. HMA showed higher resistance to permanent
deformation and more sensitivity to ageing than WMA.

Overall, these results suggest that WMA can be a valid alternative to HMA because it allows
significant energy and environmental advantage, evaluated preliminarily by appropriate laboratory
tests of the pavement performance regarding traffic, climatic condition, and service life.
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