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Abstract Stroke is a leading cause of death worldwide and poses significant 6

societal and healthcare challenges due to functional impairment of the brain. In 7

order to fully restore brain function, innovative approaches have aimed to regenerate 8

the injured tissue and to restore neuronal circuitry. In the last 5 years, stem cells 9

have been consistently explored in clinical trials for tissue regeneration. Recent 10

technological progress regarding the use of stem cell-derived extracellular vesicles 11

has also shown promise toward the administration of cell-based therapies exploiting 12

paracrine signaling. In addition, neuromodulation using different stimulation modal- 13

ities has become increasingly investigated in the clinic as a non-invasive strategy 14

to promote functional recovery. This approach contrasts with invasive strategies 15

using devices capable of delivering electrical pulses in deep regions of the brain, 16

which nonetheless are well-established in the clinic for the treatment of other 17

neurological disorders. This chapter reviews the latest approaches covering brain 18

tissue regeneration and neuromodulation, and discusses their limitations for clinical 19

translation. Preclinical investigations on the use of light for neuromodulation in 20

optogenetics have sparked the development of biocompatible interfaces capable of 21

coupling optical stimulation with electrical recording. These biointerfaces require 22

novel materials whose physicochemical properties are discussed herein. 23
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8.1 Introduction 26

Stroke is the second leading cause of death worldwide and it is characterized 27

by neurological impairment caused by vascular failure, which deprives focal 28

areas of the central nervous system (CNS) from oxygen and nutrients supplied 29

via the bloodstream (Fig. 8.1) [1]. Stroke encompasses clinical events, primarily 30

occurring in arteries, which are triggered by different vascular pathologies: ischemic 31

stroke, intracerebral hemorrhage, subarachnoid hemorrhage, and cerebral venous 32

thrombosis [2]. On the one hand, ischemic stroke is the clinical consequence of 33

local obstructions in the brain vasculature by blood clots, resulting in extensive 34

cell death in the ischemic area [1]. On the other hand, hemorrhagic stroke results 35

from a rupture of a weakened intracranial blood vessel, which can be caused by 36

high blood pressure, amyloid angiopathy, coagulopathies, or a structural blood 37

vessel abnormality (e.g. aneurysm, arteriovenous malformation, neoplasm) [2]. 38

These etiological features underlying hemorrhagic stroke require immediate action 39

to control blood pressure and, in certain cases, the administration of procoagulant 40

agents and/or surgery to drain intracranial blood. In contrast, the most effective 41

strategy to treat ischemic stroke is simply removing the blockage to the blood flow, 42

either by intravenously administered drugs or endovascular mechanical therapy 43

[2, 3]. Compared to hemorrhagic stroke, the variety of treatments for ischemic 44

stroke has increased the chances of survival by 5-fold, saving every year the lives 45

of around 80 million people worldwide [1]. However, current clinical practice 46

has not evolved in the management of long-term associated morbidities [4]. It 47

has primarily focused on the patients’ behavioral changes to prevent relapses by 48

adopting correct occupational habits such as a poor diet, physical inactivity, and 49

smoking. These have been associated with metabolic and cardiovascular risk factors 50

including high blood pressure and cholesterol levels in the blood, as well as cardiac 51

arrhythmia and diabetes [1]. In addition, focused physical therapy has enabled 52

functional rehabilitation of muscle movement and mobility, albeit with limited 53

recovery, especially from other common impairments such as speech, language, 54

vision, swallowing, and cognition [5]. 55

Although these efforts have reconfigured neuronal networks disrupted by exten- 56

sive brain damage, they are insufficient to fully restore function. In this context, 57

biomaterials have assisted the development of advanced therapies such as electrical 58

stimulation and cell-based therapies, which have been employed to remodel neural 59

circuitry and to trigger regeneration of the affected brain tissue. The present chapter 60

describes the existing state-of-the-art for the treatment of stroke and some of the 61

most recent innovations in cell-based therapies and neuromodulation using light 62

and electricity, whose combination is anticipated to be of clinical relevance in the 63

near future. Stroke therapies have mostly relied on non-invasive strategies such 64
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Fig. 8.1 Stroke etiology and prevalence. (a) Schematic representation of the main stroke subtypes,
which can be classified by the deprivation of brain regions from access to oxygen and nutrients
due to either the disruption (hemorrhagic) or occlusion (ischemic) of blood vessels. Adapted from
images from Servier Medical Art by Servier (http://smart.servier.com), licensed under a Creative
Commons Attribution 3.0 Unported License. (b) Although the overall number of stroke events has
decreased in recent years, more than 13 million events were registered in 2016. Hemorrhagic stroke
was less frequent than ischemic stroke, and it can be characterized by its onset in the brain or the
subarachnoid space [1]. Contrarily, ischemic stroke is most frequently triggered by the rupture of
atherosclerotic plaques from major vessels (i.e. large-vessel atherosclerosis, ATH) [6, 7]. Another
frequent subtype of ischemic stroke is cardioembolism, which consists of the release of blood
clots or atherosclerotic plaques accumulating in the cardiac tissue. Other ischemic stroke subtypes
include small vessel occlusion triggered in patients suffering from hypertension or diabetes and
rare events caused by non-atherosclerotic pathologies or other unknown factors [6, 7]

http://smart.servier.com
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as transcranial stimulation of the brain and the administration of medicines to 65

minimize tissue damage. Invasive neuromodulation techniques such as deep brain 66

stimulation are highly effective in remodeling neural circuitry; albeit still generate 67

long-term complications resulting from poor device biocompatibility. We propose 68

the development of novel devices with biodegradable materials and minimally 69

invasive implantation strategies to expand the therapeutic possibilities for stroke. 70

The use of biomaterials to modulate cell activity will be discussed, with particular 71

emphasis on material properties leading to improved biocompatibility and electrical 72

conductivity. 73

8.2 Therapeutic Approaches to Stroke 74

8.2.1 Stroke Epidemiology and Pathophysiology 75

A variety of etiological mechanisms may trigger an ischemic stroke. The TOAST 76

study has classified ischemic stroke based on the following causes: large artery 77

atherosclerosis, cardioembolism, small vessel occlusion, stroke of other determined 78

etiology, and stroke of undetermined etiology [6, 7]. Knowledge of these mech- 79

anisms for each patient is crucial to adjust secondary prevention with tailored 80

therapies. Clinically, there are some noticeable symptoms associated with stroke, 81

ranging from a minor central facial palsy to an acute coma. Other symptoms 82

include numbness in one side of the body, difficulty understanding other people, 83

difficulty in seeing with one or both eyes, gait problems and discoordination, 84

dizziness/vertigo, and severe headache. These symptoms correspond to a cerebral 85

loss of function of sudden onset, whose severity depends on the anatomy of the 86

occluded/ruptured artery and collateral systems, as well as the patient’s age and 87

gender, and the presence of comorbidities [8]. The common triad of face drooping, 88

arm/leg weakness, and speech difficulties (FAST acronym) should warrant an 89

immediate call for help through pre-hospital emergency systems, as response time 90

is critical at this stage [9]. Indeed, determining etiology and location of the infarct 91

and rapidly restoring an adequate systemic blood pressure and irrigation will dictate 92

the final infarct size and subsequent neurological consequences [8, 10]. 93

Histologically, stroke is characterized by an ischemic core surrounded by a 94

“penumbra” region, which can be monitored using non-invasive imaging techniques 95

such as computerized tomography (CT) or magnetic resonance imaging (MRI) 96

[2, 7]. Although imaging tools are a valuable asset to identify anatomical regions 97

that are damaged during and after stroke, the quality of patient recovery requires 98

specific functional predictors to guide rehabilitation. Clinical management of stroke 99

has relied on biomarkers for the molecular processes taking place in the brain, 100

including inflammation, hemostasis, and cell death [11]. At the ischemic core, where 101

blood flow is most severely restricted, excitotoxic and necrotic cell death occurs 102

within minutes due to oxygen and glucose deprivation, which causes glutamate 103
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Fig. 8.2 Ischemic stroke management over time. During an ischemic stroke event, the initial
priority is to rapidly irrigate the brain tissue deprived from blood circulation. In the following days,
oxidative stress and extensive cell death are mitigated by the administration of neuroprotective
agents. Continuous monitoring of brain activity is required to prevent secondary stroke events.
Finally, long-term rehabilitation and physiotherapy aims to restore brain functions

release and mitochondrial dysfunction [12]. Activation of apoptosis, necrosis, and 104

autophagy pathways disrupt the blood–brain barrier (BBB) and trigger peripheral 105

immune responses to the lesion site, which further enhance oxidative degradation 106

of several biomolecules, such as proteins, lipids, and DNA. As a result, cell death 107

is progressive toward the penumbra, where collateral blood flow can buffer the 108

effects of tissue damage at the ischemic core [13]. Although elevated serum cytokine 109

levels and increased production of inflammatory mediators in circulating and splenic 110

immune cells can be detected within hours after ischemia [14], there are currently 111

no specific biomarkers to detect brain damage [11]. 112

8.2.2 Clinical Standard of Care 113

The management of an ischemic stroke is multiphasic and time-bound (Fig. 8.2). 114

First, an acute/early stage prioritizes the reperfusion of the occluded artery, fol- 115

lowed by a subacute stage where monitoring, prevention of stroke complications, 116

preservation of the surviving brain, and etiologic investigation take place. Finally, a 117

chronic stage focuses on rehabilitation and prevention of secondary stroke events. 118

Current treatment options in the acute phase, although with a relevant improve- 119

ment on the clinical outcome, have a limited time window to be applied. Stroke 120

patients may be subjected either to pharmacological treatment for the dissolution 121

of blood clots in ischemic strokes and/or to mechanical removal of the clot by 122

endovascular procedures [15]. Tissue plasminogen activator (tPA) is the only 123

thrombolytic drug that has been clinically approved by both the Food and Drug 124

Administration of the USA (FDA) and the European Medicines Agency (EMA). 125
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Patients treated with tPA are at least 30% more likely to have minimal or no 126

disability 3 months after stroke [16]. However, treatment time is crucial for this 127

outcome. No significant improvements were observed when tPA was administered 128

more than 4.5 h after symptoms onset [17, 18]. Systemic delivery of tPA promotes 129

the conversion of plasminogen to plasmin, which will bind and degrade fibrin, 130

dissolving blood clots. Efficacy of tPA treatment can be extended up to 24 h after 131

the development of symptoms by mechanically destroying the blood clot [19]. 132

Thrombectomy is a catheter-based image-guided intervention for the mechanical 133

removal of blood clots in large vessels through aspiration or stent-retrieval. This 134

procedure showed remarkable improvement in the recovery of neurological function 135

of patients suffering from large-vessel occlusion [20]. Nonetheless, patient selection 136

and timely reperfusion are crucial for a successful outcome. Only 13%–20% of 137

total acute ischemic stroke patients are eligible for endovascular therapy [21], due 138

to factors such as patient’s age, stroke severity, and anatomical location of the 139

occlusion, as well as the history of previous disability/dependence episodes [22]. 140

The aforementioned pharmacological and mechanical therapies rely on the re- 141

implementation of blood flow to stop the onset of tissue damage. In contrast, 142

adjuvant neuroprotective treatments attempt to minimize the signaling pathways 143

that are subsequently activated after loss of blood flow and lead to neuronal 144

death [23]. Currently, there are no approved pharmacological treatments with 145

neuroprotective effects [15]. Nevertheless, several agents have been studied and 146

are under development, particularly now that restoring blood flow to the occluded 147

artery has become clinically established [24]. The aimed neuroprotective strategies 148

are focused on addressing excitotoxicity, i.e. cell death associated with an excess 149

of excitatory neurotransmitters [25], immune and inflammatory responses [26], and 150

apoptosis [27]. Among these, statins are a main group of neuroprotective agents 151

that act inhibiting hydroxylmethylglutaryl coenzyme A reductase, which cause a 152

reduction in low-density lipoprotein (LDL) cholesterol levels. In addition to this 153

anti-thrombotic effect, statins seem to have other roles in the treatment of the 154

pathophysiology of ischemic stroke [28], which have been investigated in clinical 155

trials [29, 30]. 156

Altogether, clinical management of stroke requires comprehensive hospital 157

units with multidisciplinary teams dedicated to mitigate permanent neurological 158

disabilities which, if unrecovered, pose a huge burden to society [31, 32]. However, 159

this strategy has not been fully successful. Recently, there is a shift toward inno- 160

vative neurorestorative treatments focused on restoring brain tissue and improving 161

neurological function after damage. They aim to solve some of the aforementioned 162

caveats, including the short time window for therapy and the inclusion of patients 163

that were otherwise excluded from a therapeutic solution. 164
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8.3 Advanced Therapies for Stroke 165

8.3.1 Cell-Based Therapies 166

Due to the limitations of conventional therapies and innovative adjuvant approaches, 167

regenerative medicine has emerged with the aim of restoring brain function in a 168

post-acute stage of stroke. The generation of neurons in some parts of the adult 169

mammalian brain (e.g. the subgranular zone of the hippocampal dentate gyrus and 170

the subventricular zone [SVZ] located outside of the lateral ventricles) provides 171

a possible therapeutic solution for restoring neural function. However, this is still 172

a debated topic following recent evidence with apparently contradicting outcomes 173

[33, 34]. In fact, endogenous repair mechanisms including neurogenesis, synaptoge- 174

nesis, glial cell activation, and angiogenesis are triggered after ischemic stroke [35]. 175

Nevertheless, if any novel neurons are generated, they are not enough to repopulate 176

the injured site. In addition, angiogenesis is compromised in older patients [34], 177

which poses additional barriers to the restoration of lost neural circuitries [36]. Cell- 178

based therapies are therefore positioned to potentiate endogenous mechanisms and 179

overcome pathophysiological boundaries set by ischemic stroke. Two conceptually 180

different approaches for regenerative therapy after stroke involve cell transplantation 181

and cell recruitment (Fig. 8.3a). 182

8.3.1.1 Cell Transplantation 183

It implies the use of stem/progenitor cells that can be originated from the patientAQ1 184

itself (autologous) or from donors that are genetically similar (allogenic) or identical 185

(syngeneic). These cells can be derived from either fetal tissues (e.g. umbilical cord 186

and placenta) or adult tissues (e.g. bone marrow, adipose tissue, olfactory mucosa, 187

and dental pulp) and have been tested over the last 10 years for the treatment of 188

ischemic stroke in the clinic [40]. The most advanced technology consists of the 189

extraction of multipotent adult progenitor cells from the bone marrow of healthy 190

donors (e.g. MultiStem� from Athersys). An exploratory Phase II clinical trial 191

with MultiStem� pointed a favorable clinical outcome for patients that received 192

a single dose of the product 24–48 h after the occurrence of the stroke [41]. The 193

MASTERS-2 Phase III trial to employ MultiStem� as an “off-shelf” product for 194

stroke treatment is now underway [42]. 195

With such a variety of cells according to their source and tissue origin, a main 196

challenge toward clinically relevant cell therapies is to generate high amounts of 197

the optimal cell type. Neural stem cells (NSCs) have the capacity to differentiate 198

into neurons, astrocytes, and oligodendrocytes, what makes them good candidates 199

for effective transplantation and attenuation of the cell loss associated with ischemic 200

stroke. Mesenchymal stem cells (MSCs) have been also investigated to arrest stroke- 201

associated cell death [43]. Compared to NSCs, MSCs can be readily isolated 202

from non-invasive tissue sources such as dental tissue and amplified ex vivo for 203
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Fig. 8.3 Remarkable strategies for brain tissue regeneration. (a) Schematic representation of a
coronal section of the brain, highlighting the putative reservoirs of NSCs capable of generating
new neurons (red). These include the subventricular zone (SVZ), along the lateral wall of the lateral
ventricles, and the subgranular zone of the dentate gyrus in the hippocampus. Because the adult
brain is not capable of completely restore function after tissue damage, therapeutic approaches
to promote neurogenesis consist of stem cell transplantation and the delivery of biomolecules to
activate endogenous NSCs. Adapted from Servier Medical Art by Servier (http://smart.servier.
com), which is licensed under a Creative Commons Attribution 3.0 Unported License. (b) Human
dental stem cells (hDI) revealed superior performance than bone marrow-derived stem cells (hMI)

http://smart.servier.com
http://smart.servier.com
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autologous transplantation. Dental pulp tissue offers very interesting prospects for 204

neurogenesis because it is derived from the ectoderm/neural crest and endogenously 205

mark for several neuronal markers [44]. In addition, dental pulp stem cells were 206

demonstrated to differentiate into functionally active neurons and secrete neu- 207

rotrophic factors, thus revealing superior therapeutic potential for brain regeneration 208

after stroke than other stem cell sources (Fig. 8.3b) [37]. Clinical investigation of 209

the beneficial effects of intravenously administered dental pulp stem cells is now 210

underway in a Phase I clinical trial [45]. 211

Other cell types of interest to improve neuronal cell function include immune 212

cells, hematopoietic stem cells, and endothelial progenitor cells (EPCs). EPCs have 213

the potential to reduce inflammation and apoptosis, to promote angiogenesis, and 214

even to promote endogenous repair mechanisms. EPCs can be derived from the 215

bone marrow and are classically defined by their surface expression of antigen 216

CD34 [46]. Their presence at the ischemic core is associated with improved clinical 217

outcome after stroke [47], due to their capability of remodeling brain vasculature 218

and promoting angiogenesis [48], which peaks at the subacute phase [49, 50]. 219

These promising results have supported the transplantation of CD34+ cells for the 220

treatment of ischemic stroke. Their clinical efficacy is currently under investigation 221

in an ongoing interventional Phase IIa trial [51]. 222

8.3.1.2 Cell Modulation Strategies 223

Although cell transplantation is a promising strategy for the generation of new 224

neural cells and the replacement of lost neuronal circuitries with appropriate 225

synaptic integration in the host tissue [52–54], there is still no definitive evidence 226

with respect to clinical outcome improvements [40, 55]. This could be due to 227

inefficient cell transplantation, which is still limited by their homing to the injured 228

area [56] and cell survival on the damaged tissue microenvironment [57]. Numerous 229

solutions have been tested to improve engraftment efficiency, from preconditioning 230

or genetically modifying transplanted cells to adopting biomaterials (e.g. scaffolds) 231

in order to facilitate their integration in the brain tissue. Recent approaches have 232

�
Fig. 8.3 (continued) in promoting neurogenesis in rat brains 28 days after middle cerebral artery
occlusion. This was demonstrated by immunohistochemical analysis of proliferating neurons
(NeuN+) and astrocytes (GFAP+), which stained positive for human nucleus (hNuA). Scale bars
= 100 µm. Adapted with permission from SAGE Publishing [37]. (c.1) EVs secreted by bone
marrow-derived MSCs can be functionalized with brain-targeting peptides for local delivery of
bioactive molecules. Reprinted from [38], Copyright (2018), with permission from Elsevier. (c.2)
EVs are nano-sized vehicles which are characterized by the enriched expression of surface markers
(e.g. CD63, Alix) and can be loaded with bioactive molecules by electroporation. (c.3) Delivery
of microRNA-124 by EVs functionalized with targeting peptide RVG enhanced neurogenesis after
ischemic stroke as demonstrated by the expression of the neuronal marker doublecortin (DCX) at
the infarct site 7 days after administration. Reprinted from [39], Copyright (2017), with permission
from Elsevier
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coupled the manipulation of stem cells with electrical stimulation, which led to 233

enhanced neurogenesis and angiogenesis [58]. Furthermore, NSCs from the own 234

patient can be modulated to enhance neurogenesis [59]. We have demonstrated that 235

polymeric nanoparticles (NPs) could mediate delivery of bioactive molecules to the 236

SVZ in order to control differentiation of NSCs and EPCs, as well as to promote 237

cell survival and normalize inflammatory responses occurring during ischemia 238

[60–62]. NP-based formulations are attractive systems for cell modulation due 239

to their efficacy, biocompatibility, and chemical versatility. They can be rendered 240

compatible with imaging techniques, such as MRI [63, 64], or responsive to external 241

stimuli (e.g. light) to confer spatiotemporal control over drug release to the brain 242

[65, 66]. 243

Besides cell replacement in the damaged brain, stem cell-mediated regenerative 244

processes after stroke have been attributed to a paracrine effect characterized by 245

the release of trophic factors and genetic modulators that activate brain remodeling 246

pathways [67]. These biomolecules were found to be enriched in extracellular 247

vesicles (EVs), which are nano-sized mediators playing key roles in intercellular 248

communication [68]. EVs provide a cell-free option to modulate neural repair and 249

overcome some of the limitations inherent to stem cell transplantation, including 250

their scarcity and immunogenicity, which not only affects cell survival and motility 251

after transplantation but can also cause significant adverse effects. Therapeutic EVs 252

can be produced by MSCs and their content can be modulated for the delivery 253

of proteins, lipids, and nucleic acids to enhance endogenous repair mechanisms 254

(Fig. 8.3c). For instance, we and others have identified a panel of microRNAs 255

associated with good prognosis after ischemic stroke, which affected migration 256

of CD34+ cells and their angiogenic activity [48, 49]. Further investigation is 257

warranted to understand the effects of cell source and culture conditions on EVs 258

content and, therefore, in their therapeutic potential. 259

8.3.2 Brain Electrical Stimulation 260

In addition to replacing damaged tissue with new cells, neurological functions 261

can be restored after stroke by restructuring and rewiring functional networks 262

[69, 70]. These restructuring processes are mainly due to the sprouting of spared 263

axons, which innervate the affected regions, and create new neuronal circuitry 264

[71, 72]. However, the brain alone does not have enough capacity to regenerate 265

and reprogram neuronal circuits to the same complexity as that prior to stroke. 266

Several strategies have been employed to maximize the chances of restoring 267

sensory and motor functions by reestablishing neuronal connections [73, 74]. For 268

instance, electrical stimulation of specific regions of the cortex has been explored 269

to reorganize neural circuitry and restore brain functions after stroke (Fig. 8.4) 270

[75]. Compared to pharmacological therapies, which can indiscriminately affect all 271

neurons in the brain, this strategy allows for fewer adverse effects and much lower 272

treatment associated costs [76]. Nevertheless, this has been employed mainly in 273
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Fig. 8.4 Neuromodulation strategies for the management of stroke. (a) Schematic representation
of stimulation modalities to modulate brain activity. Non-invasive modalities such as tDCS and
transcranial magnetic stimulation (TMS) have been more frequently employed in the clinic.
Adapted from Servier Medical Art by Servier (http://smart.servier.com), which is licensed under a
Creative Commons Attribution 3.0 Unported License. (b) Functional MRI revealed that repetitive
TMS of the contralesional primary motor cortex at 1 Hz inhibited excessive neural activity,
which was associated with significant functional improvements. Reprinted from The Lancet [77],
Copyright (2014), with permission from Elsevier

patients with significant neurological impairment. Considering the extensive tissue 274

damage in these patients, neuromodulation has been primarily performed using 275

minimally invasive techniques. 276

http://smart.servier.com
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8.3.2.1 Transcranial Stimulation 277

Non-invasive modalities such as transcranial direct current stimulation (tDCS) and 278

functional electrical stimulation (FES) consist in the application of electrodes on 279

the skin surfacing the target region of interest. Typically in tDCS, one electrode 280

targets the primary motor cortex, whereas the other acts over the contralateral 281

supraorbital region. Based on the choice of anodal or cathodal electrodes [78], 282

tDCS can induce either long-term potentiation or depression of neuronal activity, 283

respectively, by modulating sodium- and calcium-dependent channels, as well as 284

the NMDA receptor activity [79–81]. Although tDCS was shown to have an effect 285

on upper limb functions in stroke patients, this occurred mostly during follow-up 286

treatments, raising doubts about its long-term clinical efficacy [82]. 287

On its turn, FES elicited moderate improvement in limb function by promoting 288

muscle movement and mobility [83]. Due to the dissipation of the delivered current 289

through the skull, high voltages are required to penetrate the brain tissue with 290

enough power to activate neurons [84]. However, as high voltages were reported to 291

cause patient discomfort, they were replaced by magnetic fields which have greater 292

penetration depth [84]. Fast-oscillating magnetic fields along a copper coil external 293

to the skull generate a strong electric current that can be directed to the motor cortex 294

[84]. Specifically, transcranial magnetic stimulation (TMS) has been applied in the 295

chronic setting of stroke in a strategy for interhemispheric inhibition [85–87]. It 296

consists of exciting the ipsilesional primary motor cortex with high frequencies 297

(>5 Hz) [88–90], whereas the contralesional primary motor cortex is inhibited using 298

low frequencies (<1 Hz) [79, 91]. Other parameters such as stimulation time, coil 299

shape, and magnetic field strength have been optimized to regulate cortical activity 300

[79, 92, 93]. Despite some promising results particularly in the management of 301

discrete neuropsychiatric conditions [94], magnetic stimulation of the brain and 302

peripheral nerves is still at an early stage, and thus it has little clinical evidence 303

of functional improvement in stroke patients [95, 96]. It is still unclear which 304

protocol is more effective for improving motor function after stroke, given the 305

lack of randomized controlled trials and small sample sizes [96]. New protocols 306

have emerged, including the application of intermittent or continuous bursts of even 307

higher frequencies than conventional TMS, thus requiring lower intensities [97, 98]. 308

Such a variety of stimulation protocols warrants careful design of clinical trials to 309

validate their safety and efficacy after stroke. 310

8.3.2.2 Deep Brain Stimulation 311

Although more invasive, modalities such as deep brain stimulation (DBS) are 312

clinically well-established in movement disorders such as Parkinson’s disease, 313

and enable the stimulation of target regions with significant reproducibility [76]. 314

DBS addresses the aforementioned issues of transcranial stimulation by implanting 315

electrodes in regions adjacent to the target site [99]. Medical devices performing 316

electrical stimulation have been tested in the clinic since the 1950s [100] and 317
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are successfully employed in the management of several neurological disorders 318

where pharmacological options alone are inefficient, such as epilepsy, dementia, 319

Alzheimer’s disease and Parkinson’s disease [99–101]. Currently, DBS is approved 320

for the treatment of refractory Parkinson’s disease, essential tremor, dystonia, 321

obsessive–compulsive disorders, and drug-resistant partial onset epilepsy [102]. 322

In the context of stroke, two objectives may arise from the use of DBS: the 323

symptomatic treatment of extrapyramidal signs, following the same paradigm as in 324

parkinsonian disorders, and the more conceptual goal of recovering brain function. 325

First clinical evidence compiling several trials with small cohorts suggests that DBS 326

could enhance motor status in stroke patients, particularly from disorders such as 327

tremors, dyskinesia, and dystonia [103]. Such signs and symptoms represent post- 328

stroke maladaptive responses where DBS could potentially have a role. In all these 329

conditions, external electrical fields are thought to activate voltage-sensitive ion 330

channels in neurons, which in turn generate chemical or electrical depolarization at 331

their membranes, with subsequent release of neurotransmitters. As a result, irregular 332

firing patterns in brain regions can be precisely modulated according to stimulus 333

parameters such as signal amplitude, frequency, and duration [101]. 334

Nevertheless, electrical stimulation performed by clinically approved DBS 335

devices is experienced by all local cells, not only the targeted neurons. Other 336

cell types including glia, fibroblasts, endothelium, and immune cells can also 337

respond to these electrical cues, with significant effects in their phenotypes [104]. 338

This could have an impact on the overall process of restoring brain function after 339

stroke. Interestingly, transmembrane voltage for each cell type was associated with 340

their differentiation state, with stem and proliferative cells being less polarized 341

than terminally differentiated cells [104]. Hence, electrical stimulation could force 342

membrane depolarization in neurons and glial cells that populate the infarcted 343

area after stroke and promote tissue regeneration. Post mortem analysis showed that 344

chronic stimulation (0.5–6 years) of the subthalamic nucleus enhanced neurogenesis 345

in the neighboring SVZ in patients suffering from Parkinson’s disease [105]. These 346

findings encourage the investigation of potential in situ brain tissue regeneration 347

following electrical stimulation. Yet no clinical trials to date have specifically 348

demonstrated such effect, which could be attributed to the advanced disease 349

progression by the time patients enroll in these studies [106]. 350

8.3.2.3 Limitations of Deep Brain Electrical Stimulation 351

Indiscriminate stimulation of brain regions through conventional electrical stimula- 352

tion devices might result in significant adverse effects, as reported in approximately 353

50–60% of patients and, in most cases, more than once [107–109]. Some of 354

the most common causes of failure were improper electrode localization, inef- 355

ficient device programming, infections, and hemorrhages resulting from surgical 356

implantation [110]. Electrode positioning can be corrected with the guidance of 357

imaging techniques (e.g. MRI, CT), while correct device programming overcomes 358

issues such as overstimulation of undesired cells with high frequencies, which may 359



A. F. Rodrigues et al.

impair physiological neuronal communication [111]. The recent development of 360

closed-loop devices that adjust their stimulation parameters according to electro- 361

physiological information recorded in real time paves the way for multifunctional 362

neural interfaces, with further improvements expected in the following years [112]. 363

The remaining caveats related to the implantation of DBS devices include their poor 364

long-term stability and need for multiple surgeries to replace the electrodes. 365

Conventional electrodes are typically made of metals such as gold and iridium 366

[113]. Metallic conductors are utilized because of their capability to readily mediate 367

charge transfer between electrons at their interface with ions from the surrounding 368

tissue (Fig. 8.5a). Most metals conduct electricity based on local reduction and 369

oxidation reactions at the electrode surface, in a process known as Faradaic charge 370

conduction. Repeated redox reactions at the metallic surface generate a hydrated 371

oxide film that dramatically increases the amount of electric current that can be 372

transferred to the adjacent tissue [113]. Although this electrochemical process is 373

mostly reversible, changes in the electrolyte composition at the interface with the 374

tissue can limit the rate of Faradaic reactions that can be performed without irre- 375

versibly modifying the material. Otherwise, not only the electrode can be degraded 376

but also induce oxidative stress to the surrounding tissue. Conversely, capacitive 377

charge conduction is a more desirable feature for implanted electrodes, since it 378

involves solely the redistribution of charges at the electrode–electrolyte interface, 379

thus avoiding redox reactions. However, capacitive materials such as titanium nitride 380

suffer from limited charge injection capacity [113]. Pseudocapacitive materials such 381

as platinum and its alloys with iridium have become then clinically adopted because 382

they combine both Faradaic and capacitive conduction, hence increasing charge 383

injection while minimizing redox effects [113]. For further details on electroactive 384

materials with large charge capacity, readers are referred to Chap. 5 in this book. 385

Alongside charge transfer processes, the mechanical properties of the implanted 386

materials are of upmost importance. Despite considerable efforts in the design of 387

sterile, non-toxic materials with long-term chemical and electrical stability, they 388

tend to trigger foreign body response because of their rigidity (>1 GPa) compared 389

to the soft brain tissue (<10 kPa) (Fig. 8.5b) [118]. Mechanical mismatch of the 390

implant promotes adverse biomechanical interactions leading to the formation of 391

glial scars at the electrode interface as soon as few weeks after surgical implantation 392

[118]. Ultimately, the efficacy of electrical stimulation and recording is dampened 393

by the increased distance between the electrode and the target cells, as well as the 394

impedance derived from the scar tissue [119]. Although device architecture can be 395

engineered to minimize biological impact by decreasing local strain imposed by 396

the electrodes [120], there is a clinical need for biocompatible electrodes that can be 397

seamlessly integrated in the brain microenvironment. Electrodes can be incorporated 398

in soft polymer mesh electronics (Fig. 8.5c), which facilitate their implantation by 399

direct injection into the target brain region [115]. Besides being minimally invasive, 400

mesh electronics are mechanically compliant to the brain tissue and, thus, more 401

biocompatible, showing in vivo stability of up to 1 year without gliosis. 402

Additional challenges for neural interfaces include targeted stimulation of 403

specific sites without affecting other physiological functions. These devices should 404
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Fig. 8.5 Material properties determine long-term device biocompatibility and performance. (a)
Electrical stimulation performed by electrodes depends on their electronic properties. Upon
injection of electric current, capacitive materials such as titanium nitride, carbon nanotubes, and
graphene generate a double layer at the electrode–electrolyte interface, attracting adsorbed water
molecules and ionic species to the electrode surface [113, 114]. Because this process solely
involves charge redistribution, the amount of charge injected from the electrode is limited by
its surface. Although they enable greater amount of charge injected to the electrolyte, iridium
oxide and PEDOT mediate Faradaic processes, which consist of the ejection of electrons from
the electrode, leading to changes in the electrolyte composition and pH adjacent to the electrode
[113]. Platinum and its alloys are attractive for brain stimulation because they combine capacitive
and Faradaic processes, which result in higher charge injection with limited electrode degradation.
Although these pseudocapacitive materials generate double layer charging, Faradaic processes may
occur when specifically adsorbed ions react with the electrode surface [113]. (b) Typically used
materials for implanted electrodes such as silicon, carbon, and metals are very rigid compared to
brain tissues, presenting extremely high Young’s moduli and bending stiffness values. Adapted
by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Nature
Reviews Neuroscience [115]. Copyright© 2019. (c) Mechanically compliant mesh electronics
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be also capable of recording their physiological environment in order to coordinate 405

neural stimulation parameters [119]. 406

8.3.3 Optogenetic Neuromodulation 407

Exploring the intrinsic electrical properties of neurons, electrical stimulation has 408

remained one of the main strategies to restore functional activity. However, because 409

of its invasiveness, alternative approaches to DBS are being developed. One of 410

the most promising is optogenetics, which combines light and genetic techniques 411

to control and/or monitor cellular activity [121]. Although light has long been 412

known to alter the behavior of neurons [122], this effect was only exploited in 413

2005, following their genetic modification with light-sensitive opsins [123]. Chan- 414

nelrhodopsins (ChR) are rapidly gated light-sensitive cation channels, commonly 415

expressed in algae [124], and have provided unprecedented control over neuronal 416

activity in well-defined neuronal populations with temporal precision. Upon light 417

exposure, neuronal depolarization can be employed to investigate the functions 418

of specific neurological circuitries and the mechanisms underlying neurological 419

disorders [125, 126]. Even though optogenetics has been used mainly as a tool for 420

neuroscience research in animals, therapeutic applications of this technology are 421

under investigation [127–129]. 422

Optogenetic tools have been applied in preclinical models of stroke (Fig. 8.6). 423

In combination with voltage-sensitive dyes, the plasticity of the somatosensory 424

cortex could be monitored after stroke, helping not only to understand the func- 425

tional impact of the infarction but also to map potential regions of interest for 426

stimulation [132]. Recovery of sensorimotor functions could be achieved after 427

optogenetic stimulation of unaffected regions surrounding the infarcted cortex, such 428

as corticospinal and thalamocortical neurons [130, 133]. In particular, stimulation of 429

the ipsilesional primary motor cortex could contribute to functional recovery after 430

stroke [129]. Repeated stimulation significantly improved neurovascular coupling 431

and enhanced neuronal plasticity in the contralesional cortex. The cerebellum was 432

also demonstrated to be a powerful target for brain stimulation due to the widespread 433

activation of multiple motor and sensory regions via neuronal projections to the 434

thalamus [134, 135]. All these studies have reported that optogenetic stimulation 435

promoted axon growth and subsequent neuronal projections to the damaged site to 436

�
Fig. 8.5 (continued) are attractive for brain implantation owing to their long-term biocompatibility
and minimal inflammatory response. Immunohistochemical staining for Iba-1 (magenta) demon-
strated that mesh electronics can be implanted in mice brains for several months and seamlessly
integrate in the brain tissue with minimal glial response. Implanted probes were pseudo-colored
blue. Scale bars = 100 µm. (c-top) Adapted by permission from Springer Nature Customer Service
Centre GmbH: Springer Nature, Nature Reviews Materials [116]. Copyright© 2017. (c-bottom)
Reprinted from [117], with permission from the National Academy of Sciences
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Fig. 8.6 Optogenetic stimulation for the treatment of stroke. (a) Optogenetic stimulation of
ChR2-expressing thalamocortical neurons for up to 4 weeks after ischemic stroke significantly
contributed to the formation of synaptic boutons, which play an important role in learning and
memory processes. Reprinted by permission from Springer Nature Customer Service Centre
GmbH: Springer Nature, Nature Communications [130]. Copyright© 2017. (b.1) Soma-targeted
opsins (soCoChR) are selectively expressed in the cell body of neurons. (b.2) Precise activation
of soCoChR neurons by two-photon microscopy (λ = 1030 nm, 100 µW/µm2) without affecting
neighboring cells. (b.3) Engineered opsins enabled unprecedented precision over the stimulation of
single cells, yielding well-defined action potentials in a given patched cell with minimal detection
of action potentials from neighboring cells. Adapted by permission from Springer Nature Customer
Service Centre GmbH: Springer Nature, Nature Neuroscience [131]. Copyright© 2017
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remodel neural circuitry. A recent avenue of research resides in the possibility of 437

enhancing neurogenesis in the SVZ. Considering that the striatum has neuronal 438

projections to the physically adjacent SVZ, optogenetic stimulation of striatum 439

glutamatergic neurons enhanced regeneration and functional recovery after ischemic 440

stroke by evoking membrane currents and calcium influx in proliferating SVZ 441

neuroblasts [136]. 442

These promising results are encouraged by technological advances to enhance 443

control over neuronal stimulation. While channelrhodopsins enable precisely timed 444

depolarization of neurons, halorhodopsins derived from archaeal species can be 445

stimulated with light of the same wavelength to hyperpolarize neurons [137]. 446

The combination of these two rhodopsins can be used to accurately and bidirec- 447

tionally control neuronal activity and cells native spiking patterns. Furthermore, 448

spatiotemporal resolution could be enhanced by engineering opsins to potently 449

respond to short light pulses (<1 ms), enabling single-cell stimulation by two- 450

photon microscopy [131]. Other strategies to achieve spatiotemporal resolution over 451

optogenetics include conditional expression of opsins using cell-specific promoters 452

[138], which can be specifically activated using gene editing tools such as the 453

Cre-loxP technology [139–141]. Because some cell-specific promoters have a 454

weak transcriptional activity resulting on reduced levels of opsins in the cell 455

membrane, Cre recombinase can be expressed in a cell-specific manner to enable 456

expression of rhodopsins under the control of stronger ubiquitous promoters. Thus, 457

optogenetic stimulation is controlled spatiotemporally by modulating the activity 458

of Cre recombinase in specific cells, through either chemical [142, 143] or light- 459

inducible [144, 145] Cre-loxP recombination systems. 460

Nevertheless, optogenetics faces considerable hurdles toward its clinical transla- 461

tion. One of them is the requirement of using either blue or green light as a trigger. 462

Since visible light poorly penetrates biological tissues, invasive light sources such 463

as fiber optics and light-emitting diodes have been applied in preclinical models, 464

which may damage local tissues due to the heat dissipated from the light emission 465

point [146]. Recently, a step-function opsin was engineered to respond to blue 466

light with enhanced sensitivity and slower kinetics, which enabled transcranial 467

activation owing to neuron depolarization for longer periods of time. Prolonged light 468

accumulation compensates for its dissipation across biological tissues, allowing for 469

transcranial stimulation in deeper regions of the brain down to 5 mm [147]. 470

Considering the minimal absorbance of hemoglobin and water in this region 471

(650–900 nm), the use of near-infrared (NIR) light is an attractive alternative due 472

to its minimal scattering in biological tissues. NIR light not only penetrates deeper 473

than visible light (up to 2 cm), but can also be less attenuated by the human 474

skull (approximately, 0.5–5% of emitted light) [148]. For instance, lanthanide- 475

doped up-conversion nanoparticles (UCNPs) have enabled deep tissue activation 476

of rhodopsins by emitting visible light after exposure to NIR radiation [149–152]. 477

These nanoparticles have promising optical properties including low autofluores- 478

cence background and minimal photobleaching and heat-mediated photodamage. 479

Hence, UCNPs enable safer and minimally invasive stimulation compared to the 480

use of NIR radiation alone [153] or combined with plasmonic nanoparticles such 481
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as gold nanorods to activate heat-sensitive proteins [154]. Moreover, UCNPs can 482

act as remote actuators for transcranial NIR-activation of neuronal depolarization 483

[149, 151, 155], enabling control over animal behavior in optogenetics studies. 484

Finally, their chemical composition can be tuned to modulate light emission in 485

order to selectively activate different channelrhodopsins and enhance the control 486

over specific neural circuits [156]. These strategies open new opportunities to 487

simultaneously control cell activity with spatiotemporal resolution and monitor 488

neural circuits over time to improve recovery. However, the need for long-term 489

expression of light-sensitive proteins, which is typically achieved by lentiviral 490

vectors [128], carries numerous ethical and safety concerns regarding the possible 491

genomic integration of undesired gene products after transfection, as well as 492

potential adverse immune responses. 493

8.3.4 Coupling Optical and Electrical Stimulation of the Brain 494

Safety concerns related to the clinical use of optogenetics have prompted the investi- 495

gation of numerous strategies to circumvent the need for genetic modification, while 496

maintaining the capacity of specifically stimulating neurons with unprecedented res- 497

olution. This could be achieved by using photoactive nanomaterials and surfaces that 498

generate an electric field when exposed to light, thus resulting in localized neuronal 499

stimulation. This would avoid the need of implantable energy sources commonly 500

used in DBS and prolong device lifetime. Moreover, device implantation would be 501

desirably less invasive, with minimal foreign body response compromising long- 502

term performance. However, this approach has not been investigated in preclinical 503

stroke models yet because there are important biocompatibility considerations to 504

minimize potential adverse effects in patients suffering from severe brain trauma. 505

The section below explores the use of innovative polymers and nanomaterials, and 506

the potential integration of light-responsive materials in such devices. 507

8.3.4.1 Novel Polymeric Materials for DBS 508

A main avenue of research consists of the design of minimally invasive devices 509

using biodegradable materials (Fig. 8.7). These devices are based on biocompatible 510

polymers, such as silk fibroin [159] and poly(lactic-co-glycolic acid) (PLGA) [160], 511

and have been already developed for wireless electronic stimulation of peripheral 512

nerves. This technology operates in a similar fashion to cochlear implants, where 513

an external source of radiofrequency signals generates magnetic coupling with an 514

antenna at the implanted device, which transduces that signal to electric current at 515

the interfacing electrode. Although its application may be limited by the necessary 516

power input to cross deeper regions such as those stimulated by DBS devices, the 517

concept of bioresorbable devices is attractive for rehabilitation regimes in stroke 518

because it avoids an additional surgical procedure to remove them. For instance, 519
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Fig. 8.7 Biodegradable electrodes enable transient monitoring and stimulation of the brain. (a.1)
Biodegradability of silicon-based electrodes was tuned by adjusting the composition of PLGA
films (50:50), in order to maintain their structural properties in phosphate buffer saline for
several days, but were completely degraded within 35 days after subcutaneous implantation in
a mouse model. (a.2) No signs of inflammatory response to the implant were observed. Reprinted
by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Nature
Communications [157]. Copyright© 2016. (b.1) Dissolution profile in aqueous buffer solution (pH
10) at 37◦C and (b.2) electrophysiological recording of cortical activity in rat brains during sleep
and drug-induced epilepsy, compared to commercial stainless steel microwire electrodes. Silicon-
based electrodes exhibited high signal-to-noise ratio. Adapted by permission from Springer Nature
Customer Service Centre GmbH: Springer Nature, Nature Materials [158]. Copyright© 2016
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silicon-based electrodes deposited on PLGA films recorded electrophysiological 520

information from the rat cortex with comparable performance to clinically used 521

electrodes [158], as well as intracranial pressure and temperature [161]. Other 522

biocompatible polymer substrates and device operation modalities are currently 523

under investigation to ensure long-term safety and improved electrical stimulation 524

over more conventional methods [162]. 525

Alternatively to biodegradable materials, a variety of biopersistent materials 526

are well-established in the medical device industry. Device miniaturization could 527

minimize their biological impact in the CNS. However, this comes at the expense of 528

greater impedance, which is highly undesired in neural interfaces due to increased 529

noise in recording electrodes and decreased amount of current that can be injected in 530

stimulating electrodes [113, 163]. Impedance can be also detrimental for electrode 531

longevity and biocompatibility because of local generation of heat from stimulating 532

electrodes and potential toxic by-products from electrochemical reactions [113]. 533

Finally, platinum is sensitive to various imaging techniques, producing artifacts in 534

CT and MRI and interfering with optogenetics tools due to its lack of transparency 535

[163]. Transparent materials that are not comprised of heavy elements and have low 536

magnetic susceptibility are therefore preferred. 537

Indium tin oxide (ITO) is a transparent and electrically conductive material 538

that is well-known for its application in touchscreens and solar cells. Despite its 539

attractive features, ITO is expensive and brittle, which limits the available area 540

of the electrode for recording and stimulation [164]. Alternatively, ITO could be 541

deposited on flexible substrates such as parylene, poly(dimethylsiloxane) (PDMS), 542

polymethylmethacrylate (PMMA), polyimide, and SU-8 epoxy [120]. However, 543

ITO deposition requires temperatures that are higher than the glass transition 544

temperature of most flexible polymer substrates [165]. Moreover, ITO has reduced 545

optical transmittance toward the ultraviolet (UV)/blue and IR regions, maybe unsuit- 546

able for optogenetics. Although less conductive than ITO, flexible polymers such 547

as poly(3,4-ethylenedioxythiophene) (PEDOT) surpass these challenges (Fig. 8.8a) 548

[166]. PEDOT is a pseudocapacitive polymer stabilized in aqueous formulations by 549

poly(styrenesulfonate) (PSS), which is also important in charge transfer processes 550

resulting in the oxidation of PEDOT [113]. Despite its high electrical conductivity 551

and low impedance [166], PEDOT:PSS lacks long-term stability in physiological 552

milieu and delaminates from its substrate at higher charge densities [113], thus 553

precluding its application in high-frequency recording and stimulation (Fig. 8.8b). 554

8.3.4.2 Novel Nanomaterials for DBS 555

Aiming device miniaturization, nanomaterials have been increasingly applied either 556

as an electrode coating for already existing devices or as electrodes themselves 557

(Fig. 8.8b–c) [163, 170]. Owing to the network comprised by π electrons resulting 558

from the sp2 hybridization of carbon atoms, carbon nanomaterials such as carbon 559

nanotubes (CNTs) and graphene have emerged as promising candidates for neural 560

interfaces due to their high capacitive charge conductivity and physicochemical 561
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Fig. 8.8 Optically compatible materials for brain stimulation. (a) PEDOT:PSS electrodes showed
comparable electrocorticography differences to clinically used platinum electrodes in recording
brain activity of awake and unconscious rats. PEDOT:PSS maintained its sensitivity irrespective
of electrode size, thus enabling device miniaturization. Reproduced from [166], with permission
from John Wiley and Sons. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (b.1)
PEDOT:PSS-coated platinum–iridium (PtIr) electrodes show poor stability under prolonged con-
tinuous overpulsing at 1 kHz, demonstrated by the increased impedance comparable to uncoated
PtIr electrodes. (b.2) CNT fibers mediated capacitive charge conduction and showed greater
stability, (b.3) but their rigidity triggered significant glial response 6 weeks after implantation.
(c.1) Transparent graphene-based electrodes enabled multimodal imaging to monitor brain activity
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stability [163]. For instance, microelectrodes containing vertically aligned CNTs 562

enabled highly sensitive electrochemical measurements and precise stimulation of 563

brain regions at the nanotube tip [168, 171, 172], with CNT coatings enhancing 564

the electrode stability [172, 173]. In addition, the well-defined electronic energy 565

levels of single-walled CNTs (also known as Van Hove singularities) could guide the 566

design of electrodes with minimal light-induced artifacts during optogenetics stim- 567

ulation and record electrophysiological activity with high fidelity [174]. However, 568

biomedical research involving CNTs has become somewhat controversial [175]. For 569

instance, a type of long multi-walled CNT fibers with high aspect ratio (MWCNT- 570

7) has been classified as “potentially carcinogenic to humans” based on extensive 571

preclinical evidence of tumor formation due to excessive fibrotic and inflammatory 572

responses [176]. 573

Sharing similar electronic features with CNTs, graphene has emerged as a strong 574

candidate for the development of neural interfaces [114]. Despite its potentially 575

slow degradation profile [177], graphene is more flexible and biocompatible than 576

CNTs, evidenced by the lack of significant fibrosis in multiple tissues after different 577

administration routes [178, 179]. In fact, graphene substrates were shown to improve 578

neural cell growth and differentiation by potentiating electric circuits [180–182]. 579

Moreover, the application of graphene as surface coatings not only protected 580

metal electrodes from corrosive electrochemical reactions at their surface, but also 581

shielded them from electromagnetic interference during MRI, hence minimizing 582

image artifacts [183]. Such compatibility with functional MRI has facilitated the 583

mechanistic study of the therapeutic effects of DBS in Parkinsonian rats using 584

graphene-based fiber electrodes (Fig. 8.8c) [167]. 585

Altogether, these properties enabled graphene to be employed in flexible inter- 586

faces for multimodal imaging, which couple recording neural activity with high 587

sensitivity and spatiotemporal resolution. For instance, graphene-based transistor 588

arrays designed for electrocorticography were demonstrated to map electrical 589

activity in the brain with greater spatial resolution and lower electronic noise 590

than clinically used platinum and gold [184, 185]. Furthermore, a neural interface 591

comprised of graphene-based sensing and stimulating electrodes was shown to 592

regulate thalamocortical circuits and effectively correct abnormal epileptic activity 593

using high-frequency discharges, after epidural implantation [186]. Graphene-based 594

electrode arrays have been also developed to couple optogenetics stimulation with 595

electrophysiological recording [165, 187]. Despite superior performance compared 596

�
Fig. 8.8 (continued) and (c.2) minimal artifacts in fluorescence imaging compared to clinically
used platinum-based electrodes. (c.3) Graphene fiber electrodes insulated with Parylene C enabled
brain stimulation of the subthalamic nucleus of rat brains with minimal interference in MRI.
(c.4) Graphene exhibits lower electrical impedance than PtIr and greater charge injection by
capacitive charge conduction, thus demonstrating superior performance for brain stimulation.
(b1,c3,c4) Adapted by permission from Springer Nature Customer Service Centre GmbH: Springer
Nature, Nature Communications [167]. Copyright© 2020. (b2,b3) Adapted with permission from
[168]. Copyright (2015) American Chemical Society. (c1,c2) Adapted with permission from [169].
Copyright (2018) American Chemical Society
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to platinum, graphene electrodes could suffer from artifacts derived from photoelec- 597

tric effects upon exposure to blue light. As these artifacts were mostly limited to the 598

immediate vicinity of the irradiated electrode, this phenomenon was attributed to 599

the photovoltaic effect, which is characterized by the generation of electric current 600

upon light exposure. Also, similarly to what is commonly observed in metals, 601

light-induced artifacts depended on incident laser power and exposure time. The 602

observed light-induced artifacts could compromise the use of graphene electrodes 603

in combination with optogenetics tools. Nevertheless, this intrinsic capability of 604

generating electricity upon light exposure could offer a promising alternative 605

to optogenetics by avoiding the need of genetic modifications. To this regard, 606

Savchenko et al. discovered that graphene substrates could elicit cell contraction 607

upon light stimulation [188]. Consistent with the aforementioned photoelectric 608

effect, light stimulation elicited capacitive charge injection. In these studies, cellular 609

activity was manipulated by adjusting light intensity rather than wavelength. 610

Alternatively, silicon nanowires (SiNWs) have been also recently explored 611

toward the development of photoresponsive electrodes mediating optoelectronic 612

stimulation of cardiomyocytes and neurons [189–191]. SiNWs convert light into 613

electricity via photothermal and photoelectrochemical reactions catalyzed by atomic 614

gold used to nucleate and generate these nanostructures. In addition, conductive 615

polymers have been employed in the preclinical development of retinal implants and 616

could provide a platform for optoelectronic stimulation [192]. Further investigation 617

on their photosensitivity, as well as their long-term biocompatibility and stability, is 618

warranted to determine their clinical applicability. 619

8.4 Conclusions and Future Perspectives 620

Recent improvements in critical care of acute ischemic stroke have saved the lives 621

of millions of patients worldwide. However, most survivors experience noticeable 622

deficits in neurological function, which could affect independence in their daily 623

lives. Novel therapies and devices have been developed with the aim of resolving or 624

attenuating these disabilities. 625

Stem cell transplantation has been the most investigated strategy to date for 626

restoring brain functions. However, key factors determining the success of this strat- 627

egy remain unknown. First, the influence of donor cell type and tissue origin for the 628

transplant needs to be considered to ensure their integration in the injured brain site. 629

Furthermore, the patient clinical history (e.g. age, sex, presence of comorbidities, 630

and recent surgical procedures such as recanalization), delivery method for the 631

treatment (e.g. intravenous, intra-arterial, and stereotaxic), and timeline may also 632

play important roles in choosing the appropriate regime. Transplanted stem cells are 633

more effective when delivered at early stages to modulate tissue regeneration and 634

reintegration in the neuronal circuitry. However, the exacerbated immune response 635

to traumatic injuries may limit their efficacy. In this sense, clinical evidence shows 636

limited efficacy of stem cells in improving neuronal function after stroke. This could 637
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be explained by late interventions performed at subacute and chronic stages after 638

stroke, when neuronal circuitry has been already reestablished [40, 70]. Further 639

investigation is required to evaluate whether immune and angiogenic responses 640

dominating the subacute stage could have a beneficial impact on neurogenesis 641

and synaptogenesis [193, 194]. Considering the high cost of cell transplantation, 642

the delivery of EVs arises as an attractive cell-free option to mimic some of the 643

beneficial effects of stem cells. However, this therapeutic strategy requires further 644

development and testing [68]. 645

Medical devices for brain stimulation are expected to undergo significant 646

technological development in the following years, following the clinical acceptance 647

of different materials from the conventionally used metals as electrodes. Silicon- 648

and graphene-based nanomaterials rank among the most promising candidates 649

for bioelectronics, owing to their biocompatibility. However, current fabrication 650

processes are laborious and involve high temperatures which are not conducive 651

to their application in flexible polymer substrates. Cost-effective procedures such 652

as inkjet printing should yield electrically conductive nanomaterials which can 653

be formulated to facilitate their incorporation in soft interfaces, thus making 654

them more accessible [195, 196]. Nonetheless, the effects of long-term exposure 655

to these nanomaterials require extensive assessment of device biocompatibility 656

along its life cycle, including the careful characterization of dissolution and/or 657

degradation by-products. Covalent functionalization and chemical doping strategies 658

will provide added control over nanomaterial biocompatibility and biodegradability 659

for biomedical applications [197–200]. 660
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