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design problem for path pair availability guarantees, assuming links can be upgraded

to have an increased availability. Since the path pair availability constraints are non-

linear and not linearizable in an exact manner, this mathematical problem has been

avoided by considering only the working path availability or availability guarantees

for the working and backup paths separately in a disaggregated way. In this paper,

we present an aggregated model, where only the path pair availabilities must be ful-

filled. In this model, we consider a convex relaxation for an approximation of the

path pair availability to obtain linear constraints, and describe an iterative approach

to tighten the bounds of the solution space, in order to obtain near-optimal solutions.

The results show that considering an aggregated model is more cost effective than

considering a disaggregated model with explicit values for the availabilities of the

working and the backup paths.

Keywords: resilient network design, availability guarantees, optimization, convex

relaxation.

1 Introduction

Communication networks are extremely important in today’s society, as they support many

fundamental services, such as e-government services, e-banking, e-commerce, smart grid

management, or remote working. Also in the event of failures or disasters, communication

networks play a critical role in rescue and recovery efforts. Therefore, it is essential to

guarantee the resilience of communication networks (expressed in terms of survivability

and tolerance to faults, disruptions and traffic variations) and also a high dependability of

the network resources (which includes reliability and availability) [8]. In particular, guar-

anteeing high levels of availability of the network resources, especially due to commitments

in Service Level Agreements (SLAs), in a cost effective way is of primary importance for

network operators and managers. Critical services may need availabilities of as much as

“five-nines” (i.e., 0.99999 meaning that the service may be unavailable no more than 5

minutes and 15 seconds a year) or even of “six-nines” in some cases.

Protection strategies help increase network availability, but may not be sufficient to

achieve the required levels of availability. There are different protection schemes, including

shared and dedicated approaches, where the obtained availability depends on parameters

such as the availability of the network elements, or the number of hops in a path. There are

many protection schemes to guarantee a specified network availability, e.g. [5]. The concept

of having a high availability subgraph in the network was explored in [1]. This subgraph is
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composed of a subset of nodes and edges of a network, and should be used to guarantee a

high level of availability to the more critical services. It can also be devised in the context

of disaster preparedness strategies. Note that different metrics may be considered in terms

of disaster preparedness and to assess disaster recovery strategies [11, 12].

The increase of the availability of the edges entails a certain cost, and for any network

operator or manager it is essential to consider how much to invest, in order to guarantee the

contracted SLAs. It is difficult to assess the upgrade cost, but in [2] some cost functions are

proposed to approximate actual real costs. Therefore, we assume the links of the subgraph

can be upgraded at a given cost expressed by a cost function, in order to achieve the required

end-to-end availability target. A cost-efficient deployment of service function chains (SFCs)

with availability guarantees, is proposed in [4]. The Virtual Network Function (VNF)

redundancy allocation is determined according to a metric that captures both the cost and

the impact on the availability improvement of the selected VNF backup.

For each source-destination, a pair of paths is devised to guarantee 1 + 1 protection.

The working (or active or primary) path and the backup (or secondary) path must be

link-disjoint, so that a failure in one of the links of the working path (WP) may be quickly

overcome by using the backup path (BP). As the services should be provided with a high

availability in regular conditions, it is considered that the paths used in regular conditions

(i.e., the WPs) should use edges of the high availability subgraph only. However, we

also want to guarantee an appropriate availability even when the BPs are used, so their

availability also has to be taken into account. The availability of a path is the product of

the availability of the elements that form it. Assuming that the nodes availability is much

higher than the links availability, we will only consider the availability of the links in the

calculation of the availability of a path. The availability of the path pair is calculated as

the complementary value of the unavailability of the path pair, which is the product of the

unavailabilities of the WP and the BP.

It is assumed that a BP may use edges on the high availability subgraph, if necessary,

as long as it is link-disjoint to its WP. This should lead to higher values of availability of

the BP, and consequently of the path pair. This will entail the need for a higher capacity

of the edges in the high availability subgraph, but that aspect is outside the scope of this

work. For a more efficient use of capacity, a shared backup path protection approach may

be used, but the availability may not be maximized. In [17], a strategy to maximize the

availability given a network capacity plan is proposed.

The aim of this work is to select the edges that will form the high availability subgraph,
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and their enhanced availability, such that: (i) a link-disjoint path pair exists between

any two nodes in the network; (ii) any WP uses exclusively links of the high availability

subgraph; (iii) any path pair has an availability of at least Λ; (iv) the edge upgrade cost

is minimized. We consider that the subgraph is a spanning tree, as in [2]. This problem

is known to be NP-complete and the availability constraints comprising the path pairs

are nonlinear. To circumvent the nonlinearity of these constraints, it has been common in

previous works, e.g. [2], to disregard the BP availability in the model. In [13] we did consider

the path pair, but with disaggregated availability constraints where given minimum values

for the working and backup path availabilities were considered separately, which may lead

to excessively high costs. These strategies aim to obtain mixed integer linear programming

(MILP) models which can then be solved with optimization solvers.

To deal with the nonlinearity of the path pair availability constraints, we consider the

convex relaxation of these constraints [3]. This is a technique commonly used when solving

bilinear problems [6, 7, 10]. The convex envelop is defined by estimated bounds, and the

solution is closer to the optimal one (true solution) the tighter the estimated bounds are [9].

To the best of our knowledge, this technique has not been used to deal with the nonlinearity

of path pair availability constraints in a network design problem. In [14] we have used this

approach in the context of a Software Defined Networking (SDN) controller placement

problem, to deal with intercontroller availability guarantees involving a very small set of

nodes, and therefore no tree subgraph was considered.

The main contributions of this paper are:

• Comparison of the spanning tree upgrade cost for different pairs of availability target

values for the WP and BP, in the disaggregated model. The values were determined

to achieve the path pair target availability Λ, and they illustrate the dependency of

the disaggregated model solutions on the required WP and BP availability values.

• Adaptation of an aggregated model with path pair availability guarantees between

all pairs of nodes. To linearize the model, we consider the convex relaxation of

these constraints, to achieve the path pair target availability without the need of

suboptimal disaggregated constraints.

• Use of an algorithm to solve the aggregated model by iteratively tightening the convex

envelope to obtain near-optimal solutions.

• Comparison of the solutions in terms of the spanning tree upgrade cost between the

aggregated and the disaggregated models.
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The paper is organized as follows: in the next section, the link availability upgrade

model is presented, followed by the problem formulation in section 3. In sections 4 and 5,

two different approaches for dealing with the availability constraints are explored. After

presenting the resolution strategy for the aggregated model (section 6), the computational

results are displayed and analysed in section 7. The paper ends with the conclusions.

2 Link Availability Upgrade Model

Consider that the network can be represented as a graph G = (N,E), where N is the set of

nodes in the network and E is the set of bidirectional edges or links connecting the nodes.

Each link is represented by its end nodes {i, j} and has an associated length ℓij.

Each link has an associated availability which is dependent on its length. We consider

that the default link availability is given by [16]:

a0ij = 1− MTTR

MTBFij

(1)

where MTTR denotes the mean time to repair and is assumed to be 24 h, and MTBFij

denotes the mean time between failures for link {i, j}, which is given by CC · 365 · 24/ℓij,
where CC is the cable cut metric and is assumed to be 450 km.

We assume that each link (in the spanning tree) can be upgraded to have increased

availability. We consider the incremental availability link upgrade used in [2]. Consider K

levels of link upgrade, where in each level the link unavailability is decreased by a factor

0 < ε < 1. Let akij denote the link availability in level k = 1, . . . , K which can be expressed

as:

akij = ak−1
ij + ε(1− ak−1

ij ) (2)

The cost of upgrading link {i, j} to level k = 1, . . . , K is given by [2]:

ckij = −ℓij · ln

(
1− akij
1− a0ij

)
(3)

3 Problem Formulation

The problem we address is to devise a spanning tree in the network whose links can be

upgraded, to achieve the required target availability Λ between all pairs of nodes in the
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network. To increase the availability, we require path protection between each node pair via

a pair of link-disjoint working and backup paths. The WPs are routed over the spanning

tree, and each pair of working and backup paths must guarantee an end-to-end availability

of at least Λ. The objective of the optimization problem is to minimize the upgrade cost

of the spanning tree.

Consider A as the set of arcs, i.e., directed links. Each arc is denoted by its end nodes

(i, j) directed from i to j. Denote V (i) as the set of nodes adjacent to i. Consider the

following decision variables:

zkij binary variable that is 1 if link {i, j} is in level k where k = 0, 1, ..., K, and 0 otherwise

wij binary variable that is 1 if link {i, j} belongs to the spanning tree, and 0 otherwise

xsd
ij binary variable that is 1 if arc (i, j) belongs to the WP from nodes s to d, and 0

otherwise

ysdij binary variable that is 1 if arc (i, j) belongs to the BP from nodes s to d, and 0

otherwise

The problem can be formulated as (adapted from [2]):

min
K∑
k=1

ckijz
k
ij (4)

s.t.

∑
j∈V (i)

(
xsd
ij − xsd

ji

)
=


1 i = s

−1 i = d

0 otherwise

s ∈ N, d ∈ N, i ∈ N (5)

∑
j∈V (i)

(
ysdij − ysdji

)
=


1 i = s

−1 i = d

0 otherwise

s ∈ N, d ∈ N, i ∈ N (6)

xsd
ij + xsd

ji + ysdij + ysdji ≤ 1 s ∈ N, d ∈ N, {i, j} ∈ E (7)

xsd
ij + xsd

ji ≤ wij s ∈ N, d ∈ N, {i, j} ∈ E (8)∑
{i,j}∈E

wij ≤ |N | − 1 (9)
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K∑
k=0

zkij = 1 {i, j} ∈ E (10)

K∑
k=1

zkij ≤ wij {i, j} ∈ E (11)

availability constraints (12)

wij ∈ {0, 1} {i, j} ∈ E (13)

zkij ∈ {0, 1} {i, j} ∈ E, k = 0, . . . , K (14)

xsd
ij , y

sd
ij ∈ {0, 1} s ∈ N, d ∈ N, (i, j) ∈ A (15)

The objective function (4) minimizes the cost of upgrading the spanning tree links.

Constraints (5) and (6) are the flow conservation constraints for the WPs and BPs

between nodes s and d, respectively. Constraints (7) guarantee that each pair of working

and backup paths are link-disjoint.

Constraints (8)-(9) guarantee that the WPs are routed over a spanning tree.

Constraints (10) guarantee that each link {i, j} is either not upgraded, i.e., z0ij = 1, or

is upgraded to one and only one level k = 1, . . . , K. Constraints (11) guarantee that only

the links of the spanning tree can be upgraded.

Constraints (12) are nonlinear in nature and will be expressed in two ways: in a disag-

gregated version (developed in section 4), where availability target values are considered

separately for the working and backup paths respectively, leading to more costly solutions;

and in an aggregated version (developed in section 5), where the path pair availability is

considered via the convex relaxation to obtain linearized constraints.

Finally, constraints (13)-(15) are the variable domain constraints.

4 Disaggregated Model

We consider the disaggregated model presented in [2]. In this model, target availability

values are considered separately for working and backup paths: a WP should guarantee an

availability of at least ΛWP , while a BP should guarantee an availability of at least ΛBP .

Consider the additional decision variables:

psdij real variable accounting for the unavailability of link {i, j} if it belongs to the WP

between nodes s and d
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qsdij real variable accounting for the unavailability of link {i, j} if it belongs to the BP

between nodes s and d

Then constraints (12) are given as in [2]:

psdij =
(
xsd
ij + xsd

ji

) K∑
k=0

zkij(1− akij) s ∈ N, d ∈ N, {i, j} ∈ E (16)

qsdij =
(
ysdij + ysdji

) K∑
k=0

zkij(1− akij) s ∈ N, d ∈ N, {i, j} ∈ E (17)

1−
∑

{i,j}∈E

psdij ≥ ΛWP s ∈ N, d ∈ N (18)

1−
∑

{i,j}∈E

qsdij ≥ ΛBP s ∈ N, d ∈ N (19)

Constraints (16) and (17) are the definition of variables psdij and qsdij , respectively. Con-

straints (18) and (19) guarantee the target availability for WPs and BPs, respectively. The

known result stating that the unavailability of a series of components may be approximated

by the sum of the unavailabilities of the components was used [15].

Note that constraints (16) and (17) are nonlinear. However, since variables zkij, x
sd
ij

and ysdij are binary, they can be exactly linearized using McCormick envelopes. Therefore,

constraints (16) are linearized in the following way:

psdij ≤ xsd
ij + xsd

ji s ∈ N, d ∈ N, {i, j} ∈ E (20)

psdij ≤
K∑
k=0

zkij(1− akij) s ∈ N, d ∈ N, {i, j} ∈ E (21)

psdij ≥ xsd
ij + xsd

ji +
K∑
k=0

zkij(1− akij)− 1 s ∈ N, d ∈ N, {i, j} ∈ E (22)

Constraints (17) are linearized in the same way. Therefore, the disaggregated model is

formulated as a MILP model.

5 Aggregated Model

The aggregated model considers the path pair availability, and so constraints (18) and (19)

are generalized. Consider the additional decision variables:
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λsd
WP real variable accounting for the availability of the WP from s to d

λsd
BP real variable accounting for the availability of the BP from s to d

Then constraints (18) and (19) are replaced by the generalized constraints given by:

1−
∑

{i,j}∈E

psdij ≥ λsd
WP s ∈ N, d ∈ N (23)

1−
∑

{i,j}∈E

qsdij ≥ λsd
BP s ∈ N, d ∈ N (24)

1− (1− λsd
WP )(1− λsd

BP ) ≥ Λ s ∈ N, d ∈ N (25)

Constraints (25) can be rewritten as:

λsd
WP + λsd

BP − λsd
WP · λsd

BP ≥ Λ s ∈ N, d ∈ N (26)

Note that these constraints are nonlinear. Consider the additional decision variables

given by ϕsd = λsd
WP · λsd

BP . Since λsd
WP and λsd

BP are real variables and not binary, the

McCormick envelopes can only provide a convex relaxation. Therefore, we get ϕsd ≤
λsd
WP · λsd

BP instead of guaranteeing the equality [3].

Constraints (26) are then linearized using McCormick envelopes to obtain the convex

relaxation in the following way:

λsd
WP + λsd

BP − ϕsd ≥ Λ s ∈ N, d ∈ N (27)

ϕsd ≥ χLλsd
BP + νLλsd

WP − χLνL s ∈ N, d ∈ N (28)

ϕsd ≥ χUλsd
BP + νUλsd

WP − χUνU s ∈ N, d ∈ N (29)

ϕsd ≤ χUλsd
BP + νLλsd

WP − χUνL s ∈ N, d ∈ N (30)

ϕsd ≤ χLλsd
BP + νUλsd

WP − χLνU s ∈ N, d ∈ N (31)

χL ≤ λsd
WP ≤ χU , νL ≤ λsd

BP ≤ νU s ∈ N, d ∈ N (32)

where χL and χU are the lower and upper bounds for λsd
WP , and νL and νU are the lower

and upper bounds for λsd
BP (constraints (32)) – these bounds need to be estimated and

given as parameters. Constraints (28) and (29) are the underestimates for ϕsd, while

constraints (30) and (31) are the overestimates.

In this way, the aggregated model can be approximated by a MILP model.
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6 Solving the Aggregated Model

Note that the convex relaxation guarantees ϕsd ≤ λsd
WP · λsd

BP , instead of the equality. This

means that when ϕsd < λsd
WP · λsd

BP , we have that (27) is satisfied, but not necessarily (26).

Consider the slack variable δsd ≥ 0:

ϕsd + δsd = λsd
WP · λsd

BP (33)

Then, constraints (26) become:

λsd
WP + λsd

BP −
(
ϕsd + δsd

)
≥ Λ (34)

Consider ∆ as a lower bound of δsd, s ∈ N, d ∈ N . Then, (34) can be rewritten as:

λsd
WP + λsd

BP − ϕsd ≥ Λ +∆ (35)

So instead of considering that the target availability is Λ, we consider Λ′ where Λ′ = Λ+∆.

By tightening the envelop bounds χU , χL, νU , νL, the solution for the convex relaxation

becomes closer to the optimal one. We propose an algorithm which is an iterative approach

that takes advantage of some characteristics specific to the link availability upgrade prob-

lem, to tighten the bounds of the convex envelope in order to obtain near-optimal solutions.

Since we are minimizing the upgrade cost, the lower bounds χL, νL have the most impact

on the problem. The upper bounds χU , νU only need to be large enough to contain all the

desired solutions. Therefore, the upper bounds can be set to χU = νU = Λ.

It has been shown in [2] that improving the WP availability has a lower impact on the

cost function, than improving the BP availability. Given this, the lower bound νL is set

to a sufficiently small value so as to not remove any desired solutions, but large enough so

as to not provide too many undesired solutions (solutions that satisfy (27) but not (26)).

Then, χL is the bound that will be adjusted in the algorithm by tightening it iteratively

within a range [χL
min, χ

L
max]. The parameter χL

min is set to be the availability of the longest

shortest path between any two nodes in the network, and χL
max is set to a sufficiently large

number so as to not remove any desired solutions in the network. The granularity step by

which χL is incremented is denoted by σ.

With all these considerations, the iterative approach is given as follows:

1. Set χL = χL
min and Λ′ = Λ+∆
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2. Solve the convex relaxation with χL and Λ′

3. If the solution obtained does not satisfy (26), then increment χL by σ, i.e., χL + σ

4. Repeat steps (2)-(3) until a solution that satisfies (26) is obtained or until χL
max is

reached (note that this is the lowest cost solution; i.e., if we proceed with the iterative

approach the following solutions will have a higher cost, in general)

7 Computational Results

We used the three networks in [2]: polska, spain and italia14. The characteristics of these

networks are in Table 1 showing the number of nodes |N |, the number of links |E|, the
average node degree and the network diameter which is given by the longest shortest path

between any two nodes in the network.

Table 1: Characteristics of the networks

Network |N | |E| Avg node deg Diameter (km)

polska 12 18 3.00 811
spain 14 22 3.14 1034
italia14 14 29 4.14 950

For the link availability parameters, we have considered ε = 0.5 and K = 5 levels of

upgrade. The target path pair availability is “five-nines”, i.e., Λ = 0.99999.

For the disaggregated model (section 4), we have considered three pairs of values for the

working and backup path availability targets. For the working path, we have considered

ΛWP = {0.997, 0.998, 0.999}, while the backup path target was determined to achieve Λ

with the given ΛWP :

ΛBP =
Λ− ΛWP

1− ΛWP

(36)

which gives ΛBP = {0.99(6), 0.995, 0.99}, respectively.
The aggregated model (section 5) was solved using the iterative algorithm described in

section 6. The upper bounds χU , νU were set to Λ. The lower bound νL was set to 0.99 and

χL
max was set to 0.999 by computational tests. Parameter χL

min was set to the availability

of the longest shortest path in the network. The granularity step σ was chosen so that the

range [χL
min, χ

L
max] for incrementing χL was divided into 50 slots. This choice was motivated

by the trade-off between solution quality and computational effort. Finally, ∆ was set to
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0.00001 by computational tests to account for the gap to achieve Λ. The parameters and

their values are summarized in Table 2.

Table 2: Parameter values used in the iterative approach

Parameter Value

∆ 0.00001
νU , χU Λ
νL 0.99
χL [χL

min, χ
L
max]

χL
min availability of the longest shortest path

χL
max 0.999
σ

(
χL
max − χL

min

)
/50

The disaggregated model and iterative approach were implemented in C/C++ and

CPLEX 12.9 Callable libraries were used for solving the MILP models. All computational

tests were run on a 8-core Intel Core i7 PC with 64 GB RAM @ 3.6 GHz.

We compare the solutions of the aggregated model solved by the iterative approach

with those of the disaggregated model for the different values of ΛWP (and respective ΛBP

values). The results are summarized in Table 3. The first column shows the network.

Column ‘ΛWP ’ indicates if the aggregated model was used (‘agg’) or in case of the disag-

gregated model shows the value of ΛWP considered. Column ‘Cost’ shows the spanning

tree upgrade cost to achieve the desired Λ, and columns ‘k’ indicate how many links were

upgraded to level k = 1, 2, 3, 4, 5. Finally, column ‘Time (s)’ shows the computational time

for solving each instance in seconds.

Note that for all networks, the aggregated model provided the best solution, i.e., the

solution with lowest cost. It is also the model that demanded higher computational effort

due to the iterative algorithm (as seen by the computational time). In the disaggregated

model, the ΛWP value that gave the best solution was 0.998, however still with a cost much

higher than the cost of the solution of the aggregated model. Also in the disaggregated

model, the ΛWP value that gave the highest cost solution was 0.999 (with ΛBP = 0.99)

for all networks, since in these networks the availability of the BPs are typically much

higher than 0.99 and so the target availability of 0.999 for the WPs is unnecessarily high.

Interestingly, ΛWP = 0.997 provides a worse solution than ΛWP = 0.998, since it requires

an availability for the BPs of ΛBP = 0.99(6) instead of 0.995, and it has been shown [2]

that improving the availability of the BPs has a higher impact on the upgrade cost.

For illustrative purposes, we show the spanning trees for each solution of polska in
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Table 3: Comparison between the aggregated and disaggregated models

Network ΛWP Cost
k

Time (s)
1 2 3 4 5

polska

agg 988.4 7 1 0 0 0 1887.2
0.999 2837.7 3 5 2 1 0 90.8
0.998 1795.3 3 7 0 0 0 53.2
0.997 1882.6 6 4 0 0 0 168.1

spain

agg 3293.1 5 6 0 0 0 136811.6
0.999 5393.4 6 5 2 0 0 1417.0
0.998 4065.3 4 7 2 0 0 1890.6
0.997 4825.7 2 4 6 0 0 3225.8

italia14

agg 2376.8 9 2 2 0 0 64376.7
0.999 4399.4 6 5 2 0 0 7201.2
0.998 2783.0 6 5 1 1 0 7520.8
0.997 4127.0 2 10 1 0 0 8200.1

Fig. 1. The spanning tree links are shown in red and their thickness is proportional to

their upgrade level k. Note that in the aggregated model which gave the lowest cost, 7

links are upgraded to level k = 1 and link {4, 5} is upgraded to level k = 2, while 3 links

in the spanning tree do not need to be upgraded (links with k = 0). On the other hand,

in the disaggregated model for ΛWP = 0.999 which gave the solution with highest cost, all

the spanning tree links are upgraded. This is also true for the spain and italia14 network,

where the total number of links upgraded for ΛWP = 0.999 is |N | − 1 (see Table 3). For

the other two cases (disaggregated model with ΛWP = 0.998 and 0.997), we can see that

only one link of the spanning tree is not upgraded in Fig. 1.

In Fig. 2, we show the minimum, maximum and average availabilities for the WPs

(dotted columns), BPs (striped columns) and path pairs (solid color columns) in each

solution (aggregated model, and disaggregated model with different values of ΛWP ).

We can see that the BP availabilities for the disaggregated model with ΛWP = 0.999

are the smallest on average among all cases, and the WP availabilities are the largest on

average, which is expected since the target WP availability is quite high in that case. On

the other hand, the BP availabilities for the disaggregated model with ΛWP = 0.997 are

the largest on average among all cases, since the required BP availability target is the

highest. The aggregated model which provides the lowest cost solutions, manages the

availabilities of the WPs and BPs in a much more balanced manner: note that the average
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(a) Aggregated model (b) Disaggregated model with ΛWP = 0.999

(c) Disaggregated model with ΛWP = 0.998 (d) Disaggregated model with ΛWP = 0.997

Figure 1: Spanning trees with upgraded links for polska

WP availability for the aggregated model tends to be smaller than for the other models,

since the aggregated model takes advantage of the BP availability which is considered

concurrently with the WP availability for each path pair. In the disaggregated model, the

case with ΛWP = 0.998 has a more balanced behavior, although still with higher average

WP availabilities than the aggregated model. In this situation, the availability of the path

pair is achieved mainly with the increase of the WP availability, and with only a small

increase of the BP availability.

Finally, in Table 4 we show the values of χL for which the solutions of the aggregated

model were found. Note that the minimum availability of the WPs is close to χL for polska

and spain, but is much higher than χL for italia14, since χL is a minimum bound for the

convex relaxation (constraints (27)-(32)) and not necessarily the minimum WP availability

(determined by λsd
WP – constraints (23)).
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Table 4: Values of χL for which the solution of the aggregated model was found

Network χL

polska 0.995349163
spain 0.994560000
italia14 0.996034003

8 Conclusions

In this paper, we addressed the problem of path pair availability guarantees with working

and backup paths between all pairs of nodes in the network. We assume that the work-

ing paths are routed over a spanning tree whose links can be upgraded to have increased

availability at a given cost. We formulate the problem as an optimization problem min-

imizing the upgrade cost, while guaranteeing a pair of working and backup paths with

availability of at least Λ. The path pair availability constraints are nonlinear. To solve

the problem we adapted a previously proposed disaggregated model [2] where the working

and backup paths are considered separately to obtain linear constraints. To approximate

the solutions to the optimal ones, we also propose an aggregated model that considers a

convex relaxation model with linear constraints and present an iterative approach to solve

it.

The results show that by considering the path pair availability in an integrated way

(rather than in a separate way as in the disaggregated model), a lower availability upgrade

cost is achieved. Moreover, we have seen in the disaggregated model, that for different

pairs of working and backup target availability values, the solutions may be quite different,

and that when the WP target availability is reasonable (neither too high nor too low) then

the solutions are better, although still worse than with the aggregated model.

As future work, we envision to solve this problem in a more efficient way in terms

of computational time and solution quality. The possibility of considering heuristics or

meta-heuristics for solving larger instances of problems (much larger networks) will be

considered.
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Figure 2: Minimum, maximum and average availabilities for WPs, BPs and path pairs in
the solutions
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