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Abstract: Gelatin (GE), amino-functionalized polyphenolic tannin derivative (TN), and graphene
oxide (GO) were associated to yield thermo- and pH-responsive hydrogels for the first time. Durable
hydrogel assemblies for drug delivery purposes were developed using the photosensitizer methylene
blue (MB) as a drug model. The cooling GE/TN blends provide brittle physical assemblies. To
overcome this disadvantage, different GO contents (between 0.31% and 1.02% wt/wt) were added
to the GE/TN blend at 89.7/10.3 wt/wt. FTIR and RAMAN spectroscopy analyses characterized
the materials, indicating GO presence in the hydrogels. Incorporation studies revealed a total MB
(0.50 mg/mL) incorporation into the GE/TN-GO hydrogel matrices. Additionally, the proposed
systems present a mechanical behavior similar to gel. The GO presence in the hydrogel matrices
increased the elastic modulus from 516 to 1650 Pa. SEM revealed that hydrogels containing MB
present higher porosity with interconnected pores. Dissolution and swelling degree studies revealed
less stability of the GE/TN-GO-MB hydrogels in SGF medium (pH 1.2) than SIF (pH 6.8). The
degradation increased in SIF with the GO content, making the polymeric matrices more hydrophilic.
MB release studies revealed a process controlled by Fickian diffusion. Our results point out the
pH-responsible behavior of mechanically reinforced GE/TN-GO-MB hydrogels for drug delivery
systems purposes.

Keywords: physical hydrogels; drug delivery systems; condensed tannins

1. Introduction

Protein-based materials have been extensively used in biomedical applications due to
their cytocompatibility and biodegradability. Thereby, gelatin-based hydrogels for drug
delivery purposes are being explored. Physical hydrogel assemblies have received great
attention because of their advantages compared to chemical hydrogels. These materials
can be designed to avoid toxic chemistries (crosslinkers, organic solvents, and surfactants),
which crosslink protein chains to support durability, using one-step strategies (in situ
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methods) [1]. These matrices comprise three-dimensional and hydrophilic structures
(amine (–NH2), thiol (–SH), hydroxyl (–OH), and carboxyl (–COOH) groups) capable of
absorbing biological fluids and swelling. These sites enable the incorporation of hydrophilic
drugs within the hydrogel matrices by establishing electrostatic, H-bonding, and ion-
dipole forces [2].

The gelatin (GE) protein has been extensively used to engineer hydrogels. It is ob-
tained from collagen denaturation [3] and is composed mainly of proline, glycine, and
4-hydroxyproline in different contents [4]. The average molar mass varies from 30,000 to
65,000 g/mol depending on the natural source [4]. GE is an exciting material for biomedical
purposes since it mimics well the connective tissue, has low cost, and is present in high
availability [5]. However, this material presents low mechanical and thermal strength [3].
This limitation is a drawback for the direct GE application as drug delivery systems (DDS).

One viable alternative is associating GE with other polymers to increase the mechan-
ical property of the final material. For example, hydrogels constituting GE and other
polymers such as pectin, poly(acrylic acid), and polyacrylamide have been developed that
aim for biomedical applications [2]. Previously, we proposed a physical hydrogel constitut-
ing GE/amino-functionalized tannin (TN) for biomedical applications involving wound
dressing purposes [4]. TN is an inexpensive and abundant material easily extracted from
the seeds of various plants, leaves, fruits, and barks [6]. TN is obtained from condensed
tannin in the presence of formic acid and ammonium chloride. This polymer presents
cationic moieties that can interact well with negatively-charged GE by hydrogen and ionic
bonds [7]. Additionally, hydrophobic interactions can occur involving the polyphenolic
moieties of TN and GE [8].

Our previous results revealed an assembly formation after the exposure of GE and TN
on cooling the blends at 4 ◦C [4]. TN presence was essential to stabilize the GE helices and
promote hydrogel formation. [4]. This stabilization was majority attributed to hydrophobic
forces and hydrogen bonds between GE and TN. However, besides hydrogel formation,
the related hydrogel presented aqueous instability [4].

To avoid the aqueous instability of the material, graphene oxide (GO) was added.
GO is a highly oxidized form of the graphene molecule that uses its functional groups
(epoxy (–O–), hydroxyl (–OH), and carboxylic (–COOH)) to conjugate with biomolecules
and proteins [9]. These interactions give materials with recognized biocompatibility and
improved physical and chemical properties, such as high fracture strength and high Young
modulus [10]. The cooling of these blends provides physical hydrogels with aqueous stabil-
ity. Here, for the first time, these hydrogels were designed as efficient drug delivery carriers.
The phenothiazine compound Methylene blue (MB) was selected as a drug model because
it is hydrophilic and presents high aqueous bioavailability. MB presents an aromatic and
positively charged structure at biological pHs. It is also a Food and Drug Administration-
approved drug that has been used as a photosensitizer in photodynamic therapy against
several types of cancers and infections caused by different pathogens [11,12]. Its application
is due to the excellent photophysical properties of MB, such as singlet oxygen generation
in a biological medium, low price, reduced pain, and without several side effects [11].
Moreover, besides its water solubility, MB is quickly reduced to its non-active leuco-MB
form in a biological medium [13]. In this way, to prevent this premature reduction, to
increase the MB retention time in contact with the target cells, and promote the controlled
delivery of MB, we propose the development of GE/TN-GO-MB hydrogels.

Here, we intend to show that the physical hydrogels (GE/TN-GO) can incorporate
hydrophilic drugs, such as MB. We propose new DDS for MB and related compounds
based on physical, durable, and cytocompatible hydrogels.

2. Results and Discussion
2.1. Hydrogel Formation

Figure 1 presents digital images of the GE/TN-GO-MB mixture at 50 ◦C and the
obtained hydrogel after gelation at 4 ◦C for 1 h.
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To overcome this disadvantage and improve the hydrogel mechanical properties GO 
(0.31, 0.51, 0.72, and 1.02% wt/wt) was associated with the hydrogels. GO has been 
explored for enhancing the mechanical properties of materials, by being applied as 
mechanical reinforcement for hydrogel matrices in biomedical applications [15]. GO 
contains peripheral carboxylic sites (–COOH) that provide stability and negative charge 
dependency on pH (–COO−). The epoxy (–O–) and hydroxyl (–OH) groups at the basal 
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Figure 1. Digital images of the 1-GE/TN-GO-MB mixture at 50 ◦C performed by mixing GE (3.0 mL
at 4.0% wt/vol) and TN-GO-MB (3.00 mL) (A). The obtained 3-GE/TN-GO-MB hydrogel created at
4 ◦C after the cooling process (B).

GE/TN-GO-MB hydrogels were obtained by mixing GE solutions and TN-GO-MB
suspensions prepared in water (pH ≈ 5.5) at 50 ◦C. GE/TN-GO-MB mixtures are homoge-
nous at 50 ◦C, providing physical hydrogels by gelation at 4 ◦C (Figure 1). Aqueous GE
solutions contain protein chains in helical conformation due to the effective establishment
of H-bonds between them [14]. Thus, the gelation of GE mixtures can occur by protein
stabilization. The TN (Zeta potential equal to ≈−15 mV at pH 5.5) can stabilize the GE
(type B) chains mainly by intermolecular interactions. Coulomb forces are established
between protonated groups and anionic carboxylate ions in TN and GE. The GE isoelectric
point is between 4.8–5.1. Therefore, protonated GE moieties can electrostatically interact
with hydrolyzed tannins at pH 5.5. The GE and TN chains also present hydrophilic sites,
including –OH, which can interact with H-bonds [4].

A pure GE/TN assembly was created from a GE solution at 4% wt/vol (4-GE/TN)
and dialyzed TN at 4.6 × 10−3 mg/mL at a 50% wt/wt. The GE/TN weight ratio presented
high stability in the water against disintegration and dissolution [4]. Therefore, the 4-
GE/TN weight ratio previously reported was selected to create GE/TN-GO-MB hydrogels.
However, the pure 4-GE/TN hydrogels showed brittle structures with poor mechanical
properties to be used as DDSs.

To overcome this disadvantage and improve the hydrogel mechanical properties GO
(0.31, 0.51, 0.72, and 1.02% wt/wt) was associated with the hydrogels. GO has been explored
for enhancing the mechanical properties of materials, by being applied as mechanical
reinforcement for hydrogel matrices in biomedical applications [15]. GO contains periph-
eral carboxylic sites (–COOH) that provide stability and negative charge dependency on
pH (–COO−). The epoxy (–O–) and hydroxyl (–OH) groups at the basal plane allow for
weak interactions and H-bonds. In addition, one must take into account the π electrons
present due to unmodified areas of graphene, in which they are hydrophobic and capable
of interacting by π-π interactions [15]. These GO interactions occur with TN and GE.

As shown in Figure 1, the blue coloration indicates the presence of MB in the hydrogels.
To add MB in the hydrogels, an in situ strategy was used. This strategy prolongs the
medication’s action, improves patient compliance, and reduces medication administration
frequency compared to the conventional medication delivery system [16]. Cationic MB
interacts with hydrogels by coulombic, ion-dipole, H-bonds, and hydrophobic forces [13].
These interactions also occur more precisely between the MB imines groups and the GE,
TN, and GO networks’ charged groups (Scheme 1) [17].
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Scheme 1. Gelatin, polyphenolic tannin, graphene oxide, and methylene blue support physical assemblies.

2.2. Characterization

The dynamic rheology was used to evaluate the GE/TN-GO-MB mixture properties
by measuring storage modulus (G’) and loss modulus (G”). These properties character-
ize the viscoelastic behavior and the temperature for the sol–gel transition (Tsol-gel) of
the systems [18].

Figure 2 shows curves of G’ and G” as a function of the temperature. The cross-over
point between G’ and G” determines the temperature that indicates the liquid–solid phase
transition. The elastic behavior of GE/TN-GO-MB mixtures prevails at temperatures up
to 60 ◦C because the values of G’ are greater than G” (Figure 2). As shown, the G’ and
G” curves do not provide a crossing point in a temperature range between 5 and 60 ◦C
for all samples, indicating that the Tsol-gel occurs above 60 ◦C. In fact, there is a cross-over
trend in the G’ and G” curves close to 60 ◦C. However, the GE chains degrade above 60 ◦C,
avoiding measures of G’ and G”.
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Figure 2. G’ and G” as a function of the temperature for GE/TN-GO-MB systems with different GO
content. (A) 1-GE/TN-GO-MB; (B) 2-GE/TN-GO-MB; (C) 3-GE/TN-GO-MB; and (D) 4-GE/TN-GO-MB.
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Figure 3 shows G’ and G” curves as a function of the oscillatory frequency for the
assemblies at 37 ◦C. The hydrogel’s structural consistency can be assessed by analyzing
G’ and G”. The gel state prevails when G’ is higher than G”. As G’ is lower than G”,
the energy used to deform the material is dissipated, indicating a liquid behavior [19,20].
The elastic response (G’) predominates over the viscous flow (G”) in the entire frequency
range analyzed (Figure 3). Therefore, the GE/TN-GO-MB systems have mechanical spectra
similar to gels. Our findings agree with other literature findings, confirming that the gel
state prevails upon the liquids state at a high GE content [4].

Table 1. Young’s modulus in the wet hydrogels.

Hydrogels E (Pa)

GE/TN-MB
1-GE/TN-GO-MB

516 ± 1.62
554 ± 1.06

2-GE/TN-GO-MB 606 ± 3.13
3-GE/TN-GO-MB
4-GE/TN-GO-MB

736 ± 5.61
1650 ± 33.62
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Figure 3. G’ and G” as a function of the oscillatory frequency for GE/TN-GO-MB systems with
different GO content (Table 1) at 37 ◦C. (A) 1-GE/TN-GO-MB; (B) 2-GE/TN-GO-MB; (C) 3-GE/TN-
GO-MB; and (D) 4-GE/TN-GO-MB.

The successful application of hydrogels in controlled drug release is related to their
mechanical characteristics. In case of failure or reduced mechanical strength, the hydrogel’s
integrity under certain conditions can be affected [21]. Thereby, Young’s or the elastic
modulus of the wet hydrogels was measured. Table 1 shows the effect of the GO content
(% wt/wt) on hydrogel mechanical properties. The elastic modulus is between 516 ± 1.62
and 1650 ± 33.60 Pa. The elastic modulus significantly increases as the GO content is raised
in the material structure. The GE/TN-MB elastic modulus without GO is 516 Pa, whereas
the 4-GE/TN-GO-MB is 1650 PA (Table 1). These results agree with the results found
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by [22]; i.e., increasing the GO content (0–6% vol/vol), shows higher values in Young’s
modulus in the GO/epoxy composite [22].

Figure 4 presents the FTIR spectra of the GE, dialyzed TN, MB, and hydrogels (1-
GE/TN-GO-MB, 2-GE/TN-GO-MB, 3-GE/TN-GO-MB, and 4-GE/TN-GO-MB). The GE
FTIR spectrum (Figure 4A(i)) presents characteristic bands at 1634 cm−1 assigned to the
C=O stretching of amide (I) and carboxylate ions at 1536 cm−1 ascribed to the angular
stretching of N–H and amide (II) bonds. The band at 1242 cm−1 is related to the stretching
of amide (III), whereas the signal at 3238 cm−1 is ascribed to the –OH stretching [4]. These
bands confirm the GE structure.
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(i), TN (ii) and MB (iii); (B) 1-GE/TN-GO-MB (i), 2-GE/TN-GO-MB (ii), 3-GE/TN-GO-MB (iii), and
4-GE/TN-GO-MB (iv).

The TN FTIR spectrum (Figure 4A(ii)) presented a band at 1717 cm−1 assigned to
the C=O stretching of carboxylic acids due to the presence of hydrolyzed tannins in
the TN structure [23]. The bands at 1623 and 1092 cm−1 are attributed to the C=C and
C−O stretching, respectively, found on condensed tannins’ phenolic groups. The band at
771 cm−1 indicates the angular stretching of C=C−H bonds on aromatic rings [4]. These
signals show that the TN comprises hydrolyzed and polyphenolic tannins.

The MB FTIR spectrum (Figure 4A(iii)) shows vibrational modes at 1591 and 1387 cm−1

assigned to the vibrations of the aromatic rings; 1326 cm−1 is ascribed to the C−N stretching;
1491 indicates vibrations of the aromatic ring; 1245, 1137, and 1032 cm−1 indicate the C−H
(in the plane) bending vibrations; 879, 822, 665 cm−1 assigned to the C−H (out of plane)
bending vibrations [24,25].

The hydrogels’ FTIR spectrum (Figure 4B) presents characteristic bands assigned to the
GE, TN, and MB. These confirm that GE, TN, and MB are assembled in the hydrogels. The
broadband between 3436 cm−1 in the assembly FTIR spectra indicates effective H-bonds
between the GE and TN chains. The band at 805 cm−1 is assigned to the C=C–H stretching
found on aromatic rings in condensed tannins [4]. The bands at 1689 and 1082 cm−1 are
attributed to the C=C and C−O stretching, confirming TN’s presence in the hydrogels.
The signals at 1237, 1532, 1632, and 1689 cm−1 indicate stretching of amide (III), angular
stretching of N–H and amide (II), and C=O (amide (I) and carboxylate ions), respectively.
These bands are attributed to GE’s presence in the hydrogels. The vibrational modes at
1387 and 585 cm−1 in the hydrogel FTIR spectra are related to MB. The bands are attributed
to the aromatic rings’ vibrations and the C–H out-of-plane vibrations. The FTIR analysis
confirms that the hydrogels are comprised of GE, TN, and MB.

Raman spectroscopy (Figure 5) was used to characterize carbon materials because
the spectral shape exhibits a wide variety corresponding to the carbon forms, revealing
structural information [26]. Through this technique, the GO and its presence in the hydro-
gels were analyzed according to Figure 5. The Raman spectrum of GO (blue line) shows
a 2D-band at 2682 cm−1, G-band at 1568 cm−1, and D-band at 1345 cm−1. The G-band
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is associated with graphitic carbons; 2D-bands and D-band are related to the structural
defects or partially disordered graphitic domains [27,28].
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Figure 5. Raman spectra of GO and GE/TN-GO-MB hydrogels with different GO content.

In the hydrogels’ spectra, the G bands at 1568 cm−1 and 2D bands at 2682 cm−1 are
observed. The D-band is also subtly noted at 1345 cm−1 in the 3-GE/TN-GO-MB and
4-GE/TN-GO-MB hydrogels. This event is not observed in the other hydrogels. The
3-GE/TN-GO-MB and 4-GE/TN-GO-MB hydrogels consist of 2.23 and 3.05% wt/wt of GO
in the matrix, respectively. Therefore, these bands confirm the presence of GO in hydrogels.

Figure 6 shows SEM images of the lyophilized hydrogel cross-sections. The hydro-
gels incorporated with MB present high porosity, between 64.54 and 77.26% (Figure S1,
Supplementary Material) with no phase distinction and interconnected pore networks. The
porosity facilitates water diffusion toward the three-dimensional matrices, favoring the
release of solutes [29]. Porous and three-dimensional matrices are suitable DDSs [30].
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2.3. Disintegration/Dissolution In-Vitro and Water Uptake

Figure 7 shows the disintegration results in SIF (pH 6.8) and SGF (pH 1.2) at 37 ◦C.
The hydrogels exhibit lower stability in SGF than in SIF. At pH 1.2, the GE chains degrade,
disintegrating the hydrogels [4]. Therefore, in SGF, all the physical assemblies present
complete disintegration after 2 days (Figure 7A).
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Figure 7. Disintegration results (in vitro) of GE/TN-GO-MB hydrogels in (A) SGF and (B) SIF at 37 ◦C.

The hydrogels are completed disintegrated in SIF after 4 days. Overall, the disin-
tegration percentage increases as the GO content raises in the hydrogel (p < 0.05). The
disintegration increases from 39.89 ± 2.43 to 57.93 ± 3.29% after 1 day for 1-GE/TN-GO-
MB and 4-GE/TN-GO-MB, respectively. The SIF (pH 6.8) promotes ionized –COO− upon
GO (isoelectric point < 2.0), making the hydrogels hydrophilic, increasing the disintegra-
tion/dissolution percentage [31].

Figure 8 shows the swelling degree results in SIF (pH 6.8) and SGF (pH 1.2) at 37 ◦C.
The hydrogels swell more in SGF (swelling degree between 2346 ± 231% and 3107 ± 183%)
than in SIF (swelling degree between 721 ± 84% and 1238 ± 166%) after 1 day. SGF
provides an excess of H3O+ and the MB is protonated, imparting MB2

+ species [32]. As a
result, there is repulsion between the hydrogel structures and H3O+ ions, consequently,
with more significant swelling.
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Figure 8. Results of the swelling degree obtained for the GE/TN-GO-MB hydrogels with different
GO content in (A) SGF and (B) SIF at 37 ◦C.

The swelling degree in SIF (Figure 8B) is 1238 ± 166%, 1139 ± 50%, and 1191 ± 60% for
the hydrogels 1-GE/TN-GO-MB, 2-GE/TN-GO-MB, and 3-GE/TN-GO-MB, respectively.
On the other hand, the hydrogel 4-GE/TN-GO-MB behaved differently after 1 day. This
hydrogel has the lowest swelling degree (721 ± 84%) if compared with others, because it
disintegrates 57.93 ± 3.29% in this medium, as previously mentioned. For instance, this
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greater degradation (57.93 ± 3.29%) compared to other hydrogels (between 39.89 ± 2.43 and
47.18 ± 2.44 to 1-GE/TN-GO-MB, 2-GE/TN-GO-MB, and 3-GE/TN-GO-MB, respectively),
decreases the swelling capacity of the material, due to its mass loss. Finally, this pH-
sensitive swelling behavior should favor the controlled release of bioactive compounds [33].

2.4. Methylene

Figure 9 shows MB releases in vitro. These releases were evaluated with the dried
hydrogels obtained after lyophilization in SGF (pH 1.2) and SIF (pH 6.8), simulating
the stomach and intestine pH conditions, respectively. The hydrogels 3-GE/TN-GO-MB
and 4-GE/TN-GO-MB were selected to evaluate the MB release because of their high
elastic modulus.
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In SGF, dried hydrogels released low MB contents, achieving between 13.82%
(17.96 × 10−3 mg/mL) and 13.45% (±1.22%) (16.14 × 10−3 mg/mL) for 3-GE/TN-
GO-MB and 4-GE/TN-GO-MB hydrogels, respectively. The SIF released 7.33% (±0.74)
(9.53 × 10−3 mg/mL) and 9.54% (±0.13) (11.44 × 10−3 mg/mL) for the 3-GE/TN-GO-MB
and 4-GE/TN-GO-MB hydrogels, respectively.

Of note is that the maximum released MB content was achieved after 24 h in SGF and
72 h in SIF. The hydrogels disintegrated in both SGF and SIF after 24 and 72 h, releasing 100%
of the incorporated MB (Figure S2, Supplementary Information). The faster degradation of
GE/TN-GO-MB hydrogel in SGF agrees with the swelling degree/disintegration studies.
These studies showed a higher swelling and erosion rate in the acidic medium (as described
previously in Section 2.3). This result is similar to previous studies performed in our group
involving the solubilization and controlled release of MB from gum Arabic hydrogels [13].

Gastrointestinal transit time is an important factor for dosage forms and medications.
Gastric transit can vary from 0 to 2 h on an empty stomach and can be prolonged for up
to 6 h when fed into the small intestine for around 3–4 h [34]. Taking these results into
account, it can be inferred that the drug release time is less than the hydrogel degradation
time in the body (24 and 72 h); i.e., this degradation does not preclude the proposal of the
material as DDS. It should be noticed that all materials presented here are biocompatible.
According to Dinescu et al., up to 3% wt/wt (0.075 g) of GO used showed biocompatibility
in healthy cells (mouse preosteoblasts), enabling the use of this material as DDSs [35]. The
GE/TN-GO hydrogels displayed pH-responsive behavior, controlling the MB release. The
MB was selected as a cationic hydrophilic drug model in our studies. Therefore, drugs
with similar polarities compared to MB can be released from the GE/TN-GO matrices.

2.5. Transport Mechanism of MB from the Hydrogels

The release process can occur as a diffusional transport process and/or with a partition
phenomenon between the solvent and solid hydrogel phases. Several models have been
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applied to elucidate the release mechanisms of solutes from hydrogel matrices, including
zero-order, first-order, second-order, Higuchi Model, Hixson–Crowell cubic root equation,
and Korsmeyer–Peppas kinetic models.

The Korsmeyer–Peppas model fits best with the MB release curve in both media for the
3-GE/TN-GO-MB and 4-GE/TN-GO-MB hydrogels. Table 2 shows the parameters n and
k presented obtained from the release curves in Figure 9. The fitting by the other models
presents low correlation coefficients (R2 lower than 0.70). Figure 9 shows the release kinetics
for hydrogels in SGF and SIF. The Korsmeyer–Peppas model proposes a semi-empirical
model (Equation (1)) that describes the transport of solutes from a flexible matrix.

ln
Ct

C∞
= ln k + nt (1)

Table 2. Values of the diffusional exponent (n) and constant (k) obtained by application of the
Ritger–Peppas model in the MB release curves obtained in SGF and SIF at 37 ◦C (Figure 9).

Hydrogels n k R2

3-GE/TN-GO-MB(SGF)
4-GE/TN-GO-MB(SGF)

0.18
0.18

9.54
9.86

0.92
0.87

3-GE/TN-GO-MB(SIF)
4-GE/TN-GO-MB(SIF)

0.16
0.28

3.52
4.41

0.92
0.93

Ct and C∞ are the cumulative concentrations of MB at time t and infinite, respectively.
The k and n are the fit parameters, where n is the diffusional exponent and represents the
release mechanism. The values of n depend on the hydrogel’s geometric shape [36].

For the hydrogels’ release in a cylindrical shape, the release mechanism depends on
the values of n. When n is around ≤0.45, the drug release mechanism is controlled by
Fickian diffusion. This result indicates that the matrix’s drug diffusion is a determining
step in the release process [36,37]. For n > 0.89, the mechanism is considered a Super Case
II. In this case, the swelling process or macromolecular relaxation increases the hydrogel
chains’ mobility in contact with the water [36,37]. When n is between 0.45 and 0.89, an
anomalous or non-Fickian transport is observed, in which the release of solutes depends
on the simultaneous diffusion and hydrogel matrix relaxation [37,38].

The n value for all hydrogels was less than 0.28 in both mediums. According to
works reported elsewhere [36,37], this behavior is controlled by the Fickian diffusion.
This is because the diffusion rate is slower than the time required for hydrogel chain
relaxation [36,37]. However, it is necessary to mention that the Korsmeyer–Peppas model
is used to evaluate the first 60% of the total amount of MB [39]. Therefore, the entire MB
release should be controlled by a more complex behavior involving several factors, such as
polymer-drug interaction, matrix erosion, and others [40].

3. Materials and Methods
3.1. Materials

Gelatin (GE, type B), extracted from bovine bones, was donated by Rousselot Gelati-
nas SA (Amparo, São Paulo, Brazil). The amino-functionalized polyphenolic tannin (TN;
4.6 × 10−3 mg/mL) derivative, commercially named tanfloc SG, was graciously donated
by Tanac SA (Montenegro, Rio Grande do Sul, Brazil). Graphene oxide (GO) was pre-
pared by the chemical oxidation of graphite powder according to the modified Hummers
method [41]. Methylene blue (MB, 373.90 g/mol, 85%) and the dialysis bag (cut-off 12 kDa)
were purchased from Sigma-Aldrich (São Paulo, Brazil).

3.2. The Amino-Functionalized Polyphenolic Tannin (TN) Purification

The dialysis process removes impurities (calcium, potassium, chloride ions, and formic
acid) from the TN structure [4]. For this, a TN solution (5.0% wt/vol) was prepared in
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distilled water (pH ≈ 5.5), previously filtered to remove wood particles, and dialyzed
against distilled water for five days. The water exchange was performed twice for each
day. After dialysis, the as-obtained TN solution was immediately used to obtain GE/TN-
GO-MB mixtures. The TN concentration remaining in the dialysis bag after five days
was 4.6 × 10−3 mg/mL. The dialyzed TN solution was frozen and lyophilized. The TN
concentration was determined following an experimental procedure reported elsewhere [4].

3.3. Hydrogel Preparation

Hydrogels based on GE/TN were developed following a reported experimental
procedure [4] with alterations. GO suspension as well as aqueous MB and GE solutions
were prepared individually. The GO was dispersed in 10 mL of deionized water performing
a GO suspension (0.10 mg/mL) at room temperature, ranging in 0.31, 0.51, 0.72, and 1.02%
wt/wt. The MB solution was also prepared in deionized water (10 mL) at 1.58 × 10−3 mol/L
(0.50 mg/mL) at room temperature. Then, the GO suspension (10 mL) was mixed with
the dialyzed TN solution (50 mL) under shaking (400 rpm) at 50 ◦C for 10 min, obtaining
the TN-GO mixture. Next, the prepared MB solution (10 mL) was mixed with the TN-GO
mixture under shaking (400 rpm) at 60 ◦C for 10 min, obtaining the TN-GO-MB mixture.
Finally, the TN-GO-MB mixture final volume ranged from 72.1 and 77.0 mL, depending on
the % wt/wt of GO. The aqueous GE solution (4.0% wt/vol) at 50 ◦C was mixed with the
TN-GO-MB mixture (1.5 mL) at 50 ◦C. The TN-GO-MB suspension was slowly dropped in
the GE solution (1.5 mL, 50 ◦C), obtaining a GE/TN-GO-MB mixture (6.0 mL) at a 50:50
GE/TN-GO-MB volume ratio. Table 3 presents the experimental conditions used to create
physical assemblies based on GE/TN-GO-MB. After 5 min at 50 ◦C, the GE/TN-GO-MB
mixture was cooled (4 ◦C) for 1 h, supporting the physical hydrogel assemblies containing
different GO contents (Table 3). The materials were frozen and lyophilized for 48 h for
further analysis. The assemblies were denoted as x-GE/TN-GO-MB, where x is the relative
% wt/wt of the GO solution used to create the mixtures (Table 3).

Table 3. Experimental conditions used to prepare the physical GE/TN-GO-MB hydrogels, as well as
the MB concentration incorporated in the hydrogels.

Condition Hydrogel GO
(% wt/wt)

GE + TN + GO + MB
(mg) a

MB Concentration b

(mg/mL)

01 1-GE/TN-GO-MB 0.31 67.86 0.13
02 2-GE/TN-GO-MB 0.51 68.01 0.13
03
04

3-GE/TN-GO-MB
4-GE/TN-GO-MB

0.71
1.02

68.14
68.35

0.13
0.13

a Whole material weight in the final volume mixture (6.0 mL). b MB concentration (mg/mL) in the GE/TN-GO-MB
mixture after hydrogel formation.

3.4. Characterization

The purified TN, GE, GO, MB, and GE/TN-GO-MB hydrogels were characterized
by Fourier-transformed infrared spectroscopy (FTIR). FTIR spectra were recorded using a
Fourier-transformed infrared spectrophotometer (Thermo Fisher Scientific Inc. (Waltham,
MA, USA), operating between 400 and 4000 cm−1 with a resolution of 4 cm−1 and ac-
cumulation of 64 scans. Raman spectra were measured using a Witec Alpha 300 Raman
spectrometer (USA) with 1800 lines/mm using a 532 nm laser.

The rheological properties of the GE/TN-GO-MB mixtures were measured using a
controlled stress rheometer (MARS II Haake®) equipped with a 35 mm diameter cone
plate separated by a fixed distance of 0.052 mm. Samples were carefully placed on the
lower plate to ensure the minimal shear of the sample. The linear viscoelastic range (LVR)
was determined for each formulation from 5 to 60 ◦C. The LVR is obtained when the
strain and deformation are proportional between them, and G’ moduli remain constant.
The temperature sweep was performed at a range from 5 to 60 ◦C with a 10 ◦C/min
heating rate, followed by a constant strain at 1.0 Hz. The dynamic rheological properties,
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storage modulus (G’), and loss modulus (G”) were determined by using the RheoWin
4.10.0000 (Haake®, Ober-Moerlen, Germany) software. In each case, at least three replicates’
viscoelastic properties were determined (n = 3). G’ and G” curves as a function of the
temperature were obtained. The gelation temperatures (Tsol-gel) occur when the G’ and G”
have the same value. In the oscillation mode, the analysis was carried out at 37.0 ± 0.1 ◦C,
using the same rheometer and geometry previously reported. After LVR determination,
the frequency sweep was performed from 0.1 to 10.0 Hz under constant stress [4]. The wet
hydrogels’ elastic modulus was measured using a universal test machine (Ametek LR10K
PLUS, West Sussex, UK), following a methodology reported elsewhere [21].

The hydrogel morphology was investigated by scanning electron microscopy (SEM)
using an FEI-QUANTA 250 (Czech Republic) microscope at 15 kV of accelerating voltage.
The samples were dispersed in double-sided tape coated with a thin gold layer (≈50 nm)
for SEM images. Differential scanning calorimetry (DSC) analysis was performed in a
calorimeter Shimadzu DSC 60 Plus (Kyoto, Japan) at 10 ◦C/min between 20 and 300 ◦C
under 50 mL/min of Argon purge.

The hydrogel porosity was determined following an experimental protocol reported
elsewhere [42]. The hydrogels (swelling) were weighed (m1) and oven-dried under vacuum
(250 mmHg) at 37 ◦C. The dried materials with constant weights (m2) were obtained by
removing the free water. The hydrogel porosity (%) was calculated by Equation (2).

Porosity =

{
(m1−m2)

Pw
V

}
× 100(%) (2)

where m1 and m2 are the wet and dry hydrogel weights. Pw is the specific mass of water
at 37 ◦C and V is the wet hydrogel volume.

3.5. Hydrogel Disintegration/Dissolution

The initial dry weight (Wd–I) of the hydrogel was measured after the lyophilization.
Then, dried samples (≈0.10 g) were added to the simulated gastric fluid (SGF (pH 1.2):
2.0 g NaCl and 7.0 mL of the concentrated aqueous HCl solution (37% wt/vol) in 1000 mL
of water) and phosphate-buffer (SIF (pH 6.8): 6.80 g of KH2PO4 and 77 mL aqueous NaOH
0.20 mol/L in 1000 mL of water) and incubated at 37 ◦C under shaking (100 rpm) [43]. At
desired time intervals (after 1, 2, 3, 4, and 5 days), the hydrogels were removed from the
solutions, oven-dried at 35 ◦C for 24 h, and the final dry weights (Wd–F) were determined.
The disintegration/dissolution (%) was assessed through Equation (3) (n = 3).

Disintegration
dissolution

(%) =
Wd−I − Wd−F

Wd−I
× 100 (3)

3.6. Swelling Degree

The lyophilized hydrogels’ swelling degree (Wd) was obtained at 37 ◦C in SIF (pH 6.8)
and SGF (pH 1.2) after 1, 2, 3, 4, and 5 days of exposure. The swelling degree (%) was
determined by Equation (4) [44].

Swelling degree (%) =
Ws − Wd

Wd
× 100% (4)

where Ws and Wd are the weights of swollen and dried hydrogels, respectively. The assays
were performed in duplicate (n = 2).

3.7. Methylene Blue Release In Vitro

The MB release assays were performed according to the methodologies already re-
ported with alterations [13] in SGF and SIF for 7 days. Dried hydrogels (20 mg) were
added to sealed flasks containing SGF or SIF (20 mL) without shaking at 37 ◦C. At desired
time intervals, aliquots (2.0 mL) were removed from the flasks and centrifuged (5.0 min
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at 4000 rpm). The released MB content as a function of time was spectrophotometrically
measured by analyzing the MB absorbance at 664 nm, taking into account the molar ab-
sorptivity coefficient ε for MB in SIF (63,000 L/mol cm) and SGF (37,500 L/mol cm) [13]. A
control experiment was performed by adding 20 mg MB for 7 days at 37 ◦C in both SIF and
SGF solutions.

3.8. Statistical Analysis

The results were statistically analyzed using ANOVA and Tukey tests at a 5% signifi-
cance level (GraphPad Prism 6.0).

4. Conclusions

Physical and thermosensitive hydrogel assemblies based on GE, TN, GO, and MB
were successfully prepared. Rheological assays showed that GE/TN-GO-MB assemblies
display gel behavior with gelation above 60 ◦C. The FTIR analysis indicated that GE and
TN are essential to forming hydrogel assemblies. Raman spectroscopy showed the presence
of GO as being essential for the results of the mechanical property. We created porous and
pH-responsive hydrogels loaded with MB. We showed that the MB comprises the hydrogel
structures. MB release studies were carried out in different environments (SGF and SIF),
using the hydrogels as DDSs. The hydrogels proposed were effective in promoting the
pH-responsible behavior for MB release.

Finally, we present for the first time hydrogels based on natural sources (GE and TN)
containing GO for MB release. The hydrogels were obtained using only deionized water
as a solvent. The approach avoids the use of chemical crosslinking agents, which often
crosslink GE-based materials. The results support the continuation of the studies involving
the use of this platform for drug delivery purposes.

Supplementary Materials: The following are available online, Figure S1: Porosity (%) of the
[GE/TN/GO-MB hydrogels with different GO content (Table 1) measured at 37 ◦C; Figure S2:
Digital images of a 10-GE/TN/GO-MB hydrogel after disintegration/dissolution (48 h) em SGF.
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