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Abstract: Gastric cancer remains a serious health burden with few therapeutic options. Therefore,
the recognition of cancer stem cells (CSCs) as seeds of the tumorigenic process makes them a prime
therapeutic target. Knowing that the transcription factors SOX2 and OCT4 promote stemness,
our approach was to isolate stem-like cells in human gastric cancer cell lines using a traceable
reporter system based on SOX2/OCT4 activity (SORE6-GFP). Cells transduced with the SORE6-GFP
reporter system were sorted into SORE6+ and SORE6- cell populations, and their biological behavior
characterized. SORE6+ cells were enriched for SOX2 and exhibited CSC features, including a greater
ability to proliferate and form gastrospheres in non-adherent conditions, a larger in vivo tumor
initiating capability, and increased resistance to 5-fluorouracil (5-FU) treatment. The overexpression
and knockdown of SOX2 revealed a crucial role of SOX2 in cell proliferation and drug resistance. By
combining the reporter system with a high-throughput screening of pharmacologically active small
molecules we identified monensin, an ionophore antibiotic, displaying selective toxicity to SORE6+
cells. The ability of SORE6-GFP reporter system to recognize cancer stem-like cells facilitates our
understanding of gastric CSC biology and serves as a platform for the identification of powerful
therapeutics for targeting gastric CSCs.

Keywords: cancer stem cells; gastric cancer; SOX2; monensin; SORE6-GFP reporter system; drug
resistance; high-throughput screening

1. Introduction

Gastric cancer (GC) is the fifth most common cancer and the third leading cause of cancer mortality
worldwide [1-3]. Itis a highly heterogeneous disease displaying various histopathological appearances
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and molecular signatures. The TNM classification remains the major prognostic marker used to inform
treatment decisions in the clinic [4-6]. However, GC is highly heterogeneous even within the same
TNM stage, and patient prognosis remains poor.

Cancer stem cells (CSCs) are cells that are capable of initiating and sustaining tumorigenesis and
give rise to the phenotypically diverse and more differentiated progeny that composes the bulk of the
tumor [7-9]. CSCs are thought to play a major role in driving disease recurrence, due to the increased
therapeutic resistance caused by multiple molecular mechanisms, namely high expression of multidrug
transporters, enhanced DNA repair, and altered cell-cycle kinetics [10-13]. Thus, understanding CSC
biology will be crucial to the development of more effective cancer therapies.

Evidence of CSC existence has been found in a variety of malignancies, including GC [14-19].
Gastric CSCs have been identified in different studies with cell surface molecules namely CD44,
CD133, ALDH1, and CD49f [19-22]. GC cells expressing these markers retain sphere-forming and
tumor-initiating activities and some of them, namely CD44 and CD133, also have clinical relevance
as markers of poor prognosis [23,24]. Thus, in GC, the identification of CSCs has been largely
dependent on the combination of distinct cell surface markers that often differ among tumor types,
and whose robustness in distinguishing tumorigenic from non-tumorigenic cells has been increasingly
challenged [25-27]. Alternatively, transcription factors involved in the establishment of stemness
features such as SOX2 and OCT4 could constitute more robust CSC markers [28].

The transcription factor SOX2 belongs to the group B of SOX proteins and plays an important
role in cell fate determination, pluripotency, and cell differentiation during development in induced
pluripotent stem cells (iPSCs) and in adult stem cells in multiple tissues [29-33]. Hence, SOX2 is
unanimously recognized as a key pluripotency factor in multiple tissues and developmental stages.
Importantly, in cancer, SOX2 has been increasingly associated with a CSC phenotype in tumors from
different tissues, namely of the ovary, prostate, lung, skin, and central nervous system [34-37]. At the
clinical level, SOX2 has been shown to act as an oncogene in several epithelial cancers and is a robust
marker of poor prognosis [34]. In GC the role of SOX2 is less clear. We and others have shown that SOX2
associates with aggressive features, poor patient outcome, and worse response to chemotherapy [38-41].
However, other studies have shown the contrary, indicating that the relevance of SOX2 in gastric cancer
needs further clarification, namely its association with the CSC phenotype [41,42].

OCT4 belongs to the family of POU-domain transcription factors and has a key role in pluripotency
and somatic cell reprogramming [43]. Absence of or low OCT4 expression can lead murine embryonic
stem cells to differentiate towards trophoblasts, while high expression of OCT4 can promote the
differentiation of murine embryonic stem cells into primitive endodermal and mesodermal lineages.
Additionally, neural differentiation of embryonic stem cells is enhanced by OCT4 overexpression [44,45].
The role of OCT4 in human cancers is much less studied than SOX2. It has been suggested as a CSC
marker in some tumors such as gliomas, and squamous cell carcinomas of the lip and tongue, but the
expression and relevance in GC has not been clarified [46-49].

In 2015, Tang et al. generated the novel SOX2-OCT4 reporter system designated the SOX2/OCT4
response element (SORE6-GFP) which they used to isolate breast cancer stem cells with self-renewal
and tumor-initiating ability as well as drug resistance, paving the way to use this reporter system to
identify gastric CSCs [50].

Thus, the main aims of this work were to isolate and characterize gastric CSCs from gastric
carcinoma cell lines using the traceable reporter system based on SOX2/OCT4 activity. We further
assessed the role of SOX2 in gastric CSC properties and searched for new drugs with increased activity
against these cells.
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2. Results

2.1. Isolation of a Small Cellular Subpopulation from Gastric Cancer Cell Lines Enriched in SOX2

AGS and Kato III cells transduced with SORE6-GFP were sorted into two subpopulations, SORE6+
and SORE6~— cell populations, according to GFP expression. After cell sorting, in vitro and in vivo
assays were used to assess CSC properties. An expression screening was performed to explore
the mechanism behind the cellular response to chemotherapy and a high-throughput screening of
pharmacologically active small molecules was done in order to identify drugs that can affect gastric
CSCs (Figure 1).

SORES6 Report System:
SOX2/ OCT4 Responsive Element GFP
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Figure 1. Scheme of overall approach showing the assays performed after the isolation of SORE6+ and
SORE6— populations from gastric cancer cells transduced with the SORE6-GFP reporter system.

We first showed that two human GC cell lines (AGS and Kato III) heterogeneously express SOX2.
Both cell lines also express OCT4, although at low levels as assessed by qRT-PCR, and undetectable
at the protein level by Western blot (Figure 2a). For this reason, we focused the study on SOX2. To
characterize the properties of GC cells expressing SOX2, we used the SORE6-GFP reporter system,
developed by Tang and his collaborators [50]. This reporter system enables the identification of
cellular subpopulations enriched and depleted of these transcription factors. AGS and Kato III cells
were transduced with the SORE6-GFP lentiviral system and selected with puromycin to ensure the
presence of the reporter construct in all cells. Quantification of the cells that expressed GFP showed
that they varied from 8.9 to 10.5% in AGS and from 8.0 to 16.6% in Kato III (Figure 2b). SORE6+ and
SORE6— subpopulations from both cell lines were recovered by fluorescence-activated cell sorting
(FACS) (Figure 2c) and analyzed for expression of the stem cell transcription factor SOX2 when reached
approximately 80% confluence. SORE6+ cells showed an enrichment in SOX2 expression when
compared with SORE6— cells and with the respective parental (wild-type, wt) cell lines (Figure 2d). In
Kato III, SORE6— cells still expressed some level of SOX2, although lower than SORE6+ and the wt cell
line. These results showed that the SORE6-GFP reporter system was able to identify a sub-population
of cells, in GC cell lines, that was enriched in the stem cell transcription factor SOX2. Next, we evaluated
the expression of cell-surface markers that have been previously identified as CSC markers in GC
cell lines, namely ALDH1, CD44, CD133, and CD49f. We only observed an enrichment of ALDH1 in
Kato III SORE6+ cells compared with SORE6— cells; however this was not the case in AGS cells where
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ALDH1 was not expressed. Interestingly, none of the other markers were enriched in the SORE6+
subpopulation from both cell lines (Figure 2e), supporting the idea that stemness transcription factors
are better markers of CSCs. We further observed increased expression of the SOX2 targets, c-MYC and
NOTCH]1, in SORE6+ cells (Figure Sla), as previously described [51].
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Figure 2. SORE6+ cells have a higher expression of SOX2 than SORE6— cells. (a) Western blot and
qRT-PCR analysis exhibiting the expression of SOX2 and OCT4, respectively, in AGS and Kato III cell
lines. The representative immunofluorescence images reveal the differences of SOX2 expression per cell
in both cell lines. (b) Fluorescence-activated cell sorting (FACS) analysis of AGS and Kato III 10 days
after transduction with SORE6-GFP reporter. (c) FACS analysis with gate selection and cell sorting
of two cell subpopulations, SORE6+ cells (with GFP expression) and SORE6— cells (without GFP
expression), in both SORE6-GEP cell lines, followed by fluorescence images of the respective populations
sorted. Scale bar = 100 um. APC-A corresponds to an empty channel used to exclude autofluorescent
cells from the analysis. (d) SOX2 expression evaluated by Western blot in the FACS-sorted SORE6+
and SORE6— cells from both cell lines. (e) Western blot analysis of the putative gastric cancer stem
cell markers ALDH1A1, CD44, CD49f, and CD133 on sorted AGS SORE6 and Kato III SORE6 cell
populations. In Western blot f-actin was used as an internal control. Numbers below every Western blot
picture represent a semi-quantitative analysis of each line (intensity ratio: “gene of interest”/B-actin).
Pictures show cropped areas of Western blots, the whole images are included in the Supplementary
Materials. The qRT-PCR results were normalized to 18S expression. wt corresponds to the parental cell
line (AGS or Kato III). Results are mean + SD of at least three independent experiments.
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2.2. SOREG6+ Cell Population Recapitulates the Heterogeneous Cell Line

We then sought to compare the behavior of SORE6+ and SORE6— cellular subpopulations
regarding CSC features. SORE6+ and SORE6— cells were kept in puromycin-containing medium after
cell sorting to ensure the presence of the reporter construct. In both cell lines, GFP expression decreased
with time in the SORE6+ subpopulation, whereas SORE6— cells could not give rise to GFP+ cells up to
10 weeks after sorting (Figure S1b). AGS SORE6+ and SORE6— cell subpopulations were followed by
time-lapse microscopy to monitor the emergence of cell heterogeneity. We observed the emergence
of SORE6— cells in the SORE6+ subpopulation, reflecting the re-establishment of the heterogeneous
population regarding SOX2 expression.

2.3. The SORE6+ Cells Were Highly Proliferative and Enriched in Tumor-Initiating Cells

We evaluated the proliferation of both sorted cellular subpopulations from AGS and Kato III
through bromodeoxyuridine (BrdU) incorporation. SORE6+ cells had a significantly higher rate of
proliferation when compared with the SORE6— cells and the corresponding wt cell lines (Figure 3a and
Figure S2b). A key property of CSCs is the ability to form sphere-like structures under non-adherent
conditions and serum-free medium supplemented with growth factors to minimize the influence of
external signals. In these conditions, the SORE6+ subpopulations from both cell lines were enriched
in cells with increased ability to form gastrospheres, presenting a significantly higher number of
gastrospheres larger than 100 um in comparison to wt and SORE6— cells (Figure 3b). Then, we
evaluated the tumor-initiating ability of SORE6+ and SORE6— cells after subcutaneous inoculation in
athymic nude mice. The SORE6+ subpopulations were enriched in cells with improved tumor-initiating
ability, since from 13 mice inoculated with AGS SORE6+ cells, 12 developed tumors and all mice
inoculated with KATO III SORE6+ formed tumors. In contrast, only seven out of 13 mice inoculated
with AGS SORE6- cells generated tumors and half of the 10 mice inoculated with Kato III SORE6—
had a tumor (Figure 3c and Figure S2c).

Tumors obtained from SORE6+ cells expressed SOX2 abundantly and some expression of SOX2
was also observed in tumors obtained from the SORE6— subpopulations. This was expected in KATOIII
cell line, as SOX2 was never completely absent in the SORE6— cells. In contrast, in AGS SORE6—
cells, SOX2 expression was completely absent in vitro but regained to some extent in vivo (Figure 52d),
suggesting phenotypic plasticity as previously described by Tang et al. [47].

2.4. The SORE6+ Cells Are More Resistant to 5-Fluorouracil (5-FU) Treatment

CSCs are more resistant to chemotherapeutic drugs, which is a critical property leading to tumor
recurrence and significant clinical implications. To assess this property in the subpopulations obtained
with the SORE6-GFP reporter system, cells were incubated with 5-FU, which is the standard-of-care in
the treatment of GC, and the level of apoptosis was determined [52]. SORE6+ subpopulations from
both cell lines were more resistant to 5-FU in comparison to the SORE6— cells and respective wt cell
lines. In contrast, SORE6— subpopulations were the most sensitive to the drug. After 48 h of treatment
with 5-FU, around 13% of AGS SORE6+ cells and about 55% of Kato IIl SORE6+ cells were in apoptosis.
Conversely, approximately 77% of AGS SORE6— cells and 79% of Kato IIl SORE6~— cells were apoptotic.
AGS SORE6+ cells were more resistant to 5-FU than Kato III SORE6+ cells (Figure 4a and Figure S3a).
Apoptosis was caspase-dependent in AGS but not in KatollI (Figure S3a), as previously described [53].
To search for the molecular mechanism involved in drug resistance in SORE6+ cells, we used the RT2
Profiler PCR Array Human Cancer Drug Resistance kit which allowed us to profile the expression of 84
genes involved in cellular responses to chemotherapy (Figure 4b). The screening identified nine genes
with a significantly different expression between AGS SORE6+ and AGS SORE6— cells. Of these, three
were upregulated in AGS SORE6+ cells: BAX, CLPTM1L, and CYP3AS5, and six were downregulated
in these cells: CDKN1B, ELK1, ERBB2, IGF1R, SOD1 and RARG (Figure 4c). We next performed
qRT-PCR for BAX, CLPTM1L, CYP3A5, CDKN1B, SOD1, and RARG in the two subpopulations from
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both cell lines. We obtained the same results in AGS, whereas in KatollIl only the upregulated genes
were confirmed (Figure S3b). These results suggest that relevant mechanisms of drug metabolism
might be involved in the resistance to 5-FU and indicate also the existence of cell type specific drug
resistance mechanisms.
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conditions and a larger in vivo tumor-initiating capability than SORE6~— cells. (a) Immunofluorescence
displaying the BrdU incorporation in AGS and Kato III SORE6 subpopulations followed by the results
obtained by FACS analysis of BrdU incorporation in AGS wt, SORE6+, and SORE6— cells and Kato III
wt, SORE6+, and SORE6- cells to evaluate the proliferation ability of each cell line (Figure S2a,b). Scale
bar = 100 um. (b) Gastrosphere-forming ability of AGS wt, SORE6+, and SORE6— cells and Kato III wt,
SORE6+, and SORE6— cells. Only spheres with a diameter >100 um were considered as gastrospheres.
Representative phase-contrast images of the gastrospheres are shown. Scale bar = 100 um. Results
are mean + SD of three independent experiments. Significant differences (* p < 0.05; ** p < 0.01 and
***p <0.001). ns: Not significant. (c) Percentage of mice that developed a tumor after subcutaneous
inoculation of 5 x 103 AGS SORE6+ or SORE6~— cells or with 3 x 10° Kato ITl SORE6+ or SORE6— cells.
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Figure 4. SORE6+ cells are more resistant to 5-fluorouracil (5-FU) than SORE6— cells. (a) Annexin
V/ propidium iodide (PI) assay results after FACS analysis of AGS and Kato III wt and SORE6
subpopulation after 48 h treatment with 5-FU. Results are mean + SD of three independent experiments.
Significant differences (* p < 0.05; ** p < 0.01, and **** p < 0.0001), ns-no significant. (b) Gene expression
analysis of 84 genes involved in the response to chemotherapy in AGS SORE6+ and SORE6— cells using
the RT2 Profiler PCR Array Human Cancer Drug Resistance. Volcano plot of AGS SORE6+ cells in
comparison to AGS SORE6— cells (n = 3). The horizontal blue line represents the threshold of statistical
significance (p = 0.05) and the green lines corresponds to the fold change cut-off >1.5. (c) Genes that
showed a significant fold change, up- or down-regulation, (p < 0.05) in AGS SORE6+ cells compared to
AGS SORE6- cells.

2.5. SOX2 Has a Prominent Role in Determining the CSC Phenotype of SORE6+ Cells

In order to assess the relative role of SOX2 in defining the CSC properties previously observed in
SORE6+ and SORE6— populations, we downregulated SOX2 expression in SORE6+ cells from both
cell lines. SOX2 knockdown in SORE6+ cells resulted in a significant decrease in cell proliferation
compared to the CTRL siRNA and the apoptosis analysis after 48 h treatment with 5-FU revealed that
cells with SOX2 downregulation presented a significantly higher sensitivity to the drug in comparison
with the CTRL siRNAs. Upon SOX2 knockdown, 49% of the cells were apoptotic, whereas only 21%
of the cells treated with the CTRL siRNAs were in apoptosis. In Kato III SORE6+ cells with SOX2
downregulation, 61% of the cells were apoptotic, contrasting with the 38% of apoptotic cells detected
in the control (Figure 5a). Overall, these results suggest that SOX2 plays a key role in determining the
properties exhibited by SORE6+ cells. To further confirm this, we overexpressed SOX2 in the SORE6—
subpopulation from both cell lines. The proliferation results showed that SORE6— cells transiently
transfected with SOX2 significantly increased proliferation when compared with the control cells. They
also became more resistant to 5-FU, with 44% of the cells overexpressing SOX2 in apoptosis, in contrast
to the 76% of cells observed in the control, in the AGS SORE6— subpopulation. In Kato III SORE6—
subpopulation, nearly 45% of cells transiently transfected with SOX2 entered apoptosis, whereas in the
control, around 67% of cells were in apoptosis (Figure 5b).



Cancers 2020, 12, 495

% Apoptotic cells

a) u - © i
®
g °
A 2u w0
~ X =R 20
& 3 *
O = N

CTRL SIRNA CTRL SIRNA
7] .. SOX2 SRNA  SOX2 SRNA  SOX2
o AGS SORE6+ AGS SORE6+
& 100 0.75
e .actin i
SORE6+

Number of cells

o 10 10 10 010
Annexin V-APC

8 0 80 "
v i E
go* 2% e
g‘ 2] 84 gw
v X =} o
& & g g
O g B

= CTRL  sRWA CTRL  SiRNA
= W = soxz S 500
""‘: 1.00 0.53 Kato Ill SORE6+ Kato Ill SORE6 +
X ™ s p-actin . N
» T ] o fem S| 10* g
SORE6+ 3 i
< A | 3 -
8- 1 A | &5
REA [V ‘
E | VAR 10 i"
2L IV A
BrdU Annexin V - APC
b) % 500 — XX @ 100 e
s :40 3 8o
fb S H
s = 60
{‘I s 30 3
§ Y 22 g w0
o O F] g,
Q9 Em <=
3
e 0 0
) SOX2 * " pcDNA  SOX2 PeDNA SOX2
31
< 1.00 76.21 AGS SOREG - AGS SORESG -
== [ -actin o
N - N = 10 fonen
2 .
SORES6- EE ‘A f‘ ] o'y
kel hy \ v |
3 | \ A /‘ |
E [ M {8n
3 LJJ W, v s
BrdU Annexmv APC
2 *
T w 80 ———
8 2
~ 9 60 S 6
= ©
o 2 e
40 °
T o ] 8
Q _\— ‘E 20 ‘%zo
& O 5 <
QL 9 =0 =
= § DLDNA SOX2 DNA _SOX2
—_— pcl
= W sox: D)
® 1.00 2.83 KAto M SORES = Kato lll SORES -
X S8 p-actin ;
}d
SORES6- B
\ J )

Number of cells

PV

’ |
v Wl _l ol
e

W
BrdU AnnexinV - APC

Figure 5. SOX2 has a key role on cell proliferation and on 5-FU resistance. (a) Western blot of AGS
SORE6+ and Kato III SORE6+ cells 72 h after transient transfection with an siRNA for knockdown of
the SOX2 protein (siRNA SOX2); the corresponding control is CTRL siRNA. This is followed by the
results of BrdU incorporation for proliferation analysis and annexin V/PI assay results. Cells were used
for apoptosis analysis after 48 h incubation with 5-FU. (b) Western blot of AGS SORE6— and Kato III
SORE6- cells 72 h after transient transfection with the aim of overexpressing the SOX2 protein (SOX2);
the corresponding control is pcDNA3.1. This is followed by the results of BrdU incorporation for
proliferation analysis and annexin V/PI assay results, used for apoptosis analysis after 48 h of incubation
with 5-FU. In Western blot -actin was used as an internal control. Numbers below every Western blot
picture represent semi-quantitative analysis of each line (intensity ratio: SOX2/B-actin). Pictures show
cropped areas of Western blots, the whole images are included in the Supplementary Materials. Results
are the mean + SD of three independent experiments. Significant differences (* p < 0.05, ** p < 0.01, and
***p <0.001).
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2.6. Monensin Selectively Kills SORE6+ Cells

In order to identify new drugs that could be more efficient in targeting SORE6+ cells, we screened
1200 compounds from the Prestwick chemical library in both AGS SORE6 subpopulations and evaluated
the loss in cell number caused by each one in the SORE6+ and SORE6— subpopulations. Compounds
inducing a decrease in the cell number higher than three times the standard deviation (35D) of the
mean of the negative control (DMSO) were considered hits. From these primary hits, 41 compounds
displayed a selective effect towards either SORE6+ or SORE6— subpopulations and were picked for
testing their activity in a dose-response assay. Six compounds were then selected for validation based
on their selective reduction of cell number towards one of the subpopulations and/or on the decrease
of GFP+ cells within the SORE6+ population. This stepwise approach allowed us to identify two
compounds that impacted preferentially on AGS SORE6+ and four on AGS SORE6— cell number. One
of these compounds, monensin, more efficiently decreased the cell number of the AGS SORE6+ cells
(Figure 6a) while preferentially targeting the GFP+ cells within this population (Figure 6b). This result
was replicated in Kato III SORE6 + and SORE6— cells where, although a statistically different effect on
cell number could not be observed (Figure S3c), the GFP+ subpopulation within the Kato III SORE6+
cells was significantly more affected by monensin than the GFP- subpopulation (Figure S3d). The
identification of monensin’s ability to reduce the number of cells with high GFP levels in the SORE+
population suggests that there is a possibility for CSCs in gastric tumors to be therapeutically targeted.
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Figure 6. Monensin is more effective in SORE6+ cells. (a) AGS SORE6+ and SORE6— cells viability
results after 48 h of treatment with monensin, normalized for the DMSO. (b) Number of GFP+ and
GFP- cells in the AGS SORE6+ population after 48 h of treatment with monensin, normalized for the
DMSO. Results are mean =+ SD of three independent experiments. Significant differences (* p < 0.05, **
p <0.01, ** p <0.001, and **** p < 0.0001).

3. Discussion

In this study, making use of the SORE6-GFP reporter system, we identified two cellular
subpopulations, SORE6+ and SORE6— cells, with differential expression of SOX2 in two GC cell lines.
Further, we demonstrated that SORE6+ cells present features of CSCs mostly regulated by SOX2. We
further identified differentially expressed genes that could be involved in drug resistance of SORE6+
cells and monensin as a new drug with superior toxicity in gastric CSCs.

The CSC phenotype has been extensively studied and it has become increasingly clear that one of
the main challenges is the identification of reliable CSC markers. An essential tool for the identification
and isolation of candidate CSCs has been the expression of unique combinations of cell surface markers,
which is an approach that has allowed the isolation of CSCs in many solid malignancies using flow
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cytometry or magnetic cell sorting. In GC, a number of cell surface markers have been identified as
CSC markers (CD44, CD133, ALDHI1, and CD49f) [19,21,22,54]. However, several studies revealed
that these markers lack specificity and furthermore cannot be used for real-time assessment of the
CSC behavior [26,55]. To address this issue, Tang et al. developed a new lentiviral reporter system
(SORE6-GFP) based on SOX2/OCT4 stemness marker activity and successfully used it to identify,
quantify and isolate a small subpopulation with CSC characteristics in breast cancer cell lines and
in the prostate [50,56]. Here, it was used for the first time in GC cell lines and showed that SOX2 is
not only a marker but also a driver of the CSC phenotype in GC. SOX2 is an essential component
in the cocktail of transcription factors used to generate iPSCs. It is required in embryonic stem cells
and it is expressed in adult multipotent stem cells in different tissues such as the stomach, esophagus,
lung, skin, and brain [31]. Thus, it is conceivable that it might be a marker and an inducer of the
CSC phenotype. Sox2-expressing cells are able to differentiate into all cell types found in a gastric
unit, and ablation of the Sox2+ population prevents renewal of the gastric epithelium [31]. SOX2
expression has been associated with multiple tumor types; however, at the clinical level there is a lack
of consensus as to whether it is a marker of good or poor prognosis. Still, the vast majority of studies
associate SOX2 expression with poor patient prognosis [37,39]. We have previously shown that SOX2
is a marker of poor patient prognosis in GC, which would be in accordance with the more aggressive
behavior of the cells that express SOX2, namely increased proliferation, increased tumor-formation,
and increased drug resistance, observed in this study [38]. In addition, it is well established that SOX2
regulates cellular proliferation in many cancer types; for instance, its overexpression in the lungs of
mice induces rapid proliferation and, in some cases, leads to adenocarcinomas [57]. On the other hand,
the knockdown of SOX2 in different cell lines, including gastric, significantly reduces proliferation
in vitro and tumor growth [40,58] SOX2 has also been shown to promote tumor invasion, migration,
and metastasis in numerous cancers [59]. In cervical squamous cell carcinoma, high expression of
SOX2 along with high expression of OCT4 indicated resistance to radiotherapy, and both factors were
important predictors of poor patient survival [60]. Our results are in accordance with these studies
and with the recent study by Chen et al. that shows that OCT4 and SOX2 overexpression in GC cells
induces changes in the biological behavior of the cells towards a CSC phenotype [61]. However, in
our study, the reporter system used allowed us to separate cells based on the endogenous expression
of these transcription factors, mainly SOX2. Furthermore, we observed concordance between SOX2
and ALDH1A1 expression in Kato III, but not with the other previously identified gastric CSC-surface
markers. This might result from the existence of multiple CSC populations or CSC plasticity, which
requires further studies [62]. In this study, we highlight the relevance of SOX2 in the behavior of gastric
cancer but there are other molecular players, such as the recently identified USF1 whose interaction
with the CSC phenotype needs to be addressed [63].

An important clinical readout of the CSC phenotype is the increased drug resistance, namely to
5-FU in GC, which in patients might be related with the worse prognosis, already described [64,65].
We confirmed that SORE6+ cells have increased resistance to apoptosis and screened genes that could
be involved in this process. Interestingly we found that SORE6+ cells have increased expression of
two genes known to enhance resistance to drugs by different mechanisms. CLPTM1L, also known
as cisplatin resistance-related protein 9, confers resistance to apoptosis caused by genotoxic agents
and leads to up-regulation of the anti-apoptotic protein, Bcl-xL [66,67]. CYP3AS5 encodes a member
of the cytochrome P450 superfamily of enzymes, which have multiple functions in drug metabolism
and in facilitating the elimination of drugs [68]. Interestingly, SORE6— cells were enriched in, among
other entities with a less clear role, a known inhibitor of proliferation (CDKN1B) and an inducer
of differentiation (RARG), which could be contributing to the less aggressive phenotype of these
cells [69,70]. These results indicate that the mechanisms involved in drug resistance in the SORE6+
cells, are not related with regulation of the cell cycle. These cells are more proliferative, which in
principle should render them more sensitive to 5-FU; however, this is not the case. Here, we obtained
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clues that multidrug resistance mechanisms are at stake in the SORE6+ cells, in accordance to what has
been demonstrated for CSCs in multiple tumors [65,71,72].

The reporter system used in this study proved to be useful for the screening of drugs with
impact in CSCs. We identified monensin, a polyether ionophore antibiotic, currently used as an
anti-bacterial and anti-parasitic drug, to be toxic to cancer cells with superior activity over CSCs [73].
Ionophores are organic molecules that bind metal cations and form lipid-soluble complexes, facilitating
their transport across cellular membranes [74]. Like other ionophore antibiotics, monensin induces
apoptosis and causes growth inhibition in diverse types of cancer cells, even in those that display
multidrug resistance [75,76]. At the molecular level, monensin has pleiotropic effects affecting
multiple cancer-related pathways such as the E2F/DP1, STAT1/2, NF«B, AP-1, Wnt, and Elk-1/SRF
pathways, likely dependent on the cellular model [77]. Interestingly, another structurally related
compound, the ionophore salinomycin, was shown to specifically kill human CSCs and inhibit
in vivo tumorigenesis. Salinomycin induces cell apoptosis, disturbing the equilibrium of Na+/K+ ions
in cellular membranes including mitochondria and cytoplasm, overcoming resistance to drugs by
multidrug-resistant genes [78]. In this study, we showed that SORE6+ cells were resistant to 5-FU,
but sensitive to monensin, suggesting that monensin is able to bypass the common mechanisms of
drug resistance present in CSCs. Being an ionophore, monensin also alters the concentration of cations
inside the cells. This has been demonstrated in prostate cancer cell lines, where intracellular Ca+ levels
were reduced in the presence of the drug and this was the primary mechanism leading to cell cycle
arrest and apoptosis [79].

4. Materials and Methods

4.1. Cell Culture

Two human gastric carcinoma cell lines were used in this study, AGS (ATCC, CRL-1739, Manassas,
VA, USA) and Kato III (ATCC, HTB-103, Manassas, VA, USA), as well as the human embryonic kidney
cell line, HEK293T (kindly provided by Dr. Joao Relvas from Glial Cell Biology Group, i3S, Porto,
Portugal). AGS and Kato III cell lines were cultured in RPMI medium 1640 with 25 mM Hepes and
GlutaMAX-1 (Gibco, Life Technologies, Thermo Fisher, Waltham, MA, USA) supplemented with
10% fetal bovine serum (FBS) (Biowest, France). After sorting, the cell lines were cultured in DMEM
without phenol red (Gibco, Life Technologies, Thermo Fisher, Waltham, MA, USA) supplemented
with 10% FBS, 1% sodium pyruvate (Gibco, Life Technologies, Thermo Fisher, Waltham, MA, USA),
and 1% penicillin-streptomycin (Gibco, Life Technologies, Thermo Fisher, Waltham, MA, USA). The
HEK293T cell line was cultured in DMEM with 4.5 g/L D-glucose, L-glutamine, and pyruvate (Gibco,
Life Technologies, Thermo Fisher, Waltham, MA, USA). All cell lines were maintained at 37 °C in a
humidified atmosphere containing 5% CO,.

4.2. Viral Supernatant Production and Cell Transduction

The mCMVp-dsCopGFP-PURO () or SORE6-mCMVp-dsCopGFP-PURO (SORE6-GFP) lentiviral
reporters were a kind gift from Dr. Lalage M. Wakefield, NCI, USA. The SORE6-GFP is a lentiviral
reporter construct in which six concatenated repeats of a composite SOX2/OCT4 response element
(SORES6) from the proximal human NANOG promoter were coupled to a minimal cytomegalovirus
(CMV) promoter and used to drive expression of GFP [50]. SORE6-GFP and the empty vector were
cotransfected with the psPAX2 packaging plasmid and the pVSV-G envelope plasmid into HEK293T
cells using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) in a 1 ug DNA: 1.5 uL lipofectamine
ratio in serum- and antibiotic-free Opti-MEM medium (Gibco, Life Technologies, Thermo Fisher,
Waltham, MA, USA), and cells were incubated for 24 h. After incubation, cells were exposed to
fresh HEK293T culture medium and left undisturbed for 48 h. All cell lines were exposed to viral
supernatants (J or SORE6-GFP) diluted 1:5 in fresh medium for 72 h. Transduced AGS and Kato III
cultures were selected with 5 ng/mL of puromycin (Gibco, Life Technologies, Thermo Fisher, Waltham,
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MA, USA) for at least 10 days prior to fluorescence-activated cell sorting (FACS), to ensure the presence
of SORE6-GFP vector in all cells. GFP expression was monitored with the ZOE Fluorescent Cell Imager
(Bio-Rad, Hercules, CA, USA).

4.3. Fluorescence-Activated Cell Sorting (FACS)

Transduced cells were collected by trypsinization, washed with phosphate-buffered saline (PBS),
and resuspended in PBS with 5% FBS. AGS and Kato III cells transduced with SORE6-GFP were sorted
using a FACS Aria II Cell Sorter flow cytometer (BD Bioscience, Franklin Lakes, NJ, USA), and cells
transduced with J viral supernatant were used as negative controls for gating assessment. Cells with
and without GFP signals—SORE6+ and SORE6—, respectively—were seeded in six-well plates at a
density of 3.5 X 10% to 7.5 x 10* cells/mL. The data were analyzed using Flow]Jo software (version 7.6.1).

4.4. Western Blot and Immunofluorescence

To prepare whole cell extracts, cell pellets were washed with PBS and resuspended in cold
RIPA lysis buffer (50 mM Tris-HCl pH = 7.4, 150 mM NaCl, 2 mM EDTA, 1% NP-40, 0.1% SDS)
supplemented with the complete protease inhibitor cocktail (Roche, Basel, Switzerland), 1 mM PMSE,
and 1 mM Na3zVO;,. Then, 30 ug of total protein extracts were separated by standard SDS-PAGE
using the Precision Plus Protein Standard Dual Color protein marker (Bio-Rad, Hercules, CA, USA).
After separation, proteins were transferred to a nitrocellulose membrane (Amersham, GE Healthcare,
Chicago, IL, USA). Membranes were washed with TBS-1% Tween-20 (Sigma-Aldrich, St. Louis, MO,
USA) and blocked with either 5% non-fat milk in TBS-1% Tween-20 or 5% BSA (Sigma-Aldrich, St.
Louis, MO, USA) for 1 h at room temperature. The membranes were incubated overnight at 4 °C with
the following primary antibodies: SOX2 (diluted 1:500; Cell Marque, Sigma-Aldrich, St. Louis, MO,
USA); CD49f (ITGA®6) (diluted 1:1000; Sigma-Aldrich, St. Louis, MO, USA); CD133 (diluted 1:1000; Cell
Signaling Technology, Danvers, MA, USA); CD44 (diluted 1:500; Cell Signaling Technology, Danvers,
MA, USA); ALDH1A1 (diluted 1:500; Abcam, Cambridge, UK); c-Myc (diluted 1:1000; Cell Signaling
Technology, Danvers, MA, USA); NOTCH]1 (diluted 1:500; Santa Cruz Biotechnology, Dallas, TX, USA);
PARP (diluted 1:1000; Cell Signaling Technology, Danvers, MA, USA); cleaved PARP (diluted 1:1000;
Cell Signaling Technology, Danvers, MA, USA); caspase 3 (diluted 1:1000; Cell Signaling Technology,
Danvers, MA, USA); cleaved caspase 3 (diluted 1:1000; Cell Signaling Technology, Danvers, MA, USA);
caspase 7 (diluted 1:1000; Cell Signaling Technology, Danvers, MA, USA); caspase 9 (diluted 1:1000;
Cell Signaling Technology, Danvers, MA, USA); and -actin (diluted 1:4000; Santa Cruz Biotechnology,
Dallas, TX, USA). Membranes were washed with TBS-1% Tween-20 and incubated for 1 h at room
temperature with the respective HRP-conjugated secondary antibody: rabbit IgG (HRP) (diluted
1:2000; Santa Cruz Biotechnology, Dallas, TX, USA); mouse IgG (HRP) (diluted 1:2000; Santa Cruz
Biotechnology, Dallas, TX, USA), or goat IgG (HRP) (diluted 1:2000; Santa Cruz Biotechnology, Dallas,
TX, USA). Signal detection was performed using the ECL detection kit (Amersham, GE Healthcare,
Chicago, IL, USA). f-actin was used as loading control. For immunofluorescence analysis, AGS and
Kato III cell lines were plated in six-well plates, with five coverslips in each well, at a density of 6 X
10* cells/mL in RPMI 10% FBS and allowed to attach overnight. When cells reached about 70%-80%
confluence, medium was removed, cells were washed with PBS (1X), fixed with cold methanol and
washed again with PBS (1X). Then, the coverslips were blocked with 1 pL goat normal serum (Dako,
Denmark): 5 uL PBS 0.5% Tween-20 0.05% BSA for 30 min in the dark at room temperature. Next,
the coverslips were incubated with the primary antibody SOX2 (diluted 1:50) overnight at 4 °C. After
incubations, the coverslips were washed twice with PBS (1X) and incubated with the secondary
antibody goat anti-rabbit Alexa Fluor 488 (diluted 1:100; A11034, Thermo Fisher, Waltham, MA, USA)
for 45 min in the dark at room temperature. 4’,6-diamidino-2-phenylindole (DAPI, dilution 1:100;
Sigma-Aldrich, St. Louis, MO, USA) was added to the coverslips for nuclei staining. The coverslips
were mounted with Vectashield mounting medium (Vector Laboratories, Burlingame, CA, USA) and
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pictures were taken using a Carl Zeiss fluorescent microscope (Carl Zeiss Microscopy, Oberkochen,
Germany). Uncropped western blots are shown in Figure S4.

4.5. Quantitative Real-Time PCR (gRT-PCR)

Total RNA was extracted using the TRI Reagent (Sigma-Aldrich, St. Louis, MO, USA), according
to the manufacturer’s protocol. Concentration and quality of the RNA were assessed using the
NanoDrop ND-1000 spectrometer (V3.5.2 Software). Total RNA was converted to cDNA for 10
min at 65 °C in a thermocycler (Bio-Rad, Hercules, CA, USA) in a final reaction volume of 20 uL,
containing 1 uL of random primers (100 ng/uL), 4 uL of Buffer 5x, 2 pL of DTT, 2 uL of dNTPs (10
mM), 0.3 uL of RNAseOUT (40 U/uL), and 0.5 pL of SuperScript III Reverse Transcriptase (200 U/uL)
in DEPC-treated water (all reagents were purchased from Invitrogen, Carlsbad, CA, USA). For the
PCR, each reaction was prepared with 4 uL. of cDNA diluted 1:20 in DEPC-treated water, 10 uL. Power
SYBR Green PCR Master Mix (Applied Biosystems, Foster City, CA, USA), 0.6 uL of each primer (10
uM), and 4.8 puL of DEPC-treated water (Invitrogen, Carlsbad, CA, USA). The primers used were
the following: 18SFor: CGCCGCTAGAGGTGAAATTC; 18SRev: CATTCTTGGCAAATGCTTTCG;
OCT4For: TGCAGCAGATCAGCCACAT; OCT4Rev: ACACTGGTCCCCCTGAGAAA; BAXFor:
TTTTGCTTCAGGGTTTCATC; BAXRev: GACACTCGCTCAGCTTCTTG; CLPTM1LFor:
TCTGATACACAGCAGATCGAGG; CLPTM1LRev: AGTTGTCCGCCATCACGTTC; CYP3A5For:
TCGAAGGTCTTTAGGCCCAG; CYP3A5Rev: GGTGAAGGTTGGAGACAGCA; CDKN1BFor:
CCAAAGGTGCCTGCAAGGTG; CDKN1BRev: AGAAGAATCGTCGGTTGCAGGT; RARGFor:
CATCCAAGAGACTGCCCGAC: RARGRev: CGTAGCTGCTGGAGTGGG;  SOD1For:
GCCAAAGGATGAAGAGAGGCAT; SOD1Rev: ACATCGGCCACACCATCTTT. The reactions were
performed in a 7500 Fast Real-Time PCR System using the software v2.0.6 (Applied Biosystems, Foster
City, CA, USA). Each experiment was carried out in triplicates and three negative controls (without
cDNA) were included in each plate. The housekeeping control gene, 18S, was used for normalization
of target gene abundance. Data was analyzed by the comparative 2AACT method [80].

4.6. Sulforhodamine B (SRB) Assay

For the 5-fluorouracil (5-FU, Sigma-Aldrich, St. Louis, MO, USA) IC50 determination,
a dose-response curve between the drug concentration and the percentage of cell growth inhibition
was performed for each cell line. For that, AGS and Kato III cell lines were seeded in 96-well plates at a
density of 1 x 10* and 2 x 10* cells/mL respectively and treated for 48 h with a range of concentrations
between 6.25 and 100 nmol/mL of 5-FU (Sigma-Aldrich, St. Louis, MO, USA). Cells were fixed with cold
10% (w/v) TCA (Merck Millipore, Burlington, MA, USA), stained with 0.4% (w/v) SRB (Sigma-Aldrich,
St. Louis, MO, USA) for 30 min and then washed with 1% (w/v) acetic acid. The dye was solubilized
with 10mM Tris Base (pH = 10.5) and the optical densities were measured at 510 nm using the Synergy
Microplate Reader (Biotek, Winooski, VI, USA).

4.7. Annexin V/Propidium lodide (PI) Assay

Cell lines were seeded in six-well plates at a density of 0.6 x 10° cells/mL and were allowed to
attach overnight. The following day, cells were treated with the concentration of 5-FU corresponding to
the IC50 value determined for AGS and Kato III wild-type cell lines. Cells treated only with dimethyl
sulfoxide (DMSO, Applichem) were used as control. After 48 h, cells were collected by trypsinization
and pellets were resuspended in Binding Buffer 4x (annexin V Apoptosis detection Kit, eBioscience,
Affymetrix, Santa Clara, CA, USA). Each sample was first stained with annexin V Alexa Fluor 594
conjugate (Invitrogen, Carlsbad, CA, USA) or annexin V APC (ImmunoTools, Germany) and then with
propidium iodide (PI) (annexin V Apoptosis detection Kit, eBioscience, Affymetrix, Santa Clara, CA,
USA). The percentage of apoptosis was measured using the FACS Aria II flow cytometer. The results
were analyzed using Flow]Jo software (version 7.6.1).
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4.8. BrdU Incorporation Assay

Cells were cultured in six-well plates at a density of 0.8 x 10° cells/mL and, 24 h later BrdU was
incorporated in the cell culture medium at the ratio of 1:1000, for 1 h to 2 h at 37 °C. The cells were
harvested by trypsinization and cell pellets fixed in ice-cold methanol (Chem-Lab, Zedelgem, Belgium).
The cells were resuspended in HCI 4 M (Mallinckrodt Baker, Avantor, Allentown, PA, USA) for 20
min at room temperature followed by two washing steps with PBS and a blocking step with PBS
containing 0.5% Tween 20 and 0.05% BSA for 10 min. The cells were incubated with the primary
antibody against BrdU (1:20, monoclonal mouse, Bu20a, Dako, Denmark) for 1 h at room temperature,
washed with PBS, and incubated with the secondary antibody labelled with FITC (1:150 pL, polyclonal
rabbit anti-mouse, Dako, Denmark) for 30 min, washed again and resuspended in PBS. The percentage
of BrdU positive cells was assessed using the FACS Aria II flow cytometer. The data was analyzed
using FlowJo software (version 7.6.1). BrdU incorporation was also observed by immunofluorescence,
methodology previously described in 4.4, with an additional step after methanol fixation where the
cells were treated with HCl 4 M for 20 min at room temperature. The coverslips were incubated with
the primary antibody BrdU (diluted 1:20) overnight at 4 °C. The goat anti-mouse Alexa Fluor 594
(diluted 1:100; A11032, Thermo Fisher, Waltham, MA, USA) was used as secondary antibody.

4.9. Gastrosphere Formation

Cells were trypsinized and disaggregated with a 25-gauge needle (BD Bioscience; Franklin Lakes,
NJ, USA) to obtain single-cell suspensions in cold PBS. Cells were then plated at 1 x 10° cells/well in
24-well plates coated with 12 g PolyHEMA (Sigma-Aldrich, St. Louis, MO, USA)/1 L of 95% EtOH. Cells
were grown for 10 days in serum-free DMEM medium containing B27 supplement, N2 supplement,
10 ng/mL of bFGF, 20 ng/mL of hEGEF, and 1% of penicillin-streptomycin, at 37 °C and 5% CO; in
a humidified incubator. After 10 days, cells were examined and the number of gastrospheres with
more than 100 pm in diameter were counted in a total of 10 independent fields per well in a Zeiss
optical microscope.

4.10. Xenografts in Nude Mice

Animal experiments were approved by the i3S animal ethics committee (CEA-Comissao de
Etica Animal) and licensed by the Dire¢ao Geral de Alimentacao e Veterinaria (DGAV), code DAGV
0421/000/000/2015. Experiments were performed in the animal facility of i3S according to the institutional
guidelines regulated by Decreto-Lei 113/2013 (Portugal), which is the national transposition of the
European Directive 2010/63/EU on the protection of animals used for scientific purposes and FELASA
guidelines. Female athymic nude mice (NIH(S)II-nu/nu [81]) aged 6 to 8 weeks were subcutaneously
inoculated with 5 x 10° AGS SORE6+ or AGS SORE6- cells or with 3 x 10° Kato IIl SORE6+ or Kato
III SORE6~ cells resuspended in 1:1 RPMI medium: Matrigel matrix phenol red-free (BD Bioscience;
Franklin Lakes, NJ, USA) using a 25 gauge needle. Animals were observed, and their weight measured
once a week. They were euthanized one to two months after inoculation and tumors were resected
and fixed in neutral buffered formalin 10%.

4.11. Immunohistochemistry

After fixation, the mice tumors were processed, embedded in paraffin and sectioned with a
microtome (Microm HM 335 E) at 3-um thickness. Tumor sections were deparaffinized in xylene
and rehydrated through a graded series of ethanol (EtOH) concentrations. Antigen retrieval was
performed by heat-induced (98 °C) in 1 mL EDTA buffer 10 mM pH = 8.0 (Thermo Fisher, Waltham,
MA, USA): 10 mL dH;O for 40 min followed by 20 min at room temperature. The sections were
then washed with TBS-0.5% Tween-20 and incubated with hydrogen peroxide 10% (v/v). Primary
antibody SOX2 was diluted 1:50 in antibody diluent OP Quanto (Thermo Fisher, Waltham, MA, USA)
and incubated overnight at 4 °C in a humidified chamber. After incubation, slides were washed and
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incubated with the secondary antibody HRP polymer (Rabbit/Mouse Dako Real EnVision, Denmark)
for 30 min at room temperature. Next, the slides were washed twice with TBS-0.5% Tween-20 and
incubated with Substrate Buffer mix with DAB + Chromogen (50X) (Dako Real, Denmark), according
to the manufacturer’s instructions, for 3 min at room temperature in a humidified chamber. Slides were
then washed with water and counterstained with hematoxylin for 2 min and washed again. Finally,
the slides were dehydrated in a series of EtOH dilutions, passed through xylene and mounted with
permanent mounting medium (Bio-mount HM; Bio-Optica, Milan, Italy).

4.12. SOX2 Overexpression and Knockdown

Cells were seeded in six-well plates at a density of 0.6 x 10° cells/mL and incubated for 24 h at
37 °C and 5% CO, in a humidified incubator. For SOX2 overexpression, AGS and Kato III SORE6— cells
were transiently transfected with a SOX2 expression vector or with the corresponding empty vector
(pcDNA3.1)ina 1 ug DNA: 1.5 pL lipofectamine ratio in serum- and antibiotic-free Opti-MEM medium.
For SOX2 knockdown, AGS SORE6+ and Kato III SORE6+ cells were transiently transfected with
either a commercial set of three stealth siRNAs directed against human SOX2 (HS5144045, H55186041,
and HS5186042) or an siRNA negative control (CTRL siRNA), all from Invitrogen (Carlsbad, CA, USA).
The transfection was performed using Lipofectamine 2000 with 100 nM of siRNAs targeting SOX2
or siRNA negative control (CTRL) in serum- and antibiotic-free Opti-MEM medium. After 24 h, the
transfection medium was replaced with DMEM without phenol red supplemented with 10% FBS and
1% sodium pyruvate. Twenty-four hours later, the cells were submitted to annexin V/PI assay and
BrdU incorporation assay. The efficiency of SOX2 overexpression and knockdown was verified by
Western Blot and qRT-PCR respectively.

4.13. Real-Time2 Profiler PCR Array (RT2PCR)

We used the RT2 Profiler™ PCR Array Human Cancer Drug Resistance (Qiagen, Hilden, Germany)
to identify genes involved in drug resistance that could be differentially expressed between SORE6—
and SORE6+ cells. AGS SORE6+ and SORE6— total RNA was extracted, quantified and mRNA
converted to cDNA using the same procedures previously mentioned. For the PCR, a master mix
was prepared, according to the manufacturer’s instructions, with 102 pL of a cDNA solution (91 pL
of RNase-free water and 20 uL of cDNA), 1350 uL Power SYBR Green PCR Master Mix (Applied
Biosystems, Foster City, CA, USA), and 1248 pL of RNase-free water (NZYTech, Lisboa, Portugal).
Then, 19 pL of the mix were distributed in each well of a 96-well plate. The reactions were performed
in a 7500 Fast Real-Time PCR System using the software v2.0.6 (Applied Biosystems, Foster City, CA,
USA). The average of five housekeeping control genes included in the kit was used for normalization
of target gene abundance. Data were analyzed by the comparative 2AACT method [80].

4.14. Small Molecules High-Throughput Screening

AGS SORE6+ and SORE6— cells were seeded in 384-well plates (Greiner CELLSTAR® 781091) at
a density of 5 x 10* cells/mL in RPMI medium supplemented with 10% FBS and allowed to attach
overnight. The next day, 1200 compounds from the Prestwick Chemical Library were transferred, one
compound per well, using a pintool (V&P Scientific, San Diego, CA, USA) coupled to the MDT head of
a JANUS Automated Workstation (PerkinElmer, Waltham, MA, USA) for a final concentration of 8
uM in DMSO. For each plate, four wells were treated with DMSO 0.4% and used as negative controls,
and quadruplicate wells were treated with 5-FU (4.5 ng/mL) and used as positive controls. Cells were
incubated for 48 h after which they were washed with PBS, fixed with 4% PFA (Alfa Aesar, Haverhill,
MA, USA), and stained with Hoechst (1 ug/mL). The image acquisition was performed in an INCell
Analyzer 2000 (GE Healthcare, Chicago, IL, USA) with a Nikon 10x/0.45 NA Plan Fluor objective. Four
fields of view were acquired per well covering the whole well. Image analysis was executed using the
INCell Investigator software (GE Healthcare, Chicago, IL, USA). Briefly, the image analysis workflow
consists in the segmentation of the nuclei, from the Hoechst channel, followed by a slight expansion of
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the nuclear mask to cover a larger area of the cell. The mean pixel intensity of the GFP channel has been
extracted for each individual cell. Spotfire software (TIBCO, Palo Alto, CA, USA) was used to visualize
the data, perform quality control of the image segmentation and GFP+/GFP- threshold decision.
A custom-made MATLAB script (version R2018, MathWorks, Natick, MA, USA) was developed to
automatically extract specific and conditional data of all analyzed cells and per each condition. Hits
were identified using thresholds for total cells and GFP positive cells loss higher than three times the
standard deviation (35D) of the mean of the negative controls and loss of GFP positive cells. Primary
hit confirmation was performed testing each compound in a dose-response assay (0.125 pM-16 uM) in
triplicate. For hit validation, compounds were repurchased and tested again in dose-response in cells
were seeded in 96-well plates (CellCarrier-96 Ultra, PerkinElmer, Waltham, MA, USA) at a density of
2.5 x 10% cells/mL and incubated for 24 h at 37 °C and 5% CO, in a humidified incubator. Then, cells
were exposed to the compounds for 48 h and then fixed, stained, and analyzed as previously described
for the primary screening. DMSO was used as a negative control and 5-FU used as a positive control.

4.15. Statistical Analysis

Results were expressed as mean + SD from at least three independent experiments. Statistical
significance was determined by unpaired two-tailed t test or one-way ANOVA followed by post hoc
Turkey’s test using GraphPad Prism 8.0 software (GraphPad Software, La Jolla, CA, USA). Differences
were considered significant when p < 0.05.

5. Conclusions

We demonstrated that SOX2 has a prominent role in gastric CSCs and can be used as a marker of
these cells. Furthermore, we identified a new drug, monensin, with increased toxicity over gastric
CSCs. We showed for the first time that monensin acts on CSCs, paving the way for the clinical testing
of this drug in GC patients.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/2/495/s1.
Figure S1: SOREG6+ cells are enriched in NOTCHI and ¢-MYC and give rise to SORE6— cells in both gastric cancer
cell lines. Figure S2: SORE6+ cells have a higher incorporation of BrdU compared to the SORE6— cells and an
enhanced ability to form tumors in vivo. Figure S3: SORE6— cells are more sensitive to chemotherapeutic drugs
and Kato III SORE6+ cells are more sensitive to monensin than SORE6— cells. Figure S4: Uncropped western blots
images corresponding to all the figures in the manuscript.
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