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Abstract: The elastic properties of chiral and non-chiral single-walled boron nitride nanotubes in a
wide range of their chiral indices and diameters were studied. With this aim, a three-dimensional
finite element model was used to assess their rigidities and, subsequently, elastic moduli and Poisson’s
ratio. An extensive study was performed to understand the impact of the input parameters on the
results obtained by numerical simulation. For comparison, the elastic properties of single-walled
boron nitride nanotubes are shown together with those obtained for single-walled carbon nanotubes.
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1. Introduction

For the past three decades, carbon nanotubes (CNTs) have been the most widely
studied nanostructures due to their well-developed synthesis technologies, remarkable
mechanical and physical properties, which provide their numerous potential applications.
From a structural point of view, CNTs are cylinders obtained from a honeycomb lattice
representing a single atomic layer of crystalline graphite [1]. The honeycomb structures
are not restricted to carbon and can be formed by other chemical elements and transition-
metal compounds [2,3]. For example, elements of III group of the periodic table (such
as boron, aluminium and gallium) are able to establish a strong covalent bond with
nitrogen, which leads to a honeycomb arrangement with alternating atoms of the III
group element and nitride forming the graphene-like hexagonal lattice [4]. Among these
structures, hexagonal boron-nitride (hBN), called white graphene, stands out for its high
strength and thermal conductivity, transparency for visible light, antimicrobial properties,
relative chemical inertia compared to CNTs, electric insulator characteristics regardless of
chirality [5], and also its biocompatibility [6] and high resistance to oxidation [7]. All these
characteristics make hBN indispensable for neutron-absorbing materials, for protection of
equipment working in a hazardous environment, for many applications in biomedicine,
high-temperature catalysts, and nanoscale electronic and photovoltaic devices, as a water
purifier and as sensors and bio-detectors [8,9].

The existence of the boron nitride nanotubes (BNNTs) was first predicted theoretically
in 1994 [10], and then BNNTs were successfully synthesized in the following year [11]. Hav-
ing some mechanical and physical properties similar to those of CNTs, BNNTs can replace
carbon counterparts in several applications such as sensors [12], hydrogen storage [13], wa-
ter purification [14] and reinforcement of composites [15]. The structural similarity of CNTs
and BNNTs makes it possible to create new hybrid nanostructures, where constituent layers
are carbon and non-carbon nanotubes. This procedure allows combining the advantages of
each component and obtaining heterostructures with improved properties for innovative
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applications. For example, a new nanostructure composed of two layers of carbon and
boron nitride nanotubes (NTs) has the prospective of replacing double-walled CNTs for
high strain applications [16] and has a potential application as the smallest co-axial cable.
The latter has been evidenced by the recent accomplishment of the growing of CNT inside
the BNNT [17].

In order to take advantage of most of the properties of boron nitride nanotubes
for the correct design of their applications, such as BNNTs-reinforced composites and
hybrid structures of BNNTs with CNTs, the knowledge of their mechanical properties is of
utmost importance. Firstly, because the performance and robustness of nanosystems and
nanodevices containing BNNTs depend on their mechanical behaviour, and also because
the deformation can influence physical properties, such as optical, electric, thermoelectric
and chemical, of boron nitride NTs [8,18,19].

Similar to the studies focused on the mechanical characterization of CNTs, those
regarding the BNNTs’ mechanical behaviour are predominantly carried out resorting to
theoretical (analytical and numerical) methods due to the high cost and high resource
of experimental procedures at the nanoscale. As with carbon nanotubes, three classes
of the theoretical approaches have been used to model and characterize the mechanical
behaviour of BNNTs, namely, the atomistic approach, which comprises ab initio [20] and
molecular dynamics (MD) [3,21–26], the continuum mechanics (CM) approach [27,28] and
the nanoscale continuum modelling (NCM) approach, also called molecular structural
mechanics (MSM) [29–36]. Among the works in which atomistic modelling was used, the
elastic properties of BNNTs were accessed with recourse to MD simulations using different
analytical or empirical potential functions for describing the interactions between boron
(B) and nitride (N) atoms in the nanotubes. Choyal et al. [23] performed MD simulations
with Tersoff–Brenner (TB) potential to study the influence of the aspect ratio on the BNNTs’
Young’s modulus. Verma et al. [21] used the TB potential with modified parameters to
calculate the bending energy and, consequently, the Young’s and shear moduli and the
Poisson’s ratio of BNNTs with different diameters. Tao et al. [24] integrated MD simulation
with TB potential and finite element (FE) method to access Young’s modulus and study
the buckling behaviour of BNNTs. In their MD simulation study, Vijayaraghavan and
Zhang [22] adopted REBO, a second-generation reactive empirical bond order, to describe
the interactions between B and N atoms and modelled the BNNTs’ mechanical behaviour
under tensile loading. Santosh et al. [25] used MD simulation, with a force-constant
approach to depict the interaction between B and N atoms under axial compression to
study buckling behaviour of BNNTs and calculate their Young’s and shear moduli. About
other atomistic approaches, Kochaev [20] used ab initio simulation to evaluate Young’s
modulus and Poisson’s ratio of BNNTs, while Hernandez et al. [3] evaluated these elastic
properties using tight-binding molecular dynamics (TBMD). Zhang et al. [26] coupled MD
computational approach with the density-functional-based tight-binding (DFTB) model to
evaluate the Young’s and shear moduli of BNNTs.

With respect to the CM approach, which consists of modelling the nanotube as a con-
tinuum structure, Oh [27] employed analytical continuum lattice (CL) thermodynamic ap-
proach, combined with the adjusted TB potential, to describe the interaction between B and
N atoms and to evaluate Young’s modulus and Poisson’s ratio of BNNTs. Song et al. [28]
proposed a finite-deformation shell model to study the instabilities of BNNTs under dif-
ferent loading conditions in tension, compression and torsion. Uzun et al. [37] modelled
whole BNNT structures as nano-scaled beams using Social Spider Optimization (SSO)
algorithm to design the beams with optimum cross-sectional areas. In their work [37],
the displacements of BNNT (beam) were analysed with recourse of Euler–Bernoulli beam
theory, the same employed by Ouakad et al. [38] to study the fundamental frequencies of
hybrid boron-nitride-carbon nanotubes.

In the NCM/MSM approach, which considers the connection between the molecular
configuration of nanotube and the solid mechanics, BNNT is comprehended as a space
frame structure, where the covalent bonds between B and N atoms are simulated with
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elements (such as beams or springs) as in elasticity theory. Salavati et al. [30], Li and
Chou [31] and Ansari et al. [33] used the NCM/MSM approach, in which the B–N bond
is replaced by the beam element, to study the buckling behaviour [33], elastic moduli
and dynamic properties [31] and electromechanical properties [30] of BNNTs. Moreover,
in another study, Ansari et al. [34] used closed-formed analytical solutions based on a
molecular mechanics model to assess the surface Young’s modulus and Poisson’s ratio
of BNNTs. In the works of Jiang and Guo [32] and Genoese et al. [35], based on the
NCM/MSM approach, an analytical “stick-and-spring” model for single-walled BNNTs
was used to evaluate their surface elastic moduli and Poisson´s ratio. Additionally, within
the framework of NCM/MSM approach, Yan and Liew [29] considered a representative
cell built by B atom connected to three neighbouring N atoms by B–N covalent bonds to
construct the BNNT model, and then, the structural mechanic parameters were determined
by minimizing the potential of the representative cell. Yan et al. [36] studied longitudinal
and torsional free vibrations of BNNTs under the NCM/MSM approach coupled with
the Euler beam model and obtained analytical solutions for fundamental frequencies and
shear modulus.

The crucial point in the application of the NCM/MSM approach is to deduce the
elastic properties of elements that simulate covalent B–N bond, using a linkage between the
parameters of the structural mechanic of the elastic element and the molecular mechanics
parameters, namely force-field constants. If in the case of modelling of CNTs, the choice
of the force-field constants, which provide input for numerical or analytical models, was
unambiguous, computation of these constants for the case of BNNTs has become a challenge
for the research community. Different calculation methods have been already used to assess
the force constants for BNNTs, and, as a result, a scattering of BNNTs elastic properties
reported in the literature is evident.

The aim of the present study is to characterize the mechanical behaviour of single-
walled boron nitride nanotubes (SWBNNTs) for a broad range of chiral indices, diam-
eter and length, employing the NCM/MSM approach with beam elements. The three-
dimensional (3D) FE method was employed to proceed with a systematic evaluation of
the bending, torsional and tensile rigidities, and, subsequently, the shear and Young’s
moduli, and the Poisson´s ratio of SWBNNTs. A comprehensive study of the influence
of input parameters chosen for the FE modelling on the computed elastic properties of
BNNTs was carried out. Since boron nitride nanotubes have a great potential to substitute
their carbon counterparts in practical applications and taking into account the increased
prospective of hybrid nanostructures, consisting of boron nitride and carbon nanotubes,
the results thus obtained were compared with those for single-walled carbon nanotubes
(SWCNTs). Furthermore, the present study provides a benchmark with regard to determin-
ing the mechanical properties of SWBNNTs and a guide for the correct design of hybrid
SWBNNT/SWCNT structures.

2. Materials and Methods
2.1. Atomic Structure of SWBNNTs

As in the case of an SWCNT, an SWBNNT can be understood as a rolled-up hexagonal
boron nitride sheet, and the atomic structure of the nanotube is characterized by the
chirality that is expressed by the chiral vector, Ch, and the chiral angle, θ, as shown in
Figure 1.

The chiral vector is given as follows:

Ch= n·a1 +m·a2 (1)

where a1 and a2 are the unit vectors of the hexagonal BN lattice, and n and m are chiral
indices (always integers). The length of the unit vector a is defined as a =

√
3·aB−N, where

aB–N is the equilibrium B–N covalent bond length. Unlike the carbon–carbon (C–C) bond
length, aC–C, which value is usually considered equal to 0.1421 nm [1]. Various B–N bond
length values have been reported in the literature (see Table 1).
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Table 1. Values of the B–N covalent bond length available in the literature.

Reference Pokropivnyi [39] Menon and
Srivastava [40] Kochaev [20] Jiang and

Guo [32] Tapia et al. [41]

aB−N, nm 0.145 0.151 0.147 0.153 0.1447

The nanotube circumference, Lc, and the diameter, Dn, are expressed as follows:

Lc = |Ch|= a·
√

n2+n·m + m2 (2)

Dn =
Lc

π
=

aB−N·
√

3·
(
n2+n·m + m2

)
π

(3)

The chiral angle, θ, is defined by the angle between the chiral vector, Ch, and the
direction (n, 0), and is given by:

θ = sin−1
√

3·m
2
√

n2+n·m + m2
(4)

As for the SWCNTs, the chiral angles for the SWBNNTs are in the range between 0◦

and 30◦, defining three main symmetry groups: non-chiral nanotubes for the 2 limiting
cases of θ = 0◦ (zigzag) and θ = 30◦ (armchair), and chiral nanotubes for 0◦ < θ < 30◦. In
terms of chiral indices, when n = m, the structure corresponds to the armchair configuration
(n, n); when m = 0, the structure corresponds to the zigzag configuration (n, 0); when n 6= m,
the structure is chiral (n, m). Schematic representations of armchair, zigzag and chiral
SWBNNTs are shown in Figure 2.

2.2. Molecular Structure of SWBNNTs and Equivalent Properties of Elastic Beams

The NCM/MSM approach employed in the present study to determine the elastic
properties of SWBNNTs is based on the connection between the inter-atomic potential
energies associated with bond interactions in the molecular system and the strain energies
of the equivalent continuum structure, composed by beam elements undergoing axial,
bending and torsional deformations. In this way, the elastic properties of the beams are
determined using molecular mechanics (MM) relationships, as was established by Li and
Chou [42] for CNTs.

Based on molecular mechanics, the total potential energy of a molecular system is
given as the sum of the energy terms, owing to bonded and non-bonded interactions [43,44]:

Utot= Ur+Uθ+Uφ+Uω+Unb (5)

where Ur, Uθ, Uϕ and Uω are energies related to bond stretching, bond bending, dihedral
angle torsion and out-of-plane torsion, respectively, and Unb is the energy related to non-
bonded interactions that consist of van der Waals, electrostatic and explicit hydrogen
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bonds terms. In covalent systems, such as boron nanotubes, non-bonded interactions are
negligible when compared with bonded ones [31] and the principal contribution to the
total potential energy comes from the first four terms of Equation (5). Considering that
the potential energies are adequately described by the harmonic approximation under
the assumption of small deformation, and merging the dihedral angle torsion and out-of-
plane torsion into a single equivalent term, Uτ = Uϕ + Uω, Equation (5) can be rewritten
as follows:

Utot= Ur+Uθ+Uτ =
1
2
·kr·(∆r)2 +

1
2
·kθ·(∆θ)2 +

1
2
·kτ·(∆φ)2 (6)

where kr, kθ and kτ are the bond stretching, bond bending and torsional resistance force
constants, respectively, and ∆r, ∆θ and ∆ϕ are the bond stretching increment, bond angle
bending variation and angle variation of twist bond, respectively.

Materials 2021, 14, x  5 of 27 
 

 

where Ur, Uθ, Uφ and Uω are energies related to bond stretching, bond bending, dihedral 
angle torsion and out-of-plane torsion, respectively, and Unb is the energy related to non-
bonded interactions that consist of van der Waals, electrostatic and explicit hydrogen 
bonds terms. In covalent systems, such as boron nanotubes, non-bonded interactions are 
negligible when compared with bonded ones [31] and the principal contribution to the 
total potential energy comes from the first four terms of Equation (5). Considering that the 
potential energies are adequately described by the harmonic approximation under the 
assumption of small deformation, and merging the dihedral angle torsion and out-of-
plane torsion into a single equivalent term, Uτ = Uφ + Uω, Equation (5) can be rewritten as 
follows: 

Utot = Ur + Uθ + Uτ = 1
2 ∙kr∙ Δr 2 + 1

2 ∙kθ∙ Δθ 2 + 1
2 ∙kτ∙ Δϕ 2 (6) 

where kr, kθ and kτ are the bond stretching, bond bending and torsional resistance force 
constants, respectively, and Δr, Δθ and Δφ are the bond stretching increment, bond angle 
bending variation and angle variation of twist bond, respectively. 

armchair 

zigzag 

chiral 

Figure 2. The main symmetry groups of BNNTs acquired using the software Nanotube Modeler© 
(version 1.8.0, ©JCrystalSoft). 

Regarding the bond force constants for the BN nanostructures, different values of kr, 
kθ and kτ, depending on the methods for their calculation, have been reported in the 
literature, as resumed in Table 2. Among the well-known generic molecular force fields, 
only UFF (Universal Force Fields) [43] and DREIDING force field [44] have the necessary 
parameters to describe the B–N bonds and, consequently, directly calculating the bond 
force constants. As it was shown by Rappé et al. [43] (UFF), the bond-bending constant, 
kθ, of the diatomic nanostructure, which is the case of that constituted by the B and N 
atoms, depends on the lengths of B–N and N–B bonds, the three-body angles between 
pairs of bonds B–N–B and N–B–N and the effective charges of the atoms B and N. As a 
result, there are two different values for the bond-bending constant, kθ1 and kθ2, related 
with effective charges of the atoms (Z1

*2) by following expression [43]: 

kθ1

kθ2
 = Z2

*2

Z1
*2 (7) 

In the DREIDING force field, which is well-defined for any pair of atoms, it is not 
necessary to distinguish two different bond-bending constants. For this reason, 

Figure 2. The main symmetry groups of BNNTs acquired using the software Nanotube Modeler©
(version 1.8.0, ©JCrystalSoft).

Regarding the bond force constants for the BN nanostructures, different values of
kr, kθ and kτ, depending on the methods for their calculation, have been reported in the
literature, as resumed in Table 2. Among the well-known generic molecular force fields,
only UFF (Universal Force Fields) [43] and DREIDING force field [44] have the necessary
parameters to describe the B–N bonds and, consequently, directly calculating the bond
force constants. As it was shown by Rappé et al. [43] (UFF), the bond-bending constant, kθ,
of the diatomic nanostructure, which is the case of that constituted by the B and N atoms,
depends on the lengths of B–N and N–B bonds, the three-body angles between pairs of
bonds B–N–B and N–B–N and the effective charges of the atoms B and N. As a result, there
are two different values for the bond-bending constant, kθ1 and kθ2, related with effective
charges of the atoms (Z∗21 ) by following expression [43]:

kθ1

kθ2
=

Z∗22

Z∗21
(7)
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Table 2. Bond force constants for BN nanostructures reported in the literature.

Reference Method kr, nN/nm kθ, nN·nm/rad2 kτ, nN·nm/rad2

Rappé et al. [43] UFF 676
2.358 1

-
1.122 2

Mayo et al. [44]
DREIDING

487 0.695 0.278
Li and Chou [31] 487 0.695 0.625

Jiang and Guo [32]

DFT

595
1.360 1

-
0.662 2

Genoese et al. [45] 585
1.347 1

-
0.641 2

Ansari et al. [33] 620 1.050 2.470
Tapia et al. [41] 617 0.627 0.132

1 For three-body angle of N–B–N. 2 For three-body angle of B–N–B.

In the DREIDING force field, which is well-defined for any pair of atoms, it is not neces-
sary to distinguish two different bond-bending constants. For this reason, DREIDING was
adopted by Li and Chou [31], however, with a modification for the bond torsion. The other
method for determining force constants is the use of the density functional theory (DFT). To
calculate the bond force constants, Jiang and Guo [32] and Genoese et al. [45] used results
available in the literature on ab initio DFT, replacing them in the analytical expressions
for surface elastic moduli and Poisson’s ratio, derived from MM models. Ansari et al. [33]
computed the force constants in a similar way; however, the surface Young’s modulus,
flexural rigidity and Poisson’s ratio to be replaced in the MM relationships were obtained
from DFT’s own calculations. Tapia et al. [41] calculated the bond force constants directly,
using ab initio DFT computations.

The highest bond stretching constant is calculated by Rappé et al. [43] using the UFF
method, kr = 676 nN/nm, and the smallest is predicted considering the DREIDING force
field [44], kr = 487 nN/nm. The kr values reported by Ansari et al. [33] and Tapia et al. [41],
who employed the DFT-based method for evaluation of the bond stretching constant, are
nearly the same and slightly lower than those obtained by Rappé et al. [43] (UFF). The kr
force constants calculated in the works of Jiang and Guo [32] and Genoese et al. [45] are
close to each other due to the similar calculation approach used and slightly higher than
the kr value provided by Mayo et al. [44] (DREIDING).

Regarding the bond-bending constant, kθ, an uncertainty in relation to its value is
evident when the results available literature is examined. In the studies by Rappé et al. [43]
(UFF), Jiang and Guo [32] (DFT) and Genoese et al. [45] (DFT), two values of kθ were
calculated taking into consideration the B–N–B and N–B–N configurations. Jiang and
Guo [32] and Genoese et al. [45], who shared a similar approach for calculation bond-
bending constant, derived comparable pairs of kθ1 and kθ2 values, but different from
those provided by Rappé et al. [43]. The value of kθ calculated by Tapia et al. [41] (DFT) is
close to that found by Mayo et al. [44] (DREIDING). The bond torsion constant, kτ, values
reported in the literature for BN nanostructures are even scarcer and with greater scatter
than those available for kr and kθ force constants. To our knowledge, apart from the kτ
value calculated basing on the DREIDING force field [44] and modification for kτ proposed
by Li and Chou [31], only Ansari et al. [33] and Tapia et al. [41] reported in their studies kτ
values obtained using the DFT method.

For the stretching, UA, bending, UT, and torsional, UM, energies of a beam under
pure axial force, N, pure bending moment, M, and a pure torsion moment, T, respectively,
classical mechanics give the following expressions:

UA =
1
2
·
∫ L

0

N2

Eb·Ab
dl =

1
2
·Eb·Ab

l
·(∆l)2 (8)

UM =
1
2
·
∫ L

0

M2

Eb·Ib
dl =

1
2
·Eb·Ib

l
·(2·τ)2 (9)
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UT =
1
2
·
∫ L

0

T2

Gb·Jb
dl =

1
2
·Gb·Jb

l
·(∆β)2 (10)

where l is the beam length; Ab, Ib and Jb are the cross-section area, the moment of inertia
and the polar moment of inertia of the beam, respectively; ∆l is the beam axial stretch-
ing displacement; τ is the rotational angle at the ends of the beam; ∆β is the relative
rotation between the ends of the beam; Eb and Gb are Young’s and shear moduli of the
beam, respectively.

The Equations (6) and (8)–(10) allow establishing the equivalence between molecular
and structural systems, i.e., between the stretching energies, Ur and UA, the bending
energies, Uθ and UM, and the torsional energies, Uτ and UT. In addition, it can be
established the equivalences between the beam axial stretching, ∆l, and the bond stretching
increment, ∆r, the rotational angle, τ, and the total variation of the bond angle, ∆θ, and the
relative rotation between the beam ends, ∆β, and the twist bond angle variation, ∆ϕ. Thus,
the tensile, EbAb, bending, EbIb, and torsional, GbJb, rigidities of beam elements, can be
expressed through the force constants kr, kθ, kτ and the beam length, l [42]:

EbAb= l·kr, EbIb= l·kθ, GbJb= l·kτ (11)

Equation (11), together with the assumption of equivalence between the beam length,
l, and the bond length, aB–N, are the basis for the analysis of the mechanical behaviour of
BNNTs, using continuum mechanics. Assuming a circular cross-section area of the beam
element, its cross-section area, Ab, the moment of inertia, Ib, and the polar moment of
inertia, Jb, are expressed as follows:

Ab= π·d2/4, Ib= π·d4/64, Jb= π·d4/32 (12)

where d is the beam diameter.
Combining Equations (11) and (12), the diameter, d, and the Young’s modulus, Eb,

and the shear modulus, Gb, of the beam to be used as an input in numerical simulation
studies can be derived as follows:

d = 4·

√
kθ
kr

(13a)

Eb =
k2

r ·l
4·π·kθ

(13b)

Gb =
k2

r ·kτ·l
8·π·k2

θ

(13c)

When two values of bond-bending rigidity, kθ1 and kθ2, are considered the
Equations (13a)–(13c) are presented as:

d = 2·

√
2·(kθ1+kθ2)

kr
(14a)

Eb =
k2

r ·l
2·π·(kθ1+kθ2)

(14b)

Gb =
k2

r ·kτ·l
2·π·(kθ1+kθ2)

2 (14c)

The Poisson’s ratio of the beam element can be calculated by the relationship obtained
with recourse to MM models [46] as follows:

νb =
kr·l2 – 6·kθ
kr·l2+18·kθ

(15a)
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which in the case of two different values of kθ is modified as follows [32,45]:

νb =
kr·l2 – 3·(kθ1+kθ2)

kr·l2+9·(kθ1+kθ2)
(15b)

The geometrical and mechanical properties of the beam elements for the input of
FE models of SWBNNTs and SWCNTs are summarized in Table 3. Five different sets of
input parameters for numerical simulation of SWBNNTs were chosen based on the force
constants presented in Table 2.

Table 3. FE simulations input parameters of SWBNNTs and SWCNTs: beam element geometrical and mechanical properties.

Case Reference l, nm Force Field Constants d, nm Eb, GPa Gb, GPa νb

SW
BN

N
Ts

1 [33] 1.450
kr = 620 nN/nm

kθ = 1.050 nN·nm/rad2

kτ = 2.470 nN·nm/rad2

0.1645
Equation

(13a)

4231
Equation

(13b)

4976
Equation

(13c)

0.21
Equation

(15a)

2 [45] 1.450

kr = 585 nN/nm
kθ1 = 1.347 nN·nm/rad2

kθ2 = 0.641 nN·nm/rad2

∗kτ = 2.470 nN·nm/rad2

0.1649
Equation

(14a)

3973
Equation

(14b)

4936
Equation

(14c)

0.21
Equation

(15b)

3 [32] 1.530

kr = 595 nN/nm
kθ1 = 1.360 nN·nm/rad2

kθ2 = 0.662 nN·nm/rad2

∗kτ = 2.470 nN·nm/rad2

0.1649
Equation

(14a)

4263
Equation

(14b)

5208
Equation

(14c)

0.24
Equation

(15b)

4 [41] 1.447
kr = 617 nN/nm

kθ = 0.627 nN·nm/rad2

kτ = 0.132 nN·nm/rad2

0.1275
Equation

(13a)

6989
Equation

(13b)

737
Equation

(13c)

0.38
Equation

(15a)

5 [31] 1.450
kr = 487 nN/nm

kθ = 0.695 nN·nm/rad2

kτ = 0.625 nN·nm/rad2

0.1512
Equation

(13a)

3930
Equation

(13b)

1767
Equation

(13c)

0.27
Equation

(15a)

SW
C

N
Ts

[47]
[48] 1.421

kr = 652 nN/nm
kθ = 0.876 nN·nm/rad2

kτ = 0.278 nN·nm/rad2

0.1470
Equation

(13a)

5488
Equation

(13b)

871
Equation

(13c)

0.27
Equation

(15a)

∗ Due to the lack of values reported, the kτ force constant was calculated through kτ = 24·D [49], where D is flexural rigidity, with D = 0.64 eV [33].

2.3. Configurations of Nanotubes and FE Analysis

The meshes of the SWBNNTs and SWCNTs for FE analyses were built using the Nan-
otube Modeler© software (version 1.8.0, ©JCrystalSoft), which produces PDB (Program
Database) files containing the atom positions and their connections to be used as input
data in the commercial FE code ABAQUS® (Abaqus 2020, Dassault Systèmes®). To convert
the PDB files obtained from the Nanotube Modeler© software to the format compatible
with the ABAQUS® code, the in-house application, entitled InterfaceNanotubes.NM, was
used, which is a modified version of the previously developed InterfaceNanotubes applica-
tion [50]. Table 4 summarizes the geometric characteristics of the SWBNNTs and SWCNTs
used in the current FE analyses. The length of the SWBNNTs and SWCNTs was about 30×
greater than the nanotube diameter; in this way, the mechanical behaviour of the nanotube
does not depend on the length. Examples of the SWBNNTs and SWCNTs finite element
meshes used are shown in Appendix A (Figure A1), and the number of elements and nodes
constituting the FE meshes are summarized in Table A1.
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Table 4. Geometrical characteristics of the studied SWBNNTs and SWCNTs.

NT Symmetry
Group NT Type (n, m) θ◦

SWBNNTs
Dn, nm 1

SWCNTs,
Dn, nm

non-chiral armchair (5, 5) 30 0.702 0.678
(7, 7) 0.983 0.950
(8, 8) 1.123 1.086

(10, 10) 1.404 1.357
(12, 12) 1.684 1.628
(15, 15) 2.106 2.035
(18, 18) 2.527 2.443
(20, 20) 2.807 2.714
(22, 22) 3.088 2.985
(25, 25) 3.509 3.392
(27,27) 3.790 3.664

zigzag (9, 0) 0 0.729 0.705
(10, 0) 0.810 0.783
(12, 0) 0.973 0.940
(14, 0) 1.135 1.097
(16, 0) 1.297 1.254
(18, 0) 1.459 1.410
(20, 0) 1.621 1.567
(26, 0) 2.107 2.037
(30, 0) 2.431 2.350
(35, 0) 2.837 2.742
(38, 0) 3.080 2.977
(43, 0) 3.485 3.369
(47, 0) 3.809 3.682

chiral family 19.1◦ (6, 3) 19.1 0.643 0.622
(8, 4) 0.858 0.829

(10, 5) 1.072 1.036
(14, 7) 1.501 1.451
(16, 8) 1.715 1.658
(20, 10) 2.144 2.073
(24, 12) 2.573 2.487
(26, 13) 2.788 2.695
(28, 14) 3.002 2.902
(36, 12) 3.431 3.316

n + m = 10 (6, 4) 23.4 0.707 0.683
(7, 3) 17.0 0.720 0.696
(8, 2) 10.9 0.743 0.718
(9, 1) 5.2 0.773 0.747

n + m = 20 (12, 8) 23.4 1.413 1.366
(14, 6) 17.0 1.441 1.393
(15, 5) 13.9 1.461 1.412
(16, 4) 10.9 1.486 1.436
(18, 2) 5.2 1.546 1.495

n + m = 30 (16, 14) 27.8 2.107 2.037
(18, 12) 23.4 2.120 2.049
(21, 9) 17.0 2.161 2.089
(22, 8) 14.9 2.181 2.108
(24, 6) 10.9 2.228 2.154
(25, 5) 8.9 2.256 2.181
(27, 3) 5.2 2.319 2.242
(28, 2) 3.4 2.355 2.276

1 Diameter, Dn, of SWBNNTs is calculated assuming B–N length aB−N = 0.147 nm defined by software
Nanotube Modeler©.

The mechanical behaviour of the SWBNNTs and SWCNTs was studied numerically
under tensile, bending, and torsion loading conditions, using the FE code ABAQUS®. As a
result, the EA, EI and GJ, rigidities of the nanotubes are determined as follows:

EA =
Fa·L
ua

(16)

EI =
Ft·L3

3·ut
(17)
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GJ =
T·L
ϕ

(18)

where L is the nanotube length; Fa, Ft and T are the axial tensile force, the transverse force
and the torsional moment, respectively, applied at one end of the nanotube, leaving the
other fixed; ua, ut and φ are the axial displacement, the transverse displacement and the
twist angle, respectively, obtained from the FE analysis. During the torsion test, the nodes
under loading at the end of the nanotube are not permitted to move in the radial direction.

2.4. Elastic Constants of SWBNNTs

As in the case of SWCNTs [50,51], the Young’s, E, and shear, G, moduli, and the
Poisson’s ratio, ν, of SWBNNTs can be assessed with recourse to the results of tensile, EA,
bending, EI, and torsional, GJ, rigidities. The SWBNNTs with the mean diameter D and the
nanotube wall thickness, tn, have the cross-sectional area, A, the moment of inertia, I, and
the polar moment of inertia, J, of the equivalent hollow cylinder expressed respectively by:

A =
π

4
·[
(
D + tn

)2 −
(
D− tn

)2
] = πD·tn (19)

I =
π

64
·[
(
D + tn

)4 −
(
D− tn

)4
] =

π·D3·tn

8
·
[

1 +
(

tn

D

)2
]

(20)

J =
π

32
·[
(
D + tn

)4 −
(
D− tn

)4
] =

π·D3·tn

4
·
[

1 +
(

tn

D

)2
]

(21)

The knowledge of the EA and EI rigidities and Equations (19) and (20) allow deter-
mining the diameter D as follows:

EI
EA

=
1
8
·
(

D2
+ t2

n

)
⇒ D =

√
8·
(

EI
EA

)
·t2

n (22)

Consequently, substituting in the Equations (19) and (21) the mean diameter, D, given by
Equation (22), the E and G moduli can be calculated using the following expressions, respectively:

E =
EA
A

=
EA

π·tn·
√

8·
(

EI
EA

)
–t2

n

(23)

G =
GJ
J

=
GJ

2·π·tn·
(

EI
EA

)
·
√

8·
(

EI
EA

)
–t2

n

(24)

In the current study, the value of the SWBNNTs wall thickness was considered equal
to the graphite interlayer spacing, tn = 0.34 nm, as observed experimentally by transmis-
sion electron microscopy (tn = 0.338 ± 0.004 nm [52]) and calculated by the theoretical
approaches [43–55]. However, there is no agreement on the value of tn and although the
values above mentioned are commonly used, Tapia et al. [41] and Boldrin et al. [56] reported
tn = 0.106 nm, and Vijayaraghavan and Zhang [22] calculated tn = 0.105 nm. Additionally,
tn values equal to 0.936 nm [57] and 0.33 nm [21,58] can be found in the literature.

Assuming the isotropy condition and taking into account that J = 2·I, the Poisson’s
ratio can be calculated from the EI and GJ rigidities, as follows:

ν =
E

2·G – 1 =
EI
GJ

– 1 (25)
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3. Results and Discussion
3.1. Rigidities of SWBNNTs: Parametric Studies on the Effect of Diameter, Chiral Angle and
Aspect Ratio

First, the effect of the nanotube diameter on the SWBNNTs rigidity was studied using
numerical simulations as above described. The tensile, bending and torsional rigidities of
the SWBNNTs, obtained by Equations (16)–(18), for the five cases of numerical simulation
input values shown in Table 3, are presented as a function of the nanotube diameter, Dn, in
Figure 3a–c, respectively. The rigidity results for SWCNTs are also plotted in Figure 3a–c
for comparative purposes. For each case of numerical simulation input values shown in
Table 3, the rigidity results appear along the same alignment, regardless of the type of
nanotube, chiral or non-chiral, and the corresponding diameter; the same is true of the
results of the SWCNTs, as it was already observed [50,51]. The evolutions of the EA rigidity
obtained for cases 1 and 3 of the input parameters for SWBNNTs almost coincide with
each other and with the EA evolution obtained for SWCNTs. The EA values for cases 2,
4 and 5 are lower than for cases 1 and 3 and decrease from case 2 to case 5. The same is
true for the evolutions of the EI rigidity. The evolutions of GJ rigidity for cases 1 and 3 of
SWBNNTs and for SWCNTs are nearly coincident, and the same is valid for cases 4 and
5. The GJ values for case 2 are lower than in cases 1 and 3 and higher than in cases 4 and
5. Based on the expressions (19), for cross-section area and (20) and (21), for moments
of inertia of nanotube, the values of the tensile rigidity, EA, shown in the Figure 3a are
represented as a function of nanotube diameter, Dn, and the values of the bending, EI, and
torsional, GJ, rigidities as shown in Figure 3b,c, respectively, are plotted as a function of
D3

n, in Figure 4a–c.
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As previously found for the case of the SWCNTs [50,51], the following expressions
describing the straight lines in the Figure 4a–c can be written:

EABN= αBN·Dn (26)

EIBN= βBN·Dn
3 (27)

GJBN= γBN·Dn
3 (28)

where αBN, βBN and γBN are the fitting parameters. The values of the αBN, βBN and γBN
obtained from Figure 4a–c for SWBNNTs are resumed in Table 5.

Table 5. The fitting parameters αBN, βBN and γBN for SWBNNTs, considering the five cases of input
values shown in Table 3.

Case αBN, nN/nm βBN, nN/nm γBN, nN/nm

1 1093.46 136.01 134.71
2 1029.90 128.11 126.95
3 1105.10 137.46 136.22
4 924.49 114.87 99.58
5 817.32 101.62 96.37

Equations (26)–(28) are similar to those obtained in the authors preceding works for the
case of the SWCNTs: EAC= αC·(Dn– D0), EIC= βc·(Dn–D0)

3, GJC= γc·(Dn– D0)
3 with the

fitting parameters αC, βC, γC and D0 [50,51]. For SWCNTs the fitting parameters estimated
based on the results of Figure 4a–c are: αC = 1119.89 nN/nm, βC = 139.40 nN/nm and
γC = 132.44 nN/nm, which is close to those previously calculated: αC = 1121.20 nN/nm,
βC = 140.25 nN/nm, γC = 130.39 nN/nm and D0 was considered equal to zero, since its
value is negligible when compared with the nanotube diameter Dn [59].
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The mean differences between the values of EA, EI and GJ rigidities calculated
with Equations (26)–(28), respectively, and the corresponding rigidity values obtained
directly from FE analysis are shown in Table 6. These results allow us to conclude that
Equations (26)–(28) make an accurate assessment of the tensile, bending and torsional
rigidities of SWBNNTs. The greatest mean difference, which is observed for the EI values,
is less than 1%.

Table 6. The mean difference between the SWBNNTs rigidities values estimated with
Equations (26)–(28) and the respective values obtained from FE analysis.

Case
Mean Difference, %

EA, nN EI, nN·nm2 GJ, nN·nm2

1 0.21 0.62 0.19
2 0.20 0.62 0.18
3 0.21 0.64 0.19
4 0.32 0.76 0.38
5 0.24 0.66 0.24

The evolutions of αBN, βBN and γBN for five cases of input parameters, ordered by
decreasing values of the rigidities, are shown in Figure 5. It should be noted that for cases
1, 2 and 3, the ratio βBN/γBN is about 1.01, and for case 5, βBN/γBN = 1.05, which means
that the values of bending, EI, and torsional, GJ, rigidities are close to each other. For case 4,
the value of the ratio βBN/γBN is 1.15, which corresponds to the highest ratio between the
values of the EI and GJ rigidities, observed among the studied five cases of input values in
numerical simulations.
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A careful analysis of the numerical results shows that the Equations (26)–(28) for the
determination of the tensile, EA, bending, EI and torsional, GJ, rigidities, respectively, do
not fit the three rigidities of SWBNNTs with enough accuracy, in all range of SWBNNTs
diameters. For better understanding, the ratios EA/Dn, EI/D3

n and GJ/D3
n were represented

as a function of nanotube diameter, Dn, in Figure 6a–f, respectively. Two cases of the input
parameters, cases 3 and 5, were considered for this analysis.
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The ratios EA/Dn and EI/D3
n are almost constant and equal to the values of the fitting

parameters αBN (Equation (26)) and βBN (Equation (27)), respectively, for the SWBNNTs
with diameters Dn > 1.5 nm. For SWBNNTs with Dn values less than 1.5 nm, the EA/Dn
ratio slightly increases for armchair (θ = 30◦) nanotubes, noticeably decreases for zigzag
(θ = 0◦) nanotubes and slightly decreases for the chiral family with θ = 19.1◦ (Figure 6a,b).
The ratio EI/D3

n clearly increases for armchair (θ = 30◦) and chiral (θ = 19.1◦) nanotubes,
and clearly decreases for zigzag (θ = 0◦) nanotubes, for diameters Dn < 1.5 nm (Figure 6c,d).
That is, for SWBNNTs with diameters less than 1.5 nm, the ratios EA/Dn and EI/D3

n
decrease with Dn, when the chiral angle, θ, decreases from 30◦ (armchair) to 0◦ (zigzag).
Although the ratio GJ/D3

n is nearly constant and equal to the value of the fitting parameter
γBN (Equation (28)) for the SWBNNTs with diameter Dn > 1.5 nm, similarly to what was
observed for EA/Dn and EI/D3

n ratios, the evolution of GJ/D3
n ratio with the decrease in

nanotube diameter, Dn, is the opposite. For SWBNNTs with Dn values less than 1.5 nm,
GJ/D3

n increases for zigzag (θ = 0◦) and decreases for chiral (θ = 19.1◦) and armchair
(θ = 30◦) nanotubes. Consequently, for SWBNNTs with diameters less than 1.5 nm, the ratio
GJ/D3

n decreases with the transition from zigzag to armchair structure, i.e., when the chiral
angle, θ, increases from 0◦ to 30◦. A comparable evolution for the ratio GJ/ (D n – D0)

3 with
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the nanotube diameter was observed for the SWCNTs in a wide range of their chirality [47],
with the difference that the value of GJ/ (D n – D0)

3 becomes stable for SWCNTs with
Dn ≥ 1.0 nm.

In order to clarify the evolutions of tensile and bending rigidities with the nanotube
diameter and taking into account, Equation (22) for the nanotube mean diameter, the
ratio (EI/EA)·(1/D3

n) was considered. The evolution of the ratio (EI/EA)·(1/D2
n) with Dn

is plotted in Figure 7a. The values of (EI/EA)·(1/D2
n) are stable for high values of the

nanotube diameter, Dn, and equal to the value of the ratio between fitting parameters
βBN/αBN, and slightly increases for armchair and chiral SWBBNTs for small nanotube
diameters, Dn < 1 nm. The evolution of the ratio between bending and torsional rigidities,
EI/GJ, with Dn is shown in Figure 7b. This ratio noticeably increases for armchair and
chiral nanotubes and noticeably decreases for zigzag nanotubes, for diameters Dn < 1.5 nm;
for diameters greater than 1.5 nm tends to the value of the ratio βBN/γBN.
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n) and (b) EI/GJ with the nanotube diameter, Dn, for case 3.

It was also investigated the effect of the aspect ratio, L/Dn (where L is the nanotube
length), on the EA, EI and GJ rigidities of the SWBNNTs. Examples of tensile, bending
and torsional rigidities as a function of L/Dn are shown in Figure 8a,b. The tensile, EA,
and torsional, GJ rigidities are almost constant in all range of nanotube aspect ratios for
(10, 10) armchair and (18, 0) zigzag SWBNNTs, but slightly decrease for (14, 7) chiral
nanotube, when L/Dn is smaller than 5. The bending, EI, rigidity slightly increases for (10,
10) armchair, (18, 0) zigzag and (14, 7) chiral nanotubes when L/Dn < 5, but above that, the
value of EI is stable. In short, for aspect ratio values greater than 5, all rigidities are stable,
and in some cases, even for values less than 5.
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3.2. Elastic Moduli and Poisson’s Ratio of SWBNNTs

In this section, the Young’s and shear moduli and the Poisson’s ratio of SWBN-
NTs, calculated by Equations (23)–(25), respectively, are analysed. It is worth noting that
Equation (23) together with relationships Equations (26) and (27) and the knowledge of
the parameters αBN, βBN and γBN in Table 5 as well the nanotube diameter, Dn, and wall
thickness, tn, allow calculating Young’s modulus of the SWBNNTs without resorting to the
numerical simulation as follows:

E =
αBN·Dn

π·tn·
√

8·
(
βBN
αBN

)
·D2

n – t2
n

(29)

Using the Equation (24) and relationships Equations (26)–(28), the shear modulus of
the SWBNNTs can be calculated as follows:

G =
γBN·Dn

2·π·
(
βBN
αBN

)
·tn·
√

8·
(
βBN
αBN

)
·D2

n –t2
n

(30)

Resorting to Equation (25) and relationships Equations (27) and (28), the Poisson’s
ratio can be defined by an equation independent of the BNNTs diameter, as follows:

ν =
βBN
γBN

– 1 (31)

Figure 9 shows the evolutions of Young’s modulus, E, with the nanotube diameter, Dn,
for cases 1–5 of SWBNNTs and for SWCNTs. The E values calculated by Equation (29) are
also plotted in Figure 9. Regardless of the case of the input parameters, chirality and the
nature of the nanotube, whether non-carbon or carbon, Young’s modulus at the beginning
decrease with the nanotube diameter, and then it becomes almost stable for the diameters
Dn > 1 nm. The mean value for which Young’s modulus of the cases 1 (E = 1.045 TPa) and
3 (E = 1.056 TPa) of SWBNNTs converges is slightly lower (by about 2%) than SWCNTs,
which is 1.072 nm. The values for which Young’s modulus converges gradually decreases
for the cases 2 to 4 and 5, E = 0.984, 0.884 and 0.781 TPa, respectively. It should be noted that
Equation (29) allows calculating with sufficient accuracy Young’s modulus of SWBNNTs
whatever the chirality and diameter without resorting to numerical simulation. Such a
result was also reported for the case of SWCNTs in the previous study [50].
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Figure 9. The evolution of the Young’s modulus, E, with the nanotube diameter, Dn, for SWBNNTs
and SWCNTs.

Figure 10a shows the evolutions of the shear modulus, G, as a function of the nanotube
diameter, Dn, for armchair nanotubes, considering cases 1–5 of SWBNNTs and SWCNTs.
The G values calculated by Equation (30) are also plotted in Figure 10a. The shear modulus
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value of armchair nanotubes decreases with Dn, and, for high nanotube diameters, it
becomes stable and tends to the value calculated by Equation (30). It can be noticed
that Equation (30) does not allow calculating accurate values of the shear modulus of
the armchair nanotubes with diameters Dn < 1.5 nm. The highest converged average
values of G assessed with Equation (31) are observed for the cases 1 (G = 0.516 TPa) and 3
(G = 0.522 TPa) of SWBNNTs, and the shear modulus of SWCNTs is about 1.7% lower than
those in these cases. The value of the average shear modulus converges to 0.486, 0.382 and
0.369 TPa for cases 2, 4 and 5, respectively.
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In order to clarify the results shown in Figure 10a, the evolutions of the shear modulus,
G, with nanotube diameter, Dn, were plotted in Figure 11b, for armchair, zigzag and
θ = 19.1◦ family of chiral nanotubes, limiting to the cases 2 and 5 of SWBNNTs and the
SWCNTs. Regarding the evolutions of G for three symmetry groups of nanotubes, the shear
modulus is influenced by the chiral angle and slightly decreases from zigzag (θ = 0◦) to
armchair (θ = 30◦) structures for SWBNNTs and SWCNTs with the diameters Dn < 1.5 nm.
With the increase in Dn, the shear modulus assumes identical almost stable values for
armchair, zigzag and chiral nanotubes, which can be accurately described by Equation (30).
This trend for the shear modulus evolution is in consonance with the results of Figure 6e,f,
which show that the torsion rigidity, GJ, does not follow a linear relationship with the cubic
power of the nanotube diameter, D3

n, for diameters lower than 1.5 nm.
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5 of (10, 10), (18, 0) and (14, 7) SWBNNTs.

The results regarding the evolution of the E and G moduli with the aspect ratio, L/Dn,
are shown in Figure 11a,b for armchair (10, 10), zigzag (18, 0) and chiral (14, 7) SWBNNTs.
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Both E and G moduli increase for the aspect ratio below 5 and stabilise for higher L/Dn
ratios. The Young’s modulus values obtained for (10, 10), (18, 0) and (14, 7) SWBNNTs
are approximately equal whatever the aspect ratio, but the shear modulus values slightly
decrease from zigzag to chiral and armchair SWBNNTs, when L/Dn < 3.

Figure 12 represents the evolution of the Poisson’s ratio, ν, calculated by Equation
(25), with the nanotube diameter, Dn, for armchair, zigzag and θ = 19.1◦ family of chiral
SWBNNTs. The ν values calculated by Equation (31), which does not depend on the Dn
values, are also indicated in Figure 12. For armchair, zigzag and chiral SWCNNTs with
diameters Dn > 1.5 nm, the Poisson’s ratio tends approximately to the value calculated
by Equation (31). When the nanotube diameter decreases below 1.5 nm, the value of the
Poisson’s ratio value increases, in the case of zigzag SWBNNTs, whereas for the cases
of armchair and chiral SWBNNTs, the value of ν decreases. The Poisson’s ratio values
calculated for cases 1–3 of the input parameters are approximately equal. Moreover, the
SWBNNTs with small diameters, Dn < 1 nm, show an auxetic behaviour (have a negative
Poisson’s ratio). The mean value to which the Poisson’s ratio converges is about 0.15, 0.05
and 0.01 for the cases 4, 5 and 1–3, respectively.
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It can be concluded that, for nanotube diameters Dn < 1.5 nm, the Poisson’s ratio
clearly depends on the chiral angle and increases from zigzag (θ = 0◦) to armchair nanotubes
(θ = 30◦) SWCNNTs. This result agrees with those of Figure 7b, which shows that the ratio
EI/GJ, between bending and torsion rigidities, does not have a constant value, for the
nanotube diameter, Dn, below 1.5 nm.

Table 7 summarises the results of the current study on Young’s, E, and shear, G, moduli
and Poisson’ ratio, ν, of SWBNNTs, calculated using several combinations of the bond
length and force-field constants, which provided five sets of the input parameters for the
numerical simulations. It is evident the considerable scattering for the E, G and ν values,
caused by the variation of the input parameters in the framework of the same modelling
approach (NCM/MSM) to describe the mechanical behaviour of SWBNNTs.
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Table 7. Young’s and shear moduli and Poisson’ ratio of SWBNNTs evaluated in the present numerical
simulation study using different sets of the input parameters.

Bond Length,
aB-N, nm

Force Field Constants Elastic Properties *

kr, nN/nm kθ,
nN·nm/rad2

kτ,
nN·nm/rad2 E, TPa G, TPa ν

1.450
[31,33,45]

487 [31] 0.695 [31] 0.625 [31] 0.781 0.369 0.05
620 [33] 1.050 [33]

2.470 [33]

1.045 0.515 0.01

585 [45]
1.347

0.984 0.486 0.010.641 [45]

1.530 [32] 595 [32]
1.360

1.056 0.522 0.010.662 [32]
1.447 [41] 617 [41] 0.627 [41] 0.132 [41] 0.884 0.382 0.15

* Converged mean values.

3.3. Comparison with Literature Results

Table 8 summarised the current results on the elastic property of SWBNNTs and also
those from literature, including theoretical and experimental results.

Table 8. A comparison of the current Young’s and shear moduli and the Poisson’s ratio results for boron nitride nanotubes
with those reported in the literature.

Reference Method tn, nm Type of BNNT E, TPa G, TPa ν Comment

Hernandez et al. [3] TBMD

0.340

(n, n) 0.894 - 0.26 average value
(n, 0) 0.866 - 0.24

Kochaev [20] ab initio (10, 10) 1.140 - 0.56 -

Santosh et al. [25] MD: force–constant approach (n, n); (n, 0) 1.017 0.326 - converged
average value

Verma et al. [21]
MD: TB potential

0.330
(n, n) 1.107 0.965

0.14 average value
(n, 0) 1.044 1.555

Choyal et al. [23]

0.340

(10, 10) 1.053 - - highest value
for L/Dn = 15(17, 0) 1.066

Tao et al. [24] MD: TB potential + FEM (n, n) 0.911 - - converged
average value(n, 0) 0.930

Vijayaraghavan and
Zhang [22] MD: REBO 0.105 (10, 10) 2.8 - - -

Zhang et al. [26] MD: DFTB 0.314
(n, n) 0.840 0.366

- converged
average value(n, 0) 0.844 0.368

Oh [27]
CM: CL thermodynamic
approach + TB potential 0.330

(n, n) 0.960 - 0.17 converged
average value(n, 0) 0.975 0.15

Yan and Liew [29] NCM/MSM:
representative cell

0.333

(n, n) 0.970 0.416
-

converged
average value

(n, 0) 0.967 0.418

Yan et al. [36] NCM/MSM: torsional
vibrations

(n, n); (n, 0);
(n, m) - 0.418 - converged

average value

Jiang and Guo [32]
NCM/MSM:

analytical solution

- - - - 0.21 converged
average value0.23

Ansari et al. [34]

0.340

(n, n) 0.825 - 0.21 average value
(n, 0) 0.823

Salavati et al. [30]
NCM/MSM: beams

(n, n), (n, 0) 0.928 - - converged
average value

Li and Chou [31]
(n, n) 0.916 0.465 - converged

average value(n, 0) 0.913 0.475

Arenal et al. [60] HRTEM-AFM + analytical
0.070

SWBNNT
1.11 ± 0.17

- - -0.090 0.87 ± 0.13
0.340 0.25 ± 0.04
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Table 8. Cont.

Reference Method tn, nm Type of BNNT E, TPa G, TPa ν Comment

Chopra and
Zettl [61]

TEM: thermal vibrational
amplitude - MWBNNT 1.22 ± 0.24 - - -

Suryavanshi
et al. [62]

TEM: electric-field-induced
resonance -

MWBNNT
with Dn from
34 to 94 nm

0.722 ± 0.14 - -

average value
for 18

MWBNNTs, E
from 0.550 to

1.031 TPa

Current results NCM/MSM: beams 0.340
(n, n); (n, 0);

(n, m)

0.781 0.369 0.05

converged
average value

0.884 0.382 0.15
0.984 0.486

0.011.045 0.515
1.056 0.522

To the best of our knowledge, the work of Arenal et al. [60] is the only study where
Young´s modulus of individual SWBNNT was determined experimentally. Arenal et al. [60]
used a high-resolution transmission electron microscope (HRTEM) and an atomic force
microscope (AFM) set-up to carry out in situ uniaxial compression test and to obtain the
force–displacement curve of an isolated SWBNNT and, consequently, the stress–strain
curves considering three different values of nanotube wall thickness. Young´s modulus
was calculated from the slope of these stress–strain curves in the linear regime. In two other
experimental studies, Young’s modulus of multi-walled boron nitride nanotubes (MWBN-
NTs) was evaluated [61,62]. Chopra and Zettl [61] measured Young’s modulus from the
thermal vibrational amplitude of a cantilevered MWBNNT examined in a transmission
electron microscope (TEM), and Suryavanshi et al. [62] used the electric-field-induced
resonance method inside TEM for this purpose.

The analytical and numerical results from the literature are related to the evaluation
of the elastic properties of only non-chiral SWBNNTs with the exception of the work by
Yan et al. [36], who reported shear modulus results for chiral SWBNNTs (see Table 8). Most
of the works cited in Table 8 deal with the evaluation of Young’s modulus of SWBNNTs,
and with regard to the evaluation of their shear modulus and Poisson’s ratio, the available
results are considerably scarcer. It can be concluded from this table that the results of the
current elastic property are in general in reasonably good agreement with those reported
in the literature, including the experimental Young’s modulus values.

In order to simplify the comparison of the current results with those available in the
literature, Young’s modulus was represented as a function of the nanotube aspect ratio,
L/Dn, and the nanotube diameter, Dn, as shown in Figure 13a,b.
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The current Young’s modulus evolutions as a function of the aspect ratio obtained for
(10, 10) and (18,0) SWBNNTs, considering case 2 of the input parameters, are in satisfactory
agreement with those reported by Choyal et al. [23] and Salvati et al. [30] for (10, 10) and
(17, 0), and (20, 0) SWBNNTs, respectively, for L/Dn > 8 (Figure 13a).

Regarding Young’s modulus evolution with the nanotube diameter, Dn, two trends
have been reported in the literature: (i) Young’s modulus is almost constant over the range
of SWBNNTs diameters [27,29,31,34]; and (ii) initially, Young’s modulus increases and then
it becomes almost stable for high values of Dn [21,25,26] (see Figure 13b). The current
Young’s modulus results obtained for case 1 show a good agreement with the results of
Verma et al. [21] for armchair SWBNNTs with the diameters Dn ≥ 1.448 nm (difference
of 0.77%), and Santosh et al. [25] for armchair and zigzag SWBNNTs with the diameters
Dn > 2.0 nm (difference of 0.93%). The Young’s modulus values calculated for case 2 are
in particularly good consonance with those evaluated for SWBNNTs with high diameters
Dn > 2.0 nm by Yan and Liew [29] for armchair and zigzag SWBNNTs (difference of 0.37%),
and by Oh [26] for zigzag SWBNNTs (difference of 0.28%). The Young’s modulus value
reported by Li and Chou [31] is 4.64% higher than that obtained for case 4. The differences
between Young’s modulus values obtained by Ansari et al. [34] and those calculated for
cases 4 and 5 are 5.45% and 7.00%, respectively. For Young’s modulus values reported
by Zhang et al. [26], the differences of 6.45% and 6.9% are observed when compared with
cases 4 and 5, respectively.

Figure 14 shows the results of the current shear modulus obtained for cases 2 and
5 as a function of the SWBNNT diameter, Dn, along with the results available in the
literature (see also Table 8). Three trends were reported in the literature: (i) the shear
modulus drastically decreases with nanotube diameter and then tends to stabilize when
Dn increases [21]; (ii) the shear modulus is almost constant through the whole range
of nanotube diameters [26,29,36]; and (iii) in the beginning, the shear modulus slightly
increases and then becomes almost stable for high values of Dn [25,31]. When compared
with current shear modulus results for case 2, a good agreement (difference of 1.77%) is
observed for the results of Li and Chou [31] obtained for armchair and zigzag SWBNNTs
with Dn > 1.4 nm. Particularly good agreement (difference of 0.62%) is seen between shear
modulus results for case 5 and those obtained by Zhang et al. [26] for armchair and zigzag
SWBNNTs with Dn > 1.6 nm.
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Differences of 16.59% and 10.27% occur when the shear modulus values reported
by Yan and Liew [29] are compared with those for cases 2 and 5, respectively. When
comparing the shear modulus results of Yan et al. [36] with those for cases 2 and 5, the
differences are 14.91% and 11.8%, respectively. Less agreement is noticed for the shear
modulus results of Santosh et al. [25]. The difference between the values calculated by
Santosh et al. [25] for SWBNNTs with Dn > 1.3 nm and those obtained for case 5 is 16.83%.
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The biggest differences of at about 50% occur between the shear modulus values reported
by Verma et al. [21] and the current results for case 2.

Finally, the current results of the Poisson´s ratio are compared with the few available
in the literature, as shown in Figure 15. The results obtained for case 4 were chosen as the
only ones suitable for comparison. The ν value calculated by Equation (31) is also plotted
in Figure 15.
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The current Poisson’s ratio results show good agreement with the results of Oh [27]
for armchair SWBNNTs in the range of their diameters from 0.983 nm to 1.684 nm and
for zigzag SWBNNTs with Dn ≥ 0.973 nm. The values of the Poisson’s ratio reported by
Verma et al. [21] equal to 0.14 and 0.16 for (10, 10) and (16, 0) SWBNNTs, respectively, are
satisfactorily close to the current results. Substantial differences of 39.18% and 44.95% were
found when comparing the current results with those obtained by Jiang and Guo [32] and
Ansari et al. [34], respectively.

In summary, the dissimilarity observed in between the current results and those
available in the literature with regard to the determination of the elastic moduli and
the Poisson’s ratio of SWBNNTs can be explained not only by different modelling and
calculation approaches used to assess these properties but also by the variation of the
input parameters within the same modelling and numerical simulation approach. In
the current study, five sets of E, G and ν values were obtained, which permit finding a
correspondence with the literature results for a broad selection of these. The Young’s and
shear moduli values obtained in the numerical simulations, using the set of the input
parameters corresponding to case 2, are in good agreement with a larger number of the
Young’s and shear moduli results in the literature. Regarding Poisson’s ratio results, only
case 4 of the input parameters leads to values comparable with those from the literature.

4. Conclusions

In this numerical simulation study, based on the NCM/MSM approach, a systematic
evaluation of the elastic properties, including the bending, torsional and tensile rigidities,
the shear and Young’s moduli and the Poisson’s ratio, of SWBNNTs was carried out over a
wide range of chiral indices and nanotube diameters.

The main conclusions of the present study are as follows:

• Equations describing the relationship between each of the three rigidities and the
nanotube diameter were obtained for SWBNNTs; five groups of the fitting parameters
for the relationships Equations (26)–(28) were calculated, each for the corresponding
input set used in the FE simulation;

• The relationships Equations (26)–(28) allow satisfactorily accurate analytical estima-
tion of the Young’s and shear moduli and Poisson’s ratio of SWBNNTs, with the
exception of the shear moduli and Poisson’s ratio of nanotubes with diameters lower
than 1.5 nm;
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• The variation of the input parameters for FE simulation leads to a considerable scatter
of the calculated values of the SWBNNTs elastic properties; this allows selecting results
that are in better agreement with those available in the literature and indicating the
most appropriate set of input parameters for further numerical simulation studies.
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Table A1. The number of elements and nodes of the FE meshes of SWBNNTs and SWCNTs.

(n, m)
SWBNNTs 1 SWCNTs 1

Number of
Elements

Number of
Nodes

Number of
Elements

Number of
Nodes

(5, 5) 5300 3540 5480 3660
(7, 7) 7420 4956 7672 5124
(8, 8) 8480 5664 8768 5856

(10, 10) 10,600 7080 10,960 7320
(12, 12) 12,720 8496 13,152 8784
(15, 15) 14,145 9450 16,305 10,890
(18, 18) 14,868 9936 19,566 13,068
(20, 20) 11,780 7880 21,740 14,520
(22, 22) 12,958 8668 23,914 15,972
(25, 25) 13,000 8700 27,175 18,150
(27,27) 14,040 9396 29,349 19,602

(9, 0) 5499 3672 5688 3798
(10, 0) 6110 4080 6320 4220
(12, 0) 7332 4896 7584 5064
(14, 0) 8554 5712 8848 5908
(16, 0) 9776 6528 10,112 6752
(18, 0) 10,998 7344 11,376 7596
(20, 0) 12,220 8160 12,640 8440
(26, 0) 14,092 9412 16,432 10,972
(30, 0) 14,190 9480 18,453 12,320
(35, 0) 20,020 13,370 23,396 15,618
(38, 0) 21,348 14,254 20,783 13,873
(43, 0) 24,455 16,324 27,577 18,404
(47, 0) 26,730 17,843 32,963 21,996
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Table A1. Cont.

(n, m)
SWBNNTs 1 SWCNTs 1

Number of
Elements

Number of
Nodes

Number of
Elements

Number of
Nodes

(6, 3) 4851 3240 5013 3348
(8, 4) 6468 4320 6684 4464
(10, 5) 8085 5400 8355 5580
(14, 7) 11,319 7560 11,697 7812
(16, 8) 12,936 8640 13,368 8928

(20, 10) 14,370 9600 16,860 11,260
(24, 12) 16,164 10,800 20,232 13,512
(26, 13) 17,004 11,348 23,010 15,366
(28, 14) 19,880 13,266 24,780 16,548
(36, 12) 26,901 17,948 31,008 20,704

(6, 4) 5330 3560 5510 3680
(7, 3) 5432 3628 5618 3752
(8, 2) 5600 3740 5798 3872
(9, 1) 5828 3892 6029 4026
(12, 8) 10,660 7120 11,020 7360
(14, 6) 10,864 7256 11,236 7504
(15, 5) 11,020 7360 11,395 7610
(16, 4) 11,200 7480 11,596 7744
(18, 2) 11,656 7784 12,058 8052

(16, 14) 14,130 9440 14,616 9764
(18, 12) 14,241 9507 13,101 8754
(21, 9) 14,478 9672 13,100 8754
(22, 8) 14,610 9760 13,224 8836
(24, 6) 14,984 10,001 13,534 9033
(25, 5) 14,286 9546 13,680 9140
(27, 3) 14,689 9814 14,055 9390
(28, 2) 14,906 9959 14,267 9532

1 The length of the SWBNNTs and SWCNTs was about 30× greater than the nanotube diameter, Dn.
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