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Abstract: The liver is a key node of whole-body nutrient and fuel metabolism and is also the principal
site for detoxification of xenobiotic compounds. As such, hepatic metabolite concentrations and/or
turnover rates inform on the status of both hepatic and systemic metabolic diseases as well as the
disposition of medications. As a tool to better understand liver metabolism in these settings, in vivo
magnetic resonance spectroscopy (MRS) offers a non-invasive means of monitoring hepatic metabolic
activity in real time both by direct observation of concentrations and dynamics of specific metabolites
as well as by observation of their enrichment by stable isotope tracers. This review summarizes
the applications and advances in human liver metabolic studies by in vivo MRS over the past
35 years and discusses future directions and opportunities that will be opened by the development
of ultra-high field MR systems and by hyperpolarized stable isotope tracers.

Keywords: in vivo magnetic resonance; liver metabolism; hyperpolarization; stable isotopes

1. Introduction

The liver represents a key metabolic node in the body encompassing nutrient transfor-
mation and fuel homeostasis as well as detoxification of ethanol and xenobiotic compounds.
Its relatively large size and body location, coupled with a dynamic metabolome that fea-
tures high concentrations of a diversity of metabolites such as glycogen, glutamine, ATP,
sugar phosphates, phosphocholine and phosphoethanolamine, has made it an attractive
target for in vivo magnetic resonance spectroscopy (MRS) studies of hepatic metabolism
since the early days of in vivo MRS development [1–4]. Given that many diseases cause
substantial changes in hepatic intermediary metabolism coupled with the availability of
higher-field MRS systems for both in vivo human and animal model studies, there is high
and ongoing interest in applying this methodology to further our understanding of hepatic
intermediary metabolism in physiological and pathophysiological settings. The purpose
of this review is to highlight the versatility of multinuclear in vivo MRS both in direct
observation of hepatic metabolites as well as hepatic metabolite enrichment from metabolic
stable-isotope tracers.

1.1. Observation of Hepatic Metabolites by MRS

There are several aspects that increase the difficulty of performing in vivo MRS spec-
troscopy of the liver compared to other large organs such as the brain. These have been
previously discussed in detail [5] and can be summarized as follows: First, there is con-
siderable inter-individual variability in its gross structure (i.e., configuration of the lobes
and major vessels, therefore the region for observation must be carefully tailored for each
individual with particular attention to exclude extra-hepatic tissues such as muscle or
adipose tissue. Second, in a resting supine individual, the liver position is not static. This is
primarily due to diaphragm movement during breathing but other involuntary processes
such as intestinal peristalsis and pulsatile blood flow also contribute. This affects 1H signals
in particular hence 1H MRS data are typically acquired periodically while the subject holds
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their breath [5–8]. Thirdly, the liver has higher levels of iron compared to many other
tissues which results in paramagnetic broadening of MR signals.

1.2. Advances in MRS Instrumentation

Since the development of whole-body MR scanners with fields of 0.5–1.5 T in the 1980’s,
there has been a constant push for systems with ever higher magnetic fields. Currently, 3 T
systems are becoming widespread and in 2017, the Food and Drugs Administration ap-
proved a 7 T system as a magnetic resonance imaging device. As of now (2021), the highest
operating field for human subjects is 10.5 T at the University of Minnesota facility, and ini-
tial studies indicate that subject safety is not compromised in this setting [9]. There are
ongoing efforts to develop systems of 11.7 T (AROMA consortium H2020 grant agreement
No 885876) and initiatives for the development of 14–20 T systems [10]. For in vivo MRS
spectroscopy, higher magnetic fields deliver an increase in signal dispersion that scales
directly with the increase in the applied field (B0) while the signal-to-noise ratio (SNR)
increases as B0

1.65 [11]. At the same time, there is also the need for increased radiofre-
quency (RF) power deposition that may exceed safety limits. This is primarily an issue for
broad-band decoupling of high-gamma nuclei such as 1H. In addition, establishing field
homogeneity and operating imaging gradients for localized spectroscopy is more challeng-
ing at higher fields. Among other things, this increases the difficulty of obtaining narrow
MR signals from deeper hepatic regions. Finally, both spin-lattice (T1) and transverse
relaxation times (T2) of many metabolites are sensitive to magnetic field strength [12,13]
which can compromise the efficacy of signal collection and alter the relationship between
signal intensity and metabolite concentration. To date, there is a strong consensus that
the advantages of higher fields far outweigh these drawbacks, particularly for MRS with
low-gamma nuclei [10,11,14].

Since high field MRS has been primarily driven by studies on the brain, the integral
RF transmit/receive components of high field instruments are optimized for the head
rather than the abdominal region. Therefore, liver MRS studies with these systems have
required the development of bespoke RF coils and antenna systems [15–17].

1.3. In Vivo 1H MRS of Liver
1H is the default observation nucleus for clinical imaging and 1H body coils are also a

standard feature for clinical 1.5–3.0 T MR systems. Thus, it is usually feasible to acquire
localized 1H spectra of liver tissue on a standard hospital MR scanner.

1.3.1. 1H MRS of Liver Lipids

To date, the most widespread application, and perhaps among the most important
in terms of current clinical relevance, is the quantification of liver triglycerides. 1H MRS
provides a precise measurement of liver triglyceride levels, with better sensitivity and
specificity than other noninvasive probes of liver fat such as ultrasound [18]. This approach
was initially validated in a large population (2349 participants) and established the now
widely accepted threshold of 55.56 mg/g liver triglycerides concentration for non-alcoholic
fatty liver disease (NAFLD), based on triglycerides concentrations measured for the 95th
percentile of this study cohort [19]. More recently, the detection of the triglyceride signal
has been translated into an imaging modality (magnetic resonance imaging-proton density
fat fraction, MRI-PDFF) that provides information on the whole liver combined with
simpler post-acquisition processing and representation of the data [20]. MRI-PDFF is now
considered as the gold standard for hepatic lipid quantification in various settings [21,22].
At fields of 3 T and above, signals from mono- and polyunsaturated fatty acids become
resolved allowing the abundance of these species to be measured thereby providing a
lipidomic profile in addition to total liver triglycerides levels [23,24].
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1.3.2. 1H MRS of Other Hepatic Metabolites

Aside from triglycerides, other hepatic metabolites that have been quantified by
1H MRS include choline-containing compounds and glycogen [25–27] which were mea-
sured with a 3 T instrument. While many tumors have high levels of choline, in vivo
1H MRS measurements of hepatic choline in patients with liver tumors did not observe any
significant increases in choline compared to healthy subjects [27]. Glycogen observation
by conventional in vivo 1H MRS is hampered by several factors including short T2 of its
hydrogens and a significant loss of signal during presaturation of the water signal due to
saturation transfer [28]. By applying this process in reverse, i.e., pre-saturating the glyco-
gen signals and observing the resulting decrease in the water signal intensity, Zhou et al.
were able to follow dynamic changes in hepatic glycogen levels induced by glucagon and
fasting re-feeding [29]. Since this approach only requires the quantification of the water
signal, it can also be easily translated into an imaging mode.

1.4. In Vivo 31P MRS of Liver
31P is the sole stable isotope of phosphorus with a nuclear spin of 1

2 and a relatively
strong gyromagnetic ratio (40.5% that of 1H). Although the 31P chemical shift dispersion
is much greater than that of 1H (~350 ppm versus ~10 ppm), metabolites of phosphorus
all resonate within a 25 ppm spectral region, with phosphate mono- and diester species
crowded into a ~5 ppm window. The chemical shift of inorganic phosphate (Pi) as well as
those of phosphate esters are also sensitive to pH [30,31] while those of phosphoanhydrides
are influenced by the binding of various metal ions such as magnesium [32]. Saturation
transfer experiments allow the transfer of phosphorus from one metabolic intermediate to
another to be followed thereby providing information on rates of synthesis such as that of
ATP from ADP and Pi [33–36]. Therefore, in addition to assaying key phosphometabolites
with good precision and accuracy [37], in vivo 31P MRS also informs on bioenergetic
status and ionic homeostasis. The ratio of phosphodiesters to phosphomonoesters signals
(PDE/PME) is linked to cell membrane turnover [38,39]. PDE/PME of cirrhotic and of
cancerous liver tissues were shown to differ significantly from that of a healthy liver [40–42].
While high resolution 31P NMR of liver extracts can identify over 50 different phospho-
metabolites [43], the number of metabolites that can be resolved and quantified by in vivo
31P MRS is far less [44] but is nevertheless more diverse in comparison to that provided by
1H MRS. At high magnetic fields (≥7 T), the increased signal dispersion allows more hepatic
phospho-metabolites to be resolved and quantified, [45,46] as exemplified by Figure 1 [46].

The challenges and potential limiting factors of high-field in vivo 31P NMR MRS
include design and implementation of RF hardware for optimal observation of hepatic
metabolites, avoidance of confounding signals from non-hepatic tissues in intimate contact
with the liver such as phosphatidylcholine from the gall-bladder and phosphcreatine
from surrounding muscle [4,47,48]; and maintaining efficient 1H-decoupling without
exceeding the safe limits for tissue RF power deposition. Finally, there are hepatic studies
that integrate the observation of 31P and 1H thereby providing correlated information of
phospho-metabolites with other species such as lipids [49–51]. A portfolio of in vivo 31P
MRS studies of human liver is shown in Table 1. This is not meant to include all reported
studies to date, but instead to highlight the diversity of topics in hepatic physiology and
intermediary metabolism that have been studied.
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Figure 1. Comparison of in vivo 31P MR spectra of human liver acquired at 3 T (top) and at 7 T
(bottom). This figure was adapted from ref. [39].

Table 1. Selected in vivo 31P MRS studies of liver metabolism in human subjects.

Study Description Main Findings Field Strength (T) Reference

Effects of a lipid-rich breakfast meal
followed by exercise on hepatic ATP
and lipid levels for healthy subjects.

Liver fat increased postprandially and
continued to increase during exercise. Liver

ATP did not change from fasting to
postprandial state, but significantly

decreased after exercise.

3.0 [51]

Effect of a oral fructose challenge on
hepatic ATP reserves in healthy subjects.

Baseline liver glycogen was also
measured by 13C NMR

Hepatic ATP levels dropped by ~20% from
baseline and reached a minimum value 50

min after the load. The time to reach
minimum ATP levels was inversely

correlated with subject BMI. ATP recovery
rate was inversely correlated with baseline

glycogen levels.

3.0 [52]

Effects of acute fructose ingestion with
and without an accompanying load of

ethanol on liver P-metabolite dynamics
in healthy subjects.

Over a 40 min interval post load,
P-metabolites were measured with 5 min

time resolution. While ethanol had no effects
on rates of phosphomonester (PME)

formation and ATP depletion resulting from
fructose metabolism, it significantly slowed

down the rate of PME degradation.

1.5 [53]
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Table 1. Cont.

Study Description Main Findings Field Strength (T) Reference

Characterization of P-metabolites and
ATP fluxes and correlation with lipid

levels determined by 1H MR and biopsy
evaluation in subjects with NAFLD

and NASH

Several PME and PDE 31P signals were
resolved and quantified as well as those from
NADPH and UDPG. Significant differences

in relative abundances of PME
phosphoethanolamine (PE) and ATP

between NAFLD and NASH. Significantly
lower rates of ATP synthesis fluxes in NASH

compared to NAFLD subjects [33]. In
another 31P MRS study performed at 3 T,

levels of NADPH, a marker of inflammation
and fibrosis, were elevated in NASH patients

compared to healthy controls [54].

7.0, 3.0 (31P)
3.0 (1H)

[33,54]

Characterization of PME profile in fasted
subjects with compensated and

decompensated cirrhosis following
infusion with a gluconeogenic

substrate—L-alanine.

At baseline, PME levels of both compensated
and decompensated cirrhotic subjects were

elevated compared to healthy controls. After
L-alanine infusion, PME levels of healthy

controls were significantly increased,
consistent with gluconeogenic activity. This
increase was significantly smaller for patients
with compensated cirrhosis and was absent
in patients with decompensated cirrhosis.

1.5 [55]

Characterization of P-metabolites in
pediatric liver transplant patients with

different outcomes of graft function

Patients with impaired graft function had
elevated PME/total phosphate compared to

those with good graft function and to
healthy controls.

1.5 [56]

Effects of intravenous ATP infusion for
22–24 h on liver energy status in
advanced lung cancer patients.

Liver ATP levels were significantly increased
following ATP infusion to levels that were
similar to those of healthy subjects. This
effect was greatest for patients that were
undergoing weight loss and who had the

lowest baseline ATP liver levels

1.5 [57]

1.5. In Vivo 13C MRS of Liver
13C is the stable isotope of carbon with a spin of 1

2 and a natural abundance of 1.1%.
Its gyromagnetic ratio is ~ 1

4 that of 1H, therefore its overall sensitivity is several orders
of magnitude less than that of 1H. Nevertheless, for liver metabolites that can reach high
concentrations, such as glycogen and lipids, their natural abundance 13C signals can be
observed with reasonable collection times [2,3,58]. In addition, 13C signals from isotopically
enriched substrates and their metabolic products, where 13C abundance can be boosted to
nearly 100-fold over background levels, can be detected [59–63].

The 13C chemical shift dispersion is much greater in comparison to 1H, therefore in
principle it provides increased resolution of metabolites. On the other hand, the majority of
metabolite carbons are bound to one or more hydrogens that result in the 13C signal being
split by 1H-13C scalar coupling. Not only does this effectively reduce the signal-to-noise
ratio by at least a factor of two, it also multiplies the number of metabolite signals within
the same spectral region thereby compromising signal resolution. These effects can be
eliminated by broadband 1H-decoupling which also provides an additional boost to the
1H-decopuled 13C singlet signal by the nuclear Overhauser enhancement (nOe) effect.
As magnetic fields increase, the 1H-frequency decoupling bandwidth also needs to be
increased resulting in higher deposition of RF power into tissues. Moreover, nOe can
vary substantially between 13C in different molecular sites, and this must be taken into
account when relating 13C signal intensities to absolute metabolite concentrations. Finally,
the T1 of non-protonated carbons such as carboxyls and quaternary carbons are relatively
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long, which in combination with an absence of nOe, can constrain the acquisition of their
13C signals over short intervals. In vivo 13C MR of hepatic metabolism in humans is being
driven forward by several innovations that directly confront the limitations described
earlier. To minimize the deposition of RF power into the region of observation as a result
of broadband 1H decoupling, bespoke decoupling schemes have been developed [64].
For studies that focus on observation of a single metabolite 13C signal, such as the carbon
1 resonance of glycogen, it is only necessary to decouple the hydrogen attached to this
carbon, hence the decoupling bandwidth—and, therefore the power deposition—can be
substantially reduced. This approach was used in one of the pioneering in vivo 13C MR
studies of liver metabolism, which documented the decrease in the natural-abundance 13C1
signal of liver glycogen during fasting in healthy humans [3]. Hepatic glycogen synthesis
and degradation fluxes are key components of systemic glucose homeostasis and are highly
sensitive to the insulin/glucagon ratio. The application of in vivo 13C MR to measure
changes in hepatic glycogen during fasting and feeding has advanced our understanding
of hepatic carbohydrate metabolism in subjects with insulin resistance, as well as in patients
with diabetes [65–69]. Among other things, it revealed that while both hepatic glycogen
deposition and degradation rates are significantly reduced in Type-1 diabetic subjects
undergoing standard insulin therapy, these fluxes may be restored to normal with intensive
insulin therapy [70,71]. Acute induction of hepatic insulin resistance via infusion of lipid
was shown to modify rates of hepatic glycogenolysis in the fasted state [68,72].

In some cases, 13C-signals of 13C-enriched hepatic metabolites can be resolved and
quantified in the absence of 1H-decoupling. For example, the appearance of ingested
[1-13C]glucose in the liver and its conversion to [1-13C]glycogen was observed at 3 T
with 0.5 min time resolution without deployment of 1H decoupling [59]. In a study of
hepatic Krebs cycle metabolism with [1-13C]acetate, 13C appearance in the two carboxyls
of glutamate was monitored [62]. Since 13C nuclei in these sites have no directly attached
protons, optimal observation of their 13C signals is not dependent on 1H decoupling.

The interaction of 13C and 1H via scalar coupling provides the basis for monitoring
13C-enrichment indirectly via observation of the attached proton(s). While 1H observation
delivers vastly increased signal sensitivity and is also the default nucleus for in vivo
localized spectroscopy with whole-body MR systems, the pulse sequences for selecting
the 1H-13C-coupled signals while filtering out those from 1H-12C are more complex and
require precise calibration of the RF electronics. Although, in principle, the 1H-13C-coupled
signals can be resolved along both 1H and 13C dimensions, for in vivo studies, time and
instrument constraints limit the signal acquisition to the 1H dimension only. Thus, the
signal dispersion is limited to that of 1H, which effectively precludes shotgun observation
of arrays of 13C-enriched metabolites but may, nevertheless be effective for observation of
near-isochronous 13C-enriched signals such as the methylene carbons of triglyceride fatty
acids [73]. Veeraiah et al. applied a similar approach to demonstrate that the background
13C-methylene signals of hepatic fatty acids in healthy subjects could be quantified in vivo
with high sensitivity and minimal interference from 1H-12C signals [74].

The advent of hyperpolarization (HP), which can boost the difference in nuclear spin
populations between the two spin states of the 13C nucleus by several orders of magnitude
over that achieved by an applied magnetic field, provides correspondingly huge gains
in sensitivity for observation of 13C-enriched substrates. However, this advantage can
only be realized over a relatively limited time window that is ultimately constrained by
the longitudinal relaxation time (T1) of the observed 13C species. Since 13C-1H dipolar
interactions promote the relaxation of the 13C, thereby shortening T1, HP studies utilize
13C-enriched substrates containing 13C that are not directly bound to protons. These nuclei
are relaxed via the less efficient chemical shift anisotropy mechanism, resulting in T1 values
that are several-fold longer compared to proton-bound 13C nuclei, but nevertheless rarely
exceeding 60 s—and moreover subject to significant reduction by high magnetic fields [75].
Since 99% of nuclear magnetization is lost over an interval of 5 × T1, the challenges in
rapid administration and in vivo observation of hyperpolarized 13C-enriched substrates
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are reminiscent of those encountered in positron emission tomography (PET) studies of
short-lived nuclei such as 13N and 11C. To date, HP studies of liver metabolism with
13C-enriched substrates have been limited to preclinical animal models. While dynamic
nuclear polarization (DNP) is the principal method for generating hyperpolarized states in
13C-enriched substrates, for certain substrates that can be synthesized via hydrogenation of
a 13C-enriched precursor, for example [1-13C]fumarate from [1-13C]acetylene dicarboxylate,
polarization via the reductive addition of para-hydrogen is both faster and requires less
costly equipment compared to DNP [76]. The principal obstacles in the translation of HP to
humans have been in ensuring the safety and enabling of rapid delivery of hyperpolarized
13C-enriched substrates. Both [1-13C]- and [2-13C]pyruvate have obtained regulatory
approval by the FDA as substrates for hyperpolarized MRI [77]. In a study of patients
with prostate cancer, delivery of hyperpolarized [1-13C]pyruvate was not associated with
any adverse events [78]. Given the diversity of pre-clinical studies of HP 13C-enriched
substrates in both perfused liver as well as in vivo, it is quite certain that this methodology
will be applied to the study of human liver metabolism in the very near future.

1.6. In Vivo MRS of Other Nuclei in the Study of Hepatic Metabolism
1.6.1. Deuterium

Deuterium (2H) is a quadrupolar nucleus with a spin of 1 and a gyromagnetic ratio that
is ~15% that of 1H. Its natural abundance is 0.015%, which alongside its limited dispersion
(15% that of 1H in terms of absolute frequency, Hz) makes it a poor choice for observation
of liver metabolites compared to 31P or natural abundance 13C MRS. However, its low
natural abundance also means that 2H-enriched substrates, which are up to ~2000 times
higher than the background, can be more effectively observed. In addition, 2H T1 values
are much shorter compared to those of 1H, 13C, or 31P allowing more free-induction decays
to be collected per unit of time thereby effectively boosting sensitivity. However, for large
molecular weight metabolites such as glycogen that exhibit very short spin-spin (T2)
relaxation times, MR visibility of the 2H label may be severely compromised [79]. Since the
coupling constants of 2H with neighboring 1H nuclei are relatively small, 2H signals are not
substantially degraded by these interactions and can therefore be observed in the absence
of broadband 1H decoupling. In terms of MR hardware, magnetic field strength is the
most important limiting factor in the development of metabolic studies with 2H-enriched
tracers. De Feyter et al. obtained in vivo 2H MR signals at a field of 4 T from human
liver following ingestion of a glucose load enriched with [6,6-2H2]glucose [80]. Under
these conditions, there was no resolution of [6,6-2H2]glucose and [6,6-2H2]glycogen signals,
but given that [6,6-2H2]glycogen was likely not visible under the parameters used for
observation, the signals were presumably those of [6,6-2H2]glucose.

In cases where the 2H label can undergo exchange with 1H, for example during con-
version of [6,6-2H2]glucose to [3,3-2H2]lactate, where the [3,3-2H2]pyruvate intermediate
can exchange its 2H with 1H body water, the product signal intensity needs to be corrected
for this exchange [81]. Also, for 2H-enriched substrates whose metabolism involves the
cleavage of a 2H-13C-bond, for example conversion of [2-2H]glucose-6-P to fructose-6-P
via glucose-6-P isomerase [82] the presence of a significant kinetic isotope effect may
substantially alter the rate of tracer metabolism relative to that being traced [81].

The study of liver metabolism can also be undertaken with deuterated water (2H2O).
2H2O is inexpensive and can be safely administered to 0.5% body water in humans
(~33 times above background) over an indefinite period. The ubiquity of water and metabo-
lite hydrogen exchanges in intermediary metabolic pathways results in the 2H-enrichment
of a diversity of metabolites including lipids and amino acids. Among other things, the rate
of 2H enrichment of a given metabolite informs its rate of synthesis and/or turnover.
With the advent of very high fields (>10 T), it is likely that hepatic 2H signals of metabolites
enriched by 2H2O will be at least partially resolved in vivo for human subjects.
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1.6.2. Fluorine

As for 31P, fluorine exists in nature as single stable isotope, 19F. It has a spin of 1
2 ,

and its sensitivity is 83% that of 1H. It generates sharp NMR signals that cover a wide
chemical shift range. Its relaxation properties are similar to that of 1H, hence, conventional
1H pulse sequences for quantitative measurement of 1H metabolite signals can be easily
adapted for 19F. An adult human has ~2.6 g of fluorine that it is almost entirely distributed
as fluoride in teeth and bone. Thus, soft biological tissues have essentially no background
19F signal, therefore suppression of superfluous signals is not required and spectrometer
sensitivity can be fully exploited.

Essentially all in vivo human studies involving 19F have focused on the appearance
and/or metabolism of pharmacological agents containing 19F as part of their molecular
composition. The first report describing the observation of hepatic 19F signals in vivo was
published by Wolf et al. in 1987 [83]. Three cancer patients were studied with a 1.5 T
system following ingestion of the anti-cancer drug 5-fluoro uracil (5-FU). Subsequently,
the kinetics of 5-FU appearance in the liver and its bio-transformation to 5-fluoro ureido
propionic acid and α-fluoro-β-alanine were documented [84–88]. It was demonstrated that
5-FU was retained longer by tumor tissue compared to the surrounding healthy tissues [84]
and that tumor 5-FU levels were positively correlated with the clinical response to treat-
ment [87,89]. In vivo 19F MR studies demonstrated that the lifetime of 5-FU within hepatic
tumors could be extended by interferon-α [90] and by inhibitors of 5-FU catabolism [91].
In a study performed at 3 T, where different regions of the liver were assayed following in-
gestion of Capecitabine, a pro-drug that is metabolized to 5-FU via 5′-deoxyfluorocytidine
5′-deoxyfluorouridine, these intermediates, as well as products of 5-FU degradation such
α-fluoro-β-alanine and 5-fluoro ureido propionic acid, were detected and quantified. These
metabolites were found to be heterogeneously distributed in the liver [92].

Sitafloxacin is a broad-spectrum antibacterial agent that contains a fluorine atom in its
chemical structure. Its appearance and washout in the liver was characterized in a group
of healthy subjects with a 1.5 T system [93]. These parameters were found to be similar to
that measured in plasma using HPLC indicating that this drug was not retained in the liver
for any significant time [93]. Niflumic acid is a medication for alleviating pain in muscle
and joints and has a trifluoromethyl functional group as part of its structure. A study of
healthy male volunteers who ingested a single dose of Niflumic acid was performed at
1.59 T [94]. In addition to the appearance of a 19F signal corresponding to niflumic acid,
a second signal was observed and was identified as 4′-hydroxy niflumic acid (4-HNA).
The washout kinetics of the secondary metabolite was much slower in comparison to that
of niflumic acid, and was attributed to the fact that while the parent drug is rapidly cleared
via blood and urine, 4-HNA is cleared via the biliary system. To the extent that 4-HNA
is recirculated via enterohepatic biliary circulation, its net clearance from the region of
observation is slowed down. The authors also acknowledged that the 4-HNA signal might
at least in part be originating from the biliary system itself rather than from liver tissue.

2. Future Perspectives and Main Conclusions

The two key drivers for the advancement of in vivo MR studies of human liver
metabolism are the development of ultra high field clinical MR systems (≥7.0 T) and the
availability of hyperpolarized stable-isotope tracers. While each of these technical develop-
ments by themselves will undoubtedly advance the state-of-the-art, there is a high degree
of synergy when both are combined. This is well illustrated by preclinical studies that
have integrated hyperpolarized tracers with in vivo MR observation at mid- to high fields.
While high field magnets and hyperpolarization systems come with substantially higher
capital and operating costs compared to current clinical MR scanners, they could potentially
compete with positron emission tomography (PET) for metabolic imaging applications.

One of the key roles of the liver is the regulation of endogenous glucose produc-
tion and the control of gluconeogenic flux is a key component of this process. Current
methodologies rely on measuring the appearance of a gluconeogenic tracer in plasma
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glucose. For various technical and theoretical reasons, this measurement is limited to quasi
steady-state conditions, such as after overnight fasting or during a glucose clamp. Thus,
the transition from fasting to feeding, where hepatic carbohydrate metabolic fluxes must
undergo acute rearrangements in order to maintain whole body glucose homeostasis—and
is, therefore, the most critical and testing phase for glucoregulation—is little understood.
The ability to observe fast real-time alterations in hepatic sugar phosphates and other
metabolites following administration of tracers, such as [2-13C]dihydroxyacetone [95–97],
[1-13C]pyruvate [98–100], and [1-13C]gluconolactone [101], promises to be invaluable for
unveiling the redirection of hepatic carbohydrate fluxes during the fasted to fed transition.
Moreover, the direct observation of hepatic metabolites overcomes another important
limitation of gluconeogenic tracer enrichment of blood glucose: the inability to resolve glu-
coneogenic activity of the liver from that of other tissues such as the kidney and intestine.

For chronic metabolic diseases such as non-alcoholic fatty liver disease (NAFLD)
and Type 2 diabetes, there is now renewed focus on the function of hepatocyte mitochon-
dria in these settings. The leakage of electrons from complexes I and III of the electron
transport chain results in the generation of reactive oxygen species (ROS). In addition to
damaging critical cellular infrastructure such as membrane lipids and DNA, ROS also
promote inflammation and can trigger cellular apoptosis and autophagy. Thus, the de-
velopment of noninvasive hepatic ROS probes, such as hyperpolarized thiourea [102],
and markers of hepatic redox state, such as [1-13C]alanine and [1-13C]lactate [103], will pro-
vide a deeper insight on the role and status of hepatic ROS in various physiological and
pathophysiological settings. The oxidation of long-chain fatty acids (LCFA) by hepato-
cyte mitochondria is a critical component in hepatic lipid homeostasis and ketone body
generation, and is highly controlled by LCFA uptake via the carnitine shuttle. Defects in
hepatic mitochondrial fatty acid oxidation are associated with increased levels of acylcarni-
tine intermediates [104–106]. Therefore, the development of probes for assessing hepatic
carnitine metabolism, such as hyperpolarized 15N-carnitine [107], can potentially provide
information on the status of hepatic LCFA oxidation. Finally, oxidative and anaplerotic
pyruvate metabolism—mediated by mitochondrial pyruvate dehydrogenase and pyruvate
carboxylase, respectively—is a key node in the hepatic metabolic network. Among other
things, it commits pyruvate to either a gluconeogenic or lipogenic fate. The metabolic path
of hyperpolarized [1-13C]pyruvate can be followed in real time [98], thus providing the
potential for a deeper understanding on the role of this critical metabolic control point in
various nutritional and disease settings [99,100,108].

After lung cancer, hepatocellular cancer (HCC) is the leading cause of cancer deaths
in the world [109] with NAFLD being the most rapidly growing contributor to HCC
mortality and morbidity [110]. Noninvasive in situ metabolic profiling of liver tumors will
deepen our understanding of tumor physiology and response to therapy and preclincal
proof-of-concept studies of hepatic tumors with hyperpolarized substrates are poised to be
translated into the clincal setting. The selective uptake and retention of hyperpolarized
ethyl [1,3-13C2]acetoacetate by tumor tissue over healthy hepatocytes [111] provides the
basis for tumor metabolic contrast agent imaging and also reveals important differences
in carboxyl esterase activities between tumors and healthy tissue that may be exploited
for pharmacological targeting. Imaging of tissue pH from hyperpolarized 13CO2 and
bicarbonate delivered in the form of hyperpolarized ethyl acetyl carbonate [112] can
potentially delineate tumor necrotic regions which are typically hypoxic and acidic and
also increase resistance to therapy. Finally, the local recurrence of HCC following therapy
is a frequent and ominous event. Thus, improving our understanding of how tumor cells
resist therapy and detection of surviving latent tumor cells is of critical importance in
achieving better outcomes. By identifying a characteristic metabolic profile for latent tumor
cells via hyperpolarized [1-13C]pyruvate that provides the basis for their metabolic imaging,
Perkons et al. also demonstrated that metabolic reprogramming is a key component of
tumor cell survival [113].
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Main Conclusions

The non-invasive study of human liver metabolism by MRS has been an enduring ef-
fort since the initial development of clinical MR scanners. Ongoing technological advances
in the design of MR components, such as magnets, RF coils, and gradient systems, are result-
ing in continuous improvements in the quality and reproducibility of liver metabolite mea-
surements and are also allowing hitherto hidden aspects of liver metabolism to be glimpsed.
For some of the most important and prevalent diseases of the current age—notably NAFLD
and HCC—it is becoming increasingly clear that their progression is characterized by alter-
ations in hepatic intermediary metabolic fluxes. Importantly, alterations in metabolic flux
may not necessarily be accompanied by significant changes in metabolite concentrations.
Improvements in sensitivity and resolution of hepatic metabolite enrichments from stable
isotope tracers will drive the transition from quantifying metabolite pools, per se, to mea-
suring carbon fluxes through these pools, thereby gaining a much deeper understanding of
metabolic alterations in hepatic diseases.
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