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Abstract

The dynamics of tumor growth and associated events cover multiple time and spatial

scales, generally including extracellular, cellular and intracellular modifications. The main

goal of this study is to model the biological and physical behavior of tumor evolution in

presence of normal healthy tissue, considering a variety of events involved in the process.

These include hyper and hypoactivation of signaling pathways during tumor growth, ves-

sels’ growth, intratumoral vascularization and competition of cancer cells with healthy host

tissue. The work addresses two distinctive phases in tumor development—the avascular

and vascular phases—and in each stage two cases are considered—with and without nor-

mal healthy cells. The tumor growth rate increases considerably as closed vessel loops

(anastomoses) form around the tumor cells resulting from tumor induced vascularization.

When taking into account the host tissue around the tumor, the results show that competi-

tion between normal cells and cancer cells leads to the formation of a hypoxic tumor core

within a relatively short period of time. Moreover, a dense intratumoral vascular network

is formed throughout the entire lesion as a sign of a high malignancy grade, which is con-

sistent with reported experimental data for several types of solid carcinomas. In compari-

son with other mathematical models of tumor development, in this work we introduce a

multiscale simulation that models the cellular interactions and cell behavior as a conse-

quence of the activation of oncogenes and deactivation of gene signaling pathways within

each cell. Simulating a therapy that blocks relevant signaling pathways results in the pre-

vention of further tumor growth and leads to an expressive decrease in its size (82% in the

simulation).
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Author summary

Mathematical modeling and simulation of cancer across different biological scales is

becoming increasingly important in the development of therapeutic strategies. In the cur-

rent work, a multiscale model is presented to study the growth and progression of tumor

and angiogenesis based on tumor-host interactions which allows investigating the effects

of tumor-targeted therapy. Considering the signal-transduction networks involved in var-

ious types of cancers, we proposed a cascade that encompasses some significant signaling

pathways. A Boolean network model is employed to describe the receptors cross-talk. As a

result of the activation of oncogenes and deactivation of pertinent gene signaling pathways

within each cell, the cellular interactions and cell behavior are modeled. By linking cells

state with environmental cues, the tumor morphology is determined. Consistent with the

experimental observations, the intratumoral vascularization density resulting from the

simulation reports malignancy grade as a prognostic parameter. Moreover, our model

permits to explore possible novel therapeutic procedures, including therapies targeting

specific pathways. It captures cellular apoptosis by receptor inhibition in tumor develop-

ment as a new area of mathematical modeling of targeted therapy.

Introduction

Tumor development leads to an accumulation of abnormal cells with high capacity to prolifer-

ate and resist apoptosis. The uncontrollable cell proliferation behavior is caused by genetic and

epigenetic changes, which lead to the deregulation of cell signaling pathways that maintain

normal cellular function. Initially, solid tumors grow in an avascular mode. Due to the limita-

tion of nutrient diffusion from surrounding vessels, the cells in the tumor core suffer hypoxia.

In order to promote cell survival in response to this new condition, cells express hypoxia-

inducible factor-1 (HIF-1) which up-regulates pro-angiogenic factors, including the vascular

endothelial growth factor (VEGF), triggering tumor vascularization (Fig 1).

Tumors in the vascular growth phase are more likely to be aggressive since they have easier

access to nearby blood vessels, and thus the metastasis process is facilitated. However, tumor

metastatic progression often occurs during the avascular growth in already highly vascularized

organs such as brain, lung, liver and lymph nodes [1].

The nature of tumor growth and related events cover multicellular dynamics in different

spatio-temporal scales, generally including tissue and extracellular, cellular and intracellular

processes. However, mathematical models of the processes relevant to tumor development and

angiogenesis often cover only a limited set of events at a specific scale. Continuous models are

based on standard advection-diffusion-reaction equations that describe the dynamics of the

process at tissue scale, without a detailed description at cellular level [2–4]. In contrast, discrete

models, such as cellular automata and agent-based models, handle interactions by considering

cells as distinct components. Although results are biologically guided, it is computationally

expensive [5,6]. Hence hybrid stochastic models are the most suitable modeling technique

because of their ability to span multiple scales [7–11].

Anderson [12] developed a hybrid mathematical model of the solid tumor invasion process.

In this study, tumor cells are discrete agents and their behavior is based on a biased random-

walk model, while the extracellular matrix, matrix-degrading enzymes and oxygen are mod-

eled as continuous variables [12]. In this work it has been assumed that extracellular matrix is

the host tissue. The model discusses the effect of cell interactions on the final structure of
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tumor due to reducing the oxygen concentration in a homogeneous ECM. Indeed, oxygen

availability determines the tumor shape.

The mathematical models of tumor induced microvasculature have also been substantially

explored over the past few decades to describe tumor-induced angiogenesis and blood flow in

a vascular network [13–15]. See [16–19] for reviews of mathematical models of angiogenesis.

In the context of hybrid models of angiogenesis, Travasso et al. [17] developed a multi-scale

phase-field model that includes a cellular automaton for the vessel tip cells to track the inter-

face between newly formed vascular networks and the microenvironment. The network mor-

phology is determined by tip cell migration velocity while the stalk cell proliferation helps

vascular expansion. They demonstrated how higher tip cell velocity leads to thinner vessels in

the vasculature network. However, the matrix rigidity is neglected and anastomosis formation

was not taken into account. Moreira-Soares et al. [10] improved the model presented in [17]

that simulates the ECs and the ECM using the phase-field approach. They studied of vessel

growth and investigated the role of angiogenic factor gradients produced by hypoxic cells, in

anastomosis formation. The phase-field technique was also used in a continuous model by

Santos-Oliveira et al. [20] to model sprouting angiogenesis as a function of the cell-cell adhe-

sion and the traction forces. This continuous model was more complete as the proliferation of

the sprout stalk cells is triggered by both VEGF and the traction forces exerted by the tip cell. It

has been reported that higher traction and adhesion forces lead to sprout breaking. Continu-

ous models also help to explore blood flow through a capillary network [21–23]. Soltani and

Fig 1. A diagram identifying important events in angiogenesis at the cellular level. Tumor cells secrete VEGF that

drives the activation of Endothelial cells by binding to VEGF-receptors on the ECs’ surface. VEGF meditated ECs

undertake two distinct phenotypes: tip and stalk cell. Tip cells migrate towards the tumor to reach the VEGF source and

highly proliferative stalk cells form the new sprouts body.

https://doi.org/10.1371/journal.pcbi.1009081.g001
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Chen [22] presented a continuous model that investigated interstitial fluid flow patterns in the

capillaries and tumor’s surrounding tissue by the solution of Navier–Stokes equations. The

model calculates the interstitial pressure as a barrier to drug transport and also has been devel-

oped to investigate tumors topological changes and its effects on drug delivery [23–25]. How-

ever, continuous models do not provide cells dynamics based on cellular interactions, and

then makes it less suitable to understand the individual cells’ role during tumor growth and

angiogenesis.

More recently, multiscale models investigated the cellular and molecular mechanisms to

reproduce the real biological and physical mechanisms of tumor growth and angiogenesis

[19,26–29]. Owen et al. [30] developed a multiscale model that considers subcellular scales

built on the study of Alarcón et al. [31–33]. They studied the effect of blood flow and vascular

remodeling during angiogenesis and combined tissue scale and the subcellular dynamics of

multiple cell populations. To investigate tumor’s development dynamics, Perfahl et al. [34]

extended the model proposed by Owen et al. [30] into a 3D multiscale model of vascular

tumor growth, including nutrient/growth factor transport and interactions between normal

and tumor cells. The authors predict the patterns of vascular remodeling. Similarly, a hybrid

CA model of tumor growth within a digitized vasculature was addressed by Stephanou et al.

[35,36]. They reported tumor dormancy as a potential consequence of intense vascular

changes in the host tissue. A less efficient vascular network leads to less oxygen delivery to

tumor cells, which changes cell proliferative behavior to the hypoxic state.

Although the discussed hybrid models have a good potential to predict tumor evolution,

all lack description of cell dynamics based on cell mechanical forces. Cellular Potts Models

(CPM) of tumor growth and angiogenesis have been successful in dynamically capturing cell

shape changes, determining the structure of vasculature, and tracking the interactions between

cells and ECM [8,11,26,27,37]. Bauer et al. [26,27] presented a CPM model of sprouting angio-

genesis to investigate extracellular matrix (ECM) structure influence in this context. The

authors studied the phenotype changes of endothelial cells, induced by the signaling pathways,

using a Boolean network model. They demonstrated that sprout migration and structure is

influenced by anisotropies in the stroma that plays a key role in regulating branching and anas-

tomosis. Bazmara et al. [38] used these results and developed a model that can predict the for-

mation of a closed blood flow loop (anastomosis), driven by shear stress activation of ECs cells.

An alternative study by Vega and co-workers presented a model of early stage angiogenesis in

which tip cell selection and vessel branching are determined by Jagged-Notch and Delta-

Notch dynamics [39]. The model was more complete and investigates the branching of blood

vessels, anastomosis and angiogenesis velocity. Shirinifard et al. [8] presented a 3D multi-scale

CPM model which simulates tumor avascular growth and the transition to the vascular phase.

This model takes into account the local oxygen levels and how they determine the cells’ differ-

ent responses.

In this paper, a multiscale model of 2D tumor vascular growth is developed to couple multi-

ple time and length scales. The model considers the mechanical interactions between cancer

cells, healthy tissue, adjacent endothelial cells and the ECM, as a consequence of the relevant

biochemical mechanisms, which makes it a relevant and novel to mathematical model of

tumor growth. Hence, three scale levels: intracellular, cellular, and tissue are taken into consid-

eration. To construct a realistic model, the changes of system behavior are determined by the

cells’ signaling pathways, at the intracellular scale. A Boolean network model is used to express

the relation between input signals and cross talk between receptors. At the cellular scale, the

interaction of different types of cells between themselves and with the micro-environment is

modeled using a cell-based cellular Potts model. In addition, normal cells are considered as the

host tissue. At the tissue scale, the production of a new vascular network around the tumor
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and the dynamics of tissue topology are modeled. Diffusion, uptake, and decay of vessel-

secreted nutrients and the tumor-secreted VEGF are described through a set of partial differ-

ential equations. All the scales involved are integrated simultaneously to study the system

dynamics. The model surveys the external environment role on the state of each cell, which

can be of proliferation, migration, or apoptosis. Response to external cues determines the

tumor growth morphology. The model couples the relevant pathways in each cell and deter-

mines the state of cell by linking it with its environmental cues. Moreover, it helps to investi-

gate cancer treatment strategies and mechanisms of controlling disease’s progression. In

particular, the model permits to explore the consequence of targeted receptor inhibition in

tumor development.

Material and methods

The multiscale model of the current work covers intracellular, cellular, and tissue scales. The

description of each scale is presented in a separate section, as follows.

Signal transduction—Intracellular level

Cancer initiation and development is associated with mutations that lead to activation of pro-

liferative, anti-apoptotic, and migratory signaling pathways. While tumor promotion depends

on the activation of growth factors signals, such as RTKs, the Raf-MEK-ERK mitogen-acti-

vated protein kinase, anti-apoptotic pathways are a feature of tumor cell survival. Activity of

anti-apoptotic pathways relies on decreasing the expression of tumor suppressor genes such as

NF1 and APC [40,41]. When the tumor becomes more aggressive and cancer metastasis

occurs, the main members of Rho GTPase family, the RhoA-related and the Rac1-related sub-

families, are up-regulated [42,43]. Metastases are mainly driven by cell motility that triggers

morphological changes in the tumor by modifications in actin polymerization, which drives

cytoskeleton rearrangements [44]. The full range of events involved in tumor development are

affected by continuous interactions with the extracellular matrix (ECM) components and

alterations in signaling pathways that regulate cell adhesion [45]. Integrins are cell surface

receptors of various ECM proteins involved in cell-adhesion and drive cells binding to the

ECM. The expression of these transmembrane receptors is affected in the metastatic process,

as they regulate various cellular functions and are important determinants of cell viability.

Cell survival in multicellular organisms not only depends on the availability of nutrients in

the surrounding tissue, but also on the continuous interaction with adjoining cells, as cell pro-

liferation is regulated through the contact between cells [46]. The cell–cell adhesion receptor,

E-cadherin, has a crucial role in tumor progression, and its loss of function promotes cancer.

Generally, E-cadherin facilitates the interaction between cells and keeps them together [47–

49]. Indeed, it mediates contact inhibition of cell growth and proliferation. In a healthy tissue,

the adequate level of E-cadherin homophilic binding between cells controls the proliferation

and forms the adherent junctions [50,51]. Therefore, loss of E-cadherin expression leads to

loss of contact inhibition of proliferation and allows cells to grow on top of each other.

Furthermore, cadherin plays an important role in formation of new vessels and expansion

of microvascular networks. The VE-cadherin, a transmembrane receptor specific of endothe-

lial cells, is known as the main adherent junction protein and it is indispensable for angiogene-

sis in response to VEGF stimulation [52]. During sprouting angiogenesis, endothelial cells

move through chemotaxis along the VEGF gradient. Two distinct phenotypes of the endothe-

lial cells develop, namely the tip and the stalk cell phenotypes [53]. Tip cells have a motile

behavior, in comparison with stalk cells, which proliferate behind the tip cell and build the
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lumen. The role of VE-cadherin is clear in the regulation of contact inhibition of stalk cell pro-

liferation, and controls cell-cell adhesion junctions to form new functional vessels [54].

It should be noted that the cadherin-catenin is an important aspect in the regulation of cell

proliferation and invasion during cancer development and progression. E-cadherin receptor is

associated with ß-catenin and binds to the cell’s cytoskeleton that mediates downstream sig-

naling pathways, including the Wnt [55–58]. ß-catenin is the main effector of the Wnt signal-

ing pathway, which is stabilized by activation of Wnt and translocates to the nucleus [59,60].

In addition, apart from Wnt signaling pathway, it has a key role as it mediates the interaction

of cadherin with the actin cytoskeleton. Experimental reports demonstrate that reduction in

cadherin levels enhances nuclear ß-catenin by releasing it at the cell surface, stimulating Wnt

signaling [61]. Indeed, the loss of E-cadherin expression leads to accumulation of membrane-

bound ß-catenin, which means that the ß-catenin signaling through the Wnt pathway is nega-

tively regulated by E-cadherin. Interestingly, re-expression of E-cadherin in cells prevents acti-

vation of downstream signals and acts as a barrier to tumor progression, since it blocks cell

movement.

Considering the main receptors involved in tumor development, the model builds a signal-

ing cascade highlighting the cross-talk between growth factors (RTKs), integrin, cadherin and

Wnt. Multiple observations are integrated in the proposed signaling network, as shown in Fig

2. The activation or inhibition of each effector in the network is considered as Boolean depen-

dent relations. Pointed head arrows designate activation of each effector while blunt head lines

indicate inhibition. The dependence relations are given separately by the corresponding refer-

ences in Table 1.

As the quantitative information on the kinetics of the biochemical reactions of signal trans-

duction pathways is scarce, a Boolean network model is employed to model the signaling

cascade regulation and the relation between input signals and cross talk between effective

receptors. Boolean networks are a helpful tool to model dynamics of gene regulatory networks,

as introduced by Stuart Kauffman [93,94]. Accordingly, Bauer and co-workers [95] con-

structed a Boolean network model of receptor cross-talk involved in angiogenesis to suggest

molecular targets for anti-angiogenic therapies. Boolean network analysis provides the

dynamic behavior of the signaling network in the absence of detailed quantitative information

[96]. Hence, we also employed this approach to study cell fate decision using a MATLAB-

based toolbox. The model enables us to map environmental signals to describe the relation

between the intracellular signaling molecules and cell state. A detailed description of the Bool-

ean network modeling and its application in biological systems is outside the scope of this

paper, but is presented in reference [96].

Cellular potts model—Cellular level

An agent based cellular Potts model is employed to simulate the dynamics of the cellular sys-

tem. The model is a discretized lattice Monte Carlo developed by Glazier and Graner [97] that

employs spatially extended generalized cells. Generalized cells not only can be representative

of single cells and their compartments but can also represent clusters of cells. This flexibility

permits to take into account different levels, from intracellular to tissue scale. The approach

enables us to capture behaviors such as growth, proliferation, migration, and apoptosis of can-

cer cells and to determine ECs reaction to the tumor-induced conditions.

To create the modeling framework, the computational domain is occupied with diverse bio-

logical entities including cancer cells at different sites, ECM, and endothelial cells. In the algo-

rithm, each cell type is identified by a unique number or index, τ, which is assigned to every
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entity occupying a lattice site (0 is assigned to all lattice sites that are filled by ECM). One

unique value, σ = 1,2,. . . represents each cell (which consist of several pixels). The model is

based on energy minimization, and the corresponding energy of each configuration is referred

to as the Hamiltonian value, H. Therefore, the evolution of lattice sites occupation is simulated

using the Metropolis criteria based on the Hamiltonian value variation: when the energy of

system decreases with a pixel change, the model accepts the pixel swap, following the minimi-

zation algorithm; otherwise the update is only accepted with a Boltzmann probability, e� DH=Tm ,

where Tm is a parameter representing the level of cell-membrane fluctuations, describing the

effective cell motility.

Fig 2. Signaling networks considered in the model that are involved in tumor growth; the implemented network focuses on Ras- PI3K-Akt

and Wnt/ß-catenin signaling that control the cancer cell state. Highlighting the relationship between external stimuli, Wnt, RTK, cadherin

and integrin, the cell can be growing, proliferating, migrating or undergoing apoptosis. A pointed head arrow indicates activation whereas a

blunt head refers to inhibition.

https://doi.org/10.1371/journal.pcbi.1009081.g002
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The Hamiltonian that controls cellular dynamics is the sum of four terms that describe cell-

cell adhesion, cell growth, chemotaxis and guarantee cell continuity.

One of the key biological and physical properties of cells is the contribution of cell adhesion

at the cell membrane. The adhesion energy is an important property that is required for tissue

integrity and cell motility and establishes the interaction between adjacent cells as well as

between cells and the ECM. It is also required for tissue integrity and cell motility. Since this

energy is a cell type dependent energy, it is based on the coupling strength between the entities

Table 1. Boolean dependence relations between molecules of the signaling cascades presented in Fig 2, and the

corresponding references.

Node Dependence Relation Reference

Integrin External signal (Integrin binding) [45]

RTK External signal (VEGF binding) [26,27]

E-Cadherin External signal (cadherin binding) [47–49]

Wnt External signal (Frizzled receptor) [55–58]

ß-Catenin Wnt Or Akt And Not cadherin AND Not APC [59,60]

APC External signal [40]

Grb-2/Sos RTK And Scr [62]

Src FAK [63,64]

FAK ITG [64]

Rho-A FAK [64]

ROCK Rho-A [65,66]

Rac-1 PI3K And Not Rho-A [42,43]

Ras Grb-2/Sos And Not NF1 [62,67,68]

NF1 External signal [41]

Raf-1 Ras [69–71]

MEK1/2 Raf-1 Or Rac-1 [69,72]

ERK1/2 MEK1/2 [69,72]

RSK ERK 1/2 [73,74]

TSC Not RSK Or Not Akt [74,75]

mTORC Not TSC [76]

MNK ERK 1/2 [77]

eIF4E MNK [78]

MSK ERK 1/2 [79]

Fos MSK And RSK [80,81]

Myc ERK 1/2 Or ß-Catenin [82,83]

PI3K Ras [69]

Akt PI3K [84,85]

eNOS Akt [86]

NO eNOS [87]

Caspase Not NO [85]

Mdm2 Akt [88]

p53 Not Mdm2 [89]

Actin ROCK Or Rac-1 [43]

SNAIL ß-Catenin [90]

Cell growth eIF4E Or mTORC [76,78]

Cell Proliferation Fos And Myc [69,73,91]

Cell Apoptosis Caspase Or p53 [88,92]

Cell Migration Actin And SNAIL [43,90]

https://doi.org/10.1371/journal.pcbi.1009081.t001
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of types τ and τ’, Jτ,τ’, as follows:

Eadhesion ¼
X

site
Jt;t0 ð1 � ds;s0 Þ ð1Þ

where the sum is run over all the neighboring pixels, σ, σ’ the cells’ ID, and δ is the Kronecker

symbol.

The second key property considers the required energy to maintain cell size and describe

cell growth during a cell cycle. During the cell cycle the cells double their size before undergo-

ing cell division. After mitosis, the daughter cells inherit the same phenotype, and one of the

resulting daughter cells keeps the parent cell ID and the other daughter cell gets a new unique

ID. The following equation describes the term in the Hamiltonian responsible for setting the

target cell size:

Egrowth ¼
X

cell
geðas � AT

s
Þ

2
ð2Þ

Thus, aσ denotes the current area of cells and AT
s

is the target area (double of the quiescent

area for proliferating cells) and γe is the cell elasticity.

Since cells are continuous structures, with all the pixels in contact, it is necessary to keep

the continuity of lattice sites that are occupied by a single cell. To preserve the connectivity of

pixels of each individual cell, a special term is considered in the Hamiltonian. This term is a

constraint that once the cell is to rupture, the total energy of system is drastically increased,

Econtinuity ¼
X

cell
að1 � das ;a0s

Þ ð3Þ

where aσ is the current cell size and a0
s

is the number of continuous lattice sites that are occu-

pied by the cell with unique identification σ. With a difference between aσ and a0
s
, α boosts the

system energy by a large value.

Chemotaxis of tumor cells in their surrounding environment is a key component of cancer

progression and metastasis. Recent research in the study of tumor cells chemotaxis have

reported different modes of cell migration (see review [98]). Migration of tumor cells towards

blood vessels is a commonly observed phenomenon; hence, assuming nutrients and oxygen

diffused from vessels as a chemoattractant, tumor cells with migration phenotype move by

chemotaxis toward the vessels. The following is the energy that is involved in chemotaxis of

migrating cells, proportional to the nutrients concentration (n) gradient:

Echemotaxis ¼
X

cell
wsDn ð4Þ

Moreover, in what concerns sprouting angiogenesis, migration of endothelial cells is the

most important event. VEGF is the main regulator of vascular network development, known

as a chemoattractant agent for ECs. The gradients of VEGF concentration induce the ECs to

move towards higher concentration (V) values,

Echemotaxis ¼
X

cell
wsDV ð5Þ

where χσ is a parameter standing for chemotaxis intensity.

Haptotaxis, the directed motion of cells according with the concentration gradient of a mol-

ecule linked to the ECM, is essentially modeled through the adhesion energy between adjacent

cells and the surrounding microenvironment [26].
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Therefore, in order to model the interactions of tumor cells in the ECM, the Hamiltonian is

the contribution of the energy terms for adhesion, area, continuity and chemotaxis, as follow:

H ¼ Eadhesion þ Egrowth þ Econtinuity þ Echemotaxis

¼
X

site
Jt;t0 ð1 � ds;s0 Þ þ

X

cell
geðas � AT

s
Þ

2
þ
X

cell
að1 � das;a0s

Þ þ
X

cell
wsDc ð6Þ

where the chemoattractant c is the nutrient concentration n for the tumor cells and the VEGF

concentration V for the activated endothelial cells.

Reaction- diffusion equations—Extracellular scale

During tumor growth, cells that undergo oxygen deprivation (hypoxia), release angiogenic fac-

tors, such as VEGF, to access nutrients by stimulating the growth of new capillaries [99]. To

model this process, a diffusion-reaction equation is employed to describe the diffusion of

nutrients from vessels into the microenvironment, as follows,

@n
@t
¼ Dnr

2n � B x; y; nð Þ þ Sn ð7Þ

where n is nutrient concentration, Dn is the diffusion coefficient of n and Sn is the term for

release of nutrients from vessels. B is a function that refers to the uptake of nutrients by cancer

cells, as described below:

Bðx; y; nÞ ¼

n if 0 � n � b and fðx; yÞ � Cancer cellg

b if n > b and fðx; yÞ � Cancer cellg

0 if fðx; yÞ �= Cancer cellg

8
><

>:

β is the maximum amount of nutrients that a cancer cell can consume. The value of β is differ-

ent for each tumor cell phenotype. It should be noted that the normal healthy cells also con-

sume nutrients, but with a different rate of uptake. Moreover, the release rate of nutrients is

only different from zero for the endothelial cells, i.e.:

Snðx; yÞ ¼

sn if fðx; yÞ � Endothelial cellg

0 if fðx; yÞ �= Endothelial cellg

8
><

>:

The simulation starts with four tumor cells at the center of computational domain. The

concentration of nutrients inside the domain is sufficient, and their diffusion from vessels pro-

vide essential nourishment to keep the signaling from RTK receptors active. So, initial and

boundary conditions are imposed as: n(x, y, t)|(x,y)2ECs = Sn, n(x, y, 0) = S0 = 4.6 pg/voxel, with

periodic boundary conditions.

The secretion of VEGF generates a concentration gradient between the tumor and the

nearby vascular network and, consequently, activates the endothelial cells. VEGF distribution

is described, in a similar way, by a partial differential equation (PDE). Considering diffusion,

decay, and uptake of the VEGF, the final equation is:

@V
@t
¼ DVr

2V � kV � E x; y; nð Þ þ SV
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Eðx; y;VÞ ¼

V if 0 � V � e and fðx; yÞ � Endothelial cellg

e if V > e and fðx; yÞ � Endothelial cellg

0 if fðx; yÞ �= Endothelial cellg

8
><

>:

SVðx; yÞ ¼

sV if fðx; yÞ � Hypoxic cancer cellg

0 if fðx; yÞ �= Hypoxic cancer cellg

8
><

>:
ð8Þ

where k is the of decay rate of VEGF (V), DV is the diffusion constant, SV is the secretion rate

of VEGF, whereas function E denotes the uptake of VEGF by ECs, with the maximum amount

of e. Due to the limitation in access to the nutrients, the hypoxic cells inside the tumor up-reg-

ulate pro-angiogenic signals, including VEGF. Hence, in the initial conditions of the simula-

tion, there is no VEGF in the domain until the hypoxic core of the tumor is formed and

signaling from growth factors are activated, which means V (x, y, 0) = 0. The hypoxic tumor

cells start to release VEGF field with a rate of sV, taken from experimental data, and then it is

available within the tumor core.

Boolean network model and signaling cascade incorporation

To understand the details of cells response to the signals received from their external environ-

ment, we used a Boolean model framework to describe the tumor growth process and thera-

peutic approaches. The model focuses on pivotal pathways involved in tumor development, by

investigating the cross-talk between receptor tyrosine kinases (RTKs) and the growth factors

involved, cell-cell and cell-matrix communication controlled by integrin and cadherin, and

the key cascade regulating cancer development, the Wnt signaling pathway. It infers the cell

phenotype, whether it is growing, migrating, or undergoes apoptosis once signals are activated,

by coupling the intracellular with the cellular level of our multiscale technique.

In the current Boolean network model, a n binary state exists for n variables, {x1. x2. � � �. xn},

which can take the values 1 and 0 indicating “on-off” regulatory switches. Considering xi as

the state of a particular node, it can be regulated by k other input elements, with 0� k� n,

whereby xi can regulate j other output elements, with 0� j� n. All network elements are con-

nected to each other by a set of Boolean regulation functions, F = {f1. f2. � � �. fn}, represented by

a look-up table. Once inputs variables have been assigned, the state of the node network ele-

ments are updated according to their corresponding Boolean functions: xi(t + 1) = fi(xi1(t),
xi2(t), . . ., xik(t)). Finally, an input/output table is derived, which predicts role of the external

cues in cell phenotype determination (Fig 3).

Incorporating intracellular regulation to the model is an important step toward modeling a

biological system in a realistic way, and provides the possibility to investigate how the external

environment controls the cells behavior, and how it directs tumor progression. Thereby, our

multi-scale model integrates the extracellular level in which partial differential equations

describe VEGF and nutrients dynamics, while the cell-based stochastic model represents the

cell dynamics. This depends on the Boolean network model that depicts the involvement of

the signaling transduction pathways.

Eliminating the common prescribed rules, the cellular phenotype predicted by the intracel-

lular analysis is introduced into the model and the cellular behavior is based on the microenvi-

ronment conditions. Hence, each cell gathers information on the nutrients and VEGF

concentration, and explores the connection with the adjacent cells and matrix fibers and
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molecules, at each time step. Then, these environmental cues are applied via the signal trans-

duction network and interpreted by the cell, and finally determine the cell phenotype, accord-

ing to the table in Fig 3.

To measure the signal strength from RTK receptors, the available experimental data is used,

based on the quantity of VEGF that an EC can bind to get activated, and the critical nutrients

concentration limit for surviving hypoxic conditions. However, there is a lack of experimental

data on the strength of integrin, cadherin and Wnt receptors, since their activity is strongly

dependent on the dynamics of cell’s environment. To apply the signaling from these receptors,

we estimate their strength by assessing the cell-ECM and cell-cell contact, normalized by the

cell’s size. Any differences in signal strength are interpreted by the cells and influence their

state. After the determination of each cell phenotype, cells phenotype is assigned and intro-

duced in the cellular model. Parameter calibration is done through a sensitivity analysis. Then

the system behavior evolves through Monte Carlo steps and toward energy minimization.

The new cells’ states, and nutrients and VEGF concentrations are inputs for the next iteration

(time step).

Simulation algorithm

The model couples multiple time scales by connecting each level and considering the feedback

of a specific level on the next one. After receiving signals from the extracellular environment,

the cell’s phenotype is determined at the intracellular level by the activated signaling pathways.

The possible tumor cell phenotypes are growth, proliferation, migration, quiescence and apo-

ptosis. The simulation of tumor evolution then moves to the cellular level whereby the cell

state is used to track the changes from the system energy variation (through Eq 6). The pre-

dicted cell phenotype at the intracellular scale is implemented via the Eq 6, in which parame-

ters are different for each phenotype. When the signaling is processed and applied at the

cellular level, the new topology of tumor, and distribution of nutrients and VEGF are deter-

mined and implemented as inputs to the next iteration. This is repeated and the constantly

changing environment controls the biological responses of cells and leads to the tumor devel-

opment simulated with the Metropolis criteria.

It should be noticed that the process is repeated for each pixel, randomly chosen, in the cell

lattice at each Monte-Carlo step (MCS). Since MCS and experimental biological scale of time

Fig 3. Boolean model prediction of cell phenotype (state) for various input configurations. Colors correspond to the color of the nodes in Fig 2,

indicating activity of the receptors’ signal (i.e. integrin, RTK, Wnt) and inactivation of receptor is shown in grey. Tumor suppressors are deactivated.

For instance, if the cell receives a signal from integrin and RTK, and no signal from Wnt (110), considering cadherin activation, the model predicts

that the cell starts to grow and proliferate (1100). The binary code on the first row specify the integrin, RTK and Wnt states, respectively.

https://doi.org/10.1371/journal.pcbi.1009081.g003
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are related, in the current model it is assumed that 1 MCS represents one real time minute

based on the fastest cell cycle time for cell division ~24h [26,38].

Implementation parameters

Our model is developed through the open-source CompuCell3D simulation environment

(http://www.compucell3d.org/). The size of the modeled lattice is 300 × 300 × 1, equivalent to

1.44mm2, and the average size of a tumor cell is approximately 500μm2. Periodic boundary

conditions are considered for the lattice domain.

The simulation starts with 4 proliferating tumor cells and different tissue structures around

them. We assume that nutrients, particularly oxygen, are diffused from the pre-existing and

tumor induced vascularization, and its diffusion constant is approximately half of the diffusion

constant of oxygen in the water.

It is assumed that if the available nutrient concentration within the cancer cells is below a

specified threshold, it activates the signaling PI3K-Akt pathway recruited by RTK. According

to the results of our Boolean model, inactivation of RTK receptor signaling, leads to cell apo-

ptosis. Hence, cells undergo apoptosis below the corresponding threshold that is defined from

the rate of nutrients consumption normalized by the cell target area. To consider the activation

of signaling from integrin, E-cadherin and Wnt, the thresholds for the turn-on of each recep-

tor, are defined from the connection of cells with their neighbor cells and ECM to track the

effective motility, contact inhibited growth and, finally, tumor morphological changes. Simi-

larly, a threshold is defined for the concentration of VEGF to activate the ECs and make them

respond to the angiogenic factors secreted by the hypoxic tumor cells. Above the threshold

level, ECs become activated and angiogenesis begins.

We assume that the normal healthy cells are on a homeostatic situation in the absence of

tumor and have adequate nutrients availability. Due to high oxygen consumption by viable

(non-necrotic) tumor cells in comparison with the healthy surrounding tissue cells [100], the

rate of oxygen uptake by tumor cells is considered 3 times the consumption rate for normal

cells. Viable tumor cells can be in one of three different states: quiescent, proliferating and

migrating. To set the rate of oxygen consumption per unit cell for these cell states, we used the

experimental data reported by Freyer [101]. All parameters and properties of the fields are

given in Table 2.

Results and discussion

Cell phenotype change. The determination of cell phenotype in response to the various

external stimuli is classified in an input-output table. This map determines the cellular pheno-

type through the possible input combinations in the signaling network (Fig 3). In this table the

states 1 and 0 correspond to on and off switches for activation of each component.

The arrangement of the inputs is divided in three parts, in which the activity of the recep-

tors integrin, RTK and Wnt, is set across the top of the table and the signal from cadherin is

monitored exclusively, because of its key role in controlling cell-cell communication and asso-

ciation to cancer invasion. Normally, tumor-suppressors have a key role in cell cycle progres-

sion and are involved in cells’ apoptosis. However, loss of function of these proteins would

result in increased cell proliferation and consequently to cancer. As the purpose of this study is

to explore tumor evolution, it is assumed that there is a deficiency of tumor suppressors, APC

and NF1, which means they have no role in promoting apoptosis. Finally, each condition leads

to a distinct cellular response, these being “cell growth, proliferation and migration”, “cell apo-

ptosis” and “cell growth and proliferation” (Fig 3). For instance, if the cell receives a signal
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from integrin and RTK, and no signal from Wnt (110), considering cadherin activation, the

model predicts that the cell starts to grow and proliferate (1100).

Consistent with several experimental observations, disruption in the activity of either RTK

or integrin receptors lead to cell apoptosis, independent from cadherin activity [107–110].

Interestingly, cadherin signaling regulates contact inhibition, that controls cell motility, reveal-

ing its role in cell–cell communication. Moreover, results show that in absence of Wnt signal-

ing, cadherin may block cell migration (case 110). Importantly, tumor cells are able to reach

the quiescent state when they become oxygen starved and hypoxic. Cells in a quiescent state

stop growing and proliferating.

Incorporating these results in our multiscale model of tumor development, it takes into

account the microenvironment regulation of cell function and thus the model represents a sys-

tem that describes the biology-based tumor behavior. Including important signaling pathways

also helps to explore therapeutic strategies by capturing inhibitor targets that control cell

Table 2. Parameters used in the model and corresponding references.

Parameter Symbol Value Ref.

Nutrients Diffusion Equation Parameters

Nutrient diffusion constant Dn 103 μm2/s [12]

Nutrient Source Sn 8.83×10−16 mol/cell/s � [8]

Nutrient consumption of proliferating and migrating cells βP 5.17×10−17 mol/cell/s � [101]

Nutrient consumption of quiescent cells βQ 2.41×10−17 mol/cell/s � [101]

Nutrient consumption of necrotic cells βN 0.00 mol/cell/s

RTK Signal Threshold TRTK 4.48×10−3 pg/pixel [102]

Integrin Signal Threshold TITG 0.3 Estimated

Cadherin Threshold Tcadherin 0.3 Estimated

Wnt Threshold TWnt 0.15 Estimated

VEGF Diffusion Equation Parameters

VEGF Diffusion constant DV 10 μm2/s [103]

VEGF decay k 0.9375 h−1 [103]

VEGF uptake e 0.001 pg/cell/s � [104]

VEGF Source sV 0.035 pg/pixel [105]

Activation threshold TV 0.00095 pg/pixel [26]

Cellular Potts Model Parameters

Migrating cells elasticity γeM 8 Estimated

Proliferating cells elasticity γeP 8 [106]

Quiescent cells elasticity γeQ 8 Estimated

EC membrane elasticity γeEC 8 Estimated

Intracellular Continuity α 300 [26]

Boltzmann Temperature Tm 10 Estimated

Cell-Cell adhesion Matrix

J ¼

JEC� EC JM� EC JP� EC JQ� EC JN� EC Jm� EC
JEC� M JM� M JP� M JQ� M JN� M Jm� M
JEC� P JM� P JP� P JQ� P JN� P Jm� P
JEC� Q JM� Q JP� Q JQ� Q JN� Q Jm� Q
JEC� N JM� N JP� N JQ� N JN� N Jm� N
JEC� m JM� m JP� m JQ� m JN� m Jm� m

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

¼

5 30 30 30 30 12

30 8 8 8 10 12

30 8 8 8 10 12

30 8 8 8 10 12

30 10 10 10 8 10

12 12 12 12 10 66

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

�Each tumor cell has an initial volume of about 32 voxels, with an equivalent value used in our calculations.

https://doi.org/10.1371/journal.pcbi.1009081.t002
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proliferation and induce cell apoptosis. We will investigate how disruption in receptors activity

leads to tumor shrinking and promotes the suppression of tumor growth. More details on the

model validation are presented in the following section.

Validation of Boolean model of intracellular signaling pathways—The

robustness of signal transduction

To ensure whether the information of the proposed input/output map is predicting unique

points and external inputs singly determine the foresee phenotypes, we simulated all possible

229 initial combinations of internal node states. In all cases, the network dynamics converge to

the same attractors shown in Fig 3, and prove the strong robustness of the corresponding sig-

nal transduction against fluctuations. Back to the phenotype map, the presence of both integ-

rin and RTK signals is essential for cell survival, specifying the pivotal role played by crosstalk

between these receptors. Our results indicate that if either receptor activity is disrupted, apo-

ptosis is induced, and several experimental observations confirm this result [107–112]. More-

over, the simulated network exhibits cell apoptosis when the signaling pathways Ras/Raf/

MEK/ERK and PI3K/PTEN/Akt/mTOR, are inhibited, which is confirmed by [69,113]. We

used this result in targeted therapy.

To validate our multiscale model, experimental data from an in vivo model is used as a

recognized benchmark, in which vascular events after corneal implantation of a rabbit

tumor were followed [114,115]. According to the reported results, the initial growth pattern

is linear and sprouts extend at a rate of approximately *0.50 mm/day, with a measurement

uncertainty of 0.1mm/day, which corresponds to an extension velocity of 21 ± 4 μm/h. Then

the sprout progression proceeded at reduced average speeds, between 0.25−0.50 mm/day

[114]. A quantitative comparison of extension speeds between our simulation results and

experimental data shows a good agreement (Table 3). Estimated vascular extension speeds

are an average of 5 independent simulations, with the same parameter set, recording the

total sprout displacement with time. We also compared our results with the more recent

experimental measurements by Kearney et al. [116]. They analyzed the dynamics of vascular

sprout formation from embryonic stem cells and reported an average extension speed of

new sprouts of 14 μm/h, in a period of 10 hours. The corresponding average velocity in our

model is estimated at *13 μm/h.

Fig 4 shows the simulated average sprout extension velocity as a function of time, in com-

parison with the results presented by Bauer et al. [26], extracted from the experimental reports.

According to them, linear vessels growth within the first two hours proceeded at a higher aver-

age velocity (*25 μm/h) and as the sprout develops and new proliferating ECs form the vessel

structure, the cellular adhesion to the ECM and the cell-cell adhesion decrease the extension

speed.

Numerical results are obtained for two cases, namely with and without introducing the

intracellular signal transduction pathways. The role of signaling pathways in determining the

cell-cell and cell-ECM adhesion is clearly evident when the intracellular signaling in sprout

Table 3. Quantitative comparison of simulated average sprout velocity with various experimental observations.

Average Sprout Velocity (μm/h) Experimental Reports [114] Simulation Results (In Average)

Initial In progress Initial In progress

21 ± 4 10± 4 25±3.7 11±1.2

Experimental Reports [116] (Averaged in 10h) Simulation Results (Averaged in 10h)

14 13±1.6

https://doi.org/10.1371/journal.pcbi.1009081.t003
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development is not considered. The accurate prediction by our model relies on the intracellu-

lar scale, which is based on the Boolean network approach. The comparison between the

results of the model with and without the intracellular processes not only shows the impor-

tance of the signal transduction pathways contribution to modeling cellular regulation, but

also justifies that the Boolean network model is able to capture the essential features of biologi-

cal processes in angiogenesis and tumor growth.

The classic Michaelis-Menten model for the cells’ oxygen consumption rate seems to be a

more realistic description of nutrients use [117–119]. So, in order to check if there is any

inconsistency with the current approach, we compared our results with the numerical simula-

tions of tumor growth presented by Taghibakhshi et. al [119], in which the oxygen consump-

tion is approximated by Michaelis-Menten kinetics, as follow:

RP ¼
Vmaxn
K þ n

ð9Þ

RQ ¼
1

2

Vmaxn
K þ n

ð10Þ

Where n represents nutrients concentration, Vmax is the maximum consumption rate of nutri-

ents and K corresponds to the Michaelis constant. The authors developed the model by using a

value of 0.8mM for the oxygen concentration in the culture medium. As a comparison with

the present study, the oxygen consumption rates corresponding to the Michaelis-Menten

parameters are summarized in Table 4.

Nutrient consumption of cells in the current study is in good agreement with the consump-

tion rates of the Michaelis-Menten model. Here, we used the experimental data reported by

Freyer [101] to model the consumption of cells according to their state. To confirm that the

current study is compatible with the Michaelis-Menten reaction model, we compared our

results on the evolution of the tumor radius with time, with those of the Taghibakhshi et. al

[119] model (Fig 5).

Fig 4. The average sprout extension velocity calculated from 5 independent simulations with and without

including the intracellular signal transduction pathways, in comparison with experimental measurements

extracted from Bauer et al. [26]. (Model validation; the error bars are the standard deviation on the mean of n = 5

simulation runs).

https://doi.org/10.1371/journal.pcbi.1009081.g004
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Results show that there is a good agreement between both models of tumor growth simula-

tion. Deviations originate from the different hypotheses that each model considered and

implemented. The purpose of our research is to simulate the process of tumor development in

a biologically realistic manner, taking into consideration a variety of events, including hyper

and hypoactivation of signaling pathways and competition of cancer cells with the host envi-

ronment. Nevertheless, the general behavior of tumor during its growth is fully compatible

with the model in [119], which indicates that the simplification in the nutrients consumption

term has no influential consequences.

Tumor vascular growth

Simulations were run with two distinct conditions to study the process of tumor progression:

tumor evolution with and without normal healthy cells.

Fig 6 shows the first steps of tumor development in presence of a vascular network without

taking into account the presence of normal tissue cells. Initially, the tumor consists of four

cancerous cells that have a proliferating behavior and that are able to migrate. The tumor is

constantly growing for the first 5 days, while the signaling pathways, which lead to growth,

proliferation and migration of cells, are activated (Fig 6A–6C). At this stage, the avascular

tumor obtains nutrients by diffusion from existing blood vessels.

Table 4. Parameters used in the models and corresponding references.

Parameters Values Descriptions

Vmax 2.74 × 10−2 mol/m3/s Maximum reaction rate [119]

K 4.64 × 10−3 mol/m3 Michaelis constant [119]

RP 0.0272 mol/m3/s The Michaelis–Menten nutrient consumption of proliferating cells [119]

RQ 0.0136 mol/m3/s Michaelis–Menten nutrient consumption of quiescent cells [119]

βP 0.0252 mol/m3/s Nutrient consumption of proliferating and migrating cells in Current study

[101]

βQ 0.0126 mol/m3/s Nutrient consumption of quiescent cells in Current study [101]

https://doi.org/10.1371/journal.pcbi.1009081.t004

Fig 5. Tumor radius changes over time. A comparison between numerical results from the Taghibakhshi et al. [119]

model, based on Michaelis-Menten reaction of oxygen consumption, and the current study. Initial radius of the tumor

is 24.3 μm. Error bars represent standard deviations of the mean of 5 simulations.

https://doi.org/10.1371/journal.pcbi.1009081.g005
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As the tumor grows and increases in size, the need for nutrients increases. As a result, cells

in the core of the tumor undergo nutrient deprivation. Simultaneously, growth factor signals

are not active and cells lose the ability to uptake nutrients from the extracellular environment

which ultimately leads to programmed cell death [120]. Furthermore, as the oxygen in the

tumor center falls below the level needed for viability, cells become hypoxic (Fig 6D–6F). Hyp-

oxic cells are in a quiescence state in which the cells stop growing (even though they can re-

enter cell proliferation under more favorable circumstances). Once the tumor reaches a diame-

ter of about 200 μm, quiescent cells form a hypoxic core (Fig 6D). As the tumor continues to

grow, oxygen and glucose depletion affects more cells, resulting in the quiescent cells becom-

ing necrotic (Fig 6F). At this stage, which is known as avascular growth, tumors are likely to be

benign and do not invade the tissue or spread through the vessels. Since tumors need to access

a supply of nutrients that ensure their growth and progress, nutrient deprived cells at the

tumor core start secreting VEGF to stimulate the formation of new blood vessels (Fig 7).

When VEGF reaches a nearby existing vessel, activates the endothelial cells via VEGFR1 and

VEGFR2 receptors. Activated cells have the capacity to proliferate and move toward the tumor

by chemotaxis (Fig 7B).

Fig 6. First steps of tumor avascular development in the presence of a vascular network: (A) Initial tumor with proliferating and migrating cells

and a diameter of 51 μm on day 1. (B) The growing tumor reaches a diameter of 100 μm on day 2. (C) The tumor continues to grow up to a

diameter of about 142μm on day 3. (D) Cells in the core of the tumor with a diameter of about 200 μm suffer from hypoxia and change their

phenotype to quiescent (hypoxic cells are in purple). (E) As the tumor grows, lack of oxygen increases leading to expansion of the hypoxic core.

(F) Shortage of oxygen and nutrients in the hypoxic region leads to necrosis after 20 hours on day 5 (necrotic cells are in blue).

https://doi.org/10.1371/journal.pcbi.1009081.g006
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VE-cadherin is the main adherent junction molecule that regulates vessel formation by con-

trolling the stability of cell membrane. It induces contact inhibition of cell’s growth by inhibit-

ing cell’s chemotaxis response to the VEGF and blocking the proliferative response of cells

[54]. Accordingly, we model the contact inhibited growth of activated cells in which, as the

cell-cell adhesion junctions are increased, the cells’ growth is blocked. Therefore, it manages

the coherent formation of new capillaries and prevents the growth of vessel diameter but not

its length. VEGF mediates the activation of ECs when it reaches the existing vessels. As a result,

ECs migrate into the extracellular matrix to reach the tumor and the new capillaries grow

around the lesion. Hence, new activated endothelial cells (in green) form an orderly peripheral

blood vessel around the tumor on day 12. Fig 8 shows the tumor induced vasculature. During

this process, the tumor accesses the required oxygen and nutrients supply from adjacency to

the new blood vessels.

In the first 4 days and before the emergence of the nutrient-deprived condition, results

show an exponential growth of tumor (Fig 9). As the hypoxic domain expands, the tumor

growth slows down, while simultaneously the new vessels extend and surround the tumor (on

days 4–12). As depicted in Fig 9, in contrast with the avascular tumor growth, once the sprout

forms a closed loop (anastomosis, at around day 12), the rate of increase of proliferating cancer

cells becomes significantly higher than without angiogenesis.

Fig 10 shows the comparison between the number of viable cancer cells during the process

of vascular and avascular growth. The expansion of cancer cells, starting from four cells,

increases gradually before the angiogenesis. Vessels surrounding the tumor on day 12 lead to

dramatic changes in the number of cells and make the tumor evolution more complex. The

new disorganized vascular network supports the survival of tumor cells and improves the

delivery of oxygen and nutrients. Having access to the parent vasculature can facilitate tumor

cells metastasis and, since these new vessels commonly have high permeability, it increases the

tumor metastatic potential [23].

Fig 7. (A) Concentration of VEGF production rate per unit time (in pg/cell/s) from the tumor hypoxic core inducing the ECs’ activation. (B)

Activated ECs (in green) move through chemotaxis up the gradients of VEGF.

https://doi.org/10.1371/journal.pcbi.1009081.g007
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Tumor growth in presence of normal healthy cells

In contrast to normal cells and benign tumors, malignant tumors have poorly differentiated

cells that can spread and invade the surrounding normal tissue. In order to supply the energy

required for promotion of proliferation, survival and maintenance, tumors tend to use enor-

mous amounts of glucose, even in the presence of oxygen. In fact, tumor cells use aerobic gly-

colysis, leading to what is known as the Warburg effect with the consequence of a decrease of

glucose levels in the tissue and an increase in local acidity [121]. In hypoxic conditions, the

activated HIF1α protein in cancer cells increases the rate of glycolysis and promotes the

Fig 8. (A) Concentration of VEGF (in pg/cell/s) released from the tumor hypoxic core inducing the activation of ECs on day 12. (B) Activated ECs (in

green) move through chemotaxis up the gradients of VEGF.

https://doi.org/10.1371/journal.pcbi.1009081.g008

Fig 9. Tumor area growth rate with and without angiogenesis.

https://doi.org/10.1371/journal.pcbi.1009081.g009
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Warburg effect [122]. While hypoxia typically leads to cell death in normal cells, there is a con-

siderably lower oxygen concentration threshold in tumor cells for which they remain viable

[123]. Finally, tumors try to overcome the restrictions of nutrients availability by releasing

growth factors, such as VEGF, to develop new vascularization. Furthermore, low expression of

cell adhesion molecules such as E-cadherin, influences the tumor cell-cell and cell-matrix

interactions. However, normal cells are firmly attached to the ECM and/or adjacent cells.

Tumor cells are less adhesive in comparison with normal cells, and that makes them compara-

tively unrestrained. This is why malignant cells are capable of invading normal tissue to access

nutrients. Considering the mentioned properties, the simulation of the tumor behavior in

vicinity of normal healthy cells is presented in the following section.

Tumor avascular growth

Fig 11 compares tumor growth with and without normal cells before the development of new

vascularization. It is observed the competition between normal cells and cancer cells to access

nutrients and to have enough space to grow. In the simulation with normal cells is observed

the formation of a hypoxic tumor core over a relatively short period of time, (~day 4). In

Fig 10. Number of viable tumor cells (non-necrotic) with time. There is an increase in the growth rate of

proliferating cancer cells on day 12, when vessels surround the tumor.

https://doi.org/10.1371/journal.pcbi.1009081.g010

Fig 11. Comparison of the number of cancer cells in two different scenarios of tumor avascular growth. Bars

indicate difference between maximum and minimum number of viable cells during a day. Results are the mean values

extracted from four independent runs.

https://doi.org/10.1371/journal.pcbi.1009081.g011
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contrast, in the condition with no surrounding normal healthy cells, the tumor keeps growing

fast until day 9. Importantly, due to the limitation of nutrients’ diffusion in the tissue, the

tumor size cannot increase indefinitely.

Tumor vascular growth

In the tumor evolution with angiogenesis, the results are affected by the following two factors:

1. Space. Tumor cells compete both with each other and with the host normal cells for nutri-

ents, but it is not the only relevant process that occurs. Tumor cells need to have enough

room to proliferate and this is the cause of space competition between tumor and normal

host tissue (Fig 12). When there is no space, the proliferation of cells in the tumor inner-

most areas is greatly inhibited [124]. As the growing malignant tumor invades the

surrounding normal tissue, searching for space at its interface with the host cells, the host

tissue mechanical resistance restrains the tumor growth dynamics. According to the simu-

lations shown in Fig 12, as normal cells die, tumor cells expand into the vacant space. Cells

in blue color are normal cells, which, over time, are disappearing from the tumor domain.

Red cells represent endothelial cells that set up the preexisting vasculature, which can be

distinguished in two types of inactive ECs. Both types behave in an identical way until the

signaling from the RTKs activate them. The activated ECs can proliferate and move toward

the tumor by chemotaxis. After mitosis of active ECs, the offspring cells are active ECs that

inherit the type and target volume of the parent cell. These are shown in green. New active

ECs can proliferate while the growth factors concentration exceeds the activation threshold,

and the signaling transduction, via integrin and VE-cadherin receptors, regulates the

migration and proliferation of cells.

2. Intratumoral Vascularization. Interestingly, comparing the results of tumor growth in

proximity of normal cells with the case in which normal host tissue is not taken into

account, a dense intratumoral vascular network is formed throughout the entire lesion,

including tumor mass and surrounding normal cells, as depicted in Fig 12. The model pre-

dicts a malignant tumor growth, that contains migrating cells that can proliferate, inter-

spersed with a high degree of neovascularization.

Accordingly, normal tissue cells at the tumor vicinity are continually exposed to hypoxic

conditions, but are less tolerant to hypoxia, which ultimately lead to cell’s death. This not only

Fig 12. Tumor vascular growth in presence of normal healthy tissue: (A) Tumor on day 5, (B) Tumor on day 7, (C) Tumor on day 8.

https://doi.org/10.1371/journal.pcbi.1009081.g012
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leaves more oxygen to the tumor cells, but also frees up space that is readily occupied by new

cancer cells. However, tumor high VEGF production promotes the growth of a dense vascula-

ture, which supplies nutrients and increases the survival of both growing tumor cells and nor-

mal cells. It leads to a decreasing of cells’ death rate. Intriguingly, these results show that,

contrary to the avascular phase of tumor growth, in the condition considering the presence of

normal tissue, the daily increase in the number of cells is considerably higher than in the

absence of normal cells (Fig 13). Hence, the tumor is able to reach the size of ~300μm in diam-

eter (~620 cells) on day 11, which means the rate of proliferation is higher than when no nor-

mal tissue is considered.

It should be noticed that the intratumoral vascularization density (IVD) is investigated as a

parameter of malignancy, which is related to aggressive tumor behavior [125–127]. Presence

of arterioles both at the border of the lesion and through the core of the tumor has been

reported in several experimental studies [128–131]. Fig 14 compares the model result with a

tumor microvasculature image, acquired through high-frequency ultrasound microvessel

imaging by Huang et al., which was applied to a chicken embryo tumor model of renal cell car-

cinoma [128].

When tumor cells gain access to the vessels, they are capable of vascular invasion and to

metastasize. The greater the number of tumor induced vessels, the higher the opportunity for

cells to enter the blood circulation. This feature is a measure of prognostic in many types of

cancers [132]. Hence, to quantify angiogenesis, intratumoral vascularization density is defined

as the area of the vessel divided by the total area of the tumor. Fig 15 presents different degrees

of vascularization densities in comparison with the reported experimental data in [128]. The

results of the model used in this study are in good agreement with IVD experimental measure-

ments. The results correlate a high degree of intratumoral vascularization with a high grade of

malignancy, which is confirmed by fluorescent histology in reported data [128].

Sensitivity analysis

To determine the sensitivity of our findings to the parameters values used, each parameter

value is varied, within reasonable ranges, and the changes on the results tracked. Considering

various values for the adhesion energy between cells, i.e. J, tests were run to study the differ-

ences in the process dynamics due to interactions between tumor cells, ECs and their microen-

vironment. Decreasing the J value during tumor development leads to a higher bond between

cells, and, consequently, increases the contact area between them. For instance, for JM-M� 5

Fig 13. Number of tumor cells in two different conditions, with and without normal cells, of tumor vascular

growth.

https://doi.org/10.1371/journal.pcbi.1009081.g013
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the cells shape is extremely distorted and somewhat unrealistic, and it generates higher tumor

cell densities. A similar outcome happens to ECs. JEC-EC� 4 causes an accumulation of ECs

during sprout development and a rupture in the parent vessels structure (Fig 16). In contrast,

increasing J is equivalent to weaker cellular adhesion which results in cells reducing their com-

mon surface area. For JM-M� 15, cells’ shape is, in general, round and there is a separation

between cells, as they become farther away from each other as a result of diminished adhesive

bonds. Hence, the tumor is formed by a less cohesive population of cells. Moreover, for JEC-EC

� 15, cellular adhesion forces are too weak to compete with chemotactic forces. Consequently,

the tip EC breaks away from the parent vessel.

To ascertain how cell-matrix binding energies affect the tumor evolution process, Jm-cell var-

iations are considered. For low values of Jm-cell (� 5), there is a significant increase in cell-

matrix adhesion force that leads to a relatively strong contact area between the cell membrane

and the matrix (both tumor cells and ECs). Lower values of Jm-M cells lead to an unrealistically

Fig 14. Tumor with a dense capillary network. (A) Simulation results of a high vascularized tumor, with a similar vasculature profile as

the experimental image of the network in a tumor [128], (B) Left: Ultrasound Microvessel Imaging; center: fluorescent histology of vessel

area around viable tumor cells (scale bar is 1mm); right: enlargement of square area from previous image [128].

https://doi.org/10.1371/journal.pcbi.1009081.g014
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distorted shape while at Jm-EC = 8, the sprout morphology not only is twisted but also the ves-

sels are clearly thicker.

When Jm-cell increases noticeably, for instance for Jm-cell = 30, a decreased level of contact

guidance is observed. Accordingly, cells are not able to adhere to the matrix and migrate

even in the presence of chemotactic stimuli. This can be described as cell-matrix adhesion

Fig 15. Intratumoral vascularization density in the tumor area. Comparison between simulation results from the

present work with the experimental data reported in [128].

https://doi.org/10.1371/journal.pcbi.1009081.g015

Fig 16. Structure of vascular network for low values of JEC-EC, on day 7, which leads to an accumulation of active

and inactive ECs during angiogenesis and to vessel rupture.

https://doi.org/10.1371/journal.pcbi.1009081.g016
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inhibition. Values within the range 12� Jm-cell� 14 build a proper morphology by balancing

contact guidance and cell-matrix adhesion energy, which results in insensitive speeds of cells

extension and independence to parameter variability.

To assess the compressibility properties, we changed the γe parameter for different type of

cells from 0.3 to 30. Decreasing γe leads to deviation from the target volume, even changing

from the equilibrium condition. On the other hand, large values of γe cause cell’s resistance to

deformation. However, at γe = 30, the tip EC detaches from the main body of the vessel and

migrates toward the tumor. This is because of greater chemotactic force exerted by the tumor

than the relative pressure at a tip EC that drives it to reach its target volume. Therefore, values

of γe within ranges 8� γe� 13 make no significant change in tumor development.

Moreover, it has been observed that the results are insensitive to the cell-membrane fluctua-

tions when maximum value of Tm is changed by one order of magnitude. Increasing Tm causes

abnormal changes in cells’ shape that finally leads to cell rupture.

To investigate the sensitivity of the obtained results to the signaling thresholds variability,

comparisons between numerical simulation and experimental data were performed. Decreas-

ing the concentration of nutrients and VEGF can be interpreted as high potency of signaling

from RTK receptor, similar to the lowering of the integrin threshold, that increases the contri-

bution of integrin signaling pathway. The TITG represents the integrin binding in which, at the

lower values of TITG, fewer bound receptors are sufficient for activation of integrin signaling

pathways. Different values of TITG, at its low ranges (<0.2), result in small tumor sizes since

more cells undergo apoptosis than surviving. The same event happens for ECs, which prevents

sprout development. However, there is an increase in cell survival when the value of TITG is in

the range 0.2� TITG� 0.3, thereby, tumor keeps growing and new vessels form around the

tumor. The results demonstrate that higher levels of TITG (>0.35) disrupt not only tumor

growth but also affects angiogenesis by interruption of ECs proliferation and migration

towards the tumor. This is what also happens during targeted therapy.

Interestingly, the cadherin and Wnt receptor activation thresholds, TCadherin and TWnt, reg-

ulate, in particular, tumor progression and cells contact inhibition of proliferation, while the

activity of Wnt signaling pathway is dependent on cadherin. Cell-cell contact plays a key role

at low values of TCadherin so that for TCadherin� 0.2 proliferation is entirely inhibited. The

growth of tumor is suppressed and the formation of new vessels is restricted. By increasing the

threshold, cells proliferate and the tumor size increases over time. Similarly, while the signaling

from VEGF is activated, by increasing TCadherin up to 0.3, the number of proliferating ECs

increases and the tumor enters into the vascular growth phase. For TCadherin > 0.3 no signifi-

cant increase in proliferating cells is observed. The response of tumor to Wnt signaling activity

is similar to the activation of the cadherin receptor signaling on account of the communication

between Wnt/ß-catenin and cellular adhesion. Our results show that TWnt at 0.15 and higher

have a role in cell migration, in which a reduction of cell adhesion increases cell migration.

This reduction does not have a considerable effect on cells, and it is consistent with experimen-

tal results [133,134].

Moreover, our results show that a VEGF threshold at lower values of� 0.0015 has a decisive

role in angiogenesis, since higher values leads to suppression of new vessels growth. High Tv

means that the received signal is not enough to activate the ECs. High activation threshold is

likely to deactivate ECs and make them dormant over time. For high thresholds, the average

extension speed of new sprouts in a period of 10 hours is measured to be *3.65 μm/h, from 5

independent simulations, while the experimental reports estimate this average velocity to be

*14 μm/h. Similarly, TRTK� 0.005 activates the RTK receptor and its downstream signals in

tumor cells and guarantees their survival. However, for TR� 0.005, cells do not receive ade-

quate signals to survive and undergo apoptosis, which result in halted tumor progression.
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Discussing activity thresholds

Analyzing sensitivity of the results to the signal transduction thresholds variations reveals

that a higher activation threshold of any receptor means that the initiation of the signaling

pathway corresponding to that receptor is improbable. The signal transduction regulation

is proposed as possible personalized therapeutic interventions in the treatment of cancer

patients. Growth factor receptor activation at Tv� 0.0015 and TRTK� 0.005 regulate cell

survival, while increasing thresholds suppress tumor progression. This change is a premise

of targeted therapies included in anti-angiogenesis treatment. Moreover, the threshold for

cadherin activity, TCadherin, can be interpreted as a parameter that controls contact inhibi-

tion. For TCadherin < 0.2, the proliferating of cells is completely inhibited, while for TCadherin

� 0.2 not only the tumor keeps growing but also the vessels extension velocity increases and

reaches a stable value that is insensitive to the threshold. This finding supports the role of

VE-cadherin as a regulator of contact inhibition of ECs proliferation, which controls cell-

cell adhesion in formation of new vasculature, and E-cadherin role in keeping tumor cells

together by facilitating their interaction.

By choosing the threshold for signaling from integrin receptor, i.e. TITG, we find that integ-

rin regulates cells migration when 0.2� TITG� 0.3. Thereby, it satisfies cell-ECM connection

to help vessels migrate toward the tumor at a velocity in accord with the experimental values

presented in Fig 4. It should be noted that the migrating cells behavior is combined with prolif-

eration, which means that migrating cells are able to proliferate. Thereby, these aggressive

tumor cells move toward the vessels, and angiogenesis occurs based on the two mechanisms of

ECs proliferation and migration. Increasing the threshold (TITG� 0.35), delays the activation

of integrin receptor, which results in cells apoptosis and angiogenesis ceases, as reported in

several experimental studies [107–110,135,136]. Hence, intervention in the integrin receptor

activity, and thereby in its downstream signaling pathways, interrupts cell binding to the ECM

and suppresses cell migration by inducing apoptosis. Focusing on the pharmacological role of

each receptor in cancer treatment, we developed our model to investigate targeted therapy. Fig

17 shows the effect of changes in the activation of signals in the intratumoral vascularization

density.

Blocking signaling pathways

Signaling pathways that suppress tumor growth are good candidates for potential therapeutic

targets [79,137,138]. Redundancy of cancer signaling pathways forces the development of a

new generation of therapies and anticancer drugs that are based on inhibiting and blocking

several signaling mechanisms. More recently, the role of key signaling pathways in various

types of cancers was investigated to better understand the mechanisms of specific inhibitors

that target those pathways. Inhibition of the pathways Ras/Raf/MEK/ERK and PI3K/PTEN/

Akt/mTOR, that are frequently activated because of aberrant regulation of upstream growth

factor receptors (RTKs), are considered as novel therapeutic approaches [69,113]. This pro-

vides opportunities for development of anti-RTK chemotherapeutic drugs, such as Tyrphos-

tins (Tyrosine-kinase inhibitors TKI) like imatinib and gefitinib, or monoclonal antibodies

targeting the extracellular domain of RTKs’ subfamilies, such as Trastuzumab [108,109,139].

Integrin, that mediates cell-matrix interactions, is a critical factor for cell survival, whose inhi-

bition is known as a therapeutic agent, is in clinical trials for cancer treatment [140]. Volocixi-

mab is a chimeric monoclonal antibody, that has been developed as an integrin-targeted drug

[141]. Therefore, targeting integrin induces cells’ apoptosis, as it is reported in our results at

the intracellular scale. Similarly, Wnt contribution to cancer progression shows its important

pharmacological potential. Targeting the Wnt pathway by a number of therapeutic agents, as
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Wnt modulators, has been considered in clinical trials. Furthermore, activity of Wnt/ß-Cate-

nin pathway is dependent on cadherin and the communication between ß-catenin and the cell

adhesion molecule, cadherin [142]. We incorporate the results of blocking signals from the

intracellular scale to cellular scale to simulate the targeted therapy. Hence, the tumor grows

and cells keep proliferating, while the receptors activate downstream signals, until the signaling

is disrupted on days 3, 5 and 6 (Fig 18). Referring to Fig 3 for the signals blocking code (cases

in which receptors are deactivated: 101, 011, 001, 100, 010, 000), abnormal proliferative state of

cells is changed and apoptosis is induced. Moreover, results demonstrate that not only cell

migration into the tissue is inhibited but also the release of VEGF, and consequent activation

of ECs, is stopped. Thus, the tumor area decreases markedly as the signals get blocked, as

shown in Fig 18. According to the day of treatment initiation, in all three cases a significant

Fig 17. Intratumoral vascularization density as a function of the tumor area, resulting from interventions in

signals activation. Comparison between simulation results from present work with experimental data reported in

[128].

https://doi.org/10.1371/journal.pcbi.1009081.g017

Fig 18. Tumor area evolution with therapy for various treatment initiation days. In all three cases there is a

significant initial area decrease on the first day of therapy.

https://doi.org/10.1371/journal.pcbi.1009081.g018
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area decrease is noted on the first day of therapy, which is ~43%, ~77% and ~80%, on average,

for days 3, 5, and 6, respectively, as compared with the baseline (no therapy). After treatment

initiation the area decreases gradually. Finally, the mean tumor area at day 7 is 5536 μm2, with

a median area decrease of 80%.

Fig 19 shows the tumor area percent reduction with time with respect to the median base-

line tumor area without therapy and a function of the time after therapy initiation. The median

baseline is ~25000 μm2 and the area changes by 82% on average (range: 78% to 83%) after 10

days of therapy. Again, the initial area decreases significantly and reaches -73% of the baseline

after one day. Subsequently, the tumor area decreases gradually, as the signals are blocked and

cells undergo apoptosis. Tumor reached the minimum area at day 4 with ~84% decrease com-

pared to baseline.

The numerical data used in all figures are included in S1 Data.

Conclusion

Tumor growth involves multicellular dynamics at different spatio-temporal scales, including

intracellular, intercellular and extracellular processes. The aim of this study is to connect

models of avascular and vascular tumor growth in a simulation of carcinogenesis, to mimic

experimental assays and, after this first validation, to propose targeted therapy strategies. By

including the relevant mechanical and biological properties of endothelial and tumor cells, the

model simulates tumor growth and the creation of new capillary vessels, in a simplified but

realistic way. This multiscale model also includes a binary network, designed to describe some

of the most relevant cellular processes inside each cell regarding tumor evolution, in particular

the pathways involved in cell motility, proliferation and death. From this approach it is possi-

ble to search for possible inhibitors that can disrupt tumor progress. This makes this model

a significant and novel contribution, and opens up a new area of investigation relevant to

tumor-targeted treatment strategies, besides simulating the (known) most significant complex

biochemical and mechanical interactions between cells and the host microenvironment.

The present study models process at intracellular scale by considering the signaling

response to the activation of cell surface receptors and cell adhesion molecules. Once the cell

phenotypic behavior, such as proliferation, migration and apoptosis, is determined, cell–cell

and cell-matrix interactions are modeled at the intercellular level. Tumor cells access nutrients

Fig 19. Tumor area percent reduction during 10 days of treatment in comparison with the 25000 μm2 baseline

area. Blocking the pathways kills cancer cells and prevents tumor growth.

https://doi.org/10.1371/journal.pcbi.1009081.g019
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diffused from nearby vessels, and secrete angiogenic factors to stimulate the growth of new

capillaries. This happens at the extracellular scale, with concentrations of nutrients available

for cell survival and vascular growth factors present in the domain described by diffusion-reac-

tion PDEs.

In the present study the growth of the avascular and vascular tumor stages are investi-

gated. To capture and describe the biology and physics of the phenomena, normal healthy

tissue is considered inside the domain. Comparing each condition, results show that when

tumor stimulates ECs activity, and consequently induces angiogenesis, the rate of cancer

cells proliferation gets significantly higher, as the sprout forms a closed loop around the

tumor (anastomoses). This leads to a substantial increase in the number of cells in each day

of progression. Investigating the intratumoral vascularization density (IVD) as a prognostic

parameter, the model predicts a malignant tumor growth, in agreement with the experimen-

tal observations.

At each time step of the proposed model, cells receive environmental signals and from

them gather information on the nutrients availability, the concentration of VEGF and the

contact with neighbor cells. These external signals are assessed by each cell via signal trans-

duction and finally determine the cell phenotype. The cells’ behavior, as directed by the sig-

naling pathways, enables us to investigate possible novel therapeutic procedures. These

include a combination of therapies targeting specific pathways, which is a significant chal-

lenge in cancer treatment. The inhibition of specific molecular targets aims to directly kill

cancer cells without affecting normal ones. Although there are major challenges in develop-

ing combination therapies using targeted anticancer agents, encouraging advancements

show their enormous potential. In this study blocking signals are incorporated in the model

to simulate a targeted therapy. The tumor evolution is constantly controlled and determined

by the output from the intracellular scale, that is regulated by the intracellular thresholds of

the different pathways. These parameters characterize the signaling state of the different

receptors at the chosen threshold levels, and impose the cell’s behavior according to the com-

puted output map. The targeted signal blocking prevents excessive cells’ proliferation and is

able to drive cells’ apoptosis. Hence, the intracellular parameters that capture cell’s apoptosis

are selected to model the treatment. These parameters are never in the range that induce sys-

tem instability or the rupturing of vessels. Analyzing sensitivity of the results to parameter

variations reveals that a higher activation threshold of any receptor means that the initiation

of the signaling pathway corresponding to that receptor is improbable. Any disruption in

signaling transduction relevant to cells uncontrollable proliferation leads to a significant

decrease in tumor area. Results demonstrate that not only cell migration is inhibited but also

the release of VEGF, and consequent activation of ECs, is stopped. The tumor median area

decreases drastically in comparison with the baseline, within 10 days after blocking receptors

activity in the signaling network as a targeted therapy.

Supporting information

S1 Data. Excel spreadsheet containing, in separate sheets, the underlying numerical data

for Figs 4, 5, 9, 10, 11, 13, 15, 17, 18 and 19.

(XLSX)
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117. Drexler DA, Sápi J, Kovács L. Modeling of tumor growth incorporating the effects of necrosis and the

effect of bevacizumab. Complexity. 2017; 2017.

118. Barisam M, Saidi MS, Kashaninejad N, Vadivelu R, Nguyen N-T. Numerical simulation of the behavior

of toroidal and spheroidal multicellular aggregates in microfluidic devices with microwell and U-shaped

barrier. Micromachines. 2017; 8(12):358. https://doi.org/10.3390/mi8120358 PMID: 30400548

119. Taghibakhshi A, Barisam M, Saidi MS, Kashaninejad N, Nguyen N-T. Three-dimensional modeling of

avascular tumor growth in both static and dynamic culture platforms. Micromachines. 2019; 10(9):580.

https://doi.org/10.3390/mi10090580 PMID: 31480431

120. Altman BJ, Rathmell JC. Metabolic stress in autophagy and cell death pathways. Cold Spring Harbor

perspectives in biology. 2012; 4(9):a008763. https://doi.org/10.1101/cshperspect.a008763 PMID:

22952396

121. Al Tameemi W, Dale TP, Al-Jumaily RMK, Forsyth NR. Hypoxia-modified cancer cell metabolism.

Frontiers in cell and developmental biology. 2019; 7:4. https://doi.org/10.3389/fcell.2019.00004 PMID:

30761299

122. Dabral S, Muecke C, Valasarajan C, Schmoranzer M, Wietelmann A, Semenza GL, et al. A

RASSF1A-HIF1α loop drives Warburg effect in cancer and pulmonary hypertension. Nature communi-

cations. 2019; 10(1):2130. https://doi.org/10.1038/s41467-019-10044-z PMID: 31086178

PLOS COMPUTATIONAL BIOLOGY Multiscale modeling of tumor growth and angiogenesis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009081 June 23, 2021 36 / 37

http://www.ncbi.nlm.nih.gov/pubmed/3708583
https://doi.org/10.1093/emboj/cdg176
https://doi.org/10.1093/emboj/cdg176
http://www.ncbi.nlm.nih.gov/pubmed/12682010
https://doi.org/10.1159/000088478
http://www.ncbi.nlm.nih.gov/pubmed/16301830
https://doi.org/10.1529/biophysj.105.060640
http://www.ncbi.nlm.nih.gov/pubmed/16199495
https://doi.org/10.1016/j.mvr.2018.05.001
http://www.ncbi.nlm.nih.gov/pubmed/29742454
http://www.ncbi.nlm.nih.gov/pubmed/22792017
https://doi.org/10.1155/2014/357027
http://www.ncbi.nlm.nih.gov/pubmed/24963404
https://doi.org/10.1007/s10928-010-9156-2
http://www.ncbi.nlm.nih.gov/pubmed/20424896
https://doi.org/10.1016/0092-8674%2894%2990209-7
https://doi.org/10.1016/0092-8674%2894%2990209-7
http://www.ncbi.nlm.nih.gov/pubmed/8187171
https://doi.org/10.18632/oncotarget.802
http://www.ncbi.nlm.nih.gov/pubmed/23455493
http://www.ncbi.nlm.nih.gov/pubmed/4816003
https://doi.org/10.1016/0026-2862%2877%2990141-8
https://doi.org/10.1016/0026-2862%2877%2990141-8
http://www.ncbi.nlm.nih.gov/pubmed/895546
https://doi.org/10.1182/blood-2003-07-2315
http://www.ncbi.nlm.nih.gov/pubmed/14982871
https://doi.org/10.3390/mi8120358
http://www.ncbi.nlm.nih.gov/pubmed/30400548
https://doi.org/10.3390/mi10090580
http://www.ncbi.nlm.nih.gov/pubmed/31480431
https://doi.org/10.1101/cshperspect.a008763
http://www.ncbi.nlm.nih.gov/pubmed/22952396
https://doi.org/10.3389/fcell.2019.00004
http://www.ncbi.nlm.nih.gov/pubmed/30761299
https://doi.org/10.1038/s41467-019-10044-z
http://www.ncbi.nlm.nih.gov/pubmed/31086178
https://doi.org/10.1371/journal.pcbi.1009081


123. Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvi-

ronment of human tumors: a review. Cancer research. 1989; 49(23):6449–65. PMID: 2684393

124. Vishwakarma M, Piddini E. Outcompeting cancer. Nature Reviews Cancer. 2020:1–12.

125. Weidner N. Intratumor microvessel density as a prognostic factor in cancer. The American journal of

pathology. 1995; 147(1):9. PMID: 7541613

126. Weidner N. New paradigm for vessel intravasation by tumor cells. The American journal of pathology.

2002; 160(6):1937. https://doi.org/10.1016/S0002-9440(10)61141-8 PMID: 12057896

127. Zhao Y-Y, Xue C, Jiang W, Zhao H-Y, Huang Y, Feenstra K, et al. Predictive value of intratumoral

microvascular density in patients with advanced non-small cell lung cancer receiving chemotherapy

plus bevacizumab. Journal of Thoracic Oncology. 2012; 7(1):71–5. https://doi.org/10.1097/JTO.

0b013e31823085f4 PMID: 22011670

128. Huang C, Lowerison MR, Lucien F, Gong P, Wang D, Song P, et al. Noninvasive contrast-free 3D eval-

uation of tumor angiogenesis with ultrasensitive ultrasound microvessel imaging. Scientific reports.

2019; 9(1):1–11.

129. Dreher MR, Liu W, Michelich CR, Dewhirst MW, Yuan F, Chilkoti A. Tumor vascular permeability,

accumulation, and penetration of macromolecular drug carriers. Journal of the National Cancer Insti-

tute. 2006; 98(5):335–44. PMID: 16507830

130. Wei L, Lin J, Xu W, Cai Q, Shen A, Hong Z, et al. Scutellaria barbata D. Don inhibits tumor angiogene-

sis via suppression of Hedgehog pathway in a mouse model of colorectal cancer. International journal

of molecular sciences. 2012; 13(8):9419–30. https://doi.org/10.3390/ijms13089419 PMID: 22949805

131. Maes H, Kuchnio A, Peric A, Moens S, Nys K, De Bock K, et al. Tumor vessel normalization by chloro-

quine independent of autophagy. Cancer cell. 2014; 26(2):190–206. https://doi.org/10.1016/j.ccr.

2014.06.025 PMID: 25117709

132. Marien KM, Croons V, Waumans Y, Sluydts E, De Schepper S, Andries L, et al. Development and vali-

dation of a histological method to measure microvessel density in whole-slide images of cancer tissue.

PLoS One. 2016; 11(9):e0161496. https://doi.org/10.1371/journal.pone.0161496 PMID: 27583442

133. Heuberger J, Birchmeier W. Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling.

Cold Spring Harbor perspectives in biology. 2010; 2(2):a002915. https://doi.org/10.1101/cshperspect.

a002915 PMID: 20182623

134. Gavert N, Sheffer M, Raveh S, Spaderna S, Shtutman M, Brabletz T, et al. Expression of L1-CAM and

ADAM10 in human colon cancer cells induces metastasis. Cancer research. 2007; 67(16):7703–12.

https://doi.org/10.1158/0008-5472.CAN-07-0991 PMID: 17699774

135. Jinka R, Kapoor R, Sistla PG, Raj TA, Pande G. Alterations in cell-extracellular matrix interactions dur-

ing progression of cancers. International journal of cell biology. 2012;2012. https://doi.org/10.1155/

2012/219196 PMID: 22262973

136. Huang S, Ingber DE. The structural and mechanical complexity of cell-growth control. Nature cell biol-

ogy. 1999; 1(5):E131. https://doi.org/10.1038/13043 PMID: 10559956

137. Schweizer L, Zhang L. enhancing cancer Drug Discovery through novel cell signaling pathway panel

strategy. Cancer growth and metastasis. 2013; 6:CGM. S11134. https://doi.org/10.4137/CGM.

S11134 PMID: 24665207

138. Aggarwal BB, Sethi G, Baladandayuthapani V, Krishnan S, Shishodia S. Targeting cell signaling path-

ways for drug discovery: an old lock needs a new key. Journal of cellular biochemistry. 2007; 102

(3):580–92. https://doi.org/10.1002/jcb.21500 PMID: 17668425

139. Muhsin M, Graham J, Kirkpatrick P. Gefitinib. Nature Publishing Group; 2003.

140. Sawada K, Ohyagi-Hara C, Kimura T, Morishige K-i. Integrin inhibitors as a therapeutic agent for ovar-

ian cancer. Journal of oncology. 2012; 2012. https://doi.org/10.1155/2012/915140 PMID: 22235205

141. Millard M, Odde S, Neamati N. Integrin targeted therapeutics. Theranostics. 2011; 1:154. https://doi.

org/10.7150/thno/v01p0154 PMID: 21547158

142. Fang D, Hawke D, Zheng Y, Xia Y, Meisenhelder J, Nika H, et al. Phosphorylation of β-catenin by AKT

promotes β-catenin transcriptional activity. Journal of Biological Chemistry. 2007; 282(15):11221–9.

https://doi.org/10.1074/jbc.M611871200 PMID: 17287208

PLOS COMPUTATIONAL BIOLOGY Multiscale modeling of tumor growth and angiogenesis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009081 June 23, 2021 37 / 37

http://www.ncbi.nlm.nih.gov/pubmed/2684393
http://www.ncbi.nlm.nih.gov/pubmed/7541613
https://doi.org/10.1016/S0002-9440%2810%2961141-8
http://www.ncbi.nlm.nih.gov/pubmed/12057896
https://doi.org/10.1097/JTO.0b013e31823085f4
https://doi.org/10.1097/JTO.0b013e31823085f4
http://www.ncbi.nlm.nih.gov/pubmed/22011670
http://www.ncbi.nlm.nih.gov/pubmed/16507830
https://doi.org/10.3390/ijms13089419
http://www.ncbi.nlm.nih.gov/pubmed/22949805
https://doi.org/10.1016/j.ccr.2014.06.025
https://doi.org/10.1016/j.ccr.2014.06.025
http://www.ncbi.nlm.nih.gov/pubmed/25117709
https://doi.org/10.1371/journal.pone.0161496
http://www.ncbi.nlm.nih.gov/pubmed/27583442
https://doi.org/10.1101/cshperspect.a002915
https://doi.org/10.1101/cshperspect.a002915
http://www.ncbi.nlm.nih.gov/pubmed/20182623
https://doi.org/10.1158/0008-5472.CAN-07-0991
http://www.ncbi.nlm.nih.gov/pubmed/17699774
https://doi.org/10.1155/2012/219196
https://doi.org/10.1155/2012/219196
http://www.ncbi.nlm.nih.gov/pubmed/22262973
https://doi.org/10.1038/13043
http://www.ncbi.nlm.nih.gov/pubmed/10559956
https://doi.org/10.4137/CGM.S11134
https://doi.org/10.4137/CGM.S11134
http://www.ncbi.nlm.nih.gov/pubmed/24665207
https://doi.org/10.1002/jcb.21500
http://www.ncbi.nlm.nih.gov/pubmed/17668425
https://doi.org/10.1155/2012/915140
http://www.ncbi.nlm.nih.gov/pubmed/22235205
https://doi.org/10.7150/thno/v01p0154
https://doi.org/10.7150/thno/v01p0154
http://www.ncbi.nlm.nih.gov/pubmed/21547158
https://doi.org/10.1074/jbc.M611871200
http://www.ncbi.nlm.nih.gov/pubmed/17287208
https://doi.org/10.1371/journal.pcbi.1009081

