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Abstract

The pathological interaction between oak trees and Phytophthora cinnamomi has implica-

tions in the cork oak decline observed over the last decades in the Iberian Peninsula. During

host colonization, the phytopathogen secretes effector molecules like elicitins to increase

disease effectiveness. The objective of this study was to unravel the proteome changes

associated with the cork oak immune response triggered by P. cinnamomi inoculation in a

long-term assay, through SWATH-MS quantitative proteomics performed in the oak leaves.

Using the Arabidopis proteome database as a reference, 424 proteins were confidently

quantified in cork oak leaves, of which 80 proteins showed a p-value below 0.05 or a fold-

change greater than 2 or less than 0.5 in their levels between inoculated and control sam-

ples being considered as altered. The inoculation of cork oak roots with P. cinnamomi

increased the levels of proteins associated with protein-DNA complex assembly, lipid oxida-

tion, response to endoplasmic reticulum stress, and pyridine-containing compound meta-

bolic process in the leaves. In opposition, several proteins associated with cellular metabolic

compound salvage and monosaccharide catabolic process had significantly decreased

abundances. The most significant abundance variations were observed for the Ribulose

1,5-Bisphosphate Carboxylase small subunit (RBCS1A), Heat Shock protein 90–1 (Hsp90-

1), Lipoxygenase 2 (LOX2) and Histone superfamily protein H3.3 (A8MRLO/At4G40030)

revealing a pertinent role for these proteins in the host-pathogen interaction mechanism.

This work represents the first SWATH-MS analysis performed in cork oak plants inoculated

with P. cinnamomi and highlights host proteins that have a relevant action in the homeo-

static states that emerge from the interaction between the oomycete and the host in the long

term and in a distal organ.
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Introduction

The soil-borne oomycete Phytophthora cinnamomi infects the roots of cork oak (Quercus
suber) plants, induces necrotic lesions, and the loss of fine roots [1,2]. This evidence, combined

with other factors, are the hallmark for the decline of the cork oak savanna-like ecosystem in

Portugal (cork oak montado) and Spain (cork oak dehesa). Climate changes is reducing water

availability (drought) [3], and the effectiveness of roots in absorbing water is affected by the

health status of the plant [4,5], which can become less effective in accessing groundwater dur-

ing drought [6]. Insect colonization [7] and fungal infections [8,9] can weaken the tree’s

defence system and thus contribute to the decline. To help maintain the sustainability of the

cork oak agro-forests, the recommended focus is to adopt good management practices [10].

During inter and intracellular cork oak colonization by P. cinnamomi, small 10 kDa proteins

(elicitins) are secreted by the oomycete and increases disease effectiveness. This has been dem-

onstrated by studying a β-cinnamomin silenced P. cinnamomi strain, which acted as a weaker

pathogen against cork oak when compared to the virulence revealed by the wild type [11,12]. In

the roots of the narrow-leafed lupin (Lupinus angustifolius) infected with P. cinnamomi, the

expression of β-cinnamomin starts to be detected as early as 24 h post-inoculation and follows

the development of the mycelium into the host, anchored to a mycelial cell wall protein, empha-

sizing the recognition of these proteins as virulence factors [13]. However, effector molecules

from the RxLR, CRN (for Crinkling and Necrosis) and Nep1-like (NLPs) protein families are

also potentially secreted, encoded by the 171 RxLR, 72 NLPs and 29 CRN putative genes present

in the genomes (78 Mb) of three P. cinnamomi isolates, being able to suppress or bypass the

plant basic defence responses [14]. The molecular mechanisms by which the effector molecules

act are largely unknown, although the entry of some effector proteins into the plant host cells is

known to follow a mechanism of endocytosis after binding to receptor molecules of phosphati-

dylinositol-3-phosphate (PI-3-P) mediated by the effector RxLR domain [15,16]. In the nucleus,

the effectors control reactions that trigger host cell death or hypersensitive responses (HR)

[17,18], and in the nucleolus, they can act as modulators of histone acetyltransferases (HAT) to

reprogram the plant defence gene expression and promote infection [19].

Following compatible or incompatible reactions with plants, oomycete compounds like lip-

ids or carbohydrates referred to as Pathogen-Associated Molecular Patterns (PAMPs) and

effector biomolecules elicit local resistance responses or PAMPs/effector-triggered immunity

(PTI/ETI) in their hosts [20]. In Q. suber root cells, during the first 24 h of interaction with P.

cinnamomi, metabolic patterns undergo a non-linear variation for compounds with carbohy-

drate, glycoconjugate and lipid groups [21]. At the transcriptomic level, the differential expres-

sion of genes encoding pathogenesis-related proteins was observed in avocado roots

challenged with P. cinnamomi [22] and in stem tissues of Eucalyptus nitens infected with P.

cinnamomi [23]. In a more detailed analysis of the transcriptome of chestnut roots inoculated

with P. cinnamomi, the multiplicity of the defence responses becomes evident with the identifi-

cation of genes related to the HR (hypersensitive response), cell wall strengthening, synthesis

of flavonoids and systemic acquired resistance [24]. Further, resistance (R) genes coding to

transmembrane proteins such as LRR receptor-like serine/threonine-protein kinase in two

Castanea species [24] and CC-NB-LRR (coiled coil-nucleotide binding-leucine rich repeat) in

cork oak [25] are also potentially associated to the recognition of effector molecules, eventually

interacting, according to the gene-for-gene model [26]. Activation of these resistance proteins

can result in the activation of mitogen-activated protein kinase (MAPK) signal transduction

cascades, leading to transcription factor activation and transcription of responsive genes, and

these cascades can also be activated by proteins sensitive to the production of reactive oxygen

species (ROS, O2
-, H2O2) [reviewed by 20,27–29].
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Salicylic acid (SA)/salicylate is also a signaling molecule that plays a central role in PAMPs/

effector-triggered immunity (PTI/ETI) and in the systemic acquired resistance (SAR). SAR is a

type of immunity that extends to the entire plant beyond the site of infection, protecting the

plant against a broad spectrum of pathogens [30,31]. The expression of a large number of path-

ogenesis-related genes is activated by nuclear transcription factors interacting with NPR1

monomers (nonexpressor of pathogenesis related 1), known as the main regulatory molecule

of the SA-signaling pathway [32,33].

To overcome the harmful implications of P. cinnamomi on susceptible species of thousands

of plants worldwide, one of the current challenges is the identification of molecular markers or

physiological processes suitable for recognition of resistant or susceptible host plant species or

varieties. Information about the constitutive expression level of pathogenesis-related genes in

non-infected hosts and the reaction time mediating the recognition of the invader and the acti-

vation of local and systemic defence systems can contribute to this global goal, and was critical

for the recognition of Castanea crenata as a less susceptible species than C. sativa [28]. In less

susceptible avocado rootstocks, the physical and chemical composition of the host’s tissues at

the site of infection was critical to the effectiveness of P. cinnamomi zoospore germination and

penetration, as the early deposition of callose instead of lignin near the site of hyphae penetra-

tion along the cell wall hindered the development of the oomycete’s hyphae [34].

The hypothesis of the present study is that after inoculation of plant roots with a pathogen,

an immune response is initiated that will lead to a new homeostatic state, with protein changes

that can be detectable in the long-term, distally from the infection site. The aim was to identify

and quantify proteins in the leaves of cork oak plants inoculated with P. cinnamomi in the

roots and compare them to those in the leaves of non-inoculated plants, at 248 days post-inoc-

ulation, using SWATH-MS proteomics [35]. SWATH-MS (Sequential Window Acquisition

of all Theoretical Mass Spectra) is a quantitative, label-free and unbiased proteomics method

that is able to acquire information about virtually every ion (in this case peptides), introduced

into the mass spectrometer [36]. SWATH is a promising strategy for the quantitative screening

of a large number of proteins that has previously been applied in the field of plant biology

[37–39] and recognized as a valuable tool for the comprehensive study of proteins in plants

[40,41].

The leaves are a distal organ that can be sampled in a minimally invasive way in adult trees,

so they can also be a potential organ for practical monitoring of infection or resistance. Four

hundred and twenty-four proteins were identified in the cork oak leaves, and a subset of 80

proteins showed differential levels between inoculated and control plants, being considered

responsive to P. cinnamomi. These included 18 proteins associated with several gene ontolo-

gies (GO) biological processes, and their potential role in the cork oak immune response is dis-

cussed. The GO cellular component “stromules” was also significantly enriched among the

differential proteins, indicating that communication between cellular organelles may be

important in the cork oak immune response to P. cinnamomi.

Materials and methods

The design of the project included several experimental procedures operated at different time

points. In the first phase, the biological material was prepared consisting of twelve cork oak

seedlings, germinated from seeds, with half of these plants being inoculated with P. cinna-
momi. The following phases started 248 days after inoculation and included the harvesting of

the leaves from each plant for protein extraction and subsequent SWATH-MS proteomics.

The experimental assay ended with the bioinformatic annotation and quantification of pro-

teins present in the extracts of each plant.
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Biological material

Cork oak plants used in this experimental project were germinated from acorns taken from six

cork oak trees located in Cachopo, Algarve, Portugal (S1 Fig). Parental cork oak trees refer-

enced as S1.1, S2.1, S4.1, S5.1, S7.1, and S8.1 showed signs of decline at distinct stages of pro-

gression, based on visual observation of the canopy defoliation level typical of P. cinnamomi
infection. The study included two experimental conditions with six biological replicates: 6

cork oak plants inoculated with the PA45 P. cinnamomi isolate and 6 non-inoculated plants.

Seeds from six parental cork oak trees were germinated and were distributed between the con-

trol and inoculated groups so that each inoculated plant had a paired control from the same

progenitor. S1 Table provides the cork oak references used in the study. PA 45 was isolated

from the rhizosphere of cork oak trees that showed symptoms of decline in the Algarve region

and its high virulence on cork oak seedlings was extensively studied [11,12,22]. To reconfirm

the identity of the isolate as P. cinnamomi, DNA was extracted from PA 45 isolate and was

used in PCR reactions with primers (95.422/96.007) designed for a colorimetric molecular

assay [42] targeting the elicitin genes (GenBank accession number AJ000071).

For the preparation of control and inoculated plants, twelve 77-day-hold cork oak plants

were removed from the germination alveoli, freeing most of the organic substrate that accom-

panied the roots, and were laid down on trays whose surface was protected with moist absor-

bent paper. Then, a 2 cm2 agar plug of P. cinnamomi mycelium isolate PA45, grown in

clarified V8 (Campbell Soup) semi-solid agar, in the dark at 25˚C [11] for 9 days, was placed

mycelial surface down on the tap root of 6 cork oak plants—inoculated plants. The roots of the

control plants were not exposed to non-colonised semi-solid agar plugs to prevent the growth

of microorganisms present in unsterilized roots on the nutritious support (agar surface),

whose interaction with plant tissues could elicit defence reactions not present in the natural

plants. This situation is prevented in the inoculated samples due to the large amount of P. cin-
namomi hyphae present on the surface of the agar plugs avoiding bacteria and other microor-

ganisms from having acess to the nutritious support.

The roots of the inoculated and non-inoculated plants were covered with aluminum foil

and kept on the moistened trays at 25˚C for 48 hours.

Forty-eight hours after P. cinnamomi inoculation the plugs were removed and all plants

were potted into a misture of planting soil (PFLANZ-ERDE) and sand (proportion 2/3 for 1/3)

in free-drining plastic containers (Top Ø 16 cm; Base Ø 13 cm; H 33 cm), transferred outside

and watered regularly to container capacity. S1 Fig outlines the procedure and timing of the

experiment. After 248 days, the leaves of cork oak plants, inoculated and non-inoculated, were

collected and immediately frozen in liquid nitrogen and stored at -80˚C until further use for

protein extraction.

SWATH-MS proteomics

Total protein extraction. The optimized extraction of proteins from cork oak leaves

included eight steps. 1) Leaf tissue (200 mg) was ground in a mortar and pestle in the presence

of liquid nitrogen to obtain a fine powder. 2) Buffer 1 (1.25 mL/100 mg sample; DTT–Dithio-

threitol 60 mM; 10% TCA-Trichloroacetic acid solubilized in acetone) was added to the mor-

tar and samples were macerated in the presence of the buffer with the pestle. 3) The

heterogeneous solution was transferred to a 2 mL microcentrifuge tube and incubated for 1

hour at -80˚C. 4) The samples were centrifuged at 15,000× g for 15 min at 4˚C and the super-

natant was discarded. 5) The pellets were dissolved in 1 mL of Buffer 2 (2.5 ml/100 mg sample;

DTT 60 mM solubilized in acetone), and the sample volume was divided into two microcentri-

fuge tubes followed by the addition of 750 μL of Buffer 2 to each tube. 6) These solutions were
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incubated for 1 hour at -80˚C. Procedures 5 and 6 were repeated until the solution was clear

green. 7) The samples were centrifuged at 15,000×g for 15 min at 4˚C and the supernatant was

discarded. 8) Pellets were dried and resuspended in 250 μL of SDS-PAGE buffer [TRIS Glycine

buffer solution (25 mM TRIS; 192 mM Glycine; Sigma-Aldrich); 2% SDS-Sodium dodecyl sul-

fate] followed by incubation at 95˚C for 5 min and centrifugation at 20,000x g for 15 min at

4˚C. All reagents used were molecular biology grade.

Protein concentration in the samples was estimated using the 2D-Quant kit (GE Healthcare

Life Sciences) with serum albumin as standard [43].

SWATH-MS strategy. For the proteomic screening, the short GeLC-SWATH-MS strat-

egy was used according to [44] with minor modifications. Briefly, 50 μg of each sample and a

pooled sample per group (pool of the protein extracts for the six control or six inoculated sam-

ples) were subjected to in-gel digestion after a partial SDS-PAGE run. Then, LC-MS informa-

tion was acquired in two different acquisition modes: information-dependent acquisition

(IDA) of the pooled samples, and SWATH-MS (Sequential Windowed data-independent

Acquisition of the Total High-resolution Mass Spectra) of each sample. Protein identification

and library construction was performed using ProteinPilot™ (v5.0.1, Sciex), and compared

with the Arabidopsis thaliana reference proteome (retrieved from https://www.uniprot.org/ in

April 2018). In addition, protein identification was tested against the predicted proteins

deduced from the recently published draft genome sequence of cork oak [45], available at

http://corkoakdb.org/downloads (fileGCF_002906115.1_CorkOak1.0_protein.faa, accessed in

November 2020). The relative quantification was performed using the SWATH™ processing

plug-in for PeakView™ (v2.2, Sciex). For each experimental group, the average protein levels,

standard deviation and percentage coefficient of variation (% CV) were calculated based on

the quantification levels obtained for each individual with six biological replicates per group.

The fold change (FC) between inoculated and control plants was calculated by dividing the

respective median protein levels for all quantified proteins. Statistical comparisons between

protein levels were carried out using the software SPSS v23 (IBM) and the non-parametric

Mann Whitney U-test (MW). Proteins were considered as differentially modified when FC

was greater than 2 or less than 0.5 or MW p-value was below 0.05.

The mass spectrometry proteomics data have been deposited to the ProteomeXchange

Consortium via the PRIDE [42] partner repository with the dataset identifier PXD021455. A

detailed description of LC-MS materials and methods are provided as supporting information

(S1 File).

Enrichment analyses and hierarchical clustering. Gene ontology (GO) and pathway

(KEGG and Reactome) enrichment analyses were carried out as in [46,47], using Cytoscape

v3.5.1 and ClueGO plug-in v2.5.2 [48,49], comparing the list of 80 differentially modified pro-

teins against the Arabidopsis thaliana [organism 3702] set of GO biological process and cellu-

lar component databases from November 2017. Enrichment analyses were repeated using the

databases updated in 2020 and the same general enriched terms were found (data not shown).

The following settings were used for the ClueGO enrichment analysis (right-side): GO levels 3

to 8, Benjamini-Hochberg false discovery rate (FDR) correction with a cut-off at FDR<0.05

and minimum of three genes/4% for terms to be considered significant. The initial group size

was set as 1, group merging at 50%, and Kappa-statistics score at 0.4.

Enrichment scores of the functionally related network groups were calculated as -Log2

[group FDR]. The leading terms of each enriched group were those with the lowest term FDR

(highest enrichment score), which was used to name the respective group.

The hierarchical clustering of the 80 differentially modified proteins was analysed with

Cluster 3.0 at http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm#ctv using nor-

malized protein levels, applying the uncentered correlation and complete linkage options.
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Results and discussion

Observation of the plants

Cork oak plants were in contact with the P. cinnamomi mycelium at the beginning of the

experiment for 48 hours, with no (re)inoculation over the next eight months until the end of

the experimental assay. During the first 24 hours of inoculation with P. cinnamomi strain

PA45, the aerial apex of the inoculated plants wilted and after 48 hours, all the inoculated roots

appeared necrotic at the inoculation site (S2 Fig). At this time there was no observable changes

in the control plants. Seven months after inoculation, 1 month before the end of the experi-

ment, it was not possible to distinguish control plants from plants inoculated with P. cinna-
momi by visual observation of the aerial part (S2 Fig). The vegetative development of the

plants looked similar in both experimental conditions, inoculated and non-inoculated.

Although no foliar symptoms of P. cinnamomi infection were observed, the infection is

expected to have spread beyond the inoculation site through zoospores released from sporan-

gia who migrated into the irrigation water or through root to root contact.

The virulence of the PA45 strain had been previously tested in cork oak roots, inoculated

under the same conditions as in the present study for 3 days [11]. Histological studies performed

on colonized root tissue demonstrated the ability of the oomycete to invade the epidermis, cortical

parenchyma and vascular cylinder both inter- and intra-cellularly, and to destroy host cells [11].

In nature, at infested sites, cork oak trees may succumb (sudden death) after the summer,

without showing obvious previous symptoms of decline, or they can remain for years with

symptoms of defoliation that slowly worsen over time (slow decline). P. cinnamomi has been

isolated from roots of declined symptomatic trees and from infested soils throughout Portugal,

and it is important to recognize that oomycete infection can be a determining factor for cork

oak decline. However, the recovery of P. cinnamomi from declining trees does not provide

information about the plants’ responsiveness or vitality over time.

At the end of this experiment, the plants inoculated with P. cinnamomi in the form of a single

event were visually asymptomatic for leaf fall or yellowing, plant height or number of leaves. Never-

theless, the molecular interaction between P. cinnamomi and the hosts may have occurred differ-

ently in each of the six plants due to the high molecular diversity characteristic ofQ. suber species

[50]. One of the pertinent questions is how to detect that a plant is or has been invaded/infected

when it has no symptoms, avoiding the (re)isolation of the pathogen and the use of invasive meth-

ods. As the degree of tree defoliation is a symptom of decline and leaf harvesting is a method mini-

mally invasive to adult trees, the search for molecular markers in the leaves of plants challenged

with P. cinnamomi can be a valuable option. The defence responses induced in the host by P. cin-
namomi in the long term and distant from the inoculation site establish a homeostatic state

adapted to living with the invader. This new homeostatic state stands out when comparing (below)

the type and amount of proteins present in the leaves of inoculated and non-inoculated plants.

Leaf cork oak proteome changes in response to P. cinnamomi inoculation

SWATH-MS Proteomics analysis performed on leaf samples was used to characterize the proteome

of cork oak plants inoculated with P. cinnamomi, and compared with the proteome of non-inocu-

lated plants. With this technique, 12 individual protein profiles were obtained, and protein abun-

dances were quantified in each of the leaf extracts. Thus, the protein profiles obtained for the six

biological replicates in the two experimental conditions (control and inoculated) reflect the genetic

variability of theQ. suber species, assuming the average of the results a value closer to reality.

Four proteome databases were used for a comprehensive protein sequence catalogue and to

compare their differential abundance. Table 1 shows the number of identified or quantified
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proteins in the samples with reference to the Plant proteome (containing all plant entries in

the SwissProt database), or reference proteomes for Populus trichocarpa and Arabidopsis thali-
ana contained in the Uniprot database, as well as to the proteins deduced from the first draft

genome of Quercus suber from CorkOakDB (release 2018) [45].

The identification and quantification proteomics results are presented for the analyses

using the Uniprot reference proteome for Arabidopsis (S2 Table) and for the predicted pro-

teins from the cork oak genome (S3 Table). The later provided a probable annotation to 1,388

predicted proteins obtained by information-dependent acquisition (IDA) from pooled sam-

ples for each group. However, 58.8% of these proteins matched protein predictions of low con-

fidence (containing the designations -like, -probable, -uncharacterized or -low quality protein)

or corresponded to repeated entries among the CorkOakDB predicted proteins, revealing a

high redundancy in this database. Consequently, the quantification of 841 predicted oak pro-

teins was of low confidence, as the shared peptides were not able to be quantified under the

quality criteria used for SWATH (S3 Table).

Given the robustness of the Arabidopsis protein database (reference proteome available at

Uniprot.org, an highly curated protein database with low frequency of proteins of unknown

function) and the availability of substantial functional annotation for gene ontologies and

pathways, the Arabidopsis thaliana (considered a model organism for plants) was chosen as a

reference for the following analyses. The exercise of inferring a biological meaning for proteins

that stand out in the context of the interaction between Q. suber and P. cinnamomi it is only

achievable taking as a reference a database with evidence-based functional annotation.

Thus, using the Arabidopis proteome database as reference, 424 proteins were confidently

quantified in the cork oak leaves, with six biological replicates for each of the conditions con-

trol or inoculated (S2 Table). From these, 80 proteins showed a fold-change greater than 2 (or

less than 0.5, in the case of proteins with decreased levels) or a p-value below 0.05 in their

median levels between inoculated and control samples (Table 2). The Venn diagram in Fig 1

shows the number of proteins that met one or both criteria.

Among the 80 proteins with differential levels, 60 proteins increased abundance, and 20

proteins decreased abundance in the leaves of inoculated cork oak plants, 8 months after P.

cinnamomi inoculation, compared to the control plants (Table 2).

Hierarchical clustering of differentially produced cork oak proteins

The proteins with differential levels between inoculated and control samples were clustered in

a heatmap to allow better visualization of the protein variation patterns (Fig 2). Inoculated

plants are clearly distinguished from control plants based on the profiles of this protein dataset.

In other words, eight months after a single inoculation of the cork oak root with P. cinnamomi,

Table 1. Number of proteins identified and quantified.

Number of identified proteins (5%

local-FDR)a
Reference proteome database Number of quantified proteins (5%

local-FDR)

802 Plant (SwissProt database) 523

783 Populus trichocarpa
(UP000006729)

536

608 Arabidopsis thaliana
(UP000006548)

424

1,388 Quercus suber (CorkOakDB) 841

aA local false discovery rate of 5% was used as criteria for acceptance of peptide assignments and protein

identifications.

https://doi.org/10.1371/journal.pone.0245148.t001
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Table 2. List of differentially accumulated proteins in Q. suber leaf proteome 8 months after P. cinnamomi inoculation, using the Arabidopis proteome database as

a reference.

Arabidopis UniProt

accessiona
Median C

(x10-3)b
Median I

(x10-3)b
p�0.05d log2FCc Protein namea Protein Initialsa

Proteins more abundant in P. cinnamomi inoculated samples compared to the control
P27323 0.056 0.169 0.015 1.7 Heat shock protein 90–1 HS90-1

Q9FIF3 0.120 0.274 0.041 1.4 40S ribosomal protein S8-2 RS82

O81644 0.020 0.037 0.132 1.3 Villin-2 VILI2

P38418 0.188 0.529 0.24 1.2 Lipoxygenase 2, chloroplastic LOX2

A0A1P8AWT7 0.533 1.361 0.041 1.1 Catalase 3 A0A1P8AWT7

Q940B0 0.232 0.436 0.065 1.1 60S ribosomal protein L18-3 RL183

A8MRL0 0.183 0.397 0.015 1.1 Histone superfamily protein A8MRL0

At4G40030

Q9FGX1 0.124 0.260 0.004 0.9 ATP-citrate synthase beta chain protein 2 ACLB2

O04499 0.098 0.195 0.009 0.9 2,3-bisphosphoglycerate-independent phosphoglycerate mutase

1

PMG1/iPGAM

O49485 0.575 1.064 0.041 0.9 D-3-phosphoglycerate dehydrogenase 1, chloroplastic SERA1

Q9LF37 0.038 0.074 0.041 0.9 Chaperone protein ClpB3, chloroplastic CLPB3

Q9STX5 0.175 0.389 0.041 0.9 Endoplasmin homolog ENPL

Q9M040 0.171 0.336 0.009 0.8 Pyruvate decarboxylase 4 PDC4

Q9SIH0 0.142 0.257 0.004 0.8 40S ribosomal protein S14-1 RS141

Q9SIM4 0.302 0.495 0.015 0.7 60S ribosomal protein L14-1 RL141

Q93ZN2 0.282 0.437 0.041 0.7 Probable aldo-keto reductase 4 ALKR4

Q9LKR3 1.119 1.835 0.041 0.7 Mediator of RNA polymerase II transcription subunit 37a MD37A

Q9FMP3 1.183 2.187 0.026 0.7 Dihydropyrimidinase DPYS

Q9S9N1 1.651 2.616 0.004 0.7 Heat shock 70 kDa protein 5 HSP7E/BiP1

P42798 0.320 0.489 0.004 0.6 40S ribosomal protein S15a-1 R15A1

A8MS03 0.126 0.199 0.026 0.6 Ribosomal protein S6 A8MS03

A8MS28 0.481 0.754 0.026 0.6 Ribosomal L27e protein family A8MS28

Q9SEI3 0.326 0.496 0.026 0.6 26S proteasome regulatory subunit 10B homolog A PS10A/RTP4A

Q9SII0 0.257 0.395 0.009 0.6 Probable histone H2A variant 2 H2AV2

Q39142 2.316 3.472 0.041 0.6 Chlorophyll a-b binding protein, chloroplastic Q39142

P16181 0.224 0.332 0.009 0.5 40S ribosomal protein S11-1 RS111

Q9SRV5 2.348 3.690 0.041 0.5 5-methyltetrahydropteroyltriglutamate-homocysteine

methyltransferase 2

METE2

P49107 0.604 1.064 0.004 0.5 Photosystem I reaction center subunit N, chloroplastic PSAN

P59259 9.892 14.422 0.041 0.5 Histone H4 H4/HIS4

Q9LHA8 0.325 0.467 0.015 0.5 Probable mediator of RNA polymerase II transcription subunit

37c

MD37C

O04486 0.251 0.354 0.041 0.5 Ras-related protein RABA2a RAA2A

P59233 3.624 5.261 0.015 0.5 Ubiquitin-40S ribosomal protein S27a-3 R27AC

Q8W4H7 7.269 10.076 0.015 0.5 Elongation factor 1-alpha 2 EF1A2

P52577 2.145 3.732 0.002 0.5 Isoflavone reductase homolog P3 IFRH

F4JWF7 0.616 0.849 0.041 0.5 DEAD/DEAH box RNA helicase family protein F4JWF7

Q9SVR0 0.114 0.183 0.009 0.5 60S ribosomal protein L13a-3 R13A3

P59224 2.369 3.154 0.009 0.5 40S ribosomal protein S13-2 RS132

Q9SRZ6 0.376 0.563 0.026 0.4 Cytosolic isocitrate dehydrogenase [NADP] ICDHC/cICDH

Q9LZH9 0.282 0.384 0.009 0.4 60S ribosomal protein L7a-2 RL7A2

Q9LD28 0.620 1.017 0.041 0.4 Histone H2A.6 H2A6

Q948K6 0.232 0.315 0.015 0.4 Ras-related protein RABG1 RABG1

P22953 0.397 0.573 0.026 0.4 Probable mediator of RNA polymerase II transcription subunit

37e

MD37E

(Continued)
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Table 2. (Continued)

Arabidopis UniProt

accessiona
Median C

(x10-3)b
Median I

(x10-3)b
p�0.05d log2FCc Protein namea Protein Initialsa

Q9SU58 0.146 0.209 0.015 0.4 ATPase 4, plasma membrane-type PMA4

Q8H156 1.697 2.498 0.009 0.4 GTP-binding nuclear protein Ran-3 RAN3

A0A1P8B2Y6 0.197 0.287 0.026 0.4 Plasma membrane ATPase A0A1P8B2Y6

A8MS75 1.813 2.570 0.026 0.4 Chlorophyll a-b binding protein, chloroplastic A8MS75

Q9FJA6 1.027 1.379 0.004 0.4 40S ribosomal protein S3-3 RS33

Q9FF90 0.841 1.131 0.015 0.4 60S ribosomal protein L13-3 RL133

F4J3P1 1.255 1.589 0.004 0.4 Ribosomal protein L14p/L23e family protein F4J3P1

Q9LXG1 0.243 0.382 0.026 0.4 40S ribosomal protein S9-1 RS91

Q6ICZ8 0.167 0.250 0.002 0.3 Nascent polypeptide-associated complex subunit alpha-like

protein 3

NACA3

P0CJ47 0.700 0.970 0.026 0.3 Actin-3 ACT3

Q9SZ54 0.346 0.476 0.041 0.3 Putative glutathione peroxidase 7, chloroplastic GPX7

A0A1P8B767 0.610 0.773 0.041 0.3 Quinone reductase family protein A0A1P8B767

Q8LB10 0.117 0.141 0.015 0.3 ATP-dependent Clp protease proteolytic subunit-related protein

4, chloroplastic

CLPR4

F4JJ94 0.801 1.008 0.026 0.3 General regulatory factor 1 F4JJ94

Q9LUD4 0.326 0.414 0.041 0.3 60S ribosomal protein L18a-3 R18A3

Q93VH9 2.069 2.492 0.015 0.2 40S ribosomal protein S4-1 RS41

O23254 0.837 1.142 0.041 0.2 Serine hydroxymethyltransferase 4 GLYC4

O49299 2.435 3.204 0.002 0.2 Probable phosphoglucomutase, cytoplasmic 1 PGMC1/PGM1

Proteins less abundant in P. cinnamomi inoculated samples compared to the control
F4J3Q8 0.345 0.099 0.004 -3.5 P-loop containing nucleoside triphosphate hydrolases

superfamily

F4J3Q8

P10795 0.878 1.543 0.818 -3.1 Ribulose bisphosphate carboxylase small chain 1A, chloroplastic RBS1A/RBCS1A

Q9FLN4 0.218 0.100 0.132 -1.5 50S ribosomal protein L27, chloroplastic RK27

Q9FZ47 1.255 0.641 0.065 -1.3 ACT domain-containing protein ACR11 ACR11

O04603 0.412 0.201 0.041 -1.2 50S ribosomal protein L5, chloroplastic RK5

Q8RX32 0.513 0.260 0.026 -0.6 Tropinone reductase homolog At1g07450 TRNH2

Q9SCW1 0.184 0.110 0.026 -0.6 Beta-galactosidase 1 BGAL1

F4JYM8 0.543 0.294 0.026 -0.6 Thiolase family protein F4JYM8

A0A1P8B485 0.402 0.257 0.015 -0.6 Protein translocase subunit SecA A0A1P8B485

P25697 8.890 6.489 0.015 -0.6 Phosphoribulokinase, chloroplastic KPPR/PRK

Q9LRR9 1.487 0.662 0.002 -0.6 (S)-2-hydroxy-acid oxidase GLO1 GLO1/GOX1

B3H4S6 0.434 0.300 0.041 -0.3 Dicarboxylate transporter 1 B3H4S6

P56778 19.522 15.325 0.002 -0.3 Photosystem II CP43 reaction center protein PSBC

P56761 14.189 11.445 0.015 -0.3 Photosystem II D2 PSBD

Q9LF98 2.338 1.901 0.041 -0.3 Fructose-bisphosphate aldolase 8, cytosolic ALFC8/FBA8

F4KDZ4 2.902 1.688 0.026 -0.3 Malate dehydrogenase F4KDZ4/PMDH2

Q42525 0.553 0.340 0.026 -0.3 Hexokinase-1 HXK1

P27140 7.947 6.602 0.041 -0.2 Beta carbonic anhydrase 1, chloroplastic BCA1

A0A1P8BG37 3.388 2.750 0.041 -0.2 Photosystem II stability/assembly factor, chloroplast A0A1P8BG37

Q9SAU2 1.863 1.309 0.026 -0.2 D-ribulose-5-phosphate-3-epimerase Q9SAU2/RPE

aUniProt accession, protein name and protein initials arise from the annotation using the Arabidopsis proteome database as a reference. For more details on the

abundance levels per replicate consult S2 Table.
bData generated from SWATH-MS proteomics: median peak areas for 6 control cork oak plants (Median C) and 6 plants inoculated with P. cinnamomi (Median I).
cFold change ratio logarithm of protein abundance in inoculated over control samples greater than 1 or less than -1 (Log2FC).
dNon-parametric Mann Whitney U-test (MW) with statistical significance level set to less than 5% (p<0.05).

https://doi.org/10.1371/journal.pone.0245148.t002
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the inoculated but asymptomatic plants revealed a leaf proteome significantly different from

the non-inoculated plants.

Two scenarios are possible for the inoculated plants: 1) the development of the oomycete

was restricted to the inoculation site, with no spread of the infection; or 2) the development of

the oomycete took place beyond the inoculation site, invading other tissues, but the infection

still did not affect the vegetative state of the host. For the first hypothesis, the protein profiles

observed in the leaves may be the result of the activation of the systemic defence system, main-

tained in memory over time. But, for the second hypothesis, the protein profiles of the inocu-

lated plants may denote a homeostatic state of continuous interaction with P. cinnamomi.
The evaluation of cork oak infection by P. cinnamomi are always assessed at the root level,

in a qualitative way, requiring an experienced technician for the identification of necrosis and/

or absence of feeder roots. But, in this experiment, attempts were made to mimic field condi-

tions, which are hampered by limitations regarding the detection and quantification of the

oomycete in the rhizosphere of the trees. All the inoculated plants were used at the end of the

experiment, and there was no selection based on the re-isolation of the oomycete or the exis-

tence of infection symptoms like leaf yellowing and wilting. Assessing cork oak decline in the

field is based on the degree of canopy defoliation, and even if P. cinnamomi is isolated from

the roots of declining trees, it is not possible to know the level or time of infection. Further-

more, the current methods used to isolate and identify P. cinnamomi from the rizosphere of

oak roots are based on baiting tecnhiques, pathogen growth in selective media and molecular

identification with specific primers. These procedures are time consuming, require expertise

and are of relatively low effectiveness. Thus, evaluating cork oak decline through the leaf

immune response protein profile induced by P. cinnamomi inoculation establishes a new

approach for understanding the importance of this oomycete to cork oak decline.

Association of proteins to GO functional categories and biological

pathways

Enrichment analysis was carried out on the selected dataset of 80 differential proteins, which

assigned several GO terms to the proteins (based on the Arabidopsis thaliana proteins

Fig 1. Protein groups. The Venn diagram illustrates the number of proteins with a fold-change greater than 2 or less

than 0.5 (yellow colour), those with a p-value below 0.05 (blue colour), and those that meet simultaneously both

criteria based on protein levels between inoculated and control samples.

https://doi.org/10.1371/journal.pone.0245148.g001
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functional annotations), integrating them into the Gene Ontology functional categories of

“Biological Process” (GO_BP) or “Cellular Component” (GO_CC). Within each classification,

the significantly enriched terms (FDR<0.05; see lists in S4 and S5 Tables) were assembled into

groups of functionally related terms by Cytoscape/ClueGO analysis and the most significantly

enriched groups are presented in Fig 3 and summarized in S6 and S7 Tables.

Fig 2. Hierarchical clustering of differentially produced cork oak proteins. The heat map clusters the expression

patterns of the 80 proteins with altered abundances between inoculated and control plants. Each column represents

one cork oak plant; the control (C) plants are the first 6 columns on the left, and the 6 columns on the right are the

inoculated (I) plants. The first 60 lines starting from the top of the heat map are proteins with an increased level in the

inoculated samples (red color code) and the 20 lines towards the bottom, are proteins with a decreased level in the

inoculated samples (green color code). The color scale of the heat map ranges from -3 to 3 (from light green to red).

https://doi.org/10.1371/journal.pone.0245148.g002
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Thirty six GO Biological Process terms were significantly enriched among the differential

proteins (S4 Table), which were grouped into 6 groups of functional related GO terms (sum-

marized in Fig 3A); the group Pyridine-containing compound metabolic process has the highest

enrichment score of all groups (12.9, corresponding to an FDR of 1.29 x 10−4), followed by

Monosaccharide catabolic process (11.5), Cellular metabolic compound salvage (10.7), Protein-
DNA complex assembly (10.1), Lipid oxidation (10.0) and Response to endoplasmic reticulum
stress (10.0).

Fig 3. Enrichment analysis applied to the subset of 80 differential proteins. The bars represents the groups with higher enrichment score [−log2 (group FDR)]

obtained for each group of functional related GO terms; the enrichment of the Gene Ontology category of GO_BP are showed in panel a), and those for GO_CC in

panel b). Each group is labelled by the most significant (<FDR) enriched term, used as representative of the total enriched terms in each group that can be consulted in

detail in S4 and S5 Tables.

https://doi.org/10.1371/journal.pone.0245148.g003
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In the Cellular Component category, 15 GO terms were significantly enriched among the

differential proteins (S5 Table), which were grouped into 4 groups of functional related GO

terms (summarized in Fig 3B); the groups with the highest enrichment scores belonged to

Cytosolic part (82.1), Stromule (22.8), Nucleosome (14.8) and Photosystem (14.1).

Furthermore, the enrichment analysis uncovered the most representative KEGG or REAC-

TOME biological pathways in this dataset of the 80 differential proteins, which are listed in

Table 3. Comparing the results from KEGG and REACTOME pathways, the protein subset is

enriched in Ribosome and SRP-dependent cotranslational protein targeting to membrane, with

the highest enrichment (lowest FDR) scores, respectively, and Glycolysis/Gluconeogenesis and

Glucose metabolism with the lowest enrichment scores, respectively.

The significantly enriched pathway with Reactome code R-ATH: 3371497- HSP90 chaper-
one cycle for steroid hormone receptors (SHR) is very relevant in the context of this investigation

and of the available bibliography. The innate immunity and plant defence in Arabidopsis are

biological events that are associated with the biological function of heat shock protein 90–2 as

a molecular chaperone, involved in RPM1-mediated resistance and component of the RPM1/

RAR1/SGT1 complex [51]. To circumvent the autoimmunity associated with high levels of

immunity receptors, HSP90 proteins may assist in the formation of protein complexes that tar-

get the immune receptors SNC1, RPS2, and RPS4 for degradation [52].

Protein abundance patterns associated with GO functional categories

GO biological process category. In the enrichment analysis, 18 proteins contributed sig-

nificantly to certain biological processes (GO_BP groups of enriched GO_BP terms), which

are detailed in Table 4. Of the six highlighted GO-BP groups, three stand out based on the con-

stant patterns of variation in the abundance of the associated proteins. These are: Cellular met-
abolic compound salvage (GO group 3), with four down-accumulated proteins in the

inoculated plants; Protein-DNA complex assembly (GO group 5), with four up-accumulated

proteins in the inoculated plants and Response to endoplasmic reticulum stress (GO group 2),

with two up-accumulated proteins in the inoculated plants. In the GO_BP groups Pyridine-
containing compound metabolic process, Monosaccharide catabolic process and Lipid oxidation,

proteins with different variation forms were housed in the same group.

Within the proteins mapping to Cellular metabolic compound salvage (GO group 3), the

protein Ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) small subunit 1A

(P10795; RBCS1A) was the one showing the most expressive negative variation between inocu-

lated and control samples (Log2FC = -3.1). Further, this protein showed a very high coefficient

of variation (% CV), both in control (151%) and inoculated samples (152%). CV values may

Table 3. Biological pathways uncovered for the selected dataset.

ID Term Source Term

FDR

Group

FDR

Enrichment

score

Groups % Associated

proteins

Number of

proteins

KEGG:03010 Ribosome KEGG 6.46E-08 3.69E-08 24.7 4 5.49 20.0

KEGG:00630 Glyoxylate and dicarboxylate metabolism KEGG 1.20E-03 6.86E-04 10.5 2 8.00 6.0

KEGG:00710 Carbon fixation in photosynthetic

organisms

KEGG 4.03E-03 2.30E-03 8.8 3 7.25 5.0

KEGG:00010 Glycolysis / Gluconeogenesis KEGG 2.64E-02 1.51E-02 6.1 1 4.35 5.0

R-ATH:1799339 SRP-dependent cotranslational protein

targeting to membrane

REACTOME 4.98E-10 3.98E-08 24.6 3 7.39 17.0

R-ATH:3371497 HSP90 chaperone cycle for steroid

hormone receptors (SHR)

REACTOME 5.16E-05 1.06E-02 6.6 2 22.22 4.0

R-ATH:70326 Glucose metabolism REACTOME 2.99E-02 2.99E-02 5.1 1 4.76 3.0

https://doi.org/10.1371/journal.pone.0245148.t003
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reflect the natural biological variability observed for RubisCO in Q. suber and the correspond-

ing RubisCO patchiness in the host’s response to the oomycete. In Quercus ilex inoculated

with P. cinnamomi a decrease in the abundance of RubisCO proteins was also found, which

was correlated with the tolerance/susceptibility of the provenances, being more accentuated in

susceptible provenances [53].

Table 4. Proteins from the selected dataset assigned to Biological process GO terms with the highest enrichment scores.

Enrichement analysis SWATH analysis Data analysis

GO Group title and

number

GO

groupa
Arabidopsis

Uniprot

Accessionb

Protein name (initials)b Potential

subcellular

locationc

Potential pathway or

biological processesd
LOG2FCe

Pyridine-containing

compound metabolic

process (4)

4.6 O04499 2,3-bisphosphoglycerate-independent

phosphoglycerate mutase 1 (PMG1/

iPGAM)

Cytoplasm Glycolysis 0.9

4 Q9SRZ6 Isocitrate dehydrogenase [NADP]

(ICDHC/cICDH)

Cytoplasm Plant defense; Oxidative

stress

0.4

4 Q9LF98 Fructose-bisphosphate aldolase 8

(ALFC8/FBA8)

Cytoplasm Glycolysis; Stress signalling -0.3

Monosaccharide catabolic

process (6)

6 O49299 Probable phosphoglucomutase,

cytoplasmic 1 (PGMC1/PGM1)

Cytoplasm Carbohydrate metabolism 0.2

4.6 Q42525 Hexokinase-1 (HXK1) Cytoplasm

Nucleous

Glycolysis; Stress signalling -0.3

4.6 Q9SAU2 D-ribulose-5-phosphate-3-epimerase

(Q9SAU2/RPE)

Chloroplast Photosynthesis -0.2

Cellular metabolic

compound salvage (3)

3 P10795 Ribulose bisphosphate carboxylase small

chain 1A (RBS1A/RBCS1A)

Chloroplast Photorespiration;

Photosynthesis

-3.1

3 P25697 Phosphoribulokinase (KPPR/PRK) Chloroplast Photosynthesis; Plant

defense

-0.6

3 Q9LRR9 (S)-2-hydroxy-acid oxidase GLO1

(GLO1/GOX1)

Peroxisome Plant defense;

Photorespiration

-0.6

3.1 F4KDZ4 Malate dehydrogenase (F4KDZ4/

PMDH2)

Peroxisome Fatty acid ß-oxidation -0.3

Protein-DNA complex

assembly (5)

5 A8MRL0 Histone superfamily protein H3.3

(A8MRL0/AT4G40030)

Nucleus DNA-binding; Protein

heterodimerization

1.1

5.2 Q9SEI3 26S proteasome regulatory subunit 10B

homolog A (PS10A/RTP4A)

Nucleus Effector Triggered Imunity;

ATPase activity

0.6

5 P59259 Histone H4 (H4/HIS4) Nucleus Nucleosome assembly;

Protein heterodimerization

0.5

5 Q8LB10 ATP-dependent Clp protease proteolytic

subunit-related protein 4 (CLPR4)

Chloroplast Plastid protein homeostasis;

Protein degradation

0.3

Lipid oxidation (1) 1 P38418 Lipoxygenase 2 (LOX2) Chloroplast Lipid metabolism; Biotic

stress

1.2

1 F4JYM8 Thiolase family protein (F4JYM8/

AACT1)

Peroxisome Transferase activity -0.6

Response to endoplasmic

reticulum stress (2)

2 P27323 Heat shock protein 90–1 (HSP901) Cytoplasm Chaperone; Plant defense 1.7

2 Q9S9N1 Heat shock 70–5 (HSP7E/BiP1) Endoplasmic

Reticulun

Chaperone; Plant defense 0.7

aThe proteins included in more than one GO group were referenced only once in Table 4 with an indication of the numbers of the groups with which they were

associated.
bThe table includes information about the protein names linked to Arabidopis Uniprot Accessions, used as a reference for the cork oak leaf proteomic profiles.
cSuggestions of the potential subcellular locations, based on the annotation in protein databases and available bibliography.
dInferences about the possible biological processes associated with proteins in the context of this study.
eFold change ratio logarithm of protein abundance in inoculated samples over control greater than 1 or less than -1 (Log2FC).

https://doi.org/10.1371/journal.pone.0245148.t004

PLOS ONE Cork oak immune response to Phytophthora cinnamomi

PLOS ONE | https://doi.org/10.1371/journal.pone.0245148 January 22, 2021 14 / 26

https://doi.org/10.1371/journal.pone.0245148.t004
https://doi.org/10.1371/journal.pone.0245148


RubisCO is very abundant in plants and the amount of this protein in the leaves is consid-

ered an indicator of the photosynthetic vigour and nitrogen availability. RBCS1A is a member

of the multigene family RBCS from Arabidopsis and Isumy and colleagues [54] reported the

additive effect of the expression of RBCS1A and RBCS3C genes on RubisCO accumulation in

Arabidopsis leaves. Therefore, low levels of RBCS1A in the P. cinnamomi inoculated cork oak

plants may indicate decreased levels of total RBCS mRNA and a smaller content of RubisCO

accumulated in the leaves. It will be interesting to evaluate if the leaves of cork oak plants inoc-

ulated with P. cinnamomi have a reduced photosynthetic activity but, if this was a decrease, it

appears not to have significantly affected plant growth that was similar between inoculated

and control plants.

Like RubisCO, the chloroplastic phosphoribulokinase (P25697/PRK) is specifically associ-

ated with the Calvin-Benson cycle and catalyses D-ribulose 1,5-bisphosphate formation, used

by RubisCO with CO2 or O2 to form 3-phosphoglycerate (3-PGA) and 2-phosphoglycolate

(2-PG) [55,56]. Similarly, this protein also showed lower levels of accumulation in the P. cinna-
momi inoculated plants in this study. The protein D-ribulose-5-phosphate-3-epimerase pro-

tein (Q9SAU2/RPE), mapping to GO groups 4 and 6 and participating in the carbon

photoassimilation cycle, also showed lower levels of accumulation in the inoculated plants like

RubisCO and PRK. It is likely that the decrease in the accumulation of these proteins can com-

promise the levels of carbon assimilated by the plant and the sequent synthesis of sugars, pro-

teins, lipids and nucleic acids. A similar effect was observed in Q. ilex inoculated with P.

cinnamomi where many proteins involved in the Calvin-Benson cycle, such as RubisCO large

and small subunits, phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase B

and transketolase 1 were also decreased [53]. The complementarity of these data makes sense

if we think about the existence of macromolecular complexes formed by phosphoribulokinase

and glyceraldehyde-3-phosphate dehydrogenase interacting with the small peptide CP12, with

relevance to the regulation of photosynthesis in the chloroplasts [57,58].

The two other proteins mapping to this GO group, (S)-2-hydroxy-acid oxidase, with the

alternative name of glycolate oxidase 1 (Q9LRR9; GOX1/GLO1) and malate dehydrogenase

(F4KDZ4; PMDH2), are known to be located in the peroxisomes, and both showed decreased

levels in the inoculated plants. GOX1 catalyses the conversion of glycolate into glyoxylate with

the production of H2O2 in the photorespiration pathway (EC 1.1.3.15). Modulation of hydro-

gen peroxide accumulation has been suggested as the mechanism adopted by the GOX protein

family in Arabidopsis and Nicotiana benthamiana, associated with PAMP-triggered immunity

(PTI), host and nonhost defence responses [59–61]. Furthermore, the defence pathways acti-

vated by different GOX genes vary between plant species and depend on the type of interaction

that occurs between plants and pathogens or elicitors and GOX1-dependent defence responses

may involve salicylic acid (SA) and WRKY62-mediated pathways [59–61].

Concerning malate dehydrogenase (F4KDZ4; PMDH2), in 2007, Pracharoenwattana and

colleagues proposed a model in which the action of this enzyme is the production of malate

from oxaloacetate with NADH oxidation, recruited for fatty acid ß-oxidation.

In summary, the decrease in the accumulation of these four proteins rebound on photosyn-

thesis and concomitant photorespiration, and may affect sugar metabolism. Triacylglycerides

oxidation may be used as an alternative source of energy and supply of gluconeogenic interme-

diates. Changes in the redox state of the cells resulting from the production of reactive oxygen

species (ROS) are perceived and result in the activation of the defence system. Compromising

the photosynthetic efficiency in source tissues may result in a reduced supply of sugars to sink

tissues and less accumulation of soluble sugars.

Focusing on the Pyridine-containing compound metabolic process (GO group 4) and Mono-
saccharide catabolic process (GO group 6), hexose sugars like glucose are central molecules in
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plant metabolism and in sugar signaling. Cytosolic resources of phosphate hexoses originating

from starch mobilization and sucrose hydrolysis are channeled for energy-producing and syn-

thesis of biomolecule precursors [62]. Proteins PGMC1/PGM1 (Probable phosphoglucomu-

tase), PMG1/iPGAM1 (2,3-bisphosphoglycerate-independent phosphoglycerate mutase 1),

ALFC8/FBA8 (fructose-bisphosphate aldolase 8) and HXK1 (Hexokinase 1) from GO groups

4 and 6 can be grouped into two pairs according to their quantification pattern but also to the

role they play in sugar metabolism and as sugar sensors. PGMC1/PGM1 is an enzyme that par-

ticipates in both the breakdown and synthesis of glucose (EC: 5.4.2.2.) and PMG1/iPGAM1 is

involved in the synthesis of pyruvate in glycolysis (EC: 5.4.2.12). These proteins were more

abundant in the inoculated samples of this study, revealing a metabolic tendency in favour of

energy production and reducing power as opposed to the accumulation of sucrose and carbo-

hydrates as reserve substances. The availability of energy resulting from the functioning of

enzymes may hamper energy-depending cell actions, such as the movement of stomata, and

this requirement was studied in Arabidopsis through silencing the expression of glycolytic pro-

teins. Silencing iPGAM activity in Arabidopsis is associated with reduced stomatal function

and plant phenotypes with delayed development. This, probably results from the decrease in

ATP production by the glycolytic pathway and also by tricarboxylic acid (TCA) cycle and oxi-

dative phosphorylation in consequence of the concomitant reduction in the levels of pyruvate

provided [63]. HXK1 and FBA8 were less abundant in the inoculated samples and both

enzymes are involved in glycolysis (EC: 2.7.1.1; EC: 4.1.2.13) and sucrose metabolism, also

being referred to as proteins involved in sugar and stress signaling [64,65]. In Arabidopsis,
transcripts levels of AtFBA8 showed increased expression after 24h of glucose, fructose and

sucrose treatment and these were responsive to ABA, SA, NaCl and drought stresses [65]. A

reduction in the production of these enzymes in the inoculated cork oak plants may be a con-

sequence of the imbalance of the metabolism towards the production of energy associated

with the immune response. Knowing the subcellular location of HXK1 is essential to under-

stand the role it plays in response to biotic stresses, because HXK1 located in the nucleus may

interact with other proteins regulating the transcription of genes by binding directly to the

chromatin and mitochondrial hexokinases can modulate programmed cell death (PCD) [66].

Cytosolic ICDHC/cICDH (Isocitrate dehydrogenase [NADP]) protein, mapping to GO

group 4 and increasing its levels in inoculated plants, is potentially responsible for 2-oxogluta-

rate production for amino acid biosynthesis; however, in Arabidopsis cICDH is not required

for plant development and primary metabolism in optimal growth conditions, instead, cICDH

contributes to thiol–disulphide homeostasis during oxidative stress [67]. The NADPH pro-

duced by cICDH may contribute to activate defence responses to pathogen infection that are

triggered by changes in cellular redox state [67].

Reprogramming gene expression in situations of biotic stress requires modulation of tran-

scriptional activity in the nucleus. Focusing now on Protein-DNA complex assembly (GO

group 5) and Response to endoplasmic reticulum stress (GO group 2), several proteins were

found with increased levels, including two histones. It was suggested that appropriate levels of

H3.3 are required to avoid H1 deposition over gene bodies preserving an adequate density of

nucleosomes ideal for chromatin unfolding and access to DNA methyltransferases that meth-

ylate gene bodies [68]. Besides, the local enrichment of the nuclear histone H3.3 variant was

positively correlated with transcription of responsive genes [69,70] and with gene body meth-

ylation [68]. Thus, the higher levels of H3.3 protein in the inoculated plants in this study sug-

gest an increased access to DNA, allowing for modulation of transcription of biotic

responsive-genes through gene body methylation. Still related to the formation of histone-

DNA tetrasome is the Arabidopis chaperone NASP, described to bind to H3-H4 dimers and to

stimulate the conversion of dimers to tetramers, in vitro [71]. Furthermore, in tobacco and
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Arabidopsis cell lines the modifications observed in histone H3 in response to abiotic stresses,

with up-regulation of marker genes, happens together with histone H4 acetylation, revealing

the parallel intervention of these histones [72]. Also, in the present study, a significant up-

accumulation of both H3.3 and H4 proteins were found in the leaves of cork oak plants inocu-

lated with P. cinnamomi.
To reach cellular homeostasis, protein degradation by proteolytic enzymes is a regulated

procedure used to adjust protein abundance and efficiency. This activity in the chloroplasts

requires Clp protease complexes composed by several protein catalytic (ClpP3 to ClpP6) and

non-catalytic (ClpR1 to ClpR4) subunits arranged in ring-like structures (P-ring and R-ring)

in Arabidopsis surrounding the proteolytic chamber whose activity is assisted by several chap-

erone members [for review see 73]. The assembly of the rings of the Clp core complex is com-

promised if there is an uneven number of subunits available for its formation. It was observed

that reducing the abundance of the subunit ClpP6 by 50% caused a reduction in the protein

abundance of other P- and R-ring components, interfering with the complex assembly and

functionality [74]. Therefore, it is reasonable to expect that the increase in accumulation of the

ClpR4 subunit in the inoculated cork oak samples, may point to the importance of protein

degradation in the regulation of the photosynthetic process mediated by the Clp complex.

Additionally, knockdown of protease subunits in tobacco allowed the identification of putative

protease substrates, including proteins involved in photosynthesis like PRK and RPE, which

were found to be down-accumulated in the cork oak samples inoculated with P. cinnamomi
(Table 4).

Beyond the Clp complex, there are other biological mechanisms that predict protein degra-

dation, through proteasome complexes, to modulate the activity of disease resistance proteins

(R) in plant-pathogen interactions and also other processes such as the oxidative burst, hor-

mone signaling, gene induction, and programmed cell death [75]. In tobacco cells challenged

by the elicitin cryptogein, the accumulation of 20S proteasome subunits was observed simulta-

neously with the development of systemic acquired resistance [76]. By analogy, the RPT4A

protein highlighted in the leaf proteome of the inoculated samples in the present study can be

regarded as a defence-induced subunit of 26S proteasome, with a possible role in plant defence

reactions eventually triggered by elicitins produced by P. cinnamomi. It is also possible to

assume ATPase activity for Q. suber RTP4A subunit based on the functional characterization

of the 26S proteasomal subunit RPT4a from Solanum lycopersicum that has an active ATPase

site and can modulate the resistance to the ToLCNDV virus by physically interacting with

viral DNA molecules [77].

Modifying the programming of host nuclear gene transcription in response to biotic stress

is one of the mechanisms adopted by oomycetes and promoted through effector molecules.

The target genes may be those that code for HSP (Heat Shock Proteins) proteins, modulating

the role played by these molecular chaperones; these are active partners of numerous enzyme

complexes and are responsible for the folding and unfolding of proteins included in protein

degradation/renaturation and movement of signaling proteins and transcription factors into

cell organelles [78,79]. In Q. suber leaves inoculated with P. cinnamomi, the accumulation of

HSP70-5 (Q9S9N1) and HSP90-1 (P27323) proteins was higher than in control samples.

Knowing the activities of these proteins in other plant species it can be inferred the possible

role they may play in the interaction between cork oak and P. cinnamomi. Song et al (2015)

reported the identification of a P. sojae intracellular CRN (Crinkler or crinkling- and necrosis-

inducing protein) effector which directly interacts with promoters of the genes encoding HSP

proteins, preventing the binding of specific transcription factors [80]. The expression of the

defence-related genes in Arabidopsis, N. benthamiana and soybean is then changed, unbalanc-

ing the host’s resistance level to Phytophthora species [80]. More recently, HSP70s have been
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noted as proteins that interact with RXLR effectors produced by P. infestans and that get

involved in N. benthamiana defence response by stimulating programmed cell death mediated

by MAPK signaling and suppressing the growth of the pathogen [81]. It was also reported the

importance of protein complexes formed between HSP90s and co-chaperones in the activation

of defence mechanisms mediated by resistance (R) proteins after the detection of pathogen

effector molecules [82]. Preventing the formation of these protein complexes by inhibiting the

binding of HSP90 has implications for the accumulation of R proteins and resistance mediated

by these proteins [86]. In Arabidopsis, the cytosolic AtHSP90.1 was the only HSP90 isoform

significantly induced after inoculation with Pseudomonas (Pst) strains containing avirulence

genes (avrRpm1 and avrRpt2) and was required for the full resistance mediated by one of the

corresponding R proteins [83]. It is then expected that the host’s resistance proteins will recog-

nize the effector molecules secreted by P. cinnamomi and activate the defence responses with

the collaboration of chaperones and co-chaperones.

The disclosed Q. suber HSP70-5 is recognized as a homolog of the Arabidopsis BIP1 for

Binding Immunoglobulin Protein or Binding Protein (BiP), a chaperone set in the endoplas-

mic reticulum (ER) lumen, known to bind a membrane-associated transcription factor (TF)

under non-stressed conditions [84]. The interaction between BiP1 and the TF is the require-

ment to turn on or off a protein secretory signaling pathway via ER-Golgi-Nucleus, ending

with the transcription of stress response genes [84]. In soybean, the BiP protein was described

as a negative regulator of a stress-induced cell death response and, in Arabidopsis, Wang et al.

(2005) reported the implications of BiP 2 silencing on the secretion of pathogenesis related-

proteins, compromising the systemic acquired resistance against bacterial pathogens [85].

When looking at the enrichment of Lipid oxidation (GO group 1), two differential proteins

were assigned to it, lipoxygenase 2 (LOX2; P38418) and thiolase family protein (AACT1;

F4JYM8), although with different patterns of variation: LOX2 was more abundant in the inocu-

lated plants and AACT1 was less abundant. By homology to the Arabidopsis ACCT1 isoform, it

is expected for Q. suber ACT1 to be located in the peroxisome, based on the presence of two

alternative targeting sequences PTS1 and PTS2 motives found in AtACCT1, excluding a meta-

bolic function related to isoprenoid biosynthesis [86,87]. Jin et al (2012) [88] found a strong

expression of AtACCT1 in the vascular system of the aerial organs and roots of Arabidopsis, ver-

ifying that gene silencing or induction of abiotic stresses did not result in an evident phenotypic

response [88]. In Q. suber inoculated by P. cinnamomi, the leaf proteome reveals a reduction in

the production of a thiolase AACT1 protein, apparently included in its defence strategy.

The involvement of LOX2 in the cork oak defence response may be associated with the pro-

duction of jasmonic acid (JA) via the Vick and Zimmerman pathway [89]. Recently, it was

confirmed that LOX2 forms a protein complex with AOS (allene oxide synthase) and AOC2

(allene oxide cyclase), two proteins that also participate in JA precursor biosynthesis, located

in the inner envelope of the Arabidopsis chloroplasts [90]. The formation of this molecular

complex is evident in the effectiveness of JA production to the disadvantage of other products

resulting from parallel reactions during oxylipin biosynthesis, guiding the defence response to

the activation of genes responsive to JA [90]. Sometimes, depending on the needs of the patho-

gen, the signaling reactions are a balance between the activation of the salicylic acid (SA) path-

way with suppression of the jasmonic acid (JA) pathway or vice versa [91]. Nevertheless, Starý

et al. (2019) conclude that the level of resistance induced in different tomato genotypes after β-

cryptogein treatment correlated with the upregulation of defence genes and activated ethylene

and JA signaling but not SA signaling [92]. Other authors refer to a biphasic defence response

in avocado against the hemibiotroph P. cinnamomi, which initially involves SA-mediated gene

expression followed by the enrichment of JA-mediated defence from 18 to 24 hours post-inoc-

ulation [93].

PLOS ONE Cork oak immune response to Phytophthora cinnamomi

PLOS ONE | https://doi.org/10.1371/journal.pone.0245148 January 22, 2021 18 / 26

https://doi.org/10.1371/journal.pone.0245148


Finally, when analysing the GO Cellular Component category, the highest enrichment

scores were obtained for Cytosolic part (82.1), Stromule (22.8), Nucleosome (14.8) and Photo-
system (14.1). In a simplified view, it is recognized that achieving new cell balances during

interaction with pathogenic organisms requires the remodeling of physiological processes by

the action of cytoplasmic or organelle-associated enzymes and the modulation of transcription

factors for nuclear gene expression, which are energy-dependent processes. Three of the

obtained categories fit this profile with the exception of Stromule, which is a novelty for the

host-P. cinnamomi interactions. Nevertheless, there were previous descriptions for the impor-

tance of the communication between cellular organelles during immune responses carried out

through stroma-filled tubular structures (stromules) of the chloroplasts-to-nucleus, which use

them as a support for the exchange of molecules integrated into the defence response [94,95].

Caplan et al (2015) observed the induction of stromules in response to viral and bacterial effec-

tors after recognition by host receptors (ETI; effector-triggered immunity) [94]. In plants

infected with tobacco mosaic virus (TMV) a hypersensitive response is observed at the infec-

tion site and in the border regions with increased production of stromules in both areas, prob-

ably stimulated by the production of pro-defence signaling molecules like H2O2, O2
- and SA

[95]. During innate immunity, the cellular relocation of chloroplasts in the nucleus surround-

ings is dependent on the organization of microtubules in connection with the anchoring

points provided by actin filaments to enhance the effectiveness of the communication between

these organelles [96]. In 2013, Sghaier-Hammami et al. reported the up-accumulation of actin

in holm oak plants inoculated with P. cinnamomi [53]. The published information reinforces

the importance of the Stromules GO category highlighted in the present study for the cork

oak-P. cinnamomi interaction. Moreover, the cork oak leaf proteome data suggests a possible

function for stromules in long-term defence responses, far from the inoculation point, in close

connection with the production and transport of signaling molecules.

Conclusions

In this work, the proteomes of cork oaks plants submitted to biotic stress-induced by P. cinna-
momi inoculation are revealed for the first time. Among the 424 proteins confidently quanti-

fied in the inoculated and non-inoculated plants, a dataset of 80 proteins was selected based on

the abundance variability observed between the experimental conditions. The immune

response of the plants was analysed eight months after the inoculation event, and, at that

moment, there were no evident phenotypic differences between inoculated and non-inocu-

lated plants. Nevertheless, the hierarchical clustering of differentially produced cork oak pro-

teins shows two different groups of plants, matching to the experimental conditions. By

comparing protein profiles, it was observed that the number of proteins in which the abun-

dance increased in the inoculated plants is 3 times greater than the number of proteins in

which there was a decrease in abundance. Therefore, the defence responses induced in the

host by P. cinnamomi in the long term and distant from the inoculation site are inscribed in

the proteome of the leaves, reproducing the in progress homeostatic state of the plants. The

results obtained in this study increase the possibilities of screening trees infected with P. cinna-
momi using protein markers identified in the leaves without the need to isolate the oomycete

from the roots of the host or surrounding soil.

The homeostatic state of the inoculated cork oak plants was characterized by protein pat-

terns associated with differential biological processes occurring potentially in different subcel-

lular organelles. When performing the enrichment analysis, eighteen proteins were

highlighted, and their possible functions in an immune response context were discussed. In

short, the decrease in the accumulation of photosynthesis enzymes and concomitant
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photorespiration may compromise the levels of carbon assimilated by the plant and its devel-

opment, although throughout the experiment, no differences in growth were observed. The

dynamics of proteins associated with sugar metabolism and sugar signaling reveals a metabolic

tendency in favour of energy production and reducing power as opposed to the accumulation

of sucrose and carbohydrates as reserve substances.

The reprogramming of gene expression, eventually in response to the action of effector

molecules produced by P. cinnamomi is a major function associated with proteins that are in

greater abundance in the inoculated plants. It is also clear the participation of proteolytic com-

plexes and chaperones in the cork oak immune response and of proteins sensitive to changes

in the redox state of the cell promoted by ROS species.

In addition, the cork oak leaf proteome data suggests the importance of the communication

between cellular organelles mediated by stromules in the long-term defence responses.

Immune response amplification and effectiveness may be dependent on the repositioning of

the chloroplasts close to the nucleus and the transfer of pro-defence molecules such as SA, JA

and H2O2.
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Pinto.

References
1. Serrano MS, Rios P, Gonzalez M, Sanchez ME. Experimental minimum threshold for Phytophthora cin-

namomi root disease expression on Quercus suber. Phytopathol Mediterr. 2015:461–4.

2. Camilo-Alves CDEP, da Clara MIE, Ribeiro NMCD. Decline of Mediterranean oak trees and its associa-

tion with Phytophthora cinnamomi: a review. Eur J Forest Res. 2013; 132(3):411–32.
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82. Botër M, Amigues B, Peart J, Breuer C, Kadota Y, Casais C, et al. Structural and functional analysis of

SGT1 reveals that its interaction with HSP90 is required for the accumulation of Rx, an R protein

involved in plant immunity. Plant Cell. 2007; 19(11):3791–804. https://doi.org/10.1105/tpc.107.050427

PMID: 18032631

83. Takahashi A, Casais C, Ichimura K, Shirasu K. HSP90 interacts with RAR1 and SGT1 and is essential

for RPS2-mediated disease resistance in Arabidopsis. Proc Natl Acad Sci U S A. 2003; 100(20):11777–

82. https://doi.org/10.1073/pnas.2033934100 PMID: 14504384

84. Srivastava R, Deng Y, Shah S, Rao AG, Howell SH. BINDING PROTEIN is a master regulator of the

endoplasmic reticulum stress sensor/transducer bZIP28 in Arabidopsis. Plant Cell. 2013; 25(4):1416–

29. https://doi.org/10.1105/tpc.113.110684 PMID: 23624714

85. Wang D, Weaver ND, Kesarwani M, Dong X. Induction of protein secretory pathway is required for sys-

temic acquired resistance. Science. 2005; 308(5724):1036–40. https://doi.org/10.1126/science.

1108791 PMID: 15890886
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