
Physics Letters B 823 (2021) 136753

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Non-perturbative BRST symmetry and the spectral structure of 

the ghost propagator

Shirley Weishi Li a, Peter Lowdon b,∗, Orlando Oliveira c, Paulo J. Silva c

a Theoretical Physics Department, Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA
b Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
c Centro de Física da Universidade de Coimbra, Departamento de Física, Universidade de Coimbra, 3004-516 Coimbra, Portugal

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 October 2021
Accepted 25 October 2021
Available online 28 October 2021
Editor: A. Ringwald

In BRST-quantised Yang-Mills theory the existence of BRST symmetry imposes significant constraints 
on the analytic structure of the continuum theory. In particular, the presence of this symmetry in the 
non-perturbative regime implies that any on-shell state with vanishing norm must have an associated 
partner state with identical mass, but negative inner product. In this work we demonstrate that for 
quantum chromodynamics (QCD) this constraint gives rise to an interconnection between the ghost and 
gluon spectra, and in doing so provides a non-trivial test of whether BRST symmetry is realised non-
perturbatively. By analysing infrared lattice data for the minimal Landau gauge ghost propagator in pure 
SU(3) Yang-Mills theory, and comparing this with previous results for the gluon propagator, we show 
that this interconnection is violated, and hence conclude that continuum and current lattice formulations 
of Yang-Mills theory in Landau gauge represent two distinct realisations of the theory.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Understanding the characteristics of correlation functions in-
volving the fundamental fields in Yang-Mills theory is essential 
for unravelling the non-perturbative structure of the theory. In the 
local Becchi-Rouet-Stora-Tyutin (BRST) quantisation of quantum 
chromodynamics (QCD) the ghost degrees of freedom play a cen-
tral role, with the ghost propagator in particular having important 
phenomenological consequences such as in the determination of 
glueball masses [1], as well as potential implications for the nature 
of confinement itself [2–4]. The calculation of the ghost propagator 
has been a research focus for many years, resulting in numerous 
studies based on a variety of different non-perturbative calcula-
tional approaches, including functional methods [3,5–10] and lat-
tice Monte Carlo simulations [11–19]. In recent years, advanced 
numerical inversion techniques have also been applied to the sub-
sequent data from these studies in order to gain new insights into 
the structure of the corresponding ghost spectral density [20–22]. 
Nevertheless, despite this intense activity it still remains an open 
question as to how the ghost propagator should behave, particu-
larly in the low-momentum infrared regime, and what bearing this 
has on the spectrum of the theory.
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Although the precise structure of correlation functions in BRST-
quantised QCD remains far from settled, progress has been made 
by making use of analytic non-perturbative constraints imposed on 
the theory by the structural assumptions of local quantum field 
theory (QFT) [23–27], including locality and Poincaré covariance. 
A constraint of particular importance is the Källén-Lehmann rep-
resentation [28,29], the existence of which demonstrates that the 
behaviour of correlation functions is controlled by spectral densi-
ties whose singularities reflect the presence of on-shell states in 
the theory.1 In local gauge theories such as BRST-quantised QCD 
the necessary presence of states with a non-positive inner product 
gives rise to additional subtleties, specifically for correlation func-
tions involving coloured fields [31–35]. Since the ghost propagator 
is the central focus of this work, it is important to understand how 
these subtleties can potentially affect the behaviour of the corre-
sponding ghost spectral density. This will be discussed in Sec. 2.

It is a well-known problem in lattice formulations of Yang-Mills 
theory that the construction of a well-defined non-perturbative 
path integral is non trivial due to the infamous Gribov-Singer am-
biguity [36,37]. In the case of BRST-quantised Yang-Mills theory, 
this ambiguity results in degenerate solutions of the lattice gauge-
fixing condition, so-called Gribov copies. The appearance of these 

1 Although the focus of this study is on vacuum-state correlation functions, 
spectral-type representations can also be proven to exist more generally for non-
vanishing temperatures [30].
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copies has been shown to result in numerous complications in-
cluding the Neuberger problem, which implies that the expecta-
tion value of gauge-invariant observables has the ill-defined 0/0
form [38]. Several solutions have been proposed to avoid this 
obstacle, including specific restrictions of the path integral do-
main [39,40], topological approaches [41], and the introduction 
of additional degrees of freedom [42], although no lattice imple-
mentation of these methods have been established so far. In most 
practical lattice calculations the path integral is restricted in such 
a way that the path integral is well defined, but Gribov copies can 
still potentially have an effect on the results. An important such 
example is minimal Landau gauge [43,44]. The analysis of ghost 
propagator lattice data in this gauge forms a central component of 
this study, and so more details of the gauge will be discussed in 
Sec. 2.

The goal of this study is to use a combination of lattice data 
and analytic arguments in order to gain a better understanding 
of the infrared characteristics of the ghost propagator, and its ef-
fect on the non-perturbative structure of BRST-quantised QCD. The 
remainder of the paper is organised as follows: in Sec. 2 we out-
line the analytic constraints imposed on the ghost propagator by 
the structural assumptions of local QFT, in Sec. 3 we use the as-
sumption of BRST symmetry to establish a non-trivial connection 
between the infrared properties of the gluon and ghost propaga-
tors, in Sec. 4 we analyse lattice data for the ghost propagator in 
minimal Landau gauge in order to test the condition derived in 
Sec. 3, and finally in Sec. 5 we summarise our findings.

2. Analytic structure of the ghost propagator

In BRST-quantised QCD the ghost propagator can be shown [33]
to have the general non-perturbative form2

Gab(p) = i

∞∫
0

ds
ρab

C (s)

p2 − s + iε
+Pab

C (∂2)δ4(p), (1)

where Pab
C (∂2) is a finite order polynomial in the d’Alembert 

operator ∂2 = ∂
∂ pμ

∂
∂ pμ . As detailed in [33,32], the potential non-

vanishing of coefficients in Pab
C (∂2), and hence the appearance of 

δ4(p) derivatives, stems from the fact that the theory is quantised 
with an indefinite inner product, and hence necessarily contains 
states which violate positivity [2]. Since the goal of this work is to 
use the constraint of Eq. (1) in order to analyse lattice data for the 
ghost propagator, we will ignore the possibility of purely singular 
terms at p = 0 and focus instead on the first term, which has the 
standard Källén-Lehmann form for a scalar field [28,29].

2.1. Ghost spectral density

Equation (1) demonstrates that the analytic form of the ghost 
propagator is controlled by the properties of the corresponding 
spectral density ρab

C (s). Whilst ρab
C (s) can in principle contain con-

tinuous contributions as well as ordinary mass components of the 
form δ(s − m2), where m ≥ 0, it was demonstrated in [45,31] that 
the lack of state-space positivity opens the door for the possibil-
ity of a broader class of singular components, so-called generalised 
pole terms

2 Here we adopt a slightly different convention to that used in [33] by defin-
ing the Fourier transform of the ghost two-point function F [〈0|Ca(x)Cb(y)|0〉] =
Pab

C (∂2)δ(p) + 2π
∫ ∞

0 ds θ(p0)δ(p2 − s)ρab
C (s). This amounts to making the replace-

ment ρab
C (s) → 2πρab

C (s) in the results of [33], and ultimately removes the 2π
factor appearing in the denominator of the propagator.
2

δ(n)(s − m2
n) =

(
d
ds

)n
δ(s − m2

n), n ≥ 1. (2)

It turns out that the terms in Eq. (2), together with standard mass 
components (n = 0), are the only such possible discrete terms that 
can appear in a spectral density. Therefore, any on-shell state in a 
QFT must be attributed to the appearance of one such member of 
this class. In fact, in [31] it was proven that an n ≥ 1 generalised 
pole implies the existence of an on-shell state with vanishing norm. 
Combining this with the well-known property that δ(s −m2) terms 
with coefficients of differing signs correspond to states with pos-
itive or negative inner products, this completes the classification 
of possible on-shell states in QFTs with an indefinite inner prod-
uct.

For (anti-)ghost fields several conventions exist in the litera-
ture regarding their Hermiticity assignment. Although seemingly 
innocuous, it turns out that these differing choices can potentially 
lead to inconsistencies in the BRST structure of the theory, includ-
ing the violation of S-matrix unitarity [25]. By demanding that 
both Ca and Ca are Hermitian, and hence real, this avoids these 
problems. However, real fields inevitably imply that the spectral 
density ρab

C (s) in Eq. (1) must be complex, which raises questions 
about the relationship between ρab

C (s) and the state space struc-
ture of the theory. An overview of this relationship is detailed in 
Ref. [25], where the authors demonstrate that the asymptotic ghost 
states are in fact constructed from the fields Ca and iCa . This ulti-
mately implies that the spectral properties of states in the theory 
are instead captured by iρab

C (s). In particular, given the appear-
ance of a term Zabδ(s − m2) in iρab

C (s), the conditions Zab > 0
and Zab < 0 correspond to the existence of a state with positive 
or negative inner product, respectively.

2.2. Euclidean spectral representation

In general, working with complex ghost fields is often more 
convenient since both the spectral density and Euclidean propaga-
tor are real. Although this can lead to theoretical issues, as outlined 
in Sec. 2.1, in Landau gauge it has been proven that the real and 
complex ghost field formulations are equivalent [3]. For the pur-
poses of this study we will focus solely on lattice results in this 
gauge, and hence the distinction between real and complex ghost 
fields is no longer important. In most analyses of the Landau gauge 
ghost propagator, including the study [17] for which we analyse 
the lattice data in Sec. 4, the ghost fields are chosen to be complex, 
and so this convention will be assumed throughout the remainder 
of this paper. Although Eq. (1) holds for the real fields Ca and Ca , 
the complex lattice fields ηa and ηa used in [17] are related as 
follows: ηa = Ca , ηa = −iCa . By combining these relations with 
the spectral representation in Eq. (1), one ultimately finds that the 
non-singular component of the Euclidean complex ghost propaga-
tor has the form

Gab
E (pE) =

∞∫
0

ds
ρab

η (s)

p2
E + s

, (3)

where ρab
η (s) = −iρab

C (s) and pE signifies the Euclidean momen-

tum.3 Since ρab
η (s) differs to the physical spectral density iρab

C (s)
by a sign, it immediately follows from the discussion in Sec. 2.1
and Eq. (3) that the appearance of mass poles in Gab

E (pE ) with 
coefficients Zab > 0 or Zab < 0 implies the existence of on-shell 
states with negative or positive inner products, respectively. For 

3 For the remainder of this paper we will be dealing solely with imaginary-time 
quantities, and so for simplicity the Euclidean subscript on pE will be dropped.
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example, in the free theory the Euclidean propagator has the form 
Gab

E,free = δab/p2, which signifies the existence of a massless on-
shell state with negative inner product, as expected.

2.3. Lattice ghost propagator

In lattice formulations of Yang-Mills theory the Euclidean ghost 
propagator is defined by the inverse of the Faddeev-Popov operator 
Mab = −∂μDab

μ averaged over all field configurations

Gab
lat(p) =

〈∑
x,y

e−ip·(x−y)
[
M−1]ab

xy

〉
, (4)

where Dab
μ is the lattice covariant derivative, and pμ = 2π

L kμ with 
kμ = 0, . . . , L −1, and L is the lattice size [11]. In many studies it is 
often assumed that the propagator has the diagonal form Gab

lat(p) =
δab G(p), as is the case in perturbation theory. Since on the lattice 
one computes the quantity G(p), this is therefore defined

G(p) = 1
8

∑
a

Gaa
lat(p), (5)

where a = 1, . . . , 8 because here we are interested in SU(3)

Yang-Mills theory. However, the colour diagonality of Gab
lat(p) im-

plicitly assumes that global colour symmetry is preserved non-
perturbatively, which is a priori unknown [46]. In order to keep 
maximal generality we will therefore not assume that this is the 
case. Since the spectral representation in Eq. (3) exists indepen-
dently of whether global colour symmetry is preserved or not, 
Eq. (5) implies that the lattice ghost propagator G(p) has the fol-
lowing structure in the continuum limit

G(p) =
∞∫

0

ds
ρη(s)

p2 + s
, (6)

where ρη(s) := 1
8

∑
a ρaa

η (s). If colour symmetry is preserved then 
ρη(s) defines a unique spectral density, whereas if the symmetry 
is broken ρη(s) instead represents a colour-averaged quantity. In 
either case, it follows from Eq. (6) that the analysis of lattice data 
for G(p) amounts to probing the spectral properties of ρη(s).

Handling the appearance of Gribov copies is essential for per-
forming a consistent lattice calculation in Yang-Mills theory. Due 
to the definition in Eq. (4), for the ghost propagator this amounts 
to ensuring that the Faddeev-Popov operator possesses a well-
defined inverse. In BRST quantisation one also requires that the 
gauge fields satisfy a specific gauge-fixing condition, which in the 
case of Landau gauge is ∂μ Aa

μ = 0. It turns out that both of these 
conditions can be simultaneously satisfied by choosing gauge field 
configurations that minimise a specific functional of the fields 
F [A] [40]. The resulting configurations are said to belong to the 
first Gribov region (FGR). However, although the lattice path integral 
is well-defined in this region, there continue to exist Gribov copies 
corresponding to distinct minima of F [A]. Since there is no unique 
way of handling these minima, different choices essentially result 
in different types of Landau gauge [47]. Minimal Landau gauge cor-
responds to taking an arbitrary choice of Gribov copy within the 
FGR for each field configuration [40]. For the purposes of this study 
we will focus on the ghost propagator in minimal Landau gauge, 
and in Sec. 4 we will use lattice data in this gauge together with 
the analytic results outlined in this section in order to investigate 
the non-perturbative ghost spectrum.

3. BRST symmetry and the ghost spectrum

In BRST-quantised QCD the presence of BRST symmetry plays 
a central role in characterising the state-space structure of the 
3

theory, which in turn underpins many important characteristics 
including the unitarity of scattering for physical states, the char-
acterisation of physical observables, and colour confinement [25]. 
Although it remains an open question as to whether BRST sym-
metry is realised beyond the perturbative regime, in what follows 
we will assume that this is indeed the case. By virtue of this sym-
metry, Kugo and Ojima proved that states with a negative inner 
product are necessarily absent from the physical space of states 
Vphys, the so-called quartet mechanism [2]. An important conse-
quence of this argument is that the zero-norm states V0 in the 
theory are related to the full space of states V as follows:

V0 = Q BV, (7)

where Q B is the BRST charge. In other words, any zero-norm state 
|	〉 implies the existence of a partner state |	̃〉 ∈ V such that 
|	〉 = Q B |	̃〉. Since the physicality of states is defined by the con-
dition Q BVphys = 0, and the quartet mechanism prevents states 
with negative inner product from appearing in Vphys, for |	〉 to be 
non trivial this therefore requires that the partner state |	̃〉 must 
have a negative inner product. Moreover, since Q B commutes with 
the operator P 2 [25], if |	〉 is an on-shell state then |	̃〉 must 
necessarily have the same mass. Combining these results therefore 
implies

If a state |	〉 in BRST-quantised QCD satisfies

P 2|	〉 = m2
	|	〉, 〈	|	〉 = 0

=⇒ There exists a corresponding state |	̃〉 with mass m	,

but 〈	̃|	̃〉 < 0. (8)

This conclusion is particularly relevant in light of the findings of 
Ref. [35]. In this study, fits to infrared lattice data for the minimal 
Landau gauge gluon propagator were performed in order to test for 
different pole structures. By using ansätze involving combinations 
of all possible classes of poles, evidence was found for the exis-
tence of a (p2

E +m2
A)−2 component, corresponding to a generalised 

term δ′(s − m2
A) in the gluon spectral density with

mA = 0.88+0.09−0.06 GeV. (9)

As discussed in Sec. 2.1, the appearance of such a pole implies 
the existence of an on-shell zero-norm state |
A〉 with mass mA , 
which can be interpreted as a gluonic excitation. The fact that 
|
A〉 has vanishing norm guarantees its confinement in QCD, since 
any such state has been shown to not contribute to physical scat-
tering processes [2]. Applying the general condition in Eq. (8) to 
|
A〉 it immediately follows that if BRST symmetry is realised non-
perturbatively, there must exist a corresponding partner state |
̃A〉
also with mass mA , but 〈
̃A |
̃A〉 < 0. An important question is 
whether this state could also be searched for using QCD propa-
gator data. Initially one might have thought that this state could 
also contribute to the gluon propagator, and in contrast to |
A〉
would appear as an ordinary massive pole. However, since the 
partner state is related to |
A〉 via the action of the BRST charge 
|
A〉 = Q B |
̃A〉, and Q B changes the ghost number of the state 
by one unit4 this state, if it exists, would instead contribute to the 
ghost propagator G(p).

Using the analytic results of Sec. 2, together with the conclu-
sions drawn in this section, one is ultimately led to the following 

4 See [25] and references within for more details regarding the ghost number and 
its corresponding generator.
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non-trivial test for the existence of non-perturbative BRST symme-
try in minimal Landau gauge pure SU(3) Yang-Mills theory:

If BRST symmetry exists

=⇒ G(p) must contain a component
Z

p2 + m2
A

, where Z > 0.

(10)

Taking the converse of this condition, this immediately implies that 
if the minimal Landau gauge ghost propagator does not contain a 
massive pole at p2 = −m2

A with positive coefficient, it must be 
the case that BRST symmetry is not present on a non-perturbative 
level. This condition will be explored further in the next section 
using lattice ghost propagator data.

4. Lattice data fits

In this section we will outline the strategy we adopted to anal-
yse lattice data for the minimal Landau gauge ghost propagator in 
pure SU(3) Yang-Mills theory. For this analysis we used the β = 6.0
data of Ref. [17] with 644 and 804 lattices, corresponding to physi-
cal volumes of (6.50 fm)4 and (8.13 fm)4 respectively, and a lattice 
spacing of a = 0.10 fm. Full details of the gauge-fixing procedure 
and lattice setup can be found in Ref. [17]. Similarly to the study 
of the gluon propagator in Ref. [35], the goal of this analysis was to 
test for different pole structures in the infrared ghost lattice data. 
This is particularly interesting in light of the findings of Sec. 3, 
since if these poles are present then they must dominate the be-
haviour of the propagator in the infrared, and hence searching for 
them constitutes a non-trivial test for the existence of on-shell 
states in the spectrum. In order to look for these components we 
analysed whether different propagator pole ansätze could fit the 
lattice data up to some scale pmax. In particular, we considered 
both one and two term linear combinations, with the latter involv-
ing at least one standard non-generalised pole component

Gi(p) = zi

(p2 + m2
i )

i+1
, (11)

G0 j(p) = z0

p2 + m2
0

+ Z j

(p2 + M2
j )

j+1
, (12)

where i, j = 0, 1, 2, and the masses m0, mi and M j are real valued. 
The presence of different poles in the infrared region p ∈ [0, pmax]
means that the ghost spectral density ρη(s) must contain discrete 
components. As outlined in Sec. 2.1, depending on the order of the 
pole and the sign of the coefficient, these components imply the 
existence of on-shell states with either positive, zero, or negative 
inner product.

Before discussing the more technical aspects of the fits, it is 
important to note that in this study we focused on the non-
renormalised bare lattice data, similarly to the analysis of the 
gluon propagator in Ref. [35]. Since renormalisation only results in 
an overall (positive) rescaling of the data [17,48], the position and 
structure of any poles remains unchanged, and hence this informa-
tion can be assessed from the bare data alone. The only difference 
is that the bare lattice propagator is a dimensionless quantity, and 
hence the coefficients zi and Z j must be dimensionful. Due to 
the difficulty of precisely accessing the systematic uncertainties 
in the lattice data we used three different choices of uncertain-
ties in order to assess the robustness of the fits: statistical errors 
only, statistical errors plus a systematic shape uncertainty for mo-
menta below 1 GeV, and statistical errors plus a shape uncertainty 
for all values of momenta. In the second case, we simulated the 
4

Fig. 1. Best-fit plot of the G00(p) ansatz together with the 804 lattice data points. 
The statistical errors on the lattice data points are plotted, but too small to be seen.

shape uncertainty with the same empirical function as applied in 
Ref. [35], and in the final case we used a fourth-order polynomial 
in p2 with deviations at the 2.5% level, which allowed for sig-
nificant shape changes.5 The logic behind the specific cut in the 
second uncertainty scenario follows from the findings of Ref. [16], 
where the authors demonstrated that systematic effects, in partic-
ular the choice of Gribov copies, can lead to non-negligible shape 
changes in the ghost propagator for momenta below 1 GeV. In all 
of these fitting scenarios the goodness of fit was assessed using a 
Chi-squared minimisation procedure, the specific details for which 
can be found in Ref. [35]. The robustness of the fits were also 
tested by checking the sensitivity of the best-fit parameters to the 
momentum cutoff pmax.

The χ2/d.o.f. values of the various fits to the 644 and 804 data 
are given in the Appendix. Comparing the different single-pole fits 
it was clear that the data strongly favoured an ordinary mass pole 
G0(p), with m0 = 0. However, this component alone was not suf-
ficient to describe the data over a range of momenta larger than 
0.5 GeV. Although the inclusion of any additional pole led to a sig-
nificant improvement in the fits, G00(p) was the only ansatz that 
could provide a reliable fit in each of the systematic error scenar-
ios, and whose best-fit parameter values remained stable across 
the different lattice volumes. When only statistical errors where 
included the highest quality fit for G00(p) was obtained from the 
804 data, resulting in the following best-fit parameter values:

z0 = 13.70 ± 0.06 GeV2, m0 = 0.00+0.02−0.00 GeV, (13)

Z0 = −9.01+0.25−0.17 GeV2, M0 = 0.54 ± 0.03 GeV, (14)

where the uncertainties indicate a 1σ variation. This fit remained 
both convergent and physically consistent up to the cutoff pmax =
4 GeV. In Fig. 1 the best-fit expression for G00(p) is plotted to-
gether with the 804 lattice data points.

Due to the general structure in Eq. (6), the compatibility of the 
lattice data with the parameter values in Eqs. (13) and (14) sup-

5 This approach is identical to that used in the analysis of the gluon propagator in 
Ref. [35], except that the second uncertainty scenario only has a systematic shape 
uncertainty for momenta below 1 GeV. We refer the reader to Ref. [35] for more 
details.
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ports the conclusion that there exists a pair of on-shell ghost states 
in the spectrum: a massless state with negative inner product, and 
a positive-norm state with mass M0 = 0.54 GeV. Now whilst there 
are strong theoretical arguments for the appearance of a massless 
ghost state [33], which is supported by several studies [20,9,49,50], 
the potential existence of an additional massive ghost state has to 
our knowledge not yet been considered in the literature. Although 
this massive state has positive norm, it also necessarily has a non-
vanishing ghost number, and is hence ruled out from the physical 
spectrum of the theory [2]. Together with the detection of this ad-
ditional ghost state, another important finding from this analysis 
is that the ghost propagator lattice data is not compatible with the 
existence of a component Z(p2 + m2

A)−1 where Z > 0, and hence 
a negative-norm state with mass mA . Taking the contrapositive of 
the condition in Eq. (10), one is ultimately led to the conclusion 
that for pure SU(3) Yang-Mills theory

BRST symmetry is not realised non-perturbatively

in minimal Landau gauge. (15)

A similar conclusion has also been reached in other studies. In 
Refs. [8,51] the authors argue that the existence of Gribov copies in 
minimal Landau gauge is sufficient to imply that global BRST sym-
metry must be broken, and in Ref. [52] the ill-definedness of the 
BRST charge is linked to the Gribov-Zwanziger mechanism. More 
recently, in Ref. [19] lattice data for SU(2) Yang-Mills theory was 
used to demonstrate that the minimal Landau gauge ghost propa-
gator is not consistent with the continuum Dyson-Schwinger equa-
tion (DSE). Since the DSE structure is predicated on the existence 
of BRST symmetry, this therefore implies an analogous conclusion 
to Eq. (15). An appealing characteristic of the argument leading to 
Eq. (15) is that it derives from the fact that BRST symmetry im-
poses specific spectral constraints, and hence the demonstration 
that one of these constraints is violated, in this case the absence 
of a corresponding ghost partner state with mass mA , is sufficient 
to imply that the symmetry cannot be present non-perturbatively. 
Moreover, the theoretical assumptions underpinning this argument 
are broad, relying only on the existence of a Källén-Lehmann rep-
resentation, the structure of which means that the on-shell states 
in the theory can be detected by analysing the infrared behaviour 
of the corresponding field propagators.

5. Conclusions

The presence of BRST symmetry in BRST-quantised Yang-Mills 
theory has many implications for the non-perturbative structure 
of the theory. In particular, in QCD this symmetry implies a non-
trivial connection between the ghost and gluon spectra, namely 
that on-shell zero-norm gluonic states must possess a correspond-
ing ghost partner state with identical mass, but negative inner 
product. Since the discrete spectrum of the theory can be in-
ferred from the infrared behaviour of the field propagators, by 
analysing lattice data for the ghost and gluon propagators this 
provides a non-trivial test of whether BRST symmetry is realised 
non-perturbatively in lattice formulations of the theory. Using lat-
tice data for the minimal Landau gauge ghost propagator in pure 
SU(3) Yang-Mills theory, we find evidence for the existence of a 
pair of on-shell ghost states in the spectrum: a massless state 
with negative inner product, and a positive-norm state with mass 
M0 = 0.54 GeV. In doing so, we rule out the existence of a poten-
tial ghost partner state associated with the zero-norm gluonic state 
established in Ref. [35], and hence conclude that BRST symmetry 
cannot be realised non-perturbatively in minimal Landau gauge. 
5

Ultimately, this implies that continuum and current lattice formu-
lations of Yang-Mills theory in Landau gauge represent two distinct 
realisations of the theory.
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Appendix A. Goodness-of-fit results

The goodness-of-fit results for the Gi(p) and G0 j(p) ansätze 
with the 644 and 804 lattice data of Ref. [17] are found in Ta-
bles A.1 and A.2, respectively. In each fit a value of pmax = 1 GeV
was initially chosen to determine whether a convergent and physi-
cally consistent (pmax > m0, mi, M j) fit could be achieved. If not, 
the value of pmax was lowered or raised until these conditions 
were satisfied. The values of pmax in the tables reflect this final 
choice of cutoff. The three columns represent the fits performed 
using the three different systematic error scenarios outlined in 
Sec. 4.

Table A.1
Chi-squared fit results for Gi(p) and G0 j(p) under the different systematic error 
scenarios with the 644 lattice data.

Stat. only Stat. + Shape p < 1 GeV Stat. + Shape all p

χ2
1 /d.o.f. (pmax) χ2

2 /d.o.f. (pmax) χ2
3 /d.o.f. (pmax)

G0(p) > 80 (0.5) > 20 (0.5) > 60 (0.5)

G1(p) > 20 (0.5) > 40 (0.5) > 20 (0.5)

G2(p) > 60 (0.5) > 70 (0.5) > 70 (0.5)

G00(p) 0.94 (4.0) 0.82 (4.0) 0.4 (4.0)

G01(p) 1.2 (1.2) 0.9 (1.0) 1.0 (1.0)

G02(p) 6.7 (1.6) 2.0 (1.0) 1.7 (1.0)

http://www.uc.pt/lca
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Table A.2
Chi-squared fit results for Gi(p) and G0 j(p) under the different systematic error 
scenarios with the 804 lattice data.

Stat. only Stat. + Shape p < 1 GeV Stat. + Shape all p

χ2
1 /d.o.f. (pmax) χ2

2 /d.o.f. (pmax) χ2
3 /d.o.f. (pmax)

G0(p) > 300 (0.5) > 10 (0.5) > 20 (0.5)

G1(p) > 200 (0.5) > 100 (0.5) > 20 (0.5)

G2(p) > 500 (0.5) > 200 (0.5) > 50 (0.5)

G00(p) 1.2 (4.0) 1.2 (4.0) 0.9 (4.0)

G01(p) 1.6 (0.5) 1.6 (0.5) 1.8 (0.7)

G02(p) 3.4 (0.5) 3.2 (0.5) 1.8 (0.5)
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