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ABSTRACT The global spread of antibiotic-resistant bacteria and their resistance
genes is a critical issue that is no longer restricted to hospital settings, but also rep-
resents a growing problem involving environmental and food safety. In this study,
we have performed a microbiological and genomic investigation of critical priority
pathogens resistant to broad-spectrum cephalosporins and showing endophytic life-
styles in fresh vegetables sold in a country with high endemicity of extended-spectrum
B-lactamases (ESBLs). We report the isolation of international high-risk clones of CTX-M-
15-producing Escherichia coli, belonging to clonal complexes CC38 and CC648, and
Klebsiella pneumoniae of complex CC307 from macerated tissue of surface-sterilized
leaves of spinach, cabbage, arugula, and lettuce. Regardless of species, all ESBL-positive
isolates were able to endophytically colonize common bean (Phaseolus vulgaris) seed-
lings, showed resistance to acid pH, and had a multidrug-resistant (MDR) profile to clini-
cally relevant antibiotics (i.e., broad-spectrum cephalosporins, aminoglycosides, and fluo-
roquinolones). Genomic analysis of CTX-M-producing endophytic Enterobacterales revealed
a wide resistome (antibiotics, biocides, disinfectants, and pesticides) and virulome, and
genes for endophytic fitness and for withstanding acidic conditions. Transferable IncFIB
and IncHI2A plasmids carried blacy..q1s genes and, additionally, an IncFIB plasmid (named
pKP301cro) also harbored genes encoding resistance to heavy metals. These data sup-
port the hypothesis that fresh vegetables marketed for consumption can act as a figura-
tive Trojan horse for the hidden spread of international clones of critical WHO priority
pathogens producing ESBLs, and/or their resistance genes, to humans and other ani-
mals, which is a critical issue within a food safety and broader public and environmental
health perspective.

IMPORTANCE Extended-spectrum B-lactamases (ESBL)-producing Enterobacterales are
a leading cause of human and animal infections, being classified as critical priority
pathogens by the World Health Organization. Epidemiological studies have shown
that spread of ESBL-producing bacteria is not a problem restricted to hospitals, but
also represents a growing problem involving environmental and food safety. In this
regard, CTX-M-type B-lactamases have become the most widely distributed and clin-
ically relevant ESBLs worldwide. Here, we have investigated the occurrence and
genomic features of ESBL-producing Enterobacterales in surface-sterilized fresh vege-
tables. We have uncovered that international high-risk clones of CTX-M-15-producing
Escherichia coli and Klebsiella pneumoniae harboring a wide resistome and virulome,
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carry additional genes for endophytic fitness and resistance to acidic conditions.
Furthermore, we have demonstrated that these CTX-M-15-positive isolates are able
to endophytically colonize plant tissues. Therefore, we believe that fresh vegetables
can act as a figurative Trojan horse for the hidden spread of critical priority patho-
gens exhibiting endophytic lifestyles.

KEYWORDS E. coli ST648, E. coli ST38, K. pneumoniae CC307, CTX-M-15, food, One
Health, ESBL

xtended-spectrum B-lactamase (ESBL)-producing Gram-negative bacteria are a

leading cause of human and animal infection, being categorized as critical priority
pathogens by the World Health Organization (1). In this regard, plasmid-mediated
ESBLs of the CTX-M family have been widely identified in different genera of
Enterobacterales, with CTX-M-15 being the most clinically relevant ESBL worldwide (2).
Curiously, Kluyvera species, bacteria commonly found in the rhizosphere and endo-
phytic ecosystems, have been proposed as the original source of blacryu-type genes
(3). Therefore, endophytic bacteria that colonize internal tissues of vegetables can rep-
resent a hidden mode of transmission of virulent and/or antibiotic-resistant bacteria
and their resistance genes to humans and other animals (4-7).

Currently, epidemiological studies have shown that the spread of CTX-M-producing
bacteria is not a problem restricted to hospitals, but also represents a growing problem
involving environmental and food safety (2). On the other hand, rates of CTX-M-produc-
ing Enterobacterales in community-acquired urinary tract infections (UTls) and community
fecal carriage have increased significantly worldwide, with developing countries being the
most affected (8, 9). In this regard, various factors, such as environmental sources, interna-
tional travel, and wild, companion, and food-producing animals, have accelerated the
global spread of CTX-M ESBLs in the community, mainly in countries with endemic status
(8,10-12).

Specifically, contamination of fresh vegetables by critical priority pathogens is the
greatest concern (6, 7, 13, 14), since these foods are consumed raw and this increases the
risk of human exposure to ESBL producers and other antibiotic-resistant bacteria with clini-
cal interest (15). Although ingestion of ESBL-producing bacteria may not have an immedi-
ate clinical health implication, colonization by this pathway can contribute to the transfer
of antibiotic resistance genes to other bacterial species present in the gut microbiota (7,
14, 16). Consequently, a potential threat to human health would be associated with future
endogenous infections, mainly in immunosuppressed patients, where therapeutic failure
could occur.

Even though clinically significant ESBL-producing Enterobacterales, such as Escherichia
coli, Klebsiella pneumoniae, and Enterobacter cloacae, have been frequently found as epi-
phytes on fresh vegetables (13, 14), little is known about their endophytic existence.
Therefore, we have performed a microbiological and genomic investigation of critical pri-
ority pathogens displaying resistance to broad-spectrum cephalosporins and showing
endophytic lifestyles in fresh vegetables sold in a country with high endemicity of ESBLs.

RESULTS

Multidrug-resistant ESBL-producing endophytic Enterobacterales isolated from
fresh vegetables. The presence of endophytic ESBL-producing Enterobacterales was
confirmed in 10.4% of 48 fresh vegetables samples screened after surface sterilization,
including spinach (2 positive samples for ESBL-producing E. coli strain ESP110 and E.
cloacae strain ESP151), cabbage (1 positive sample for 2 ESBL-producing E. coli strains
[REP215 and REP237]), lettuce (1 positive sample for ESBL-producing K. pneumoniae
[strain ALF301]), and arugula (1 positive sample for ESBL-producing K. pneumoniae
[strain RUC232]). All strains displayed a multidrug-resistant profile (17) with high MIC
values above resistance breakpoints for broad-spectrum cephalosporins (Table 1).
Further resistance to fluoroquinolones was detected in K. pneumoniae RUC232 and E.
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FIG 1 Phylogenomic analysis of a CTX-M-15-positive Escherichia coli REP237 strain, isolated from cabbage, in relation to an international collection of
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genomes of E. coli strains belonging to sequence type (ST) 38. On the left, the image shows a minimum spanning tree based on wgMLST of 799
worldwide distributed E. coli strains belonging to ST38, constructed by the MSTree V2 tool from EnteroBase. The E. coli strain REP237 was organized in the
cluster highlighted in red. The highlighted cluster includes a partial depiction of the tree, including the Enterobase identification (ID), source of origin,
country, and isolation year of genomically related isolates. The figure was generated with iTOL v.5.5 (https://itol.embl.de). An interactive version of the tree

can be found at https://itol.embl.de/tree/14310712557248381595353218.

coli REP215 strains, whereas all endophytic ESBL-positive strains remained susceptible
to carbapenems (i.e., imipenem, meropenem, and ertapenem) and amikacin (Table 1).
Identification of global clones and phylogenomic analysis. Endophytic ESBL-pro-
ducing isolates belonged to different sequence types (ST). In this regard, E. coli ESP110,
REP215, and REP237 from spinach and cabbage belonged to ST4012 and the international
ST648 and ST38, respectively. K. pneumoniae ALF301 belonged to ST198 and K. pneumo-
niae RUC232 belonged to the new sequence type ST2739, a single-locus variant of interna-
tional ST307. E. cloacae ESP151 isolated from spinach was assigned to the new ST927.
Genomic relatedness analysis of 798 assembled genomes of globally reported E.
coli ST38 assigned E. coli strain REP237 to a cluster comprising human E. coli genomes
from Asia, Europe, and America (including Brazilian human isolates), two wild animal E.
coli genomes from Australia, one animal feed E. coli genome from Switzerland, and
two companion animal genomes from Brazil (Fig. 1). On the other hand, the minimum
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FIG 2 Phylogeny of a CTX-M-15-producing E. coli REP215 strain, isolated from cabbage, in relation to an international collection of genomes of E. coli strain
belonging to ST648. On the left, the image shows a minimum spanning tree based on wgMLST of 390 worldwide distributed E. coli strains belonging to
ST648, constructed by the MSTree V2 tool from EnteroBase. The E. coli strain REP215 was organized in the cluster highlighted in red. The highlighted
cluster includes a partial depiction of the tree, including the Enterobase identification (ID), source of origin, country, and isolation year of genomically
related isolates. The figure was generated with iTOL v.5.5 (https://itol.embl.de). An interactive version of the tree can be found at https://itol.embl.de/tree/
14310712557248341595353217.

spanning tree for E. coli REP215 isolate and the other 389 genome assemblies belong-
ing to ST648 assigned E. coli REP215 to a cluster comprising human genomes from
Europe, Asia, America, and Oceania (Fig. 2).

While genomes of E. cloacae and K. pneumoniae strains belonging to ST927 and
ST2739, respectively, were not publicly available for comparative phylogenetic analysis,
comparative core-genome multilocus sequence type (cgMLST) analysis of endophytic
K. pneumoniae strain ALF301 with human K. pneumoniae strains belonging to ST198,
previously identified in Brazil, revealed that endophytic K. pneumoniae ALF301 differs
in 23 and 72 cgMLST alleles from human K. pneumoniae ICBKpBL-III-03(1) (GenBank
acession number NIHK00000000.1) and ICBKpBL-IlI-02(1) (GenBank acession number:
NGJM00000000.1) strains, respectively.

Resistome, virulome, and identification of endophytic and acid tolerance
genes. Whole-genome sequence (WGS) analysis revealed that in all endophytic strains,
ESBL production was associated with the presence of blaciyu..s genes (Fig. 3).
Additionally, the blagy,., B-lactamase gene was further identified in all strains, except
in E. coli ESP110. On the other hand, while E. coli strains ESP110 and REP215, K. pneu-
moniae RUC232, and E. cloacae ESP151 carried the blag, .5 B-lactamase gene, both K.
pneumoniae strains were also blas.-positive. In addition to beta-lactam resistance
genes, the presence of resistance determinants to aminoglycosides (strA, strB, aac(3)—
Il, aac(6)Ib—cr, aadA5 and ant(3")la), quinolones (aac(6)Ib—cr, gnrB1, ogxA, and ogxB),
sulfonamides (sull and sul2), trimethoprim (drfA14 and drfA17), phenicols (catAl,
cmlAT, and floR), tetracyclines (tetA and tetB), fosfomycin (fosA) and macrolides (ermB
and mphA) was confirmed among endophytic strains (Fig. 3). Substitutions Thr-83—lle
and Ser-80—lle in the quinolone resistance-determining region (QRDR) of GyrA and
ParC, respectively, were identified in the quinolone-resistant K. pneumoniae RUC232
strain, whereas substitutions Ser-83—Leu and Asp87—Asn in GyrA, and Ser-80— lle in
ParC were found in E. coli REP215 (Fig. 3).
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Heavy metals resistance gene clusters, such as cusSRCFBA, copE2ABCDRSE1, arsRDABC,
and merRTPCAD, encoding resistance to copper/silver, copper, arsenic, and mercury,
respectively, were identified in K. pneumoniae ALF301 isolated from commercial lettuce
(Fig. 3), whereas E. coli REP237 carried tellurite resistance genes tehA/tehB. On the other
hand, E. coli REP215, E. coli ESP110, K. pneumoniae ALF301, and E. cloacae ESP151 harbored
the phnC-P gene system conferring resistance to glyphosate herbicide.

Regarding antiseptics and disinfectants, genes predicted to confer tolerance to
hydrogen peroxide (cpxA and kpnE) and resistance to quaternary ammonium com-
pounds (acrf/envD, amvA/ermB, cpxA, kpnE, mdfA/cmr, mdtK/ydhE, ogxB, phoB, phoR,
qacEdeltal, smvA/emrB, tehA, and tolC), phenol (tolC), triclosan (fabl, kpnE, ogxB, and
tolC), biguanides/chlorhexidine (cpxA, kpnE, ogxB, phoB, phoR, and qgacEdeltaT), organo-
sulfate/sodium dodecyl sulfate compounds (acrF/envD, amvA/ermB, kdeA, kpnE, ogxB,
qacEdeltal, and tolC), and/or ionic detergents/sodium deoxycholate (kexD, kpnE, mdtK/
ydhE, and gacEdeltal) were also identified in all CTX-M-15-positive endophytic isolates
(Fig. 3).

Virulome analysis of E. coli strains revealed the presence of genes involved in adher-
ence (air, eilA, and nfaE), toxin production (sat and senB), long polar fimbriae (IpfA),
increased serum survival (iss), and acid resistance (gad). In this regard, E. coli REP215
and REP237 belonged to the phylogroup D known for including highly virulent line-
ages, whereas E. coli ESP110 was assigned to the low-virulence phylogroup A, common
among commensal lineages (18). Virulome analysis of K. pneumoniae strains confirmed
genes encoding the production (irp2 and ybt) and uptake (fyuA) of the siderophore
yersiniabactin, and/or genes encoding type 3 fimbriae (mrk gene cluster) (Fig. 3). On
the other hand, K. pneumoniae RUC232 showed an identical capsular polysaccharide
serotype (KL102-wzi173) and O-locus (O2v2) than K. pneumoniae strains belonging to
clonal complex CC307 (19), whereas K. pneumoniae ALF301 of ST198 displayed ybt16,
ICEKp12, wzi85, KL30, and O1v1 serotype. In E. cloacae ESP151, genes involved in
hyperadherence (yidE) and curli fimbriae formation (csgABCDEFG operon) were pre-
dicted (Fig. 3).

Genetic determinants contributing to an endophytic lifestyle, such as genes for
nitrogen supply favoring plant growth (narl, narJ, and nirB), were found in all CTX-M-
15-positive strains (20, 21). On the other hand, genes for biosynthesis of 2,3-butanediol,
involved in plant growth (22), were found in all K. pneumoniae and E. cloacae strains.
Furthermore, genes encoding chitinase ChiC (EC 3.2.1.14) were identified in E. cloacae
ESP151, K. pneumoniae ALF301 and RUC232, and E. coli ESP110 strains. Genes encoding
cellulase A 3 (EC 3.2.1.4) were harbored by all endophytic ESBL producers.

Plasmidome, horizontal transfer of plasmids, and genetic environments of
blacy.m1s ESBL genes. IncFIB and IncFll plasmid replicon types were harbored by
CTX-M-15-producing endophytic strains. However, while in E. coli and K. pneumoniae
strains the bldcry.m.15 gene was carried on IncFIB plasmids, in E. cloacae this gene was
harbored by an IncHI2A plasmid (Fig. 3). Conjugation assays confirmed transfer of
blacrymqs/INCFIB plasmids from E. coli strains REP215 (ST648), REP237 (ST38), and
ESP110 (ST4012) at frequencies of 8.67 x 1074, 2.33 x 1073, and 5.14 x 10~3 transconju-
gants/recipient cell, respectively. For K. pneumoniae RUC232 and ALF301, and E. cloa-
cae ESP151, transfer of plasmid carrying the bldcy..s gene was only achieved by
transformation with efficiency of 4.95 x 105, 6.12 x 10°, and 1.05 x 10° transformants/ug
of plasmid, respectively.

In K. pneumoniae ALF301, the blacy...s gene was carried on an IncFIB plasmid
named pKP301cro. The pKP301cro plasmid is 147,442 bp in size, with G+C content of
50.78%, coharboring cusSRCFBA, copE2ABCDRSE1, and arsRDABC gene clusters (Fig. 4A
and Q). Interestingly, this plasmid showed significant divergence from others of the
same incompatibility group identified in clinical and environmental strains (Fig. 4B).

Three different genetic environments were found surrounding blacry.y.1s (Fig. 5). In
K. pneumoniae and E. cloacae strains and one E. coli strain (REP215), the international
blacry.m15s genetic environment was confirmed (Fig. 5A) (23). Moreover, two novel envi-
ronments were present in the endophytic E. coli strains belonging to ST38 (REP237)
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FIG 4 (A) Overview of the pKP301cro plasmid harbored by the endophytic K. pneumoniae ALF301 ST198 isolated from lettuce. Blue, protein coding
sequences; gray, transposable elements; black, GC content; green, positive GC skew; purple, negative GC skew. (B) Comparison of IncFIB plasmids carrying
B-lactamase genes. Low identities (70% to 50%) between plasmid proteins are indicated as lighter shades. Matches with less than 50% identity and no
matches appear as blank spaces. In pink, pLGP4 plasmid (GenBank: MF116002.1) from uncultured bacterium; in green, p6234-198.371kb plasmid (GenBank:
CP010390.1); in yellow, pKPSH11 plasmid (GenBank: KT896504.1); in blue, pKP301cro plasmid (GenBank: KY495890.1); and in purple, pKPN3-307_typeD
plasmid (GenBank: KY271407.1) of K. pneumoniae strains from bodily fluid, wastewater, lettuce, and aspirate bronchial, respectively. Black arcs indicate
transposable elements in pKP301cro. (C) Region from pKP301cro showing resistance genes to silver/copper (blue, cusSRCFBA), copper (orange,

copE2ABCDRSET), arsenic (green, arsRDABC), and B-lactams (red, blacry y.1s)-

and ST4012 (ESP110) isolated from cabbage and spinach, respectively (Fig. 5B and C).
In these novel environments, the ST38 lineage showed an 1,171-bp ISEcpT insertion
element truncated by an incomplete 1S26 upstream of the blay..15s gene, while the
ST4012 lineage exhibited a 494-bp ISEcpT truncated by an inverted 1S26.

Endophytic properties of CTX-M-15-producing Enterobacterales. This assay was
designed to exclusively evaluate endophytic properties and plant-colonizing abilities
of ESBL-producing isolates by using a common bean (Phaseolus vulgaris) model, deter-
mining endophytic bacterial loads recovered from root and shoot tissues (leaves) after
inoculation of sterile sprouts obtained from surface-sterilized bean seeds (Table 2). In
this regard, all CTX-M-15-positive isolates were able to endophytically colonize com-
mon bean seedlings. In order to evaluate endophytic properties and plant-colonizing
abilities, bacterial burdens were evaluated at 15days after inoculation of common
bean. All strains efficiently colonized the interior of the root and shoot systems, sup-
porting endophytic behaviors. Significantly higher bacterial counts in the root
(P<0.05) were determined for CTX-M-15-producing K. pneumoniae ALF301 and
RUC232. Otherwise, the E. cloacae ESP151 displayed a higher bacterial burden within
the shoot than the other strains (P < 0.05) (Table 2).

Tolerance of CTX-M-15-producing endophytic Enterobacterales to acid pH.
Initially, all Enterobacterales strains were grown in Trypticase soy broth (TSB) medium
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FIG 5 Schematic representation of genetic environments surrounding bldcy s in endophytic
Enterobacterales. (A) International blac,.,s genetic environment (23), identified in endophytic E. coli
of ST648 (REP215, GenBank accession number: MG844172), K. pneumoniae of ST198 and ST2739
(ALF301, GenBank accession number: MG844168, and RUC232, GenBank accession number:
MGB844173, respectively), and E. cloacae (ESP151, GenBank accession number: MG844171) strains. (B)
The novel environment identified in E. coli REP237 of ST38 (GenBank accession number: MG844170)
presents a 1,171-bp ISEcpT truncated by an incomplete 1S26 upstream of the blac y.\.,s gene. (C) The
novel environment identified in E. coli ESP110 of ST4012 (GenBank accession number: MG844169)
presents a 494-bp ISEcp1 truncated by an inverted 1S26.

at pH 7.0 to a cell density of ~1 x 108 CFU/ml, and the cells were collected, washed,
and transferred into the same medium at pH ranging from 7.0 to 2.0, at a final concen-
tration of 10° cells per well. For all strains, no reduction of CFU/ml was observed after
24 h of incubation at pH 6.0 to 5.0. However, at pH 4.0, while no reduction in CFU/ml of
K. pneumoniae was observed after 24 h of incubation, for E. coli and E. cloacae the cell den-
sity was reduced by 2 to 3 log CFU/ml. On the other hand, pH 3.0 led to reduction of K.
pneumoniae and E. coli cell densities by 3 to 5 and 2 to 4 log CFU/ml at 1 h and 2 h of incu-
bation, respectively, whereas for all strains CFU/m| were undetectable after 24 h of incuba-

TABLE 2 Endophytic bacterial load in root and shoot tissues of common bean (Phaseolus
vulgaris) inoculated with CTX-M-15-producing Enterobacterales isolated from commercial
vegetables

CFU/g tissue = SD

Inoculating strain? Root Shoot

K. pneumoniae ALF301¢ 1.6+0.1x10° 6.9+ 0.4 x 102
K. pneumoniae RUC232¢ 8.7 0.5 x 10% 3.8+0.3x10?
E. cloacae ESP151° 6.4+04x10* 2.1+0.1x103
E. coli REP215 3.9+04 x 104 7.0+09x 10
E. coli ESP110 32+0.6x10* 3.1 +£0.5x10?
E. coli REP237 5.1+0.5x 10° 75+1.0x 10

A. baumannii ATCC 19606

c

c

aSignificantly higher bacterial counts in the root (P < 0.05).
bSignificantly higher bacterial counts in the shoot (P < 0.05).
cUndetectable bacterial colonies.
dCommon beans (Phaseolus vulgaris) grains were surface-sterilized and, after a two-day germination, sprouts
were incubated for 30 min with bacterial suspension (OD,, = 1.5) and transferred to plant culture bottles with
Murashige and Skoog medium. Endophytic bacterial load in root and shoot tissue was assessed at 15 days after
inoculation. All assays were performed in triplicate. Acinetobacter baumannii ATCC 19606 was used as a
negative control for endophytic colonization.
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tion. Finally, only E. coli strains presented tolerance to pH 2.0, where cell density was
reduced by 3 to 4 and 2 to 3 log CFU/ml at 1 h and 2 h of incubation, respectively.

DISCUSSION

Members of the Enterobacterales order have been shown to colonize and benefit
plant growth in various crops, such as wheat, maize, rice, and cucumber (4, 24-27).
Worryingly, ESBL-producing Enterobacterales, including CTX-M-15 producers, have also
been reported in vegetables, representing a risk of human exposure to MDR critical pri-
ority pathogens through this food source (7, 13, 14). In this regard, the occurrence of
epiphytic ESBL producers in fresh vegetables has been described in North American,
Asian, and European countries (13, 28). In South America, ESBL-positive E. coli of types
ST44 and ST410 have been recently identified in fresh vegetables sold in Ecuador (14).

In Brazil, the largest and most populated country in South America, ESBL produc-
tion has been documented to be more challenging than in developed countries. In
fact, ESBL-producing Enterobacterales are endemic in both hospital and community
settings (29-31). K. pneumoniae and E. coli have been frequently associated with the
production of CTX-M-15 ESBLs (32). Worryingly, in this country, CTX-M-15 producers
have also been identified in chicken meat, wild and food-producing animals, pets,
Amazonian fish, and aquatic environment samples (11, 33-44), whereas its presence in
vegetables has not been investigated in deep, so far.

Most studies conducted to evaluate contamination of commercial vegetables by MDR
pathogens have focused on epiphytic bacteria, which colonize the surface of leaves, roots,
seeds, and fruits (5) and thus remain susceptible to disinfecting methods, which have
been shown to be effective against bacteria colonizing fruit and vegetable surfaces (45).
Therefore, identification of CTX-M-15-producing Enterobacterales with endophytic lifestyles
is a critical public health issue, since endophytic bacteria colonize protected sites of inter-
nal plant tissues, from where they are able to resist conventional treatments used for disin-
fecting leafy vegetables (13, 46). Consequently, CTX-M-15 producers with endophytic life-
styles could begin to colonize hosts that use vegetables in the diet.

To support this hypothesis, we performed assays measuring tolerance to acid pH
using TSB adjusted to pH 2, 3, 4, 5, 6, and 7 to define the survival of the endophytic
CTX-M-positive Enterobacterales identified in this study. Low pH values were chosen in
order to evaluate the ability to survive transit through the acidic conditions of the
stomach, which is essential for successful colonization of the mammalian host by com-
mensal and pathogenic bacteria (47). Interestingly, both K. pneumoniae and E. coli
strains exhibited tolerance to acid pH, which was supported by the presence of eefA
and gad genes. While the gad system helps to maintain a near-neutral intracellular pH
when cells are exposed to extremely acidic conditions, eefA confers to the bacteria an
acid tolerance response to inorganic acids (48).

Although, the origins of clinically relevant CTX-M-15-producing bacteria found in
fresh vegetables in this study were not investigated, they could originate from human
(as sewage), animal (manure and wild animal feces), and/or environmental (such as
contaminated soil and irrigation water) sources that come into contact with crops
(49-52). In this regard, colonization of vegetables can occur through entrances such as
stomata, lenticels, root hairs, lesions, and emergent surfaces of radicle and lateral roots
(53, 54). Additionally, animal and human pathogens, especially E. coli pathotypes, are
also able to colonize endospheres (4). This last hypothesis could be supported by the
endophytic properties and plant-colonizing abilities of CTX-M-15-producing strains, as
observed in this study. In fact, using the common bean model, all strains exhibited
endophytic colonization ability.

Another clinically relevant result of this study is the identification of endophytic
CTX-M-15-producing E. coli strains belonging to pandemic high-risk clonal complexes
CC38 and CC648, and K. pneumoniae of complex CC307, which have been associated
with extraintestinal diseases and (mainly) bloodstream and urinary tract infections
(BSIs and UTls, respectively) (19, 55-58). In Brazil, these international clones have been
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previously identified in human and animal infections and in polluted environments,
denoting One Health implications (38, 59-63).

The wide host range of these critical priority clonal complexes, including different
vegetables evaluated in this study, supports a genetic versatility and adaptation medi-
ated by the gene content, which includes genes conferring endophytic properties and
resistance to antibiotics, biocides, and heavy metals. In fact, an IncFIB plasmid
(pKP301cro) coharboring the blacy.,.1s gene and heavy metals resistance genes (i.e.,
cusSRCFBA, copE2ABCDRSE1, and arsRDABC) was identified. Heavy metals can come from
contaminated soil, irrigation water, and inorganic fertilizers and pesticides commonly
used in agricultural practices, which remain in the environment for long periods, accu-
mulating in leaves, stem, and root of plants (45, 64-67). Consequently, these com-
pounds, as well as biocides, may act as selectors of strains resistant to antibiotics.
Therefore, the presence of multidrug-resistant pathogens displaying endophytic life-
styles and broad resistomes, resident in fresh vegetables, denotes environmental and
food contamination mediated by anthropogenic activities. Future studies that include
the analysis of a higher number of vegetables samples of different origins and the quan-
titative analysis of ESBL producers are worthy of further investigation, in order to gather
data for risk assessment.

In conclusion, the occurrence of international clones of critical World Health
Organization priority pathogens that are producing CTX-M-15 ESBL, harboring a broad
resistome, and displaying endophytic lifestyles in fresh vegetables is a public and envi-
ronmental health problem; it denotes contamination mediated by anthropogenic
activities and a potential risk of human and animal exposure to antibiotic-resistant bac-
teria and/or their resistance genes. Therefore, fresh vegetables marketed for consump-
tion can act as a figurative Trojan horse for the hidden spread of multidrug-resistant
and ESBL-producing pathogens, which could be important bioindicators of environ-
mental and food contamination.

MATERIALS AND METHODS

Isolation of endophytic bacteria displaying a broad-spectrum cephalosporin-resistant profile
from surface-sterilized fresh vegetables. During a Brazilian surveillance study (OneBR project), con-
ducted to characterize the burden of antimicrobial resistance associated with critical WHO priority
pathogens, 48 samples of fresh vegetables collected from the Sao Paulo State Food Supply Company,
the largest supply center in South America, were investigated. Vegetables included lettuce (n = 6), spin-
ach (n = 6), escarole (n = 6), watercress (n = 4), beet (n = 4), arugula (n = 4), kale (n = 4), radish (n = 4),
cabbage (n = 4), celery (n = 2), leek (n = 2), and chicory (n = 2). All samples collected were immediately
stored in sealed plastic bags at 4°C and processed within 24 h. Samples were washed in running water
and sanitized before the isolation of endophytic bacteria. For surface sterilization, ~4 g of leaves were
immersed sequentially in 70% ethanol (1 min), sodium hypochlorite (2.5% chlorine, 4 min), and 70%
ethanol (30 s), and then washed three times in sterile distilled water (68). Aliquots of the sterile water
used in the final rinse were plated directly onto nutrient agar to confirm the sterilization protocol. For
the isolation of ESBL-positive endophytic bacteria, surface-sterilized leaves were macerated in 12 ml of
saline solution, serially diluted, and plated in triplicate on MacConkey agar supplemented with ceftriax-
one (2 ug/ml). After 24 h of incubation at 37°C, colonies were picked from the selective plates, subcul-
tured, and streaked to obtain pure cultures. Identification of isolates was performed using the Vitek 2
system (bioMérieux, Marcy I'Etoile, France).

Antimicrobial susceptibility testing and phenotypic confirmation of ESBLs. Bacterial isolates
were subjected to antimicrobial susceptibility testing by the disk diffusion method, whereas MICs were
determined by Etest strips (bioMérieux, Marcy I'Etoile, France), with interpretative criteria according to
CLSI (69, 70) or EUCAST (www.eucast.org). ESBL production was screened by the double-disk synergy
test (71), with further confirmation by using Etest ESBL strips containing ceftazidime alone and in combi-
nation with clavulanic acid (bioMérieux, Marcy I'Etoile, France).

Whole-genome sequencing and bioinformatic analysis. All ESBL-producing endophytic isolates
underwent whole-genome sequencing (WGS). For genome sequencing, total DNA was extracted from
overnight cultures using the PureLink genomic DNA minikit (Thermo Fisher Scientific, USA) according to
the manufacturer's instructions. Sequencing was performed using the MiSeq platform (lllumina, San
Diego, CA) (300 bp paired-end) and the reads were de novo assembled using SPAdes v.3.9 and A5-Miseq
pipeline (72, 73). Sequence types (STs), serotypes, plasmid replicon types, antimicrobial resistance genes,
and virulence genes were identified using MLST 2.0, SerotypeFinder 2.0, PlasmidFinder 2.1, ResFinder
4.1, and VirulenceFinder 2.0, respectively, available from the Center for Genomic Epidemiology (https://
cge.cbs.dtu.dk/services/), and databases for bacterial genotyping from the Pasteur Institute (https://
bigsdb.pasteur.fr/). Resistance genes with uncertain assignment by ResFinder were checked manually
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and further blasted in NCBI. Analysis of transposable elements flanking bla.;,.,, genes was performed
with ISfinder (74). For E. coli, virulence phylogroups were detected using the online Clermont typing tool
(http://clermontyping.iame-research.center/). K. pneumoniae were further analyzed using Kleborate
(https://github.com/katholt/Kleborate) to screen assemblies to confirm the species designation, multilo-
cus sequence type (MLST), antibiotic-resistance genes, ICEKp-associated virulence loci (yersiniabactin
[ybt] and colibactin [c/b]), and K (capsule) and O antigen (LPS) serotypes (75-77). Biocide-, heavy metal-,
and disinfectant-resistance genes, along with genes to withstand acidic conditions, were identified using
the BacMet-Scan script (http://bacmet.biomedicine.gu.se/) against the experimentally confirmed data-
base v.2.0, using an E value =1 and a threshold of >90% of identity and coverage.

Comparative phylogeny analysis of publicly available genomes of E. coli ST38 and ST648, from differ-
ent countries, was performed using a minimum spanning tree constructed in Enterobase using the
MSTree V2 algorithm and the wgMLST scheme (https://enterobase.warwick.ac.uk/species/index/ecoli),
which consists of 25,002 pangenome genes present in E. coli genomes, representing most of the diver-
sity in Enterobase at the time (February 2021) (https://enterobase.readthedocs.io/en/latest/pipelines/
escherichia-statistics.html). Images were generated with iTOL v.5.5 (https:/itol.embl.de). Comparative
phylogeny of publicly available genomes of K. pneumoniae belonging to ST198 was performed using
core-genome MLST (cgMLST) analysis and the BacWGSTdb database (http://bacdb.cn/BacWGSTdby/).

Conjugation and transformation of plasmids carrying ESBL genes. E. coli C600 (Str?) and E. coli
J53 (Az®) were used as recipient strains in mating experiments with endophytic ESBL-producing E. coli
strains as donors, in the ratio 3:1 (recipient:donor) in LB broth. Transconjugants were selected using
MacConkey agar supplemented with ceftriaxone (2 wg/ml) and streptomycin (2,000 ng/ml), or ceftriax-
one (2 ug/ml) and sodium azide (200 wg/ml). For transformation assay, plasmids were extracted by the
alkaline lysis method (78) and ultracompetent E. coli TOP10 was heat shock transformed, as previously
described (79), increasing the thermal shock time at 42°C to 1.5 min. Positive transconjugants and trans-
formants were confirmed by ESBL production, as described above.

Endophytic properties of ESBL-producing Enterobacterales. Endophytic properties of ESBL-pro-
ducing isolates were evaluated using a common bean (Phaseolus vulgaris) model (68), with modifica-
tions. In brief, bean seeds were surface sterilized and then incubated at 30°C until the early growth of
the radicle (80). After two days of germination, sprouts were immersed for 30 min in the bacterial cell
suspension (optical density at 600 nm [OD,,,] = 1.5) and transferred to plant culture bottles with
Murashige and Skoog medium, which were then incubated at 30°C for 15 days. Thereafter, bean plants
were aseptically excised into root and shoot and endophytic bacteria were isolated from each of them,
as described above. The recovered isolates were confirmed by detecting ESBL genes and by assessment
of the clonal relatedness with the strains used to inoculate the sprouts, as determined by comparative
enterobacterial repetitive intergenic consensus (ERIC)-PCR analysis (81). All assays were performed in
triplicate. Acinetobacter baumannii ATCC 19606 and sterile distilled water were used as negative
controls.

Tolerance of endophytic ESBL (CTX-M-15)-producing Enterobacterales to acid pH. Trypticase soy
broth (TSB) culture medium was prepared to cover acid pH scales ranging from 2.0 to 7.0. Volumes of
50 ml of TSB were adjusted individually to a final pH of 2.0, 3.0, 4.0, 5.0, 6.0, and 7.0 by aseptically adding
1 N HCl, and using a pH meter (82). Broths were sterilized and the pH was confirmed. Next, 200 ul of
each broth at the different pH values were added per well in a 96-well flat-bottomed microtiter plate. All
endophytic ESBL producers were tested for pH tolerance (83). In brief, each well of the microtiter plate
was inoculated with bacterial cell suspension to a final concentration of 10° cells per well and then the
microplates were incubated at 35°C. After 1, 2, and 24 h of incubation, an aliquot (50 wl) of cell suspen-
sion was taken from each well, diluted 1:10, 1:100, 1:1,000, and 1:10,000, and cell viability was deter-
mined by plating 50 ul of each dilution on Trypticase soy agar (TSA) plates and incubating for 24 h at
35°C (84). All assays were performed in duplicate.

Statistical analysis. Data were subjected to analysis of variance (ANOVA) followed by the Duncan’s
multiple range test with a significance level of P < 0.05, using IBM SPSS Statistics 24 software (IBM,
United States).

Data availability. Nucleotide sequences of endophytic CTX-M-producing Enterobacterales have
been deposited in the GenBank database under accession numbers: PPHP01000000 (E. cloacae ESP151);
MRWCO01000000 (K. pneumoniae ALF301); PPHO01000000 (K. pneumoniae RUC232); PPHN0O1000000
(E. coli ESP110); PPHMO01000000 (E. coli REP215); PPHLO1000000 (E. coli REP237); KY354306.1 (plasmid
pKP301b from K. pneumoniae ALF301); and KY495890.1 (plasmid pKP301cro from K. pneumoniae
ALF301). Additionally, genomic data of E. coli ESP110, REP215, and REP237 and K. pneumoniae ALF301
and RUC232 strains are available on the OneBR platform (http://onehealthbr.com/) under numbers ID
ONE110, ONE111, ONE112, ONE249, and ONE250, respectively.
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