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Abstract

The purpose of the study was to evaluate predicted maturity offset (time before age at PHV)

and age at PHV (chronological age [CA] minus maturity offset) in a longitudinal sample of 58

under-13 club level soccer players in central Portugal for whom ages at PHV were estimated

with the SITAR model. Two maturity offset prediction equations were applied: the original

equation which requires CA sitting height, estimated leg length, height and weight, and a

modified equation which requires CA and height. Predicted maturity offset increased, on

average, with CA at prediction throughout the age range considered, while variation in pre-

dicted maturity offset and ages at PHV within CA groups was considerably reduced com-

pared to variation in observed ages at offset and at PHV. Predicted maturity offset and ages

at PHV were consistently later than observed maturity offset and age at PHV among early

maturing players, and earlier than observed in late maturing players. Both predicted offset

and ages at PHV with the two equations were, on average, later than observed among play-

ers maturing on time. Intra-individual variation in predicted ages at PHV with each equation

was considerable. The results for soccer players were consistent with similar studies in the

general population and two recent longitudinal studies of soccer players. The results ques-

tion the utility of predicted maturity offset and age at PHV as valid indicators of maturity tim-

ing and status.

Introduction

Predicted maturity offset, defined as time before peak height velocity (PHV) [1,2], and esti-

mated age at PHV, i.e., chronological age (CA) minus predicted offset, are widely used as esti-

mates of maturity status (state of maturation at the time of observation) and/or timing (age at

which a specific maturational event occurs) in studies of youth athletes and to a lesser extent in

studies youth physical activity and fitness [3–6]. The original sex-specific equations require
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CA, sitting height, estimated leg length, height and weight [1], while the modified equations

[2] require CA and height (both sexes) or sitting height (boys). Validation studies of the origi-

nal equations in three independent longitudinal series, the Wroclaw Growth Study [7,8], the

Fels Longitudinal Study [9] and the Cracow Growth Study [10], and of the modified equations

in two of the samples [10,11] have indicated major limitations of the predictions in both males

and females. The validity of the prediction equations has also been questioned in longitudinal

samples of female artistic gymnasts [12] and soccer players [13,14], but sample sizes in longitu-

dinal samples tend to be limited and to some extent select as they are limited to athletes who

have persisted in the respective sports [15]. Similarly, cross-sectional studies of tennis [16] and

soccer [17] players have questioned maturity status classifications based on the original predic-

tion equations [1] relative to classifications based on skeletal age.

Current interest in the application of the maturity offset prediction equations in samples of

youth athletes is considerable [3–6]. Predictions based on the original and modified equations,

however, depend upon CA and body size at prediction, have reduced variation relative to

observed ages at PHV, and have major limitations with early and late maturing youth as

defined by observed ages at PHV [7–11]. The latter are problematic as advanced (early for CA)

or delayed (late for CA) maturity status is often of major concern in developmental studies of

youth athletes [15].

In the context of the preceding, the purpose of the present study is to evaluate predicted

maturity offset and derived ages at PHV with the original [1] and modified [2] equations in a

sample of 58 soccer players for whom age at PHV was determined from longitudinal height

records. The study specifically considers variation in the predictions in three contexts: (i) rela-

tive to actual maturity offset and observed age at PHV at each observation, (ii) among players

differing in the timing of observed age at PHV, and (iii) within individual players.

Materials and methods

Research design and procedures

The data set for the present study was extracted from the Coimbra Soccer Longitudinal Project
[18]. This project was conducted according to the standards established by the declaration of

Helsinki [19], and formal approval was obtained from the University of Coimbra Sports Sci-
ences and Physical Education Board (FCDEFUC/AAC/2003; FCDEFUC/ADCA/2003; FCDE-

FUC/CFM/2003; FCDEFUC/CFUC/2003; FCDEFUC/GRVM/2003). Signed institutional

agreements were also obtained from the Presidents of the respective clubs. All players were

registered with the Portuguese Soccer Federation. Male players 11–14 years of age were

recruited from five clubs in the Midlands of Portugal; the initial sample included 159 players

[20]. Written consent was obtained from parents or legal guardians of the participants who

were informed that contribution to the study was voluntary and that they could withdraw

from the study at any time. All observations were completed at the Biokinetics Laboratory of

the Coimbra University Stadium.

Sample

According to the Portuguese Soccer Federation, male soccer players were grouped as infantiles

(aged 11–12 years, n = 87) and initiates (aged 13–14 years, n = 72). The analysis in the current

study is limited to under-13 players (U13) who were measured annually in December for four

or five years (n = 59). CAsat baseline ranged from 10.98 to 12.94 years. The heights of one

player were not successfully modeled; consequently, the final sample was composed of 58 play-

ers. All players were of European ancestry, except one. Participants trained and competed Sep-

tember through May. They had a median of 3 years of soccer experience at baseline (range:
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2–6 years). The clubs had 3–5 training sessions per week (each about 90–120 minutes) and

usually one game, mainly on Saturdays.

Anthropometry

Participants wore shorts and a t-shirt; shoes were removed. Height and sitting height were

measured to the nearest 0.1cm using, respectively, a stadiometer (Harpenden 98.603, Holtain

Ltd, Croswell, UK) and a table (Harpenden sitting height table, model 98.607, Holtain Ltd,

Crosswell, UK). Body weight was measured to the nearest 0.1 kg using a scale (SECA 770, Han-

over, MD, USA). The heights, sitting heights and weights of players who continued at the

respective clubs were subsequently measured on an annual basis. Measurements were made by

a single observer (MJCS). Intra-observer technical errors of measurement for height, sitting

height and weight were 0.27 cm, 0.31 cm and 0.47 kg, respectively [19].

Age at PHV

The longitudinal height records were fit with the Superimposition by Translation and Rotation

(SITAR) model [21–24] to derive an age at peak height velocity for each player. As noted, the

heights of one player were not successfully modeled; the estimated age at PHV for the player

was outside of the empirical data range and was inconsistent with his advanced skeletal matu-

rity status at observations one and three. Mean age at PHV for the remaining 58 players was

13.60±0.85 years, with a range from 11.89 to 15.49 years [25].

Predicted maturity offset

Maturity offset, defined as time before PHV, was predicted at each observation for the 58 play-

ers with the original equation for boys [1]:

Maturity offset ðyearsÞ
¼ � 9:236þ ð0:0002708� ðLeg Length� Sitting HeightÞÞ þ ð� 0:001663� ðCA
� Leg LengthÞÞ þ ð0:007216� ðCA� Sitting HeightÞÞ þ ð0:02292

� ðWeight by Height Ratio� 100ÞÞ Eqð1Þ

Leg length was estimated at each observation as standing height minus sitting height. The

need to multiply the weight by height ratio by 100 was overlooked in the original report [1]; in

some publications using the equation, it is not clear if the adjustment was applied. Maturity

offset was also predicted at each observation with a modified equation for boys that incorpo-

rated age and height [2]:

Maturity offset ðyearsÞ ¼ � 7:999994þ ð0:0036124� ðCA� HeightÞÞ Eqð2Þ

The equation with age and height was selected for evaluation as it is increasingly used [26–

31]. Standard errors for the original [1] and modified [2] equations were, respectively, 0.592

and 0.542 year. Predicted maturity offset and predicted age at PHV with the respective equa-

tions are subsequently labelled in the text, tables and figures as Mirwald and Moore,

respectively.

Predicted age at PHV

Predicted age at PHV was estimated as CA minus predicted maturity offset at each observation

for individual players with the respective equations.
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Observed maturity offset

Observed or actual maturity offset at each observation was estimated as CA at prediction

minus observed age at PHV based on the SITAR model.

Analyses

Descriptive statistics were calculated at each observation for CA and actual offset, for predicted

maturity offset and age at PHV, and for the difference of predicted age at PHV minus observed

age at PHV with the two prediction equations. The players were also classified as advanced

(early), average (on time) or delayed (late) maturing relative to the mean and standard devia-

tion for age at PHV (SITAR) in the total sample. Average was defined as an age at PHV within

±1 SD of the mean age at PHV for the total sample of 58 players (13.60±0.85 years); delayed

was a PHV>14.45 years and advanced was a PHV <12.75 years.

Linear mixed-effect models with the data grouped by subjects (random effects) were used

with a maximum-likelihood estimator to evaluate the variance structure of the dependent vari-

able, i.e., the differences between observed and predicted ages at PHV. Separate analyses were

done for predictions with the Mirwald and Moore equations. The difference of the dependent

variable from zero (so-called unconditional meansmodel) was initially tested. In the second

step, the effect of predictions at observations 1–5 (as a time variable) on the dependent variable

at the population level (fixed effect) and at the intra-individual level (i.e., random slopes

model, or unconditional growthmodel) were tested. Note that the term growth in the statistical

context refers to the general change in a dependent variable with a time variable; it does not

refer to growth in the biological sense. Finally, maturity status was added as a fixed factor to

test the effect of variation in maturity timing on the predictions. The model was run separately

for predictions with the Mirwald and Moore equations in the R-software [22] with the help of

the nlme statistical package [32].

Weighted Deming regression using the jackknife procedure [33] was used to compare

observed age at PHV estimated with the SITAR model (i.e., the reference) with predicted ages

at PHV at each observation based on the two equations. The weighted Deming procedure con-

siders both x (observed age at PHV) and y (predicted age at PHV) as subject to measurement

error whereas simple regression permits only the y variable to have an associated error. With

the weighted Deming regression, systematic differences between x and y are indicated by the

intercept, while proportional differences are indicated by the slope.

Many applications of the equations use predicted maturity offset to classify youth as pre-

PHV, at/circa/mid-PHV, or post-PHV using a band of -0.5 to +0.5 year to define the interval

at PHV [29,34–41]; a band of -1.0 to +1.0 year is used less often [42–46]. On the other hand,

some studies do not report the specific cut-offs that were used [47–49]. The standard errors of

the prediction equations, 0.592 and 0.542 year, also approximate the narrow cut-offs used in

many studies. Thus, the number and percentage of predicted ages at PHV with each equation

within ±0.5 year of observed age at PHV at each observation were estimated for players of con-

trasting maturing status and for the total sample.

Results

Descriptive statistics for CA at prediction, observed and predicted maturity offset, predicted

ages at PHV and the difference of predicted age at PHV minus observed age at PHV (the refer-

ence for comparison) with the original (Mirwald) and modified (Moore) equations in the soc-

cer players are summarized in Table 1. Observed and predicted maturity offset increase

linearly, on average, across the five observations. Predicted offset with the Moore equation is

similar to actual offset at observation one but is then less than actual offset at subsequent
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observations. Predicted maturity offset with the Mirwald equation is less than actual offset and

predicted offset with the Moore equation across the five observations.

Corresponding trends in predicted ages at PHV and the difference of predicted minus

observed ages at PHV parallel those for maturity offset. Standard deviations for predicted

maturity offset and ages at PHV with both equations are consistently lower than correspond-

ing standard deviations for observed offset and age at PHV across the five observations. Vari-

ability is reduced more so with the Moore compared to the Mirwald equation.

Results of the mixed effects model indicate significant differences between observed and

predicted ages at PHV with the Mirwald equation (F = 40.95; p<0.001) and also with the

Moore equation (F = 9.39; p<0.01). Details of the analytical protocol and results are summa-

rized in S1 Table. The differences between observed and predicted ages at PHV with the

respective equations at each observation increase significantly with subsequent observations

with the Mirwald (F = 22.81; p<0.001) and the Moore (F = 172.97; p<0.001) equations,

although the 95% confidence intervals indicate that the difference at observation 1 for the

Moore equation is not different from zero.

Intercepts based on weighted Deming regressions for the two prediction equations are well

above zero at each observation, indicating that the methods differ significantly by a constant

error (Table 2). Estimated slopes for each regression are<1.0, indicating significant propor-

tional differences between predicted ages at PHV with each equation and observed age at

PHV. Overall, the results indicate systematic error for predicted ages at PHV.

Table 1. Sample sizes and descriptive statistics for chronological age (CA) at prediction, observed maturity offset and predicted maturity offset and ages at PHV,

and the difference of predicted age at PHV minus observed ages at PHV (criterion) with the original (Mirwald) and modified (Moore) equations in soccer players at

each observation†.

Observations n CA (years) Maturity Offset (yrs) Predicted age at PHV (yrs) Predicted minus Observed age

at PHV (yrs)

Observed Predicted

Mirwald Moore Mirwald Moore Mirwald Moore

1 58 11.9±0.5 -1.72±0.86 -2.09±0.51 -1.78±0.49 13.97±0.36 13.66±0.27 0.37±0.71 0.06±0.74

2 58 12.9±0.5 -0.70±0.86 -1.26±0.61 -0.93±0.56 14.15±0.45 13.82±0.35 0.56±0.63 0.23±0.68

3 58 13.9±0.5 0.29±0.86 -0.26±0.71 -0.01±0.57 14.14±0.51 13.90±0.37 0.55±0.56 0.30±0.64

4 55 14.9±0.5 1.33±0.86 0.71±0.66 0.89±0.55 14.17±0.52 13.99±0.36 0.62±0.59 0.44±0.72

5 40 15.9±0.5 2.34±0.87 1.63±0.52 1.72±0.50 14.25±0.43 14.16±0.32 0.71±0.82 0.65±0.92

†Observed (actual) maturity offset was calculated as CA at prediction minus observed age at PHV for each player, see text for details.

https://doi.org/10.1371/journal.pone.0254659.t001

Table 2. Intercepts and slopes, and respective standard errors (SE) and 95% confidence limits based on the weighted Deming regression of predicted ages at PHV

(y-axis) and observed (actual) ages at PHV (x-axis) for the Mirwald and Moore prediction equations at each observation (Obs) in youth soccer players�.

Obs Mirwald Moore

Intercept Slope Intercept Slope

value SE (95% CL) value SE 95% CL) value SE (95% CL) value SE (95% CL)

1 10.26 0.77 (8.75; 11.81) 0.27 0.06 (0.15; 0.39) 11.17 0.53 (10.10; 12.24) 0.18 0.04 (0.10; 0.26)

2 8.35 0.94 (6.46; 10.24) 0.43 0.07 (0.28; 0.57) 9.86 0.67 (8.52; 11.20) 0.29 0.05 (0.19; 0.39)

3 7.01 0.77 (5.45; 8.57) 0.52 0.06 (0.41; 0.64) 9.36 0.62 (8.11; 1.62) 0.33 0.05 (0.24; 0.43)

4 7.26 0.77 (5.72; 8.79) 0.51 0.06 (0.40; 0.62) 10.49 0.76 (8.98; 12.01) 0.26 0.06 (0.15; 0.37)

5 11.18 1.07 (9.01; 13.35) 0.23 0.08 (0.06; 0.39) 13.58 0.97 (11.62; 15.54) 0.04 0.07 (-0.10; 0.19)

�All intercepts and slopes are significant in showing, respectively, systematic and proportional differences between predicted and observed ages at PHV with each

equation.

https://doi.org/10.1371/journal.pone.0254659.t002
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Descriptive statistics for the three maturity groups are summarized in Table 3. Sample sizes

and ages at PHV of players in each maturity timing group were as follows: advanced, n = 8,

12.30±0.27 years; average, n = 38, 13.50±0.51 years; delayed, n = 12, 14.76±0.27 years.

Results of the mixed-effects model comparing the three maturity groups indicate that matu-

rity status as a fixed factor has a significant effect on the dependent variable (predicted ages at

PHV) with both the Mirwald (F = 36.85, p<0.001) and the Moore (F = 51.28, p<0.001) equa-

tions. By inference, predicted ages at PHV differ relative to observed age at PHV in each

group. However, the interaction between observation and maturity group is significant for the

Mirwald equation (F = 5.39, p = 0.005) and indicates different slopes of change in predicted

ages at PHV with consecutive observations in the maturity groups. The latter reflects the trend

in differences between predicted and observed ages at PHV for the Mirwald equation which

are not significant except at observation 1. In contrast, the interaction term is not significant

for the Moore equation.

In the context of the results of the mixed-effects model, differences between predicted and

observed ages at PHV are significant and positive across the five observations among players

advanced in maturity timing (i.e., early ages at PHV). The predicted ages at PHV are consis-

tently later observed ages at PHV.

Results are similar for players maturing on time (average), i.e., predicted ages at PHV with

the two equations are later than observed age at PHV. Across the five observations, the differ-

ences between predicted and observed ages at PHV with each equation are significant,

Table 3. Sample sizes and descriptive statistics (mean ± standard deviation) for chronological age (CA) at prediction, observed maturity offset and predicted matu-

rity offset, predicted ages at PHV and the difference of predicted age at PHV minus observed ages at PHV (criterion) with the original (Mirwald) and modified

(Moore) equations at each observation in players classified as advanced, average and delayed based on observed ages at PHV†.

Obs n CA (yrs) Maturity Offset (years) Predicted APHV (years) Predicted minus Observed

APHV (years)

Observed Predicted Mirwald Moore Mirwald Moore

Mirwald Moore

Early

1 8 11.4±0.5 -0.90±0.44 -2.14±0.63 -1.94±0.64 13.54±0.29 13.34±0.22 1.24±0.26 1.04±0.34

2 8 12.4±0.5 0.02±0.44 -1.14±0.70 -0.98±0.72 13.55±0.36 13.40±0.33 1.25±0.35 1.10±0.42

3 8 13.4±0.5 1.11±0.44 -0.13±0.68 -0.04±0.68 13.54±0.37 13.45±0.31 1.24±0.32 1.15±0.40

4 8 14.4±0.5 2.11±0.44 0.81±0.55 0.76±0.65 13.59±0.26 13.64±0.32 1.29±0.23 1.34±0.43

5 7 15.4±0.5 3.10±0.47 1.45±0.55 1.35±0.64 13.92±0.25 14.02±0.29 1.65±0.17 1.75±0.38

Average

1 38 11.9±0.5 -1.57±0.76 -2.05±0.54 -1.73±0.49 13.98±0.32 13.66±0.24 0.48±0.53 0.16±0.53

2 38 12.9±0.5 -0.56±0.76 -1.21±0.64 -0.87±0.57 14.16±0.37 13.82±0.27 0.65±0.50 0.32±0.48

3 38 13.9±0.5 0.43±0.76 -0.15±0.72 0.08±0.57 14.08±0.39 13.86±0.27 0.58±0.46 0.36±0.48

4 37 14.9±0.5 1.46±0.75 0.85±0.63 1.00±0.50 14.09±0.35 13.94±0.28 0.61±0.55 0.46±0.58

5 26 15.9±0.5 2.39±0.87 1.70±0.49 1.77±0.40 14.23±0.37 14.16±0.31 0.69±0.72 0.62±0.72

Late

1 12 12.0±0.4 -2.73±0.26 -2.18±0.38 -1.83±0.38 14.21±0.29 13.85±0.22 -0.55±0.34 -0.90±0.30

2 12 13.0±0.4 -1.72±0.26 -1.51±0.39 -1.09±0.39 14.55±0.30 14.13±0.23 -0.21±0.36 -0.63±0.31

3 12 14.0±0.4 -0.73±0.26 -0.70±0.50 -0.28±0.46 14.73±0.32 14.31±0.24 -0.03±0.38 -0.45±0.34

4 10 15.0±0.4 0.22±0.22 0.08±0.53 0.57±0.54 14.91±0.35 14.42±0.28 0.14±0.44 -0.35±0.43

5 7 16.2±0.4 1.40±0.26 1.58±0.62 1.88±0.57 14.63±0.51 14.33±0.37 -0.17±0.49 -0.48±0.47

Obs (observations)

†Players were classified as late, average or early maturing on the basis of their observed age at PHV (SITAR model) relative to age at PHV for the total sample of soccer

players- see text for details. Observed (actual) maturity offset was calculated as CA at prediction minus observed age at PHV for each player.

https://doi.org/10.1371/journal.pone.0254659.t003
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although predicted age at PHV with the Moore equation at observation one approaches that

for observed age at PHV.

Among late maturing players, in contrast, differences between predicted and observed ages

at PHV for the Mirwald equation are not significant except at observation one, while differ-

ences between predicted and observed ages at PHV for the Moore equation are significant at

each observation. The differences between predicted and observed ages at PHV with the Mir-

wald equation are also smaller than corresponding differences with the Moore equation.

Predicted ages at PHV (y-axis) for individual players with the Mirwald and Moore equa-

tions are illustrated relative to their respective observed ages at PHV (x-axis) in Figs 1 and 2,

respectively. Intra-individual variation in predicted ages at PHV is considerable and ranges of

predicted ages are reduced with the Moore equation. Relatively few predicted ages approxi-

mate observed ages at PHV in early and late maturing players.

Across the five observations (Table 4), no predicted ages at PHV with the Mirwald equation

are within ±0.5 year of observed age at PHV (SITAR) among the eight early maturing players

(0 of 39). Corresponding estimates for predicted ages at PHV with the Mirwald equation

within ±0.5 year of observed age at PHV across the five observations are 35 of 53 (66%) among

late and 76 of 177 (43%) among average maturing players. For the total sample, 111 of 269

(41%) of predicted ages at PHV with the Mirwald equation are within ±0.5 year of observed

age at PHV.

For the Moore equation, only 1 of 39 predicted ages at PHV (3%) is within ±0.5 year of

observed age at PHV among early maturing players. On the other hand, 88 of 177 predicted

ages at PHV (50%) among average and 23 of 53 predicted ages at PHV (43%) among late

maturing players are within ±0.5 year of observed age at PHV. For the total sample, 112 of 269

Fig 1. Predicted ages at PHV with the Mirwald equation plotted relative of observed age at PHV at each

observation for individual soccer players classified as early, average and late maturing. The diagonal corresponds

to the line of identity (x = y).

https://doi.org/10.1371/journal.pone.0254659.g001
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Fig 2. Predicted ages at PHV with the Moore equation plotted relative of observed age at PHV at each observation

for individual soccer players classified as early, average and late maturing. The diagonal corresponds to the line of

identity (x = y).

https://doi.org/10.1371/journal.pone.0254659.g002

Table 4. Number of participants by maturity status† according to predicted ages at PHV with the Mirwald equa-

tion and, separately, with the Moore equation who were within ±0.50 year of observed age at PHV (SITAR model)

at each observation in youth soccer players.

Equation Observations Maturity Groups Total

Advanced Average Delayed

N n N n N n N n

Mirwald 1 8 0 38 17 12 6 58 23

2 8 0 38 15 12 8 58 23

3 8 0 38 18 12 10 58 28

4 8 0 37 15 10 7 55 22

5 7 0 26 11 7 4 40 15

Total 39 0 177 76 53 35 269 111

0% 43% 66% 41%

Moore 1 8 0 38 18 12 1 58 19

2 8 1 38 21 12 5 58 27

3 8 0 38 19 12 7 58 26

4 8 0 37 18 10 7 55 25

5 7 0 26 12 7 3 40 15

Total (%) 39 1 177 88 53 23 269 112

3% 50% 43% 42%

†Players were classified as advanced, average or delayed on the basis of their observed age at PHV (SITAR model)

relative to age at PHV for the total sample—see text for details.

https://doi.org/10.1371/journal.pone.0254659.t004
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(42%) of predicted ages at PHV with the Moore equation are within ±0.5 year of observed age

at PHV.

Discussion

The 58 players comprising the present study was larger than samples in five other longitudinal

studies of European youth soccer players, 8 to 33 players [25]. Results of the application of the

maturity offset prediction equations in the longitudinal series of Portuguese youth soccer play-

ers were consistent with recent studies of English [13] and Dutch [14] soccer players. The

study of English players was limited to the Mirwald et al. [1] equation, while that of the Dutch

players considered the original and modified [2] equations in addition to an equation which

predicted a maturity ratio [50]. Although the three studies varied in design, scope and focus,

the results were consistent in highlighting major limitations of predicted maturity offset and

predicted age at PHV in longitudinal samples of soccer players.

Applications of the original and modified equations in the longitudinal series of Portuguese

youth soccer players were also consistent with validation studies of the maturity offset predic-

tion equations in three longitudinal series of youth spanning late childhood through adoles-

cence, one in the U.S. [9] and two in Poland [10,11]. The three studies and the present study of

soccer players used similar analytical methods and noted several major limitations of the pre-

diction equations.

First, predicted maturity offset increased, on average, with CA at prediction throughout the

age range considered in each study. In the study of soccer players, mean predicted ages at PHV

based on the Moore equation increased, on average, with CA, while those based on the Mir-

wald equation increased from observation one to two, changed negligibly through observation

four and then increased to observation five. The age-related trend probably reflects the predic-

tors comprising each equation which increase, on average, with CA. The preceding is apparent

in the correlations between predicted maturity offset and predicted age at PHV with CA,

height, sitting height, estimated leg length and weight at each observation for the Mirwald

equation and with CA and height with the Moore equation (Table 5). For predicted maturity

offset, correlations within each CA group range from moderately high to high; correlations are

highest for sitting height and tend to be lowest for estimated leg length. For predicted age at

PHV, correlations are relatively low and positive for CA, but are negative and moderate to

high for the anthropometric variables. Within an age group, taller and heavier players tended

to have an earlier predicted age at PHV.

Second, variation in predicted maturity offset and ages at PHV within CA groups was con-

sistently reduced compared to variation in observed ages at offset and at PHV. Variation was

reduced more so with the Moore compared to the Mirwald equation.

Table 5. Correlations at each observation between predicted maturity offset and predicted APHV (CA–predicted maturity offset) with chronological age (CA),

height (Ht), sitting height (SitHt), estimated leg length (LegLt) and body weight (Wt) for the Mirwald equation and with CA and Ht for the Moore equation.

Observations n Predicted Maturity Offset Predicted APHV

Mirwald Moore Mirwald Moore

CA Ht SitHt LegLt Wt CA Ht CA Ht SitHt LegLt Wt CA Ht

1 58 0.75 0.85 0.93 0.66 0.81 0.85 0.88 0.30 -0.53 -0.69 -0.34 -0.67 0.31 -0.67

2 58 0.68 0.88 0.94 0.72 0.84 0.80 0.89 0.17‡ -0.70 -0.82 -0.52 -0.80 0.16‡ -0.81

3 58 0.69 0.87 0.96 0.67 0.80 0.78 0.78 0.02‡ -0.82 -0.87 -0.66 -0.87 0.14‡ -0.85

4 55 0.64 0.82 0.93 0.54 0.80 0.77 0.77 0.15‡ -0.74 -0.87 -0.46 -0.80 0.22‡ -0.85

5 40 0.68 0.67 0.85 0.37 0.65 0.81 0.81 0.45 -0.51 -0.77 -0.20‡ -0.65 0.43 -0.77

‡Not significant; all other correlations are significant.

https://doi.org/10.1371/journal.pone.0254659.t005

PLOS ONE Predicted maturity status

PLOS ONE | https://doi.org/10.1371/journal.pone.0254659 July 26, 2021 9 / 17

https://doi.org/10.1371/journal.pone.0254659.t005
https://doi.org/10.1371/journal.pone.0254659


Third, predictions varied with maturity status defined by observed age at PHV. Predicted

maturity offset and ages at PHV were consistently later than observed maturity offset and age

at PHV among early maturing boys, and earlier than observed in late maturing boys. By infer-

ence, maturity status defined by observed age at PHV influenced predicted ages at PHV in

both early and late maturing boys. It should be noted, however, that Moore et al. [2, p. 1761]

cautioned that "Our sample was not large enough to rigorously assess variation in prediction
error due to early- and late-maturing children". This caution, however, is overlooked in applica-

tions of the equations. In contrast to early and late maturing youth, predicted ages at PHV

appeared to be reasonably accurate for average maturing boys within approximately ±1 year of

observed PHV. Unfortunately, the maturity status and/or timing of individuals is not ordinar-

ily known in studies applying the prediction protocols.

Fourth, intra-individual variation in predicted ages at PHV with each equation was consid-

erable in the present sample of soccer players and in each of the longitudinal studies. Ranges of

predicted ages at PHV were reduced with the Moore compared to the Mirwald equation.

The dependency of predicted maturity offset upon CA and body size at prediction merits

attention. Means for predicted maturity offset are plotted relative to means for CA and height

in the present study and in samples of male soccer players extracted from the literature

[13,38,43,46,51–69] are illustrated in Figs 3 and 4. The means plotted in the figures were lim-

ited to studies using the Mirwald equation, as it was more widely used in studies of soccer play-

ers. Predicted maturity offset increased linearly with CA and with height at prediction. The

plotted means were largely based on one or two year CA groups, although several were based

on players spanning age ranges of three or more years.

Fig 3. Means for predicted maturity offset (MO) plotted relative to means for chronological age for each year of

observation in the current sample of players (filled diamonds) and in samples of male soccer players extracted

from the literature (open squares; references: 13, 38, 43, 46, 51–69).

https://doi.org/10.1371/journal.pone.0254659.g003
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Studies reporting maturity offset by relative age categories within an age group and studies

classifying players across variable age ranges as pre-, at/circa- or post-PHV based on predicted

offset were not included in the graphs. In the former, players born early in the year were, on

average, older and taller than those born later in the year, while in the latter, CA and height

systematically increased from pre-, to at/circa- to post-PHV groups (see above). Given the

trends, studies applying predicted maturity offset as a maturity indicator beg the following

question: Is predicted maturity offset an indicator of time before age at PHV or is it an indica-

tor of CA and size at prediction? By inference, the validity of predicted maturity offset as an

indicator of the time before or after PHV can be questioned.

The preceding has implications for studies using predicted maturity offset as an indicator

of maturity status among youth athletes in soccer and other sports. Predicted maturity offset is

used most often to classify youth as pre-, at-/circa- and post- PHV, although mean CAs,

heights and weights show, on average, a clear gradient across the respective maturity groups.

Many studies simply compare the three groups with analysis of variance without controlling

for the variation in CA and body size among groups [31,35,36,40,70]. It is also unclear as to

how CA-related variation in predicted offset or ages at PHV was addressed in studies applying

the prediction equations in short-term longitudinal studies [71–73].

Although studies of youth athletes do not ordinarily indicate the ethnic composition of

samples, the issue of ethnic variation is relevant as the maturity offset prediction equations

were developed and validated on samples of European ancestry. The original Mirwald equa-

tion [1] requires sitting height and estimated leg length, while one of the Moore equations [2]

for boys requires age and sitting height. Of potential relevance, population variability in the

proportions of sitting height and estimated leg length to standing height is reasonably well

Fig 4. Means for predicted maturity offset (MO) plotted relative to means for height for each year of observation

in the current sample of players (filled diamonds) and in samples of male soccer players extracted from the

literature (open squares; references: 13, 38, 43, 46, 51–69).

https://doi.org/10.1371/journal.pone.0254659.g004
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established [74,75]. American youth of European (White), African (Black) and Hispanic

ancestry, for example, vary in the proportions of sitting height and estimated leg length

[76,77]. The proportions of the Portuguese youth soccer players in the present study, as

reflected in the sitting height-height ratio, were, on average, generally similar to those for

American White and Hispanic youth, but different from American Black youth who have pro-

portionally longer lower extremities. This trend was also noted in a recent study of soccer play-

ers in which players of non-European ancestry were taller with a lower sitting height/height

ratio, i.e., proportionally longer legs, than players of European ancestry [13].

Results of the current study also have practical implications for those working with youth

athletes. The interval of PHV is central to the Long Term Athlete Development (LTAD) model

for youth athletes [78,79], which calls for identifying youth of contrasting maturity status, i.e.,

early, average or late maturing. The LTAD, however, does not specify the method for doing so

other than suggesting the monitoring of estimated growth velocities; the latter, however, have

limitations over the short term. Estimated increments over short intervals (3–4 months), how-

ever, must be interpreted with care; they must be adjusted for the interval between measure-

ments and evaluated relative to factors which influence short term estimates of growth rate–

specifically measurement errors (both inter- and intra-observer), diurnal variation and per-

haps seasonal variation [80]. Nevertheless, application of predicted maturity offset in this con-

text has the potential for misclassification and thus implications for player development.

Those using predicted maturity offset per se or variations of the method to identify when play-

ers enter and exit the interval of the adolescent growth spurt should employ these methods

with caution. If predicted offset is used to inform training design and prescription, it is essen-

tial that variation in chronological age at prediction and error associated with the prediction

equations be considered. Perhaps additional or alternative methods might be used as a comple-

ment, for example, percentage of predicted adult stature attained at the time of observation. As

noted above, the utility of estimated velocities of growth in height based on short term height

increments has limitations.

The inability of the maturity offset prediction methods to effectively differentiate between

early and late maturing youth implies that they should not be used to group players by matu-

rity status as in bio-banding [81], or to adjust fitness and performance scores to accommodate

individual differences in maturation [70,82]. As age at PHV is over-estimated in early and

under-estimated in late maturing youth, the majority of these players will likely be categorised

as being on time and some will be grouped in equivalent bands. Similarly, maturity associated

adjustments to performance or fitness scores in early and late maturing boys will, by virtue of

these biases, be attenuated and regress towards a common mean.

Conclusions

Results of the study of applying maturity offset prediction equations to the sample of Portu-

guese soccer players were consistent with similar studies of soccer players and of the general

population. Predicted maturity offset increased, on average, with CA at prediction throughout

the age range considered. Variation in predicted maturity offset and ages at PHV within CA

groups was consistently reduced compared to variation in observed ages at offset and at PHV.

Predictions also varied with maturity status defined by observed age at PHV; predicted matu-

rity offset and ages at PHV were consistently later than observed maturity offset and age at

PHV among early maturing boys, and earlier than observed in late maturing boys. And, intra-

individual variation in predicted ages at PHV with each equation was considerable and ranges

of predicted ages at PHV were reduced more with the Moore compared to the Mirwald

equations.
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