
 

 

 
 
 

 
 
 
 
 

João Miguel Magalhães Santos 

 
 

SYMPLECTIC KEYS AND DEMAZURE ATOMS IN TYPE C 
 
 
 
 
 
 

Tese no âmbito do Programa Interuniversitário de Doutoramento em Matemática, orientada 
pela Professora Doutora Olga Maria da Silva Azenhas e apresentada ao Departamento de 

Matemática da Faculdade de Ciências e Tecnologia da Universidade de Coimbra. 

 
 
 
 

Dezembro de 2021 





Symplectic keys and Demazure atoms in
type C

João Miguel Magalhães Santos

UC|UP Joint PhD Program in Mathematics

Programa Interuniversitário de Doutoramento em Matemática

PhD Thesis | Tese de Doutoramento

May 2022





Acknowledgements

I would like to thank the Departments of Mathematics of both University of Porto and University
of Coimbra, for providing me a workplace. I also want to thank all the support from the Centre for
Mathematics of the University of Coimbra–UIDB/00324/2020, funded by the Portuguese Government
through FCT/MCTES, and all the support from FCT, through the grant PD/BD/142954/2018, under
POCH funds, co-financed by the European Social Fund and Portuguese National Funds from MCTES.

I want to thank my advisor Olga Azenhas, for all the guidance, and patience, during the last three
years. I also want to thank C. Lenart, for some remarks about the alcove path model, P. Alexandersson,
C. Lecouvey and T. Scrimshaw, the latter three for interesting remarks on the generalization of our
work to other combinatorial models or Cartan types.

Finally, I want thank my family and friends for all the emotional support. In particular, I want to
thank Beatriz, Bina, Carlos, Joana, Palmira and Tone.





Abstract

The type C Kashiwara-Nakashima tableaux, a variation of De Concini tableaux, provide a combinato-
rial model for crystals associated to finite-dimensional irreducible representations of the symplectic
Lie algebra. Some of these tableaux, called key tableaux, yield a tableau criterion for the Bruhat order
on the hyperoctahedral group, the type C Weyl group, and a tableau criterion for the Bruhat order
induced on the left cosets defined by parabolic subgroups of the hyperoctahedral group. In the type A
crystal of semistandard Young tableaux, using the jeu de taquin, Lascoux-Schützenberger presented an
algorithm to compute type A right and left key maps, that return key tableaux, for semistandard Young
tableaux. Using the Sheats-Lecouvey symplectic jeu de taquin, we adapt Lascoux-Schutzenberger’s
algorithm in order to be able to compute right and left keys for type C Kashiwara-Nakashima tableaux.
In fact, we can compute symplectic keys, right or left, without the use of the jeu de taquin and,
motivated by Willis’ direct way of computing right and left keys of semistandard Young tableaux,
we also give a way of computing symplectic, right or left, keys without the use of jeu de taquin. In
type Cn, the symplectic right and left key maps give a description of Demazure atoms and opposite
Demazure atoms, respectively, and consequently of Demazure and opposite Demazure characters.
The symplectic right and left key maps, and consequently Demazure atoms and opposite Demazure
atoms, are related through the Lusztig involution. A type C Schützenberger evacuation is defined to
realize that involution.





Resumo

Os Kashiwara-Nakashima tableaux do tipo C, uma variante dos tableaux de De Concini, são um
modelo combinatório para os cristais associados a representações irredutíveis de dimensão finita de
álgebras de Lie simplécticas. Alguns destes tableaux, chamados de key tableaux, formam critério
para a ordem de Bruhat dos elementos do grupo hiperoctaedral, o grupo de Weyl do tipo C, e formam
também um critério para a Bruhat order induzida nas suas classes laterais esquerdas relativamente aos
subgrupos parabólicos. No cristal do tipo A formado pelos semistandard Young tableaux, utilizando o
jeu de taquin, Lascoux e Schützenberger apresentaram um algoritmo para calcular, no tipo A, duas
funções que dado um semistandard Young tableau devolvem um key tableau, right key e left key.
Utilizando o jeu de taquin simpléctico de Sheats e Lecouvey, nós adaptamos o algoritmo do Lascoux
e do Schutzenberger para poder calcular right e left keys de Kashiwara-Nakashima tableaux do tipo C.
Na realidade, conseguimos calcular keys de tableaux do tipo C, right ou left, sem utilizar o jeu de taquin
e, motivados pela maneira directa de Willis’ de calcular right e left keys para semistandard Young
tableaux, apresentamos uma maneira de calcular keys simplécticas, right ou left, que não utiliza o jeu
de taquin. As funções para calcular para calcular keys simplécticas, right ou left, servem como uma
descrição dos Demazure atoms e dos opposite Demazure atoms, respectivamente, e consequentemente
também descrevem os carácteres de Demazure e as suas versões opposite. As funções que calculam
keys simplécticas, right ou left, e consequentemente os Demazure atoms e os opposite Demazure
atoms, estão relacionadas pela Lusztig involution. Definimos ainda uma Schützenberger evacuation
no tipo C para realizar a Lusztig involution.
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Chapter 1

Introduction

Symplectic tableaux are a combinatorial tool to study finite-dimensional representations of the
symplectic Lie algebra sp(2n,C) and its Weyl group Bn, the hyperoctahedral group (or signed
symmetric group). The irreducible symplectic character, or symplectic Schur function, indexed by a
partition λ , can be seen as a sum on symplectic tableaux of shape λ . King has proved this using a
family of tableaux [21], nowadays known as King tableaux, and later De Concini found another family
of symplectic tableaux [11], known as De Concini tableaux. Although quite distinct, Sheats created a
weight and shape preserving bijection between both families of tableaux [39]. Here, we will work with
another family of tableaux, Kashiwara-Nakashima tableaux [20] (for short, KN tableaux), which is a
small variation of the symplectic tableaux defined by De Concini. These KN tableaux are endowed
with a type Cn crystal structure that naturally contains the type An−1 crystal of semistandard Young
tableaux (SSYT’s). In fact, the SSYT’s are a particular case of KN tableaux. These KN tableaux can
be seen as a folding, with some additional restrictions, of the SSYT’s in A2n−1, to include negative
entries. The type Cn Knuth relations, or plactic relations, which include the type An−1 Knuth relations,
allow us to define a type Cn plactic monoid, studied by Lecouvey in [25, 26], compatible with an
insertion algorithm, known as Baker-Lecouvey insertion [5, 25], and with sliding algorithms, known
as symplectic jeu de taquin (SJDT), due to Sheats [39] and further developed by Lecouvey in [25].
Lecouvey have interpreted plactic relations in terms of crystal isomorphisms.

The type Cn Demazure characters κv are indexed by vectors v ∈ Zn in Bnλ , the Bn-orbit of the
partition λ , and can be seen as "partial" characters. Kashiwara [18] and Littelmann [29] have shown
that they can be obtained by summing monomial weights over certain subsets Bv, called Demazure
crystals, of the crystal Bλ , with highest weight λ . The crystal Bλ can be partitioned into Demazure
crystal atoms, B̂u, where u ∈ Bnλ , in such a way that, for all v ∈ Bnλ , the Demazure crystal Bv is a
union of Demazure crystal atoms B̂u over the Bruhat interval λ ≤ u ≤ v.

Lascoux and Schützenberger, in [24], were the first ones to introduce the concept of Demazure
crystal atoms, originally called standard bases, in type An−1. They proved that each Demazure
crystal atom contains exactly one key tableau, a tableau whose columns form a nested set. Using the
jeu de taquin, Lascoux and Schützenberger also defined a map, called right key map, that given a
tableau returns the key tableau that identifies the atom that contains the given tableau. There is a dual
definition of these Demazure atoms and Demazure crystal atoms, called opposite Demazure atoms and
opposite Demazure crystal atoms. As expected, each opposite Demazure crystal atoms also contains
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2 Introduction

exactly one key tableau, and the map that, given a tableau returns the key tableau that identifies the
opposite Demazure atom that contains it, is called the left key map. Lascoux-Schützenberger method
of computing right keys via jeu de taquin can easily be adapted to compute left keys. More recently,
Willis, in [42], found a way of computing these right and left keys without the use of the jeu de taquin.
There are other methods and models where type An−1 keys are computed, such as the alcove path
model [28], semi skyline augmented fillings [31], and coloured vertex models [7], for instance.

In type Cn, in a presentation by Azenhas in The 69th Séminaire Lotharingien de Combinatoire [4],
Azenhas and Mamede identified the KN tableaux with nested columns and without symmetric entries
as type Cn key tableaux, and raised questions about the existence of a right key map that does the
same job as Lascoux-Schützenberger’s right key map, and consequently, would provide a description
for the Demazure crystal that does not require to build the crystal Bλ . This was the motivation for our
main theorem, Theorem 5.2.6, which provides a description of a Demazure crystal atom in type C
using the right key map defined in Theorem 5.1.5, via SJDT. During our work, we were informed by
Jacon and Lecouvey that they have found a way to compute key maps of KN tableaux [17]. Although
their approach is different from ours, their algorithm to compute the key maps is effectively the same
as ours. Also in [17], Jacon and Lecouvey also suggested that Willis’ direct way [42] of computing
right and left should have a generalization for type Cn KN tableaux. So, motivated by Willis’ direct
way of computing keys without the use of jeu de taquin, we provide algorithms, in Theorem 5.3.3 and
in Theorem 5.3.9, of computing symplectic left and right keys that do not require the SJDT. Finally,
we relate left and right keys through the Lusztig involution and realize it by a type Cn Schützenberger
evacuation. There are also keys computed in the type Cn alcove path model [27, 28], which is a crystal
isomorphic to the type Cn model of KN tableaux, and in the coloured five vertex model [8], whose
coincidence with type Cn model of KN tableaux is conjectured.

This thesis is organized as follows:

• In Chapter 2 we introduce KN tableaux, as well as type Cn plactic monoid, together with
the Baker-Lecouvey insertion, the Sheats-Lecouvey symplectic jeu de taquin and the type Cn

Robinson-Schensted correspondence. We finish this chapter with type Cn crystals and their
relation with the plactic monoid in terms of crystal isomorphisms.

• In Chapter 3 we recall the type Cn Weyl group, the hyperoctahedral group, its Bruhat order, and
give a tableau criterion for the Bruhat order of this group, and a tableau criterion for the Bruhat
order induced on the left cosets defined by the parabolic subgroups of the hyperoctahedral
group. This tableau criterion uses only KN key tableaux.

• In Chapter 4 we define the Demazure crystal and the opposite Demazure crystal. Then, we
embed every KN tableau in a type A cocrystal, isomorphic to the crystal of SSYT’s with
conjugated shape. This cocrystal is motivated by Lascoux’ double crystal graph in type A [22],
and by Heo-Kwon work in [16], where Schützenberger jeu de taquin slides are used as crystal
operators for sl2. This serves as an appetizer for the next chapter.

• In Chapter 5, we compute symplectic right and left key maps. First, we do this computation
via SJDT, mimicking Lascoux-Schützenberger approach in type An−1, and prove, in our main
theorem, that these maps describe Demazure crystal atoms and opposite Demazure crystal
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atoms. Later in this chapter, motivated by Willis’ algorithms for SSYT’s [42], we compute right
and left keys of a type Cn KN tableau without using the jeu de taquin.

• In Chapter 6 we introduce the type Cn Lusztig involution [30] and we adapt the type An−1

Schützenberger evacuation [38] for SSYT’s to type Cn KN tableaux. The Lusztig involution
relates the right and left key maps, and consequently, it relates Demazure crystals and opposite
Demazure crystals.

• In our final chapter, Chapter 7, we discuss some unfinished or undone work related to symplectic
key tableaux, focusing mainly on a combinatorial approach for the type Cn Fu-Lascoux non-
symmetric Cauchy kernel. The two last sections address questions on the generalizations of our
results to other combinatorial models.

Related to this thesis we published one paper, [36], and one preprint, [35], submitted to a journal.
Also, for each one of these publications, an extended abstract was accepted in the proceedings
of The 32nd and The 33rd Conference on Formal Power Series and Algebraic Combinatorics,
[34] and [37], respectively.





Chapter 2

Type Cn Kashiwara-Nakashima tableaux,
symplectic plactic monoid and type Cn

crystal graphs

In this chapter we present type Cn Kashiwara-Nakashima tableaux, as well as the Baker-Lecouvey
insertion, Lecouvey-Sheats symplectic jeu de taquin, type Cn Robinson-Schensted-Knuth correspon-
dence and the type Cn plactic monoid. We finish this chapter with Kashiwara crystals and coplactic
equivalence, and their relation with the plactic monoid. Our main references for this chapter are [25],
[5] and [9].

2.1 Kashiwara-Nakashima tableaux

The symplectic tableaux studied here were introduced by Kashiwara and Nakashima to label the
vertices of the type Cn crystal graphs [20].

Fix n ∈ N>0 and define the sets [n] = {1, . . . ,n} and [±n] = {1, . . . ,n,n, . . . ,1} where i is just
another way of writing −i, hence i = i. In the second set we will consider the following order of its
elements: 1 < · · ·< n < n < · · ·< 1 instead of the usual order.

A vector λ = (λ1, . . . ,λn) ∈ Zn is a partition of |λ |=
n
∑

i=1
λi if λ1 ≥ λ2 ≥ ·· · ≥ λn ≥ 0. The Young

diagram of shape λ , in English notation, is an array of boxes (or cells), left justified, in which the i-th
row, from top to bottom, has λi boxes. We identify a partition with its Young diagram.

For example, the Young diagram of shape λ = (2,2,1) is . We define ∆n = (n,n−1, . . . ,1)

to be the staircase partition in Zn.
Given µ and ν two partitions with ν ≤ µ entrywise, we write ν ⊆ µ . The Young diagram of shape

µ/ν is obtained after removing the boxes of the Young diagram of ν from the Young diagram of µ .

For example, the Young diagram of shape µ/ν = (2,2,1)/(1,0,0) is ,.

Let ν ⊆ µ be two partitions and A a completely ordered alphabet. A semistandard Young tableau
(SSYT) of skew shape µ/ν , on the alphabet A, is a filling of the diagram µ/ν with letters from A,

5



6 Type Cn Kashiwara-Nakashima tableaux, symplectic plactic monoid and type Cn crystal graphs

such that the entries are strictly increasing, from top to bottom, in each column and weakly increasing,
from left to right, in each row. When |ν |= 0 then we obtain a semistandard Young tableau of straight
shape µ . Denote by SSYT(µ/ν ,A) the set of all skew SSYT’s T of shape µ/ν , with entries in A. In
particular, when |v|= 0 we write SSYT(µ,A) and when A = [n] we write SSYT(µ/ν ,n).

When considering tableaux with entries in [±n], it is usual to have some extra conditions besides
being semistandard. We will use a family of tableaux known as Kashiwara-Nakashima tableaux.
From now on we consider tableaux on the alphabet [±n].

A column is a strictly increasing sequence of numbers (or letters) in [±n] and it is usually displayed
vertically. The height of a column is the number of letters in it. A column is said to be admissible if
the following one column condition (1CC) holds for that column:

Definition 2.1.1 (1CC). Let C be a column. The 1CC holds for C if for all pairs i and i in C, where i
is in the a-th row counting from the top of the column, and i in the b-th row counting from the bottom,
we have a+b ≤ i. Equivalently, for all pairs i and i in C, the number N(i) of letters x in C such that
x ≤ i or x ≥ i satisfies N(i)≤ i.

If a column C satisfies the 1CC then C has at most n letters. If 1CC does not hold for C we say
that C breaks the 1CC at z, where z is the minimal positive integer such that z and z exist in C and
there are more than z numbers in C with absolute value less or equal than z.

Example 2.1.2. The column
1
2
1

breaks the 1CC at 1, and
2
3
3

is an admissible column.

The following definition states conditions to when C can be split:

Definition 2.1.3. Let C be a column and let I = {z1 > · · ·> zr} be the set of unbarred letters z such
that the pair (z,z) occurs in C. The column C can be split when there exists a set of r unbarred letters
J = {t1 > · · ·> tr} ⊆ [n] such that:

1. t1 is the greatest letter of [n] satisfying t1 < z1, t1 ̸∈C, and t1 ̸∈C,

2. for i = 2, . . . ,r, we have that ti is the greatest letter of [n] satisfying ti < min(ti−1,zi), ti ̸∈C, and
ti ̸∈C.

The 1CC holds for a column C (or C is admissible) if and only if C can be split [39, Lemma 3.1].
If C can be split then we define right column of C, rC, and the left column of C, ℓC, as follows:

1. rC is the column obtained by changing in C, zi into ti for each letter zi ∈ I and by reordering if
necessary,

2. ℓC is the column obtained by changing in C, zi into ti for each letter zi ∈ I and by reordering if
necessary.

If C is admissible then ℓC ≤C ≤ rC by entrywise comparison, where ℓC has the same barred part
as C and rC the same unbarred part. If C does not have symmetric entries, then C is admissible and
ℓC =C = rC. In the next definition we give conditions for a column C to be coadmissible.
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Definition 2.1.4. We say that a column C is coadmissible if for every pair i and i on C, where i is on
the a-th row counting from the top of the column, and i on the b-th row counting from the top, then
b−a ≤ n− i. Equivalently, for every pair i and i on C, the number N∗(i) of letters x in C such that
i ≤ x ≤ i satisfies N∗(i)≤ n− i+1.

Unlike in Definition 2.1.1, in the last definition b is counted from the top of the column.

Definition 2.1.5. Let C be a column and let I = {z1 > · · ·> zr} be the set of unbarred letters z such
that the pair (z,z) occurs in C. The column C is coadmissible if and only if there exists a set of r
unbarred letters H = {h1 > · · ·> hr} ⊆ [n] such that:

1. hr is the smallest letter of [n] satisfying hr > zr, hr ̸∈C, and hr ̸∈C,

2. for i = r− 1, . . . ,1, we have that hi is the smallest letter of [n] satisfying hi > max(hi+1,zi),
hi ̸∈C, and hi ̸∈C.

Given an admissible column C, consider the map

Φ : C 7→C∗

that sends C to the column C∗ of the same size in which the unbarred entries are taken from ℓC and
the barred entries are taken from rC.

Lemma 2.1.6. Let C be an admissible column on the alphabet [±n], and I and J the sets in Definition
2.1.3. The entries x (barred or unbarred) of Φ(C) are such that

1. x ∈ Φ(C) and x /∈ Φ(C) if and only if x ∈C and x /∈C.

2. x,x ∈ Φ(C) if and only if x ∈ J or x ∈ J.

Equivalently, the set of entries in Φ(C) is (J∪ J∪C)\ (I ∪ I).

Henceforth, Φ(C) = C if and only if I = /0 (hence J = /0), that is, C does not have symmetric
entries.

The column Φ(C) is a coadmissible column and the algorithm to form Φ(C) from C is reversible
[25, Section 2.2]. In particular, every column on the alphabet [n] is simultaneously admissible and
coadmissible. The map Φ is a bijection between admissible and coadmissible columns of the same
height on the alphabet [±n].

Example 2.1.7. Let C =
2
4
2

be an admissible column, so it can be split. Then ℓC =
1
4
2

and

rC =
2
4
1

. So Φ(C) =
1
4
1

is coadmissible. C is also coadmissible and Φ−1(C) =
3
4
3

.

Let T be a skew tableau with all of its columns admissible. The split form of a skew tableau T ,
spl(T ), is the skew tableau obtained after replacing each column C of T by the two columns ℓC rC.
The tableau spl(T ) has double the amount of columns of T .



8 Type Cn Kashiwara-Nakashima tableaux, symplectic plactic monoid and type Cn crystal graphs

A semistandard skew tableau T is a Kashiwara-Nakashima (KN) skew tableau if its split form is a
semistandard skew tableau in type A2n−1 (because it uses 2n letters). We define KN(µ/ν ,n) to be
the set of all KN tableaux of shape µ/ν in the alphabet [±n]. When ν = 0, we obtain KN(µ,n). The
weight of T is a vector whose i-th entry is the number of i’s minus the number of i.

If T is a skew tableau, the column reading of T , cr(T ), is the word read in T in the Japanese way,
column reading top to bottom and right to left. The length of a word w is the total number of letters
in w. The weight of a w in the alphabet [±n] is the vector wtw = (t1 − t1, t2 − t2, . . . , tn − tn) ∈ Zn,
where tα is the number of α’s in w, with α ∈ [±n]. Note that the weight of a tableau and of its column
reading coincide.

Example 2.1.8. The split of the tableau T =
2 2
3 3
3

is the tableau spl(T ) =
1 2 2 2
2 3 3 3
3 1

. Hence

T ∈KN((2,2,1),3), weight wtT = (0,2,1) and cr(T ) = 23231.

If T is a tableau without symmetric entries in any of its columns, i.e., for all i ∈ [n] and for all
columns C in T , i and i do not appear simultaneously in the entries of C, then in order to check whether
T is a KN tableau it is enough to check whether T is semistandard in the alphabet [±n]. In particular
SSYT(µ/ν ,n)⊆KN(µ/ν ,n).

2.2 Symplectic jeu de taquin

Lecouvey-Sheats symplectic jeu de taquin (SJDT) [25, 39] is a procedure on KN skew tableaux,
compatible with Knuth equivalence (or plactic equivalence on words over the alphabet [±n]) [25], that
allows us to change the shape of a tableau and to rectify it. To explain how the SJDT behaves, we
need to look how it works on 2-column KN skew tableaux C1C2. A skew tableau is punctured if one
of its box contains the symbol ∗ called the puncture. A punctured column is admissible if the column
is admissible when ignoring the puncture. A punctured skew tableau is admissible if its columns are
admissible and the rows of its split form are weakly increasing, ignoring the puncture. Let T be a
punctured skew tableau with two columns C1 and C2 with the puncture in C1. In that case, the puncture
splits into two punctures in spl(T ), and ignoring the punctures, spl(T ) must be semistandard. Let α

be the entry under the puncture of rC1, and β the entry to the right of the puncture of rC1.

spl(T ) = ℓC1rC1ℓC2rC2 =

. . . . . . . . . . . .

∗ ∗ β . . .

. . . α . . . . . .

. . . . . .

,

where α or β may not exist. The elementary steps of SJDT are the following:

A. If α ≤ β or β does not exist, then the puncture of T will change its position with the cell
beneath it. This is a vertical slide.

B. If the slide is not vertical, then it is horizontal. So we have α > β or α does not exist. Let C′
1

and C′
2 be the columns obtained after the slide. We have two subcases, depending on the sign of β :
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1. If β is barred, we are moving a barred letter, β , from ℓC2 to the punctured box of rC1, and the
puncture will occupy β ’s place in ℓC2. Note that ℓC2 has the same barred part as C2 and that rC1 has
the same barred part as Φ(C1). Looking at T , we will have an horizontal slide of the puncture, getting
C′

2 =C2 \{β}⊔{∗} and C′
1 = Φ−1(Φ(C1)\{∗}⊔{β}). In a sense, β went from C2 to Φ(C1).

2. If β is unbarred, we have a similar case, but this time β will go from Φ(C2) to C1, hence
C′

1 =C1 \{∗}∪{β} and C′
2 = Φ−1(Φ(C2)\{β}⊔{∗}). Although in this case it may happen that C′

1

is no longer admissible. In this situation, if the 1CC breaks at i, we erase both i and i from the column
and remove a cell from the bottom and from the top column, and place all the remaining cells orderly
with respect to their entries.

Applying successively elementary SJDT slides, eventually, the puncture will be a cell such that α

and β do not exist. In this case we redefine the shape to not include this cell and the jeu de taquin
ends.

Given an admissible tableau T of shape µ/ν , a box of the diagram of shape ν such that boxes
under it and to the right are not in that shape is called an inner corner of µ/ν . An outside corner is
a box of µ such that boxes under it and to the right are not in the shape µ . The rectification of T
consists in playing the SJDT until we get a tableau of shape λ , for some partition λ . More precisely,
apply successively elementary SJDT steps to T until each cell of ν becomes an outside corner. At the
end, we obtain a KN tableau for some shape λ . The rectification is independent of the order in which
the inner corners of ν are filled [25, Corollary 6.3.9].

Example 2.2.1. Consider the KN skew tableau T =
2
31
12

. Let C1 and C2 be the first and second

columns of T . To rectify T via SJDT, one creates a puncture in the inner corner of T and, by splitting,

one obtains
∗ ∗ 2 2
1 1 3 3
2 2 1 1

. So, the first two slides are vertical, obtaining
1 1 2 2
2 2 3 3
∗ ∗ 1 1

. Finally, we do

an horizontal slide, of type B.1, in which we take 1 from C2, and add it to the coadmissible column

Φ(C1). That is, C′
2 = (C2 ∪{∗})\1 and C′

1 = Φ−1((Φ(C1)\{∗})∪1), obtaining the tableau
2 2
3 3
3

.

Let T be a skew tableau of shape µ/ν . Consider a punctured box that can be added to µ , so that
µ ∪{∗} is a valid shape. The SJDT is reversible, meaning that we can move ∗, the empty cell outside
of µ , to the inner shape ν of the skew tableau T , simultaneously increasing both the inner and outer
shapes of T by one cell. The slides work similarly to the previous case: the vertical slide means that
an empty cell is going up and an horizontal slide means that an entry goes from Φ(C1) to C2 or from
C1 to Φ(C2), depending on whether the slid entry is barred or not, respectively. We will also call the
reverse jeu de taquin as SJDT. In the next sections we will be mostly dealing with the reverse jeu de
taquin. Consider the following examples, each containing a tableau and a punctured box that will be

slid to its inner shape:
∗

1 1
2

7→ 1 1
2

; 1 1
2 ∗

7→ 2
2 2

.

If a tableau with columns C1 and C2 does not have symmetric entries then the SJDT applied to
C1C2 coincides with the jeu de taquin known for SSYT’s. In sections 5.3.1 and 5.3.3, we use SJDT to
swap lengths of consecutive columns in a skew tableau, to obtain skew tableaux Knuth related to a
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straight tableau, which is minimal for the number of cells within its Knuth class. Recall that in the
elementary step B.2 it is possible to lose cells. If we do a reverse elementary step B.2 that results in
having two more cells in the skew tableau, we would have to start by adding two symmetric entries to
an admissible column, making it non admissible [25, Lemma 3.2.3], and then slide an unbarred cell to
the column to its right. For instance, consider the following reverse elementary step B.2 (≡ denotes
type Cn Knuth equivalence [25, Definition 3.2.1]):

1 ∗
2

≡
1 ∗
2
3
3

≡

∗ 1
2
3
3

.

The first and last skew tableaux are Knuth equivalent, but the middle tableau is not a KN skew
tableau. The three semistandard tableaux are Knuth equivalent column words, via the contractor/dilator
Knuth relation [25, Definition 3.2.1].

Hence, a reverse elementary step B.2 that results in having more cells in the skew tableau has to
be forced, since we have to start by forcing the existence of a non admissible column. This means
that if we start with a minimal skew tableau, that is, a skew-tableau with the number of cells of its
rectification, we can play SJDT, or its reverse, without ever incur in a loss/gain of boxes.

2.3 Baker-Lecouvey insertion

Let’s start by recalling the column insertion for SSYT’s. Let T ∈ SSYT(λ ,n) be a tableau with column
decomposition T =C1C2 · · ·Ck. Given a column reading word, we can recover the original tableau via
column insertion: Let w = w1 · · ·wℓ. We start with i := 1, T = /0 , the empty tableau, and p = 1.

1. If wi is bigger than all entries of Cp, Just add a cell to the column Cp with entry wi. Else find
α ∈Cp the smallest entry of Cp bigger or equal than wi. Then replace α by wi in Cp and redefine
wi := α , p:=p+1 and go to (1) (this is called a bumping).

2. If i ̸= ℓ, then i := i+1, p := 1 and go to (1). Else the algorithm ends.

The Baker-Lecouvey insertion [5, 25] is a bumping algorithm that given a word in the alphabet
[±n] returns a KN tableau. Let w be a word in the alphabet [±n], we call P(w) to the tableau obtained
after inserting w. This insertion is similar to the column insertion for SSYT’s. In fact both have the
same behaviour unless one the following three cases happens:

Suppose that we are inserting the letter α in the column C of the KN tableau and

(I) y ∈C is the smallest letter bigger or equal then α and y ∈C, for some y ∈ [n]: there is in C a
maximal string of consecutive decreasing integers y,y−1, . . . ,u+1 starting in the entry y in
the column C. Then the bump consists of replacing the entry y with α and subtracting 1 to the
entries y,y−1, . . . ,u+1. The entry u is then inserted in the next column to the right. This is
known as the Type I special bump.
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(II) if α = x and x ∈C, for some x ∈ [n]: there is a maximal string of consecutive decreasing entries
x,x+1, . . . ,v−1 starting in the entry x in C. Let β be the next entry above v−1. Then we have
two subcases:

(a) If v ≤ β ≤ v+1 then suppose δ is the smallest entry in C which is bigger or equal than v.
Then this bump consists of deleting the entry x, shifting the entries x+1, . . . ,v−1 down
one position, inserting v where v−1 was, and replacing δ with v. The entry δ is then
bumped into the next column. This is known as the Type IIa special bump.

(b) If β ≤ v− 1 or β does not exist then there is a maximal string (possibly empty) of
consecutive integers v−1, . . . ,u+1 above the entry v−1. The string is not empty only
when β = v−1, or else the string is empty and u = v−1. The bump consists of deleting
the entry x, shifting the entries x+1, . . . ,u+1 down one position, and inserting an entry u
where u+1 (or v−1, if β ̸= v−1) was. The entry u is then bumped into the next column.
This is known as the Type IIb special bump.

(III) after adding α in the bottom of the column C, the 1CC breaks at i: then we will slide out the
cells that contain i and i via symplectic jeu de taquin.

In the case III of the Baker-Lecouvey insertion we will be removing a cell from the tableau instead
of adding. The length of cr(P(w)) might be less than the length of w and the weight is preserved
during Baker-Lecouvey insertion, wt(w) = wt(P(w)).

Remark 2.3.1. The Baker-Lecouvey insertion is different from what we would have if we use the
SSYT column insertion. However, if the word w does not have symmetric letters, then the insertion
works just like the column insertion for SSYT’s. Apart from this case, if we were to use SSYT column
insertion, the final tableau may not even be a KN tableau. For instance, consider the word w = 211.

The Baker-Lecouvey insertion of w creates the sequence of tableaux 2
2
1

2 2
2

= P(211). The

SSYT column insertion of w results in the tableau 1 2
1

, which is not a KN tableau because the first

column is not admissible.

Example 2.3.2. Consider the word w = 23231. We now insert all five letters of w, obtaining the

following sequence of tableaux: 2 2
3

2
3
2

1 1
3
3

1 1 1
3
3

= P(w). Note that the insertion of the

fourth letter, 3, causes a type I special bump on the first column and the insertion of the fifth letter, 1,
causes a type IIb special bump on the second column.

Proposition 2.3.3. [25, Corollary 6.3.9] Let T ∈ KN(µ/ν ,n). Then the tableau obtained after
rectifying T via symplectic jeu de taquin coincides with P(cr(T )). Moreover, the insertion of w =

w1 . . .wk, P(w), is the rectification of the tableau with diagonal shape ∆n/∆n−1 and column reading
w.

In particular we have that if we insert cr(T ) we obtain T again. This implies that during the
insertion of cr(T ) the case III of the Baker-Lecouvey insertion cannot happen. In Example 2.3.2, we
may conclude that P(23231) = P(cr(P(23231))) = P(11133).
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2.4 Robinson-Schensted type Cn correspondence and plactic equiva-
lence

Let [±n]∗ be the free monoid on the alphabet [±n]. The type Cn Robinson-Schensted correspondence
[25, Theorem 5.2.2] is a combinatorial bijection between words w ∈ [±n]∗ and pairs (P(w),Q) where
P(w) is a KN tableau and Q is an oscillating tableau, a sequence of Young diagrams that record, by
order, the shapes of the tableaux obtained while inserting w, whose final shape is the same as P(w).
Every two consecutive shapes of the oscillating tableau differ in exactly one cell and its length is the
same of w. Words with the same oscillating tableau identify the coplactic classes in the Robinson-
Schensted correspondence. These words are connected by crystal operators [25, Proposition 5.2.1],
that we present in the next section.

Since both the SJDT and the Baker-Lecouvey insertion are reversible [5, 25], we have that every
pair (P,Q), with the same final shape, is originated by exactly one word. The type Cn Robinson-
Schensted correspondence is the following map:

[±n]∗ →
⊔
λ

KN(λ ,n)×O(λ ,n) :

w 7→ (P(w),Q(w))

where the union is over all partitions λ with at most n parts, and O(λ ,n) is the set of all oscillating
tableaux with final shape λ and all shapes of the sequence have at most n rows.

Example 2.4.1. In Example 2.3.2, the word w = 23231 is associated to the pair 1 1 1
3
3

,

.

Given w1,w2 ∈ [±n]∗, the relation w1 ∼ w2 ⇔ P(w1) = P(w2) defines an equivalence relation on
[±n]∗ known as Knuth equivalence (or plactic equivalence). The type Cn plactic monoid is the quotient
[±n]∗/ ∼ where each Knuth (plactic) class is uniquely identified with a KN tableau [23, 25]. The
quotient [±n]∗/∼ can also be described as the quotient of [±n]∗ by the elementary Knuth relations:

K1: γβα ∼ βγα , where γ < α ≤ β and (β ,γ) ̸= (x,x) for all x ∈ [n].

K2: αβγ ∼ αγβ , where γ ≤ α < β and (β ,γ) ̸= (x,x) for all x ∈ [n].

K3: y+1y+1β ∼ yyβ , where y < β < y and y ∈ [n−1].

K4: βyy ∼ βy+1y+1, where y < β < y and y ∈ [n−1].

K5: w ∼ w\{z,z}, where w ∈ [±n]∗ and z ∈ [n] are such that w is a non-admissible column that the
1CC breaks at z, and any proper factor of w is an admissible column.

Remark 2.4.2. It can be proved that given a word w ∈ [±n]∗, any proper factor is admissible if and
only if any proper prefix of w is admissible. Thus, in order to be able to apply the Knuth relation K5
to a subword w′ of w, we only need to check that all proper prefixes of w′ are admissible, instead of all
proper factors.
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When Knuth relations are applied to subwords of a word, the weight is preserved while the length
may not. Knuth relations can be seen as jeu de taquin moves on words or a diagonally shaped tableau,
and each SJDT slide preserves the Knuth class of the reading word of a tableau [25, Theorem 6.3.8]. In
Example 2.3.2 the words 23231 and 11133 are Knuth related: 11133 K2∼ 11313 K2∼ 11331 K3∼ 22331 K1∼
23231.

The next proposition states that in order to be able to apply the Knuth relation K5 to a subcolumn
w′ of the word w we only need to check that the biggest proper prefix of w′ is admissible, instead of
all proper factors.

Proposition 2.4.3. Given a column w on the alphabet [±n], we have that any proper factor of w is
admissible if and only if the biggest proper prefix of w is admissible.

Proof. Part "only if": The biggest proper prefix is a proper factor.

Part "if": Any proper factor is contained either in the biggest proper prefix of w or contains the
last letter of w, being a proper suffix. Assuming that the statement is false, there is a proper suffix w′

of w that breaks the 1CC at y. If y is not its last letter, if one considers the factor obtained from w′

after adding the last letter of w not in w′ and removing the last of w′, we will have a non-admissible
proper factor of w contained in the biggest proper prefix of w, that is admissible, hence we have a
contradiction. So y is the last letter of w′ (and w). In order to break the 1CC at y, since there are
no letters bigger than y in w′, we have that {1,2, . . . ,y} ∈ w′. This implies that there are no letters
to the left of 1 in w, because this is the minimal letter of the alphabet. So w′ = w, which is another
contradiction. So w′ must be admissible.

2.5 Kashiwara crystal and An−1 and Cn crystals

Let V be an Euclidean space with inner product ⟨·, ·⟩. Fix a root system Φ with simple roots {αi | i ∈ I}
where I is an indexing set and a weight lattice Λ ⊇ Z-span{αi | i ∈ I}. A Kashiwara crystal of type Φ

is a non-empty set B together with maps [9]:

ei, fi : B→B⊔{0} εi,ϕi : B→ Z⊔{−∞} wt : B→ Λ

where i ∈ I and 0 /∈B is an auxiliary element, satisfying the following conditions:

1. if a,b ∈B then ei(a) = b ⇔ fi(b) = a. In this case, we also have wt(b) = wt(a)+αi, εi(b) =
εi(a)−1 and ϕi(b) = ϕi(a)+1;

2. for all a ∈B, we have ϕi(a) = ⟨wt(a), 2αi
⟨αi,αi⟩⟩+ εi(a).

The crystals we deal with are seminormal [9], i.e., ϕi(a) = max{k ∈ Z ≥ 0 | f k
i (a) ̸= 0} and

εi(a) = max{k ∈ Z ≥ 0 | ek
i (a) ̸= 0}. An element u ∈B such that ei(u) = 0 for all i ∈ I is called a

highest weight element. A lowest weight element is an element u ∈B such that fi(u) = 0 for all i ∈ I.
We associate with B a coloured oriented graph with vertices in B and edges labelled by i ∈ I: b i→ b′

if and only if b′ = fi(b), i ∈ I, b,b′ ∈B. This is the crystal graph of B.
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A morphism ψ : B→B′ of crystal graphs is a map that preserves coloured directed edges and
weights. More precisely, a morphism is a map ψ : B→B′ that satisfies

ψ( f i(b)) = f i(ψ(b))

ψ(ei(b)) = ei(ψ(b))

wt(ψ(b)) = wt(b).

where ψ( /0) = /0 by convention. Note that composing morphisms yields a morphism. An isomorphism
of crystal graphs is a bijective morphism of crystal graphs whose inverse function is also a morphism
of crystal graphs.

If B and C are two seminormal crystals associated to the same root system, the tensor product
B⊗C is also a seminormal crystal. As a set, we will have the Cartesian product B×C, where its
elements are denoted by b⊗ c, b ∈B and c ∈ C, with wt(b⊗ c) = wt(b)+wt(c),

fi(b⊗ c) =

 fi(b)⊗ c if ϕi(c)≤ εi(b)

b⊗ fi(c) if ϕi(c)> εi(b)
, ei(b⊗ c) =

ei(b)⊗ c if ϕi(c)< εi(b)

b⊗ ei(c) if ϕi(c)≥ εi(b)
.

If B and C are finite, ϕi(b⊗c) = ϕi(b)+max(0,ϕi(c)−εi(b)) and εi(b⊗c) = εi(b)+max(0,εi(b)−
ϕi(c)).

In type An−1, we consider {ei}n
i=1 the canonical basis of Rn. The root system is ΦA = {±ei ± e j |

i < j} and the simple roots are αi = ei − ei+1, for i ∈ [n−1]. In type Cn, we consider the same the
canonical basis of Rn. The root system is ΦC = {±ei ± e j | i < j}∪{±2ei} and the simple roots are
αi = ei − ei+1, if i ∈ [n−1], αn = 2en. For both types, the weight lattice Zn has dominant weights
λ = (λ1 ≥ ·· · ≥ λn ≥ 0).

In type Cn, the standard crystal is seminormal and has the following crystal graph:

1 1−→ 2 2−→ . . .
n−1−−→ n n−→ n n−1−−→ . . .

1−→ 1

with set B = [±n], wt( i ) = ei, wt( i ) = −ei. The highest weight element is the word 1, and the
highest weight e1. We denote the crystal by Be1 . The type An−1 standard crystal uses only the first n
vertices of the type Cn standard crystal, hence it has the same highest weight element.

The crystal Be1 is the crystal on the words of [±n]∗ of a sole letter. The tensor product of crystals
allows us to define the crystal Gn =

⊕
k≥0

(Be1)⊗k of all words in [±n]∗, where the vertex w1 ⊗·· ·⊗wk

is identified with the word w1 . . .wk ∈ [±n]∗. The action of the operators ei and fi is easily given by the
signature rule [9, 20, 25]. We substitute each letter w j by + if w j ∈ {i, i+1} or by − if w j ∈ {i+1, i},
and erase it in any other case. Then successively erase any pair +− until all the remaining letters form
a word that looks like −a+b. Then ϕi(w) = b and εi(w) = a, ei acts on the letter associated to the
rightmost unbracketed − (i.e., not erased), whereas fi acts on the letter w j associated to the leftmost
unbracketed +,

fi(w j) =


i+1 if w j = i and i ̸= n

i if w j = i+1

n if w j = i and i = n

,
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and the other letters of w are unchanged, and ei is the inverse map. If b = 0 then fi(w) = 0 and if
a = 0 then ei(w) = 0. This description of the signature rule also works in type An−1, with the only
difference being the fact that all letters of w are positive.

Example 2.5.1. Consider w = 231221 and i = 1. Using the signature rule we rewrite w as +++−−.
Now we erase pairs +− as many times as possible, obtaining only +, that came from the first 2 in w.

Given that f1(2) = 1, we have that f1(w) = 131221. Also, since there are no − after eliminating
all +− pairs, we have that e1(w) = 0.

The crystal Gn, as a graph, is the union of connected components where each component has a
unique highest weight word. Two connected components are isomorphic if and only if they have the
same highest weight [19]. Two words in [±n]∗ are said to be crystal connected or coplactic equivalent
if and only if they belong to the same connected component of Gn. This means that both words are
obtained from the same highest weight word, through a sequence of crystal operators fi, or one is
obtained from another by some sequence of crystal operators fi and e j, i, j ∈ [n].

The connected components of Gn are the coplactic classes in the Robinson-Schensted correspon-
dence that identify words with the same oscillating tableau [25, Proposition 5.2.1]. Also, two words
w1,w2 ∈ [±n]∗ are Knuth equivalent if and only if they occur in the same place in two isomorphic
connected components of Gn, that is, they are obtained from two highest words with the same weight
through a same sequence of crystal operators [25]. Crystal operators are coplactic and commute with
the jeu de taquin. The next proposition identifies all highest weight words of Gn.

Proposition 2.5.2. Let w be a word in the alphabet [±n]. Then w is a highest weight word if and only
if the weight of all its prefixes (including itself) is a partition. In this case, one has that P(w) = K(λ ),
the tableau of shape and weight λ , also known as Yamanouchi tableau.

Proof. Part "if": We will prove the contraposition of the statement. There is a i such that ei(w) ̸= 0.
Let k be the position of the leftmost − of the signature rule of w, and consider the prefix wk with the
first k letters. Since the k-th letter of w had an unbracketed − in the signature rule then the last letter
of wk will also be an unbracketed −. Hence there are more − than + in the signature rule of wk. Let
tα be the number of α in wk. We have that ti + ti+1 < ti+1 + ti ⇔ ti − ti < ti+1 − ti+1, hence the weight
of wk is not a partition.

Part "only if": We will once again prove the contrapositive of the statement. Let wk be a prefix such
that its weight is not a partition. Hence there is i∈ [n] such that ti−ti < ti+1−ti+1 ⇔ ti+ti+1 < ti+1+ti,
hence for this i there will be more − than + in the signature rule of wk. So in the first k letters of
w there will be more − than +, so there is an unbracketed − in w, hence ei(w) ̸= 0. Note that the
argument works even if i = n. In this case we need to assume tn+1 = tn+i = 0.

It follows from [25, Proposition 3.2.6] that the insertion of the highest word w of weight λ is
K(λ ).

Choose a word w ∈ [±n]∗ such that the shape of P(w) is λ . If we replace every word of its
coplactic class with its insertion tableau we obtain the crystal of tableaux Bλ that has all KN tableaux
of shape λ on the alphabet [±n]. The crystal Bλ does not depend on the initial choice of word w, as
long as P(w) has shape λ . [25, Theorem 6.3.8].
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Example 2.5.3. Here we have the type C2 crystal graph KN((2,1),2) containing the A1 crystal
SSYT((2,1),2):

1 1
21 2

2
1 1
2

1 2
2

1 2
2

2 2
2

2 2
1

2 2
2

2 2
1

2 2
1

1 2
2

1 1
2

1 1
2

2 1
2

2 1
1 2 1

1

→ f1

→ f2



Chapter 3

Weyl group of type Cn, Bruhat order and
symplectic key tableaux

In this chapter we will present the group Bn, known as hyperoctahedral group, which is the type Cn

Weyl group. The main result of this section is a tableau criterion for the Bruhat order on the elements
of Bn and on the coset space of Bn define by a parabolic subgroup, using symplectic key tableaux. This
shows that the combinatorics of the type Cn crystal graphs are strongly connected with the Bruhat
order of Bn.

3.1 Weyl group of type Cn

Consider the group Bn, with generators si, 1 ≤ i ≤ n, having the following presentation, regarding the
relations among the generators,

Bn := ⟨s1, . . . ,sn |s2
i = 1, 1 ≤ i ≤ n; (sisi+1)

3 = 1,1 ≤ i ≤ n−2; (sn−1sn)
4 = 1;

(sis j)
2 = 1, 1 ≤ i < j ≤ n, |i− j|> 1⟩,

known as hyperoctahedral group or signed symmetric group. This group is a Coxeter group [6].
The elements of Bn can be seen as odd bijective maps from [±n] to itself, i.e., for all σ ∈ Bn we

have σ(i) = σ(i), i ∈ [±n]. The subgroup with the generators s1, . . . ,sn−1 is the symmetric group Sn

and its elements can be seen as bijections from [n] to itself. Both groups can also be seen as groups of
n×n matrices. The elements of the symmetric group can be identified with the permutation matrices,
and if we allow the non-zero entries to be either 1 or −1, we have the elements of Bn. Hence Bn has
2nn! elements. The groups Sn and Bn are the Weyl groups for the root systems of types An−1 and Cn,
respectively.

Let σ ∈ Bn. We denote [a1 a2 . . . an], where ai = σ(i) for i ∈ [n], the window notation of σ ,
and write σ = [a1 a2 . . . an]. The elements of Bn, or Sn, act on vectors in Zn on the left. Given a
vector v ∈ Zn, we have that si, with i ∈ [n−1], acts on v swapping the i-th and the (i+1)-th entries,
and sn acts on v, snv, changing the sign of the last entry. Note that the window notation of σsi is
obtained after applying si to the window notation of σ , if we see it as a vector. Ignoring signs,
σv = (vσ−1(1), . . . ,vσ−1(n)), with v = (v1, . . . ,vn). The i-th letter of σv changes its sign if and only if i

17
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appears in σ . Hence σv = (sgn(σ−1(1))v|σ−1(1)|, . . . ,sgn(σ−1(n))v|σ−1(n)|), where sgn(x) = 1 if x is
positive and −1 if x is negative, for x ∈ [±n].

Example 3.1.1. Consider v=(1,2,3)∈Z3 and σ = [231] = [s1s3s2(1),s1s3s2(2),s1s3s2(3)] = s1s3s2

∈ B3. So

σ(1,2,3) = s1s3s2(1,2,3) = s1s3(1,3,2) = s1(1,3,2) = (3,1,2)

= (sgn(σ−1(1))v|σ−1(1)|,sgn(σ−1(2))v|σ−1(2)|,sgn(σ−1(3))v|σ−1(3)|)

= (1 ·3,1 ·1,−1 ·2).

3.2 Bruhat order on Bn

The length of σ ∈ Bn, ℓ(σ), is the least number of generators of Bn needed to go from [12 . . . n], the
identity map, to σ . Any expression of σ as a product of ℓ(σ) generators of Bn is called reduced. We
say that two letters of the window notation of σ form an inversion if the bigger letter appears first.
The next proposition gives a way to compute ℓ(σ) that only requires to look at the window notation of
σ . This is a variation of the length formula presented on [6, Proposition 8.1.1], where the authors
consider the usual ordering of the alphabet [±n] and the generator that changes the sign of an entry of
the window notation acts on the first entry instead of the last one.

Proposition 3.2.1. Consider σ ∈ Bn. Then

ℓ(σ) = #{inversions of σ}+ ∑
i appears in σ

(n+1− i).

The (signed) permutation σ = [231] has two inversions: 2, 1 and 3, 1 and ℓ(σ) = 3.

Remark 3.2.2.

• If i does not appear in the window presentation of σ , for all i∈ [n], we may identify σ , in one-line
notation, with σ(1) . . .σ(n) ∈Sn and ℓ(σ) = #{inversions of σ} [6, Proposition 1.5.2].

• We have that ℓ(σsi)> ℓ(σ) if i = n and σ(n) is positive, or, i ̸= n and σ(i)< σ(i+1).

The Bruhat order on the set of the elements of Bn can be defined in the following way:

Definition 3.2.3. [6] Let w = σ1 . . .σℓ(w), where σi ∈ {s1, . . . ,sn} are generators of Bn, and u be two
elements in Bn. Then u ≤ w in the Bruhat order if

∃1 ≤ i1 < i2 · · ·< iℓ(u) ≤ ℓ(w)such that u = σi1σi2 . . .σiℓ(u) .

By definition, if u ≤ w then ℓ(u)≤ ℓ(w), but the reverse is not true. If σ(n) is positive and i = n,
or, σ(i)< σ(i+1) and i ̸= n, we can also say that σsi > σ .
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3.3 Symplectic key tableaux in type Cn and the Bruhat order on Bn

Definition 3.3.1. A key tableau of shape λ , in type Cn, is a KN tableau in KN(λ ,n), in which the set
of elements of each column, left to right, is contained in the set of elements of the previous column, if
any, and the letters i and i do not appear simultaneously as entries, for any i ∈ [n]. Equivalently, the
key tableaux in type Cn are the KN tableaux of shape λ whose weight is in Bnλ , the Bn-orbit of λ . For
each element of Bnλ there is exactly one key tableau of shape λ with that weight (see Proposition
3.3.3).

Example 3.3.2. The KN tableau T =
2 2
3 1
1

is a key tableau.

The set of key tableaux in type An−1 is the subset of the key tableaux in type Cn consisting of the
tableaux having only positive entries, hence they are SSYT’s for the alphabet [n].

Every vector v of Zn is in the Bn-orbit of exactly one partition, λv, which is the one obtained by
sorting the absolute values of all entries of v. Given a partition λ ∈ Zn, the Bn-orbit of λ is the set
Bnλ := {σλ | σ ∈ Bn}. For instance, the vector v = (1,3,0,3,2) is in the B5-orbit of λ = (3,3,2,1,0).

Proposition 3.3.3. Let λ be a partition and v ∈ Bnλ . There is exactly one key tableau K(v) whose
weight is v. In addition, the shape of the key tableau K(v) is λ . When v = λ , K(λ ) is the only KN
tableau of weight and shape λ , also called Yamanouchi tableau of shape λ .

Proof. Existence: Given v = (v1, . . . ,vn) ∈ Zn there exists a key tableau K of weight v by putting in
the first |vi| columns the letter i if vi ≥ 0 or i if vi ≤ 0, and then sorting the columns properly. Clearly
the columns of K are nested and it is a KN tableau without symmetric entries, hence it is a key tableau.
Also, its shape is λv = λ .

Uniqueness: Since the key tableaux do not have symmetric entries then, for all i ∈ [n], we have
that in K the letter sgn(vi)i appears |vi| times in its entries. In order to the columns of K be nested we
have that these |vi| entries appear in the first |vi| columns, hence we have determined exactly which
letters appear in each column of K and now we just have to order them correctly. So the key tableau K
with weight v is unique. When v = λ , K(λ ) has only i’s in the row i, for i ∈ [n].

Example 3.3.4. Let v = (1,3,0,3,2). Then K(v) =

1 4 4
4 5 2
5 2
2

.

Hence there is a bijection between vectors in Bnλ and the key tableaux in type Cn on the alphabet
[±n] with shape λ , given by the map v 7→ K(v).

Remark 3.3.5. The type Cn key tableaux in KN(λ ,n) are characterized by their weight αλ , for
all α ∈ Bn, and thereby denoted K(αλ ). The orbit of K(λ ), the highest weight element of Bλ ,
under the action of the Weyl group Bn, is defined to be O(λ ) = {K(αλ ) : α ∈ Bn}. In particular,
K(w0λ ) = K(−λ ), with w0 the longest element of Bn, is the lowest weight element of the type Cn

crystal Bλ .
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If σ ∈ Bn we put K(σ) := K(σ∆n), where ∆n is the staircase partition. One has a natural bijection
between Bn and the Bn-orbit of ∆n.

Proposition 3.3.6. If σ ∈ Bn has the letter α in the j-th position then α appears in the first n+1− j
columns of the corresponding key tableau, K(σ).

Proof. Put ∆ := ∆n. Remember that, ignoring signs, σ∆ = (∆σ−1(1), . . . ,∆σ−1(n)). The i-th letter of
σ∆ has negative sign if and only if i appears in σ . If α is positive, then in the position α of σ∆ will
appear ∆ j = n+1− j. If α is negative, then in the position −α will appear ∆ j = n+1− j.

We now append 0 to the alphabet [±n], obtaining [±n]∪{0}, where n < 0 < n, and, for all σ ∈ Bn,
we put σ(0) := 0. Given an element σ ∈ Bn consider the map

[±n]∪{0}× [±n]∪{0}→ N0

(i, j) 7→ |{a ≤ i : σ(a)≥ j}| := σ [i, j].

This map σ [·, ·], originally defined in [6], produces a table which is related to key tableaux in type
Cn. See example below:

Example 3.3.7. Let σ = [3124]. Then σ(4,3,2,1) = (3,2,4,1) and K(σ) =

2 2 3 3
4 3 1
3 1
1

The family of numbers σ [i, j] where (i, j) ∈ [±n]∪{0}× [±n]∪{0} originates the following table,
where i indexes the columns, left to right, and j indexes the rows, top to bottom. We add a row of zeros
at the bottom for convenience:

1 2 3 4 0 4 3 2 1
1 1 2 3 4 5 6 7 8 9
2 1 2 3 4 5 6 7 7 8
3 1 2 2 3 4 5 6 6 7
4 1 2 2 3 4 5 6 6 6
0 1 2 2 2 3 4 5 5 5
4 1 2 2 2 2 3 4 4 4
3 1 2 2 2 2 2 3 3 3
2 0 1 1 1 1 1 2 2 2
1 0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0

To go from the table to the key tableau note that, for i ∈ [n], the i-th column of the table encodes
the (n+1− i)-th column of the tableau, in the sense that if we look to the the i-th column of the table,
from bottom to top, if the entry of the table increases in one unity then the index of the row associated
to that entry exists in the (n+1− i)-th column of the tableau. Knowing the entries in a column of a
tableau, its ordering is unique. The columns of the tableau constructed this way are nested because
the indexes in which the column i increases are σ( j), for j ≤ i. So the tableau taken from the table is
the key tableau K(σ). It is also possible to construct the table from the key tableau and then we only
need the first n columns of the table.
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We then have the following result:

Proposition 3.3.8. Consider σ ,ρ ∈ Bn. K(σ)≥ K(ρ) entrywise if and only if σ [i, j]≥ ρ[i, j], where
i ∈ [n], and j ∈ [±n].

In [6, Theorem 8.1.8] it is proved that, for σ ,ρ ∈ Bn, σ ≤ ρ in the Bruhat order if and only if
σ [i, j]≤ ρ[i, j] for all i, j ∈ [±n]. But the result in [6, Theorem 8.1.7] implies that we only need to
compare σ [i, j] and ρ[i, j] for i ∈ [n]. Henceforth, we have the following criterion for the Bruhat order
on Bn:

Theorem 3.3.9. Consider σ ,ρ ∈ Bn. K(σ)≥ K(ρ) by entrywise comparison if and only if σ ≥ ρ in
the Bruhat order.

Remark 3.3.10. In [6, Chapter 8.1] the authors use the same alphabet as here, but with the usual
ordering on the integers. So, to translate the results from there to here, it is needed to apply the
ordering isomorphism defined by: i 7→ n− i+1 if i ∈ [n]; i 7→ n+ i+1 if i ∈ −[n]; 0 7→ 0. Using the
usual ordering, the authors give a tableau criterion for the Bruhat order in Exercise 6, pp. 287–288,
which is effectively the transpose version of the tableau criterion presented here. Also note that the
generators used in [6, Chapter 8.1] are the same used here, although with different indexation. Our
generator si corresponds to the generator sn−i in [6, Chapter 8.1], for all i ∈ [n].

3.4 The Bruhat order on cosets of Bn defined by parabolic subgroups

A parabolic subgroup of Bn is a group generated by some of the generators s1,s2, . . . ,sn of Bn.
Consider a partition λ ∈ Nn. Let Wλ = {ρ ∈ Bn | ρλ = λ} be the stabilizer of λ , under the action of
Bn. Since λ is a partition, Wλ is a parabolic subgroup of Bn, because it is generated by some of the
generators of Bn. Also note that given a parabolic subgroup G of Bn, there is a partition λ such that
G =Wλ . Let J ⊆ [n] be the set of the indices of the generators of Wλ , i.e. Wλ = ⟨s j, j ∈ J⟩, and Jc the
complement of this set in [n]. Let Bn/Wλ = {σWλ : σ ∈ Bn} be the set of left cosets of Bn determined
by the subgroup Wλ . Each coset σWλ returns a unique vector v when acting on λ , and has a unique
minimal length element σv, such that v = σvλ . Reciprocally, given a vector v ∈ Bnλ , there is a unique
minimal length element σv ∈ Bn such that v = σvλ . We have then a bijection between the vectors in
Bnλ and the left cosets of Bn, determined by the subgroup Wλ , given by v 7→ σvWλ . The set Jc detects
the minimal length coset representatives of Bn/Wλ : σ is a minimal coset representative of Bn/Wλ if
and only if all its reduced decompositions end with a generator si ∈ Jc [6]. However key tableaux,
K(v), v ∈ Bnλ , may be used to explicitly construct the minimal length coset representatives of Bn/Wλ .
Given a vector v ∈ Bnλ , we show that there is a unique minimal length element σv ∈ Bn such that
v = σvλ and we show how to obtain σv explicitly. The next proposition is a generalization of what
Lascoux does in [22] for vectors in Nn (hence σv ∈Sn).

Proposition 3.4.1. Let v ∈ Bnλ and T the tableau obtained after adding the column C =

1
2
...
n

to the

left of K(v). The minimal length element σ ∈ Bn, modulo Wλ , is given by the reading word of T where
entries with the same absolute value are only read on their first appearance.
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Proof. Consider λ = (λ1, . . . ,λn). Let ai be the multiplicity of i in λ , for 0 ≤ i ≤ λ1. In this proof we

will write λ as (λ
aλ1
1 , (λ1 −1)aλ1−1 , . . . ,1a1 ,0a0). Note that

λ1

∑
i=0

ai = n.

Let σ = [α1 . . .αn] ∈ Bn read from T . Let’s prove that α j appears λ j times in K(v): If j = 1 then
α1 appears in all columns of K(v), because it was the first letter read and the columns are nested.
Hence it appears λ1 times. Also, the |α1|-th entry of λσ is sgn(α1)λ1 which is the weight of |α1| in
K(v). For j > 1, proceeding inductively, we have that α j appears in all columns of K(v) not fully
occupied by αi, with i < j, hence it appears λ j times. Also, the

∣∣α j
∣∣-th entry of λσ is sgn(α j)λ j,

which is the weight of
∣∣α j
∣∣ in K(v). This makes sense even if λ j = 0. So we have that σλ = v.

We only have to see that σ is the minimal length element of the set {ρ ∈ Bn | ρλ = v}. The subset
of elements Bn that applied to λ returns v is the coset σWλ . Looking at σ , this allows us to swap αi

and α j in σ if λi = λ j and to change the sign of αi if λi = 0. Since for each column the reading to
obtain σ is ordered from the least to the biggest, we have that between these elements of Bn, σ has
minimal number of inversions and the letter α j is unbarred if λ j = 0 because α j will only be added
to σ when reading the column C. Hence, by Proposition 3.2.1, σ is the minimal length element of
σWλ .

Given a partition λ ∈ Zn we identify each coset σWλ with its minimal length representative σv,
where v = σλ ∈ Bnλ . Under this identification, we now induce the Bruhat order in the Bn-orbit of λ

and in the coset space of Bn/Wλ .

Definition 3.4.2. Consider the vectors v,w ∈ Bnλ , where λ is a partition. We say that v ≤ w, in the
Bruhat order, if σv ≤ σw.

Let v ∈ Bnλ . If K := K(v) is the key tableau with weight v, consider the tableau K̃ obtained from
K after erasing the minimal number of columns in order to have a tableau with no duplicated columns.
Let ṽ and λ̃ be the weight and the shape of K̃, respectively. If K and K′ are two key tableaux with
shape λ , we have that K ≥ K′ (by entrywise comparison) if and only if K̃ ≥ K̃′. Note that to recover
K from K̃ we just have to know λ , and that K̃ = K(ṽ).

It is also possible to obtain ṽ from v without having to look to key tableaux. If i is positive, i and i
do not appear in v but i+1 or i+1 appears then change all appearances of i+1 and i+1 to i and i,
respectively, and repeat this as many times as possible, obtaining the vector ṽ. The set of the absolute
values of its entries is a set of consecutive integers starting either in 0 or 1. Hence the key tableau
associated to it does not have repeated columns.

Due to Proposition 3.4.1 we have that σṽ = σv and ṽ = σṽλ̃v = σ̃vλv.

Example 3.4.3. Consider v = (1,0,3,3,5) ∈ B5(5,3,3,1,0). Hence K(v) =

1 4 4 5 5
4 5 5
5 3 3
3

has

shape λ = (5,3,3,1,0), weight v and σv = [54312]. Now note that ṽ = (1,0,2,2,3), hence K(ṽ) =
1 4 5
4 5
5 3
3

= K̃(v) has shape (3,2,2,1,0) = λ̃ and σṽ = [54312] = σv.
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Recall J and Jc defined above. Note that the set J is the same for λ and λ̃ . If i ∈ Jc and i = n
then all entries of λ are different from 0, which implies K(v) (and K̃(v)) having columns of length n;
if i ∈ Jc and i < n then λi > λi+1, hence K(v) will have exactly i rows with length greater then λi+1,
hence K(v) (and K̃(v)) will have columns of length i. Since K̃(v) does not have repeated columns, Jc

have exactly the information of what column lengths exist in K̃(v). Theorem 3BC of Proctor’s Ph.D.
thesis [33] states that given a partition λ there is a poset isomorphism between the poset formed by
the key tableaux of shape λ̃ (ordered by entrywise comparison) and the poset formed by the Bruhat
order in the vectors of the orbit Bnλ̃ = {σλ̃ : σ ∈ Bn}.

The following theorem gives a tableau criterion for the Bruhat order on vectors in the same
Bn-orbit and for the corresponding Bn-coset space.

Theorem 3.4.4. Let v, u ∈ Bnλ . Then σv ≤ σu if and only if K(v)≤ K(u).

Proof. We have that

σv ≤ σu
(1)⇔ v ≤ u

(2)⇔ ṽ ≤ ũ
(3)⇔ K(ṽ)≤ K(ũ)⇔ K̃(v)≤ K̃(u)

(4)⇔ K(v)≤ K(u),

where (1) holds by Definition 3.4.2. Note that in (2) we also need to record λ , because it is needed in
(4) to recover the shape of K(v) from the shape K̃(v). Finally the equivalence (3) is an application of
Theorem 3BC of Proctor’s Ph.D. thesis [33].

The following example illustrates Theorem 3.4.4.

Example 3.4.5. Here we have two vectors with the respective key tableaux, ordered by entrywise
comparison. The corresponding minimal coset representatives, calculated using Proposition 3.4.1,
preserve this order.

K(3,3,0,0,2) =
1 1 1
5 5 2
2 2

≤ K(3,2,0,3,0) =
2 2 4
4 4 1
1 1

and σv = [12534] ≤ σu = [41235], be-

cause σv has the reduced expression s5s4s3s2s3s4s5s4s3s2, which is a subword of the following reduced
expression of σu: s4s5s4s3s2s1s2s3s4s5s4s3s2.





Chapter 4

Type Cn Demazure crystals, their opposite
and cocrystals

In this chapter, given a partition λ with at most n parts, the type Cn crystal Bλ of KN tableaux will
be partitioned in two different ways: one into Demazure crystal atoms and the other into opposite
Demazure crystal atoms. Motivated by Lascoux’s double crystal graph construction in type A [22], and
by Heo-Kwon work in [16] where Schützenberger jeu de taquin slides are used as crystal operators
for sl2, we define the cocrystal associated to a fixed KN tableau in the type Cn crystal Bλ . The main
result of this section, Proposition 4.4.3, shows that given a KN tableau T , the cocrystal associated
to T is isomorphic to a type A crystal of SSYT’s with conjugated shape. This cocrystal is a type A
crystal whose elements are type C objects, more precisely KN tableaux, and the crystal operators are
described by SJDT slides. This cocrystal is useful in the next chapter, where SJDT is used to define
right and left key maps.

4.1 Demazure crystal

Let λ be a partition and v ∈ Bnλ . Given a subset X of Bλ , consider the operator Di on X , with i ∈ [n]
defined by DiX = {x ∈Bλ | ek

i (x) ∈ X for some k ≥ 0} [9]. If v = σλ where σ = siℓ · · ·si1 ∈ Bn is a
reduced word, we define the Demazure crystal Bv to be

Bv =Diℓ · · ·Di1{K(λ )}.

This definition is independent of the reduced word for σ [9, Theorem 13.5]. In particular, when
σ is the longest element fo Bn we recover Bλ . Also this definition is independent of the coset
representative of σWλ , that is, Bσλ =Bσvλ . From [6, Proposition 2.4.4], σ uniquely factorizes as
σvσ ′ where σ ′ ∈ Wλ and ℓ(σ) = ℓ(σv)+ ℓ(σ ′). If σ ′ = s jℓ(σ ′) . . .s j1 ∈ Wλ is a reduced word, then
Bσ ′λ =Bλ =D jℓ(σ ′) . . .D j1{K(λ )}= {K(λ )} and we may write Bσλ =Bv.

From [6, Proposition 2.5.1], if ρ ≤ σ for the Bruhat order of Bn, then u = ρλ ≤ v. Since e0
i (x) = x,

if ρ ≤ σ then Bu ⊆Bv. Thus we define the Demazure crystal atom B̂v to be

B̂v =Bv \
⋃
u<v

Bu =Bv \
⋃

K(u)<K(v)

Bu.

25
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Example 4.1.1. Recall the type C2 crystal graph from Example 2.5.3, associated to the partition
λ = (2,1):

1 1
21 2

2
1 1
2

1 2
2

1 2
2

2 2
2

2 2
1

2 2
2

2 2
1

2 2
1

1 2
2

1 1
2

1 1
2

2 1
2

2 1
1 2 1

1

The crystal is split into |B2(2,1)| = 8 parts, the
number of elements of the B2-orbit of (2,1). Each
part is a Demazure crystal atom and contains
exactly one symplectic key tableau in O(λ ), the
set of key tableaux with shape λ , drawn with a
thick line, so we can identify each part with the
weight of that key tableau, which is a vector in the
B2-orbit of (2,1).

Now we see how to compute the Demazure crystal atom B̂(1,2):

1 1
21 2

2
1 1
2

1 2
2

1 2
2

To compute this Demazure crystal atom we
start by computing the Demazure crystal B(1,2),
which is formed by all tableaux on the left. Then,
since (2,1), (1,2) and (2,1) are smaller than
(1,2), we remove from the whole Demazure crys-
tal three Demazure crystals contained in it: B(2,1),
B(1,2) and B(2,1). The union of this sets is the
greyed out section on the left.

Like in Example 4.1.1, every Demazure crystal atom contains exactly one key tableau (see
Corollary 5.2.3). Hence we can define the right key map, a map sends each tableau of Bλ to the
unique key tableau living in the Demazure crystal atom that contains the given tableau. The right key
of a tableau T is a key tableau of the same shape as T , entrywise ”slightly” bigger than T . This is
revisited in Chapter 5, where we define the right key map using the SJDT and see that both right key
maps have the same output.

4.2 Opposite Demazure crystal

Let λ be a partition. Analogously to the previous case, we start by creating an opposing operator
Dop

i on X , with i ∈ [n] defined by Dop
i X = {x ∈Bλ | f k

i (x) ∈ X for some k ≥ 0}. If v = σλ where
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σ = siℓ · · ·si1 ∈ Bn is a reduced word, we define the opposite Demazure crystal Bop
−v to be

Bop
−v =Dop

iℓ · · ·Dop
i1 {K(−λ )}.

We define the opposite Demazure crystal atom B̂v to be

B̂op
−v =Bop

−v \
⋃

−u>−v
Bop

−u =Bop
−v \

⋃
K(−u)>K(−v)

Bop
−u.

The opposite Demazure crystal Bop
−v is the image of Bv by the Schützenberger-Lusztig involution

(see Chapter 6. In particular, the tableau weights in Bv and in Bop
−v are symmetric.

Example 4.2.1. The C2 crystal graph B(2,1) can also be split into opposite Demazure crystal atoms:
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Similar to what we had in the previous section, every opposite Demazure crystal atom contains
exactly one key tableau, as we shall see in the next chapter. So we can define the left key map, a map
sends each tableau to the key tableau present in the opposite Demazure crystal atom that contains the
given tableau. The left key of a tableau T is a key tableau of the same shape as T , entrywise ”slightly”
smaller than T . In Chapter 5 we will compute the left key map using SJDT.

4.3 Demazure characters and opposite Demazure characters

The Demazure character, or key polinomial, κv for v ∈ Bnλ , is the character of the Demazure crystal
Bv:

κv(x1, . . . ,xn) = ∑
T∈Bv

xwtT .
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We also define the Demazure atom κ̂v as the character of the Demazure crystal atom B̂v:

κ̂v(x1, . . . ,xn) = ∑
T∈B̂v

xwtT .

Analogously, we can define opposite Demazure characters and opposite Demazure atoms:

κ
op
−v(x1, . . . ,xn) = ∑

T∈Bop
−v

xwtT ; κ̂
op
−v(x1, . . . ,xn) = ∑

T∈B̂op
−v

xwtT .

Since the tableau weights in Bv and in Bop
−v are symmetric, we have the following result:

Corollary 4.3.1.
κv(x1, . . . ,xn) = κ

op
−v(x

−1
1 , . . . ,x−1

n )

As a consequence, for instance, the type Cn Fu-Lascoux non-symmetric Cauchy kernel, given in
[12], can be written as:

∏1≤i< j≤n(1− xix j)

∏
n
i, j=1(1− xiy j)∏

n
i, j=1(1− xi/y j)

= ∑
v∈Nn

κ̂v(x1, . . . ,xn)κ−v(y1, . . . ,yn)

= ∑
v∈Nn

κ̂v(x1, . . . ,xn)κ
op
v (y−1

1 , . . . ,y−1
n )

Remark 4.3.2. In [12], Fu-Lascoux also presented, and proved algebraically, type An−1 Fu-Lascoux
non-symmetric Cauchy kernel. For this identity there are three combinatorial knowns proofs: one by
Lascoux, in [22], a second one by Azenhas-Emami, in [3], and the most recent one, by Choi-Kwon, in
[10]. In [10], Choi-Kwon, working in the Lakshmibai-Seshadri paths, started by manipulating the
identity using opposite Demazure characters.

4.4 Cocrystals

In this section we start working with SSYT’s and type A crystals, and we only address KN tableaux in
the last subsection.

4.4.1 Dual RSK correspondence

Let T be a T ∈ SSYT(λ ,n) with column decomposition T = C1C2 · · ·Ck, and recall the column
insertion for SSYT’s from Section 2.3.

Given r ≥ 1, let Er
n be the set of biwords without repeated biletters, in lexicographic order,(

u
v

)
≤

(
u′

v′

)
if u < u′ or if u = u′ and v ≤ v′, with the bottom word on the alphabet [n], and the top

word on the alphabet [r]. The set Er
n can also be thought as the set of sequences of r columns, possibly

some of them empty, on the alphabet [n], where each pair of consecutive columns has maximum
overlapping, and, in the case of two non-empty columns whose intermediate columns are empty, the
top edge of the left column and the bottom edge of the right column are aligned. In particular, Er

n has
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a subset identified with SSYT(λ ,n), such that ℓ(λ ′)≤ r, where ℓ(λ ′) is the length of λ ′, the conjugate
partition of λ ′. Given a tableau T ∈ SSYT(λ ,n), we create a biword, without repeated biletters, whose
bottom word is cr(T ) and in the top word we register in which column of T , counted from the right,
was each letter of cr(T ) read. Each biword will be an element of Er

n, where ℓ(λ ′)≤ r. For instance, if

T =
1 2 2
2 3
4 4

∈ SSYT((3,2,2,0),4), the biword of T is

w =

(
1 2 2 2 3 3 3
2 2 3 4 1 2 4

)
∈ E3

4 , with ℓ(λ ′) = 3

.

The (type A) dual RSK, RSK∗, is a bijection [13, Section A.4.3] between Er
n and pairs of SSYT’s

of conjugate shapes and lengths ≤ n and ≤ r, respectively:

RSK∗ : Er
n →

⊔
ℓ(λ )≤n
ℓ(λ ′)≤r

SSYT(λ ,n)×SSYT(λ ′,r) =
⊔

ℓ(λ )≤n
ℓ(λ ′)≤r

P∈SSYT(λ ,n)

{P}×SSYT(λ ′,r)

w 7→ (P,Q).

The bijection can be calculated in the following way:

Let w =

(
x1 x2 . . . xm

y1 y2 . . . ym

)
. Then start with i = 1, P = Q are empty tableaux.

1. Column insert yi into P.

2. Add one cell to Q whose entry is xi, in a position such that P and Q, with this new cell, have
conjugate shapes.

3. If i ̸= m, then i := i+1 and return to (1). Else the algorithm is finished.

Given a biword w, the first and second components of RSK∗(w) are the P- symbol and the
Q-symbol of w.

For instance, the biword w =

(
1 2 2 2 3 3 3
2 2 3 4 1 2 4

)
of T =

1 2 2
2 3
4 4

, is mapped to the pair

T =
1 2 2
2 3
4 4

,K(rev((3,2,2)′)) =
1 2 2
2 3 3
3

 .

More generally, given T ∈ SSYT(λ ,n) with ℓ(λ ′)≤ r, the dual RSK maps its biword, w, to the
pair (T,K(rev(λ ′))), where rev(λ ′) is the vector λ ′ written backwards. Note that the weight of K(λ ′)

registers the column lengths of T , from right to left.
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We also can compute RSK∗ of a biword obtained from a skew SSYT. For instance, let T̃ be the

skew SSYT

4
2
1

4
2 3

2

. Its biword is

w̃ =

(
1 1 2 2 3 3 3
2 3 2 4 1 2 4

)
.

Finally,

RSK∗(w̃) =

T = rect(T̃ ), Q̃ =
1 1 2
2 3 3
3

 ,

where rect(T̃ ) is the rectification of T̃ via SJDT. The weight of Q̃ records the column lengths of T̃
from right to left.

4.4.2 Cocrystal of SSYT’s

Given T ∈ SSYT(λ ,n) with ℓ(λ ′)≤ r, we define the cocrystal of T , CBλ ′
(T ), to be the glr-crystal,

CBλ ′
(T ) = (RSK∗)−1({T}×SSYT(λ ′,r)), (4.1)

whose crystal operators, lowering Fi and raising Ei, are SJDT slides on consecutive columns i, i+1
of T , for i = 1, . . . ,r−1. More precisely, Fi sends a cell from the i-th column to the i+1-th column,
counting from right to left. The lowest weight element of CBλ ′

(T ) is T , and the highest weight
element is the anti rectification of T , that is, the rectification is performed south-eastward. The type
Ar−1 crystals SSYT(λ ′,r) and CBλ ′

(T ) are isomorphic. This isomorphism relies on the following
proposition, a consequence of [16, Lemma 2.3, Lemma 2.4] by Heo-Kwon:

Proposition 4.4.1. Let T be a skew SSYT. The Q-symbol of Fi(T ) is the same as fi applied to the
Q-symbol of T , and the weight of the Q-symbol of T records the column lengths of T from right to left.

Example 4.4.2. Recall T and T̃ from the previous subsection. Note that T = Fi(T̃ ) and that the
Q-symbols obtained from both tableaux are connected via fi, that is, Q̃ = f1(K(rev((3,2,2)′))).

This can be easily seen in the next crystal graphs. On the right, we have the cocrystal CBλ ′
(T ),

whose vertices are obtained by applying the elementary SJDT slides Ei, for i = 1,2, on T , the lowest
weight element of the cocrystal CBλ ′

(T ). Namely, E1 sends an entry from the second column to the
first column, and E2 sends an entry from the third column to the second column, where we count
columns starting from the right. F1 and F2 are the inverse operations.

On the left, we have the type A2 crystal SSYT((3,3,1),3), formed by the Q-symbols of every skew
tableau that exists in the type A2 crystal CBλ ′

(T ) on the right. The type A2 crystal operators on the
left are defined by the signature rule on the alphabet [3], whereas, on the right, F1 and F2 are type A2

crystal operators defined by SJDT.
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Type A2 crystal SSYT((3,3,1),3) CBλ ′
(T )

K(λ ′) =
1 1 1
2 2 2
3

1 1 1
2 2 3
3

1 1 2
2 2 3
3

1 1 1
2 3 3
3

Q̃ =
1 1 2
2 3 3
3

K(revλ ′) =
1 2 2
2 3 3
3

→ f1

→ f2

→F1

→F2

T =
1 2 2
2 3
4 4

T̃ =

4
2
1

4
2 3

2
4
2

4
2
1

3
2

4
2
1 2 4

3
24

2 2
1

4
3
2

21
32
442

The type A2 crystal operators f1 and f2 are given by the signature rule on the alphabet [3], whereas
F1 and F2, even though they are also type A2 crystal operators, are defined by SJDT.

4.4.3 Cocrystal of KN tableaux

Let T ∈ SSYT(λ ,n). Note that T , the lowest weight of the cocrystal CBλ ′
(T ), is also in the type

Cn crystal Bλ (recall that SSYT(λ ,n) is a crystal contained in Bλ ). Fixed an arbitrary tableau Y in
the crystal Bλ , there is a sequence S, of type Cn crystal operators of Bλ , such that S(T ) = Y . All
elements of the cocrystal CBλ ′

(T ) are SJDT related and we can apply this sequence S to all skew
tableaux on the cocrystal, obtaining, for each skew tableau, a new skew tableau of the same shape.
All these skew tableaux, obtained by application of the sequence S to each element of CBλ ′

(T ), will
be connected via SJDT, because the SJDT and the crystal operators of Bλ commute [25, Theorem
6.3.8], hence they are the elements of a new cocrystal CBλ ′

(S(T )) of type Ar−1, despite the possibility
that its vertices are type Cn objects (i.e. KN skew tableaux). Recalling that the weight function of
CBλ ′

(T ) is given by the column lengths of each vertex, from right to left, which is preserved by any
sequence S of crystal operators given by the Cn signature rule in Bλ , the following is a consequence
of Proposition 4.4.1.

Proposition 4.4.3. Given T ∈KN(λ ,n), with ℓ(λ ′)≥ r, the cocrystal CBλ ′
(T ) with lowest weight

element T , obtained from T by successive application of elementary SJDT moves, is crystal isomorphic
to the glr-crystal SSYT(λ ,r).

Fulton [13] has proved the following result for type An−1 SSYT’s.
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Proposition 4.4.4. [13, Proposition 7, Corollary 1, Appendix A.5] Given T ∈ SSYT(λ ,n) and a skew
shape whose column lengths are a permutation of λ , the column lengths of T , there is exactly one
skew tableau with that shape that rectifies to T . Furthermore, the last and first columns only depend
on their lengths.

This means that given T ∈ SSYT(λ ,n), the cocrystal CBλ ′
(T ) attached to T ∈ SSYT(λ ,n) has a

distinguished set of skew tableaux whose column lengths are a permutation of λ ′, the column lengths
of T . The skew shapes of these distinguished vertices are preserved by any sequence S of type Cn

crystal operators of the crystal Bλ . Thus we obtain another proof of our Proposition 40 and Corollary
41 of [36] which is an extension of Proposition 4.4.4 to KN tableaux.

Proposition 4.4.5. [34, 36, Proposition 40, Corollary 41] Given T ∈KN(λ ,n) and a skew shape
whose column lengths are a permutation of the column lengths of T , there is exactly one skew tableau
with that shape that rectifies to T . Furthermore, the last and first columns only depend on their
lengths.

A key tableau in the type Ar−1 crystal SSYT(λ ′,r) is a tableau of shape λ ′ whose weight is in
Snλ ′, the Sr-orbit of λ ′. For each element of Srλ

′ there is exactly one key tableau of shape λ ′ with
that weight. More precisely the key tableaux in SSYT(λ ′,r) are distinguished vertices and define the
set SrK(λ ′) where siK(λ ′) = K(siλ

′) and si, for i = 1, . . . ,r−1, are the simple transpositions of Sr.
Thereby it is natural to define keys in a cocrystal.

Definition 4.4.6. Given T ∈KN(λ ,n), with ℓ(λ ′)≤ r, and X ∈ CBλ ′
(T ), X is said to be a key (skew

tableau) of CBλ ′
(T ) if its weight as an element of the said cocrystal, the sequence column lengths of

X, from right to left, is a permutation of the weight of T as an element of the same cocrystal.

In other words, the keys of CBλ ′
(T ) are the image of the keys in SSYT(λ ′,r) via the crystal

isomorphism between both crystals. We then have an action of Sr on set of keys of CBλ ′
(T ).

Example 4.4.7. Recall the right hand side crystal from Example 4.4.2. T is in the type C4 crystal
B(3,2,2,0). Hence we can apply to each vertex of CBλ ′

(T ) the sequence of crystal operators S = f4,
obtaining a new cocrystal, on the right, whose vertices are KN skew tableaux connected via SJDT.
This cocrystal CBλ ′

( f4(T )) is a type A2 crystal.
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CBλ ′
(T ) CBλ ′

( f4(T )) = f4CB
λ ′
(T )

f4−→

f4−→

K(λ )→ ·· · →

E1K(λ )→ ··· →

→ ·· · → K(−λ )

→ ··· → E1K(−λ )

T =
1 2 2
2 3
4 4

T̃ =

4
2
1

4
2 3

2
4
2

4
2
1

3
2

4
2
1 2 4

3
24

2 2
1

4
3
2

21
32
442

f4(T ) =
1 2 2
2 3
4 4

f4(T̃ ) =

4
2
1

4
2 3

2
4
2

4
2
1

3
2

4
2
1 2 4

3
24

2 2
1

4
3
2

21
32
442

→F1

→F2

→F1

→F2

The bold skew tableaux in the cocrystal on the right are its key (skew) tableaux. The KN tableaux
T and f4(T ) are contained in a type C4 crystal with highest weight element K(λ ) and lowest weight
element K(−λ ). The KN skew tableaux in a same position of the cocrystal define a type C4 crystal
isomorphic to the crystal Bλ . In fact, their highest weight are the Littlewood-Richardson tableaux
[13] of weight λ , defining the cocrystal attached to K(λ ), the Yamanouchi tableau of weight and
shape λ . For instance, the type C4 crystal containing T̃ and f4(T̃ ) has highest weight element the

Littlewood-Richardson tableau E1(K(λ )) =

3
2
1

3
1 2

1

and lowest weight element its symmetric, in the

sense of Lusztig involution (see Chapter 6), E1(K(−λ )) =

1
2
3

1
2 1

3

.

In the next chapter, we compute the right and left keys of a tableau using the SJDT. The cocrystal
CBλ ′

(T ) contains all the needed information to compute both keys.





Chapter 5

Right and left keys and Demazure atoms
in type Cn

Frank words were introduced in type A by Lascoux and Schützenberger in [24]. In this chapter, we
define type Cn frank words on the alphabet [±n] and use them to create the right and left key maps,
that send KN tableaux to key tableaux in type Cn. Lascoux and Schützenberger constructed a right
key map, via jeu de taquin, that provided a description for type An−1 Demazure crystal atoms [24,
Theorem 3.8]. The main result of this section, Theorem 5.2.6, shows that the right key map defined
in this chapter, via SJDT, provides a description for type Cn Demazure crystal atoms. We finish this
chapter with a way of computing right and left keys that does not require the use of SJDT.

5.1 Frank words in type Cn

We start by defining frank words in the alphabet [±n]. Given a ordered alphabet and a word on that
alphabet, a column of the word is a maximal factor whose letters are strictly increasing. Hence, we
can decompose a word into columns, and such decomposition is unique.

Definition 5.1.1. Let w be word on the alphabet [±n]. We say that w is a type Cn frank word if the
lengths of its columns form a multiset equal to the multiset formed by the lengths of the columns of the
tableau P(w), the Baker-Lecouvey insertion of w.

Example 5.1.2. In Example 2.3.2 we have that P(23231) = P(11133) =
1 1 1
3
3

. Since 23231 and

11133 have one column of length 3 and two columns of length 1, they are frank words.

Given a frank word w, the number of letters of w is the same as the number of cells of P(w), hence
the case 3 of the Baker-Lecouvey insertion does not happen.

Proposition 5.1.3. Let w be frank word on the alphabet [±n]. All columns of w are admissible.

Proof. Suppose that the statement is false. So there is a factor of w that is a non-admissible column
with all of its proper factors admissible. Hence we can apply the Knuth relation K5, meaning that

35
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w is Knuth related to a smaller word w′. But in this case, the number of letters of w′ is less then the
number of cells of P(w) = P(w′), which is a contradiction.

Fixed a KN tableau T , consider the set of all possible last columns taken from skew tableaux SJDT
connected to T and with same number of columns of each length as T . Proposition 4.4.5 implies
that for each permutation of the columns lengths of T , there is a skew tableau with that sequence of
column lengths that rectifies to T . In particular, it implies that for every column length of T , there is a
skew tableau SJDT connected to T with last column having that length. Proposition 4.4.5 also implies
that this set of last columns has exactly one element for each distinct column length of T . For every
column C in this set, consider the columns rC, its right column. The next proposition implies that this
set of right columns is nested, if we see each column as the set formed by its elements.

Proposition 5.1.4. Consider T a two-column KN skew tableau C1C2 with a puncture in the first
column. Slide that cell once via SJDT, obtaining a punctured two-column KN skew tableau C′

1C′
2.

Then rC′
2 ⊆ rC2.

Proof. If the sliding was vertical then C′
2 =C2, hence rC′

2 = rC2. If the sliding was horizontal, Let
β be the number on the cell right of the puncture on spl(T ). Recall Φ, the function that takes an
admissible column to the associated coadmissible column.

If β = b is unbarred then C′
2 = Φ−1(Φ(C2)\{b}⊔{∗}). In this case Φ(C′

2) = Φ(C2)\{b}⊔{∗},
hence rC2 and rC′

2 have the same barred part. Consider z1 < · · ·< zℓ the unbarred letters that appear
on C2 and not on Φ(C2). When we take b from Φ(C2), if b ∈ Φ(C2) our set of letters z1 < · · · < zℓ
will lose an element, giving the inclusion of the unbarred part of C′

2 in C2; if b ̸∈ Φ(C2), then b ∈C2

and in C′
2 the least zi > b may reduce to b, and subsequent z j may reduce to z j−1. Hence we have the

inclusion of the unbarred part of C′
2 in C2.

If β = b is barred then C′
2 =C2 \{b}⊔{∗}. In this case rC2 and rC′

2 have the same unbarred part.
Consider t1 > · · ·> tℓ the barred letters that appear on Φ(C2) and not on C2. When we take b from C2,
if b ∈C2 our set of t1 > · · ·> tℓ letters will lose an element, giving the inclusion of the barred part of
rC′

2 in rC2; if b ̸∈C2, then b ∈ Φ(C2) and in C′
2 the least zi > b may reduce to b, and subsequent bigger

z j’s may reduce to z j+1. Hence we have the inclusion of the barred part of Φ(C′
2) in Φ(C2).

This proposition allows us to define a map that sends a KN tableau to a key tableau in type Cn,
called the (symplectic) right key map of a given KN tableau. We shall see in the next chapter that this
right key map has the same output as the right key map defined in the previous chapter.

Theorem 5.1.5 (Right key map). Given a KN tableau T , we can replace each column with a column
of the same size taken from the right columns of the last columns of all skew tableaux associated to it.
The tableau obtained is a key tableau. We call this tableau the right key tableau of T and denote it by
K+(T ).

Proof. The previous proposition implies that the columns of K+(T ) are nested and do not have
symmetric entries. So, it is indeed a KN key tableau.

Remark 5.1.6. Recall the set up of Proposition 4.4.5. If the shape of S, µ/ν , is such that every two
consecutive columns have at least one cell in the same row, then each column of S is a column of the
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word cr(S), hence cr(S) is a frank word. Moreover, the columns of S appear in reverse order in cr(S).
Therefore, given a KN tableau T , the columns of K+(T ) can be also found as the right columns of the
first columns of frank words associated to T .

If T is a SSYT then this right key map coincides with the one defined by Lascoux and Schützenberger
in [24].

Example 5.1.7. The tableau T =
1 3 1
3 3
3

gives rise to the cocrystal CBλ ′
(T ), with λ = (3,2,1).

The following are the vertices of CBλ ′
(T ) consisting of the six KN skew tableaux with the same

number of columns of each length as T , each one corresponding to a permutation of its column
lengths.

1 3 1
3 3
3

3
3
1 3 1

3

2 2
3
1

1
3

2
1

2
3
3 1

2
1 2 1

3
3

3
31
122

The right key tableau associated to T has as columns r
3
3
1

, r 3
1

and r 1 . Hence K+(T ) =

3 3 1
2 1
1

.

Remark 5.1.8. Proposition 4.4.5 shows that the action defined by the SJDT on two consecutive
columns of a straight KN tableau T of shape λ gives rise to a permutohedron where the vertices are
all the KN skew tableaux in the Knuth class of T whose column length sequence is a permutation
of the column length sequence of T [24]. For instance, in Example 5.1.7 we have a permutohedron
(hexagon) for S3. In fact, these vertices are the key (skew) tableaux of the cocrystal CB(3,2,1)′(T ).
Hence the cocrystal CB(3,2,1)′(T ) contains all the needed information to compute the right key of T .

In the same spirit of the right key, we define the left key of a KN tableau. Just like in Proposition
5.1.4, we can prove that the slides of the SJDT are effectively adding an entry to ℓC1, i.e. ℓC1 ⊆ ℓC′

1,
hence the left columns of the first columns of all skew tableaux with the same number of columns of
each length as T will be nested.

So, if we replace each column of T with a column of the same size taken from the left columns of
the first columns of all skew tableaux associated to it we obtain the left key K−(T ).

Example 5.1.9. In Example 5.1.7 we have that the left key of T =
1 3 1
3 3
3

has as columns

ℓ
1
3
3

, ℓ 1
2

and ℓ 2 . Hence K−(T ) =
1 1 2
2 2
3

. So, the cocrystal CB(3,2,1)′(T ) also contains

all the needed information to compute the left key of T .
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5.2 Demazure crystals and right key tableaux

Let λ ∈ Zn be a partition and v ∈ Bnλ . We define

U(v) = {T ∈KN(λ ,n) | K+(T ) = K(v)}

the set of KN tableaux of Bλ with right key K(v).
In the following lemma we identify how does the crystal operators affect the weight of a column:

Lemma 5.2.1. Let σ = si be a generator of Bn and C an admissible column such that fi(C) ̸= 0. Then
wt(rC) = wt(r( fi(C))) or wt(rC) = σ(wt(r( fi(C)))).

Proof. Let i = n. We can apply fi to C if and only n ∈ C and n ̸∈ C. In this case n ∈ rC and after
applying fi we have n ̸∈C and n ∈C, hence n ∈ rC. So wt(rC) = sn(wt(r( fn(C)))).

Let i < n. We can apply fi to C, so we have 6 cases to study:

1. i ∈C, i+1, i+1, i ̸∈C: In this case we have that i+1 ∈ fi(C), i, i+1, i ̸∈ fi(C). Note that i /∈ rC
and i+1 /∈ r( fi(C)). If i+1 ̸∈ rC then i ̸∈ r( fi(C)), hence fi swaps the weight of i and i+1
from (1,0) to (0,1), respectively. If i+1 ∈ rC then i ∈ r( fi(C)), hence fi swaps the weight of i
and i+1 from (1,−1) to (−1,1).

2. i, i+1 ∈ C, i+ 1, i ̸∈ C: In this case we have that i+ 1, i+1 ∈ fi(C), i, i ̸∈ fi(C). Note that
i, i+1∈ rC, i+1, , i ̸∈ rC and that i+1, i∈ r( fi(C)), i, i+1 ̸∈ r( fi(C)), and all other appearances
in rC are intact. Hence fi swaps the weight of i and i+1 from (1,−1) to (−1,1).

3. i+ 1, i+1 ∈ C, i, i ̸∈ C: In this case we have that i+ 1, i ∈ fi(C), i, i+1 ̸∈ fi(C). Note that
i+1, i ∈ rC, i, i+1 ̸∈ rC and that i+1, i ∈ r( fi(C)), i, i+1 ̸∈ r( fi(C)), and all other appearances
in rC are intact. Hence fi did nothing to weight of rC.

4. i, i+ 1, i+1 ∈ C, i ̸∈ C: In this case we have that i, i+ 1, i ∈ fi(C), i+1 ̸∈ fi(C). Note that
i, i+1 ∈ rC, i+1, i ̸∈ rC and that i, i+1 ∈ r( fi(C)), i+1, i ̸∈ r( fi(C)), and all other appearances
in rC are intact. Hence fi did nothing to weight of rC.

5. i, i+1, i ∈ C, i+ 1 ̸∈ C: In this case we have that i+ 1, i+1, i ∈ fi(C), i ̸∈ fi(C). Note that
i, i+1 ∈ rC, i+1, i ̸∈ rC and that i+1, i ∈ r( fi(C)), i, i+1 ̸∈ r( fi(C)), and all other appearances
in rC are intact. Hence fi swaps the weight of i and i+1 from (1,−1) to (−1,1).

6. i+1 ∈ C, i, i+ 1, i ̸∈ C: In this case we have that i ∈ fi(C), i, i+ 1, i+1 ̸∈ fi(C). Note that
i, i+1 ̸∈ rC and i+1 ∈ rC. If i ∈ rC then we have i, i+1 ̸∈ r( fi(C)) and i+1, i ∈ r( fi(C)), so
fi did nothing to weight of rC. If i ̸∈ rC then i+1 ̸∈ r( fi(C)) and i ∈ r( fi(C)), hence fi swaps
the weight of i and i+1 from (0,−1) to (−1,0).

Remark 5.2.2. All the cases where the weight is preserved happen to have equal weight for i or i+1
in rC or we are in a column C in which we can also apply ei. If the weights for i and i+1 in rC swap,
then if rC the weight of i is bigger (in the usual ordering) then the weight of i+1.
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The following corollary shows that every Demazure crystal atom defined in the previous chapter
has exactly one key tableau:

Corollary 5.2.3. Let T be a KN tableau and i ∈ [n]. If K+(T ) = K(v), for some v = (v1, . . . ,vn) ∈ Zn,
then K+( fi(T )) = K(v) or K+( fi(T )) = K(siv). Moreover, K+( fi(T )) = K(s1v) only if vi > vi+1 (in
the usual ordering of real numbers) and 1 ≤ i < n, or, vi > 0 and i = n.

Proof. Consider a multiset of frank words F such that the multiset of length of their first columns is
the same of the multiset of lengths of columns of T .

If K+( fi(T )) = K+(T ) then we are done. Else there are two cases: 1 ≤ i < n and i = n.
Consider 1 ≤ i < n. Since there is a change in the weight of the key tableau, we have that in at

least one first column of words in F weight of i is bigger or equal than the weight of i+1. These first
columns form a nested set without symmetric entries, hence in all first column of words in F weight
of i is bigger or equal than the weight of i+1.

Let A be the subset of F such that the weight of i and i+1 in the right column of its first column
is different and does not swap when we apply fi to the frank word. Consider (a,b) the sum of weights
of i and i+ 1, respectively, of all right columns of first columns of words in A, and (c,d) defined
analogously to F \A.

The weights of i and i+1 in K+(T ) is (a,b)+(c,d) = (a+c,b+d) and the weights of i and i+1
in K+( fi(T )) is (a,b)+(d,c) = (a+d,b+c), and note that (a+c,b+d) ∈ B2(a+d,b+c), because
fi doesn’t change any other weight (Lemma 5.2.1).

Since in all first columns of F weight of i is bigger or equal than the weight of i+1, a ≥ 0 and
b ≤ 0, and they are equal when A = /0, so (a+c,b+d) = s1(a+d,b+c), hence wt(K+( fi(T ))) = siv.
Hence we assume a ̸= b. If c = d we have wt(K+( fi(T ))) = v, hence K+( fi(T )) = K(v) = K+(T ),
which is a contradiction.

This implies that (a+ c,b+d) = σ(a+d,b+ c) where σ = 12 or σ = 21. The first case implies
that a = −c−d

2 = b and the second case implies c = −a−b
2 = d, hence there are not more possibilities

for the weight of K+( fi(T )).
The case i = n is a simpler version of this one.

Analogously, one can also prove that every opposite Demazure crystal atom has exactly one key
tableau, using the following corollary of Lemma 5.2.1:

Corollary 5.2.4. Let σ = si be a generator of Bn and C an admissible column. Then wt(rC) =

wt(r(ei(C))) or wt(rC) = σ(wt(r(ei(C)))).

Proof. Let C′= ei(C). By Lemma 5.2.1 we have that wt(rC′)=wt(r( fi(C′))) or wt(C′)=σ(wt(r( fi(C′)))).

Hence wt(r(ei(C))) = wt(rC) or wt(ei(C)) = σ(wt(rC))⇔ σ(wt(ei(C))) = wt(rC).

The following lemma identifies when we can apply ei to a column without taking it to 0.

Lemma 5.2.5. Let i ∈ [n] and C be an admissible column such that one of the following happens

1. i < n and the weight of i in rC is less than the weight of i+1 in rC;

2. i = n and weight of i is negative in rC,
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then we can apply ei to C (in the sense ei(C) ̸= 0).

Proof. If i = n then −n appears on rC and n does not. Since n is the biggest unbarred letter of the
alphabet we have that −n also appears in C and n does not. Hence we can apply en to C.

If i < n and the weight of i in rC is less than the weight of i+1 in rC then the weight of both can
be one of the following three options: (0,1), (−1,1), (−1,0). Note that rC does not have symmetric
entries. So in the first two cases we have that i+1 exists in rC and i does not, hence i+1 exists in C
and i does not, so we can apply ei to C. In the last case, we have that i exists in rC and i+1 and i+1
does not. Hence we have that i exists in C and i or i+1 does not, so we can apply ei to C.

The next theorem gives a description of a Demazure crystal atom in type C using the right key
map Theorem 5.1.5. Lascoux and Schützenberger, in [24, Theorem 3.8], proved the type A version of
this theorem, which consists in considering the case when v ∈ Nn and, consequently, σv ∈Sn. For
inductive reasoning, used in what follows, we recall the chain property on the set of minimal length
coset representatives modulo Wλ [6, Theorem 2.5.5].

Theorem 5.2.6 (Main theorem). Let v ∈ Bnλ . Then U(v) = B̂v.

Proof. Let ρ be a minimal length coset representative modulo Wλ such that v = ρλ . We will
proceed by induction on ℓ(ρ). If ℓ(ρ) = 0 then ρ = id and v = λ . In this case we have that
B̂λ = {K(λ )}= U(λ ).

Let ρ ≥ 0. Consider σ = si a generator of Bn such that σρ > ρ and σρλ ̸= ρλ = v, i.e.,
ρ−1σρ /∈ Wλ . Recall ei, εi, fi and φi from the definition of the crystal Bλ . If T ∈ B̂σρλ then T is
obtained after applying fi (maybe more than once) to a tableau in B̂ρλ , which by inductive hypothesis
exists in U(v). By Corollary 5.2.3, if fi(T ) /∈ U(v) then fi(T ) ∈ U(σv). So it is enough to prove that
given a tableau T ∈ U(v)∪U(σv) then eεi(T )

i (T ) ∈ U(v).

We have two different cases to consider: i = n and i < n.

If T ∈ U(σv) then, if i < n, there exists a frank word of T such that, if V1 is its first column then
rV1 has less weight for i than for i+1 (less in the usual ordering of real numbers); if i = n, there exists
a frank word of T such that, if V1 is its first column then rV1 has negative weight for i. Since we are in
the column rV1, if i < n, i and i+1 can have weights (0,1), (−1,1) or (−1,0) and if i = n then i has
weight −1. Note that these are the exact conditions of Lemma 5.2.5. In either case, due to Lemma
5.2.5, we can applying ei enough times to the frank word associated until this no longer happens. This
is true because we only need to look to V1 to see if it changes after applying ei enough times to the
frank word. In the signature rule we have that successive applications of ei changes the letters of a
word from the end to the beginning, so, from the remark after Lemma 5.2.1, the number of times that
we need to apply ei, in order to conditions of Lemma 5.2.5 do not hold for the first column, is εi(T ).
So K+

(
eε(T )

i (T )
)
̸= K(σv), hence, from Corollary 5.2.4, we have that eεi(T )

i (T ) ∈ U(v).

If T ∈U(v) then eεi(T )
i (T )∈U(v) because if not, eεi(T )

i (T ) will be in a Demazure crystal associated
to ρ ′ ∈ Bn, with ρ ′ < ρ such that σρ ′ = ρ . This cannot happen because in this case ρ ′ = σρ < ρ ,
which is a contradiction.
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5.2.1 Combinatorial description of type Cn Demazure characters and atoms

Recall the Demazure characters and Demazure atoms defined in 4.3. Theorem 5.2.6 detects the KN
tableaux in Bλ contributing to the Demazure atom κ̂v, κ̂v = ∑

K+(T )=K(v)
T∈Bλ

xwtT .

Proposition 5.2.7. Given v ∈ Bnλ , one has κv = ∑
u≤v

κ̂u.

Proof. It is enough to prove that Bv =
⋃

u≤v
B̂u, because κv and κ̂u are the generating functions of the

tableau weights in Bv and B̂u, respectively. Since v = σλ , where σ := σv, we can rewrite the identity
as Bσλ =

⋃
ρ≤σ

B̂ρλ .

We will proceed by induction on ℓ(σ). If ℓ(σ) = 0 then the result follows because Bλ = B̂λ =

{K(λ )}. From the definition of Demazure crystal atom, we have B̂σλ = Bσλ \
⋃

ρ<σ

Bρλ , and by

inductive hypothesis, we have that Bρλ =
⋃

ρ ′≤ρ

B̂ρ ′λ . Hence:

B̂σλ =Bσλ \
⋃

ρ<σ

Bρλ =Bσλ \
⋃

ρ<σ

⋃
ρ ′≤ρ

B̂ρ ′λ =Bσλ \
⋃

ρ ′<σ

B̂ρ ′λ

Proposition 5.2.7, the equivalence u ≤ v ⇔ K(u)≤ K(v), and Theorem 5.2.6, allow us to detect
the KN tableaux contributing to a key polynomial in type C:

κv = ∑
u≤v

κ̂u = ∑
u≤v

T∈U(u)

xwtT = ∑
K(u)≤K(v)

T∈U(u)

xwtT = ∑
K+(T )≤K(v)

xwtT .

Example 5.2.8. Recall the type C2 crystal B(2,1), partitioned into Demazure crystal atoms.

1 1
21 2

2
1 1
2

1 2
2

1 2
2

2 2
2

2 2
1

2 2
2

2 2
1

2 2
1

1 2
2

1 1
2

1 1
2

2 1
2

2 1
1 2 1

1

One can check that, for example

U((1,2)) =

{
1 2
2

, 1 2
2

}
= B̂λ s1s2 .

Also,
B(1,2) = {T ∈ Bλ | K+(T ) ≤ K((1,2))} ={

1 1
2

, 1 2
2

,
1 1
2

, 1 2
2

, 1 2
2

}
.



42 Right and left keys and Demazure atoms in type Cn

5.3 Symplectic right and left keys - direct way

In this section, we start by by introducing two maps, K1
+ and K1

−, that, given a tableau, return the
leftmost column of the right key and the rightmost column of the left key, respectively. Given a tableau
T , we can express its right key K+(T ) in terms of K1

+ applied to T and to some subtableaux of T ,
and analogously for left side. For each side, we start by introducing an algorithm, based on SJDT, to
compute these maps K1

+ and K1
−. Motived by Willis’ direct way of computing right and left keys of

SSYT’s [42], we introduce a way of computing these maps K1
+ and K1

−, and consequently symplectic
right and left keys, without the use of SJDT. We end this section with an example of these direct
algorithms.

5.3.1 The right key of a tableau - Jeu de taquin approach

Let T =C1C2 · · ·Ck be a straight KN tableau with columns C1,C2, . . . ,Ck. Note that, to compute which
entries appear in the i-th column of K+(T ) we do not need to look to the first i−1 columns of T . We
only need the last column of a skew tableau obtained by applying the SJDT to the columns Ci · · ·Ck

of T , so that the last column has the length of Ci, because, by Proposition 4.4.5, all last columns
of skew tableaux associated to T with the same length are equal. Let K1

+(T ) be the map that given
a tableau returns the first column of K+(T ). This is noticeable in Example 5.1.7 where K+(T ) =
K1
+(C1C2C3)K1

+(C2C3)K1
+(C3). In general, K+(T ) = K1

+(C1 · · ·Ck)K1
+(C2 · · ·Ck) · · ·K1

+(Ck). Based
on this observation and Proposition 4.4.5, next algorithm summarizes our way to compute K+

1 (T )
using SJDT:

Algorithm 5.3.1. Let T be a straight KN tableau:

1. Let i = 2.

2. If T has exactly one column, return the right column of T . Otherwise, let Ti = T2 be the tableau
formed by the first two columns of T .

3. If the length of the two columns of Ti is the same, put T ′
i := Ti. Else, play the SJDT on Ti until

both column lengths are swapped, obtaining T ′
i .

4. If T has more than i columns, redefine i := i+1, and define Ti to be the two-columned tableau
formed by the rightmost column of T ′

i−1 and the i-th column of T , and go back to 3.. Else, return
the right column of the rightmost column of T ′

i .

This algorithm is illustrated on the bottom path of Example 5.1.7.

Corollary 5.3.2. If T is a rectangular tableau, K+(T ) = rCkrCk · · ·rCk (k times).

Next, we present a way of computing K1
+(T ) that does not require the SJDT. Willis has done this

when T is a SSYT [42]. It is a simplified version of the algorithm presented here.
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5.3.2 Right key - a direct way

Let T =C1C2 be a straight KN two column tableau and spl(T )= ℓC1rC1ℓC2rC2 a straight semistandard
tableau. In particular, rC1ℓC2 is a semistandard tableau. The matching between rC1 and ℓC2 is defined
as follows:

• Let β1 < · · ·< βm′ be the elements of ℓC2. Let i go from m′ to 1, match βi with the biggest, not
yet matched, element of rC1 smaller or equal than βi.

Theorem 5.3.3 (The direct way algorithm for the right key). Let T be a straight KN tableau with
columns C1,C2, . . . ,Ck, and consider its split form spl(T ). For every right column rC2, . . . ,rCk, add
empty cells to the bottom in order to have all columns with the same length as rC1. We will fill all of
these empty cells recursively, proceeding from left to right. The extra numbers that are written in the
column rC2 are found in the following way:

• match rC1 and ℓC2.

• Let α1 < · · ·< αm be the elements of rC1. Let i go from 1 to m. If αi is not matched with any
entry of ℓC2, write in the new empty cells of rC2 the smallest element bigger or equal than αi such
that neither it or its symmetric exist in rC2 or in its new cells. Let C′

2 be the column defined by rC2

together with the filled extra cells, after ordering.

To compute the filling of the extra cells of rC3, we do the same thing, with C′
2 and C3. If we do this

for all pairs of consecutive columns, we eventually obtain a column C′
k, consisting of rCk together

with extra cells, with the same length as rC1. We claim that C′
k = K1

+(T ).

Example 5.3.4. Let T =C1C2C3 =
1 3 1
3 3
3

, with split form spl(T ) =
1 1 2 3 1 1
2 3 3 2
3 2

. We match

rC1 and ℓC2, as indicated by the letters a and b:
1 1a 2a 3 1 1
2 3b 3b 2
3 2

. Hence 2 creates a 1 in rC2,

completing the right column rC2:
1 1 2 3 1a 1
2 3 3 2
3 2 1a

. Now we match C′
2 and ℓC3, which is already

done, and see what new cells 3 and 2 create in rC3, obtaining
1 1 2 3 1 1
2 3 3 2 3
3 2 1 2

. Hence K1
+(T ) =

3
2
1

is obtained from C′
3 after reordering its entries.

The proof of Theorem 5.3.3

It is enough to prove that by the end of this algorithm, the entries in C′
k are the entries on the right

column of the rightmost column of T ′
k from Algorithm 5.3.1. In fact, it is enough to do this for k = 2.

For bigger k note that the entries that are "slid" into Ck come from rCk−1, so, to go to the next step on
the SJDT algorithm we only need to know the previous right column, which is exactly what we claim
to compute this way. The next lemma determines which number is added to rC2 given that we know
α , the entry that is horizontally slid:
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Lemma 5.3.5. Suppose that T = C1C2 is a non-rectangular two-column tableau (if the tableau is
rectangular then we have nothing to do). Play the SJDT on this tableau which ends up moving one
cell from the first column to the second (some entries may change their values). Then,

• Immediately before the horizontal slide of the SJDT, the entry α , on the left of the puncture, is
an unmatched cell of rC1.

• Call C′
1 and C′

2 to both columns after the horizontal slide on T . The new entry in rC′
2, compared

to rC2, is the smallest element bigger or equal than α such that neither it or its symmetric exist in rC2.

Example 5.3.6. Let T =

2 3
3 4
5 5
5
2

. After splitting, and just before the first horizontal slide, we have

T =

1 2 3 3
3 3 4 4
4 5 5 5
5 4 ∗ ∗
2 1

. The new entry in rC2 is 2, as predicted by the lemma:

1 2 2 3
3 3 3 4
4 4 5 5
∗ ∗ 4 2
2 1

.

Proof. Case 1: α is barred. Then C′
2 =C2 ∪{α}. If α does not exist neither in C2 nor in Φ(C2), then

α will exist in both C′
2 and Φ(C′

2). If α does exist in C2, and consequently in Φ(C2) (but α /∈ Φ(C2)),
then α and α will both exist in C′

2. Hence, in the construction of the barred part of Φ(C′
2), compared

to Φ(C2), there will be a new barred number which is the smallest number bigger (or equal, but the
equality can not happen) than α such that neither it nor its symmetric exist in the barred part of Φ(C2)

or the unbarred part of C2 (i.e., rC2). If α existed in Φ(C2), then α existed in Φ(C2). That means that
whatever number got sent to α in the construction of Φ(C2) will be sent to the next available number,
meaning that in rC2 will appear a new number, the smallest number bigger (or equal, but the equality
can not happen because α is already there) than α such that neither it nor its symmetric exist in rC2.

Case 2: α is unbarred. Then C′
2 = Φ−1(Φ(C2)∪{α}). If α does not exist in C2 nor in Φ(C2),

then α will exist in both C′
2 and Φ(C′

2). If α existed in Φ(C2), and consequently in C2, then both
α and α will exist in Φ(C′

2), hence, if we start in the coadmissible column, in the construction of
the unbarred part of C′

2, compared to C2, there will be a new unbarred number which is the smallest
number bigger than α such that neither it nor its symmetric exist in rC2. Finally, if α existed in C2,
then α also existed in C2. That means that whatever number got sent to α in the construction of C2,
from Φ(C2), will be sent to the next available number, meaning that in rC2 will appear a new number,
the smallest number bigger than α such that neither it nor its symmetric exist in rC2.

Proof of Theorem 5.3.3: Each SJDT in T , a two-column skew tableau, moves a cell from the first to
the second column. We will prove that if we apply the direct way algorithm after each SJDT, the
output C′

2 does not change. The cells on ℓC2 without cells to its left do not get to be matched. When
we slide horizontally, the columns rC1 and ℓC2 may change more than the adding/removal of α , the
horizontally slid entry. Since the horizontal slides happen from top to bottom, we only need to see
what changes happen to bigger entries than the one slid. All entries above α are matched to the entry
in the same row in ℓC2.
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If α is barred then, the remaining barred entries of rC1 and ℓC2 remain unchanged, and since all
entries above α , including the unbarred ones, are matched to the entry directly on their right, there is
no noteworthy change and everything runs as expected.

If α is unbarred then, the remaining unbarred entries of rC1 and ℓC2 remain unchanged. In the
barred part of rC1 either nothing happens, or there is an entry bigger than α , x, that gets replaced by
α . Note that x must be such that for every number between x and α , either it or its symmetric existed
in rC1. In the barred part of ℓC2, if α ∈ ℓC2, then α gets replaced by y, smaller than α , such that for
every number between y and α , either it or its symmetric existed in ℓC2, and both y and y do not exist
in ℓC2.

Let’s look to ℓC2. Let α < p1 < p2 < · · ·< pm = y be the numbers between α and y that does not
exist in ℓC2, right before the horizontal slide. Then, their symmetric exist in ℓC2. For all numbers
in rC2 between α and y, there exists, in the same row in rC1, a number between α and y. Let
α < p′1 < p′2 < · · ·< p′m = y be the missing numbers between α and y in rC1, then pi ≤ p′i. Note that
p1 > p2 > · · ·> pm = y exist in ℓC2 after the horizontal slide and that the biggest numbers between α

and y (not including α) that can exist in rC1 are p′1 > p′2 > · · ·> p′m, and since pi ≥ p′i, the matching
holds for this interval after swapping α by y in ℓC2.

Now let’s look to rC1. Before the slide, call x′ to the biggest unmatched number of rC1 smaller
or equal than x and bigger than α . If there is no such x′, then everything in rC1 between α and x is
matched, hence swapping x by α will keep all of them matched, meaning that the algorithm works
in this scenario. Let x′ < q1 < q2 < · · · < qm < α be the numbers between x′ and α that does not
exist in rC1, right before the horizontal slide. Then, their symmetric exist in rC1. For all numbers
in rC1 between x′ and α , there exists, in the same row in ℓC2, a number between x′ and α , because
α is unmatched. Let x′ < q′1 < q′2 < · · ·< q′m < α be the missing numbers between x′ and α in ℓC2,
then qi ≥ q′i. Note that q1 > q2 > · · ·> qm > α exist in rC1 after the horizontal slide and the numbers
between x′ and α that can exist in ℓC2 are q′1 > q′2 > · · ·> q′m, and since qi ≤ q′i, these numbers are
matching a number bigger or equal then qi in rC1, meaning that α is unmatched in rC1 after the slide.
Ignoring signs, the numbers that appear in either rC2 or ℓC2 are the same. So before playing the SJDT,
applying the direct way algorithm we have that the unmatched numbers in rC1 are sent to the not
used numbers of q′1 > q′2 > · · ·> q′m in ℓC2 (this is a bijection), and x′ is sent to the smallest available
number, bigger or equal than x′. Now consider rC1 and ℓC2 after the slide. In rC1 we replace x′ by
α and remove α and in ℓC2 there is α and not α . In the direct algorithm, all unmatched numbers of
q1 > q2 > · · ·> qm > α are sent to the not used numbers of q′1 > q′2 > · · ·> q′m in ℓC2, but now we
have more numbers in the first set than in the second, meaning that α will bump the image of the
smallest unmatched number, which will bump the image of the second smallest unmatched number,
and so on, meaning that the image of biggest unmatched will be out of this set. This image will be the
smallest number available, which was the image of x′ before the horizontal slide.

Hence, the outcome of the direct way does not change due to the changes to the columns when we
play the SJDT, meaning that the outcome is what we intend.

5.3.3 The left key of a tableau - Jeu de taquin approach

Now we present a way to compute the leftmost column of the left key of a tableau, via SJDT, and in
Section 5.3.4 we present a way of doing that does not require the use of SJDT.
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Analogously to the symplectic right key map, let T =C1C2 · · ·Ck be a KN tableau and note that,
to compute which entries appear in the i-th column of K−(T ), we only need to look to the first i
columns of T . We need the first column of a skew tableau obtained by applying the SJDT to the
columns C1 · · ·Ci of T , so that the first column has the length of Ci. Let K1

−(T ) be the map that given
a tableau returns the last column of K−(T ). Then, K−(T ) = K1

−(C1) · · ·K1
−(C1 · · ·Ck−1)K1

−(C1 · · ·Ck).
In Example 5.1.9 we have K−(T ) = K1

−(C1)K1
−(C1C2)K1

−(C1C2C3).

Next we present how we compute K1
−(T ) using SJDT:

Algorithm 5.3.7. Let k be the number of columns of T and i = k−1.

1. If T has exactly one column, return the left column of T . Otherwise, let Ti := Tk−1 be the tableau
formed by the last two columns of T .

2. If the length of the two columns of Ti is the same, put T ′
i := Ti. Else, play the SJDT on Ti until

both column lengths are swapped, obtaining T ′
i .

3. If i ̸= 1, redefine i := i−1, and define Ti as the two-columned tableau formed with the leftmost
column of T ′

i+1 and the i-th column of T , and go back to (1). Else, return the left column of the
leftmost column of T ′

i .

This algorithm is exemplified on the top path of Example 5.1.7.

Corollary 5.3.8. If T is a rectangular tableau, K−(T ) = ℓC1ℓC1 · · ·ℓC1 (k times).

Next, we present a way of computing K1
−(T ) that does not require the use of SJDT. In [42], this is

done when T is a SSYT. It is simplified version of the algorithm presented here.

5.3.4 Left key - a direct way

Theorem 5.3.9. Let T be a KN tableau with columns C1,C2, . . . ,Ck, and consider its split form spl(T ).

We will now delete entries from the left columns, proceeding from right to left, in such a way that
in the end every left column has as many entries as Ck. The entries deleted from ℓCk−1 are found in
the following way:

We start by creating a matching between rCk−1 and ℓCk. Let β1 < · · · < βm be the unmatched
elements of rCk−1. For i between 1 and m, let αi be the entry on ℓCk−1 next to βi. Let i go from 1 to m.
Starting at αi and going up, delete the first entry of ℓCk−1 bigger than the entry directly Northeast of
it. If there is no entry in this conditions, delete the top entry of ℓCk−1. Also delete bi from rCk−1. By
the end of this procedure we obtain ℓC′

k−1 with the same number of cells as Ck.

To continue the algorithm, we do the same thing with Ck−2 and ℓC′
k−1. If we do this for all pairs of

consecutive columns, we eventually obtain a column ℓC′
1, consisting of ℓC1 with some entries deleted,

with the same length as Ck. We claim that ℓC′
1 = K1

−(T ).
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Example 5.3.10. Consider T =
2 3 3
3 3
3

, whose split form is spl(T ) =
1 2 2 3 3 3
2 3 3 2
3 1

. We

match rC2 and ℓC1, obtaining:
1 2 2 3a 3a 3
2 3 3 2
3 1

. Hence 2 is unmatched in rC2. So it will get deleted,

alongside the 3 in ℓC2. Thus we have
1 2a 2a 3 3 3
2 3 3 2
3 1

(the deleted entries are greyed out).

Now we have to create the match between ℓC′
2 and rC1, which is already done. The entries 3 and

1 are unmatched in rC1, hence they will be removed alongside the entries 1 and 3 in ℓC1, obtaining
1 2 2 3 3 3
2 3 3 2
3 1

. Hence K1
−(T ) = 2 .

Proof of Theorem 5.3.9

It is enough to prove that by the end of this algorithm, the entries in ℓC′
j are the entries on the left

column of the leftmost column of T ′
j from Algorithm 5.3.7. Just like in the right key case, it is enough

to do this for j = k−1. For smaller j note that we only need to know what remains in the left column
ℓC′

j, which is exactly what we claim to compute this way.
So only need to prove this when T is a two-column tableaux.

Lemma 5.3.11. Suppose that T is a non-rectangular two-column tableau (if the tableau is rectangular
then we have nothing to do). Play the SJDT on this tableau, which ends up moving one cell from the
first column to the second (some entries may change its value). Immediately before the horizontal
slide of the SJDT, the entry β , on the left of the puncture, is an unmatched cell of rC1. Call C′

1 and C′
2

to both columns after the slide.
Then ℓC′

1 will lose an entry, compared to ℓC1, which is the biggest entry of ℓC1, in a row not under
the row that contains β , bigger than the entry directly Northeast of it.

Example 5.3.12. Consider the tableau T =

2 3
4 4
5 2
5
2

. After split, and just before the horizontal slide,

we have T =

1 2 3 3
3 4 4 4
4 5 ∗ ∗
5 3 2 2
2 1

. So 5 slides from rC1 to ℓC2, obtaining the tableau

2 3
4 4
∗ 5
5 2
2

, whose split is

1 2 3 3
4 4 4 4
∗ ∗ 5 5
5 5 2 2
2 1

. The entry removed from ℓC1 is 3, as predicted by the lemma.

Proof. If β is unbarred then look at all numbers β ≤ i ≤ n, and count, in C1, count how many of
them exist together with its symmetric and it is not matched to a number with bigger than β in the
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coadmissible column. Let k be that count. Now let i go from β −1 to 1. If i and i exist in C1 then
k := k+1, and if neither exist then k := k−1. Since C1 is admissible, eventually k = 0 and this is the
i removed from ℓC1. So, the columns ℓC1 and rC1 have same number of entries with absolute value
bigger or equal than i, hence the entry i of ℓC1 is bigger than the entry directly Northeast of it.

If β is barred then look at all numbers β ≤ i ≤ 1, and count, in C1, count how many of them
exist together with its symmetric and it is not matched to a number bigger than β in the coadmissible
column. Let k be that count. Now let i go from β −1 to n. If i and i exist in C1 then k := k+1, and if
neither exist then k := k−1. Since Φ(C1) is coadmissible, eventually k = 0 and this is the i removed
from ℓC1. The columns ℓC1 and rC1 have same number of entries with absolute value smaller or equal
than i, hence the entry i of ℓC1 is bigger than the entry directly Northeast of it (remember that i is
negative).

Proof of Theorem 5.3.9: Hence we have determined which entry is removed from ℓC1 given that we
know β , the entry of the cell that is horizontally slid. The SJDT on T may change the entries or the
matching in rC1. We need to prove that, even with these eventual changes, the entries removed from
ℓC1 are the ones that we calculated in the beginning, before doing any SJDT slide.

If β is barred, since we run the unmatched entries of rC1 from smallest to biggest, when removing
β from rC1 the unbarred part of rC1 remains the same, hence, the remaining entries and matched
entries do not change, hence the outcome will be the one predicted.

If β is unbarred then the remaining unbarred entries of rC1 remain unchanged. In the barred part
of rC1 either nothing happens, or there is an entry bigger than β , x, that gets replaced by β . Note that
x must be such that for every number between x and β , either it or its symmetric existed in rC1. This
can only happen if k, from the proof of Lemma 5.3.11 starts being bigger than 0.

Since for all numbers between x and β either it or its symmetric exist in rC1, all unmatched entries
here will remove from ℓC1 an entry smaller or equal than x. In fact, the way of constructing x and i,
from the proof of Lemma 5.3.11, is effectively the same. Since, after the slide of β , we may have
different matches in the numbers between x and β , and the number of unmatched entries remains the
same after the slide. Since all unmatched entries in here will remove something smaller or equal than
β from ℓC1, the outcome of the algorithm is the same as if we apply it to ℓC1, rC1 before or after the
horizontal slide. Hence we do not need to do any SJDT in order to know the entries of ℓC1 after the
SJDT.

5.3.5 Example

In this section we present a KN tableau and compute its right and left keys via SJDT and using the
direct way.

Let T be the KN tableau

2 3 3 4
4 4 4 4
5 3 2
4
3

with split form

1 2 2 3 3 3 3 4
3 4 4 4 4 4 4 3
5 5 3 2 2 2
4 3
3 1

.

In order to find the right (resp. left) key of T , we play the SJDT to swap heights of consecutive
columns, and find skew tableaux, Knuth related to T , such that for every column height there is a
skew tableau whose last column (resp. first) has that height.
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2 3 3 4
4 4 4 4
5 3 2
4
3 3

5
2

3
4
5
5
3

2
4
3

4
4

3
5
2

3
4
5
5
3

4
3

2
4
4

3
5
2

4
2

2
4
5
5
3

2
4
4

5
2

2
4
3 2

4
5
5
3

2
4
4 4

5
532
4442
2235

Each tableau is obtained from the previous after playing SJDT in two consecutive columns,
swapping their heights.

If we compute the right (resp. left) columns of all last (resp. first) columns of these tableaux, we
find the columns of the right (resp. left) key associated to T :

K+(T ) =

4 4 4 4
5 3 3 3
3 2 2
2
1

and K−(T ) =

1 2 2 2
2 5 5 5
5 3 3
4
3

.

Note that we have 9 horizontal slides in our sequence of tableaux, and for each horizontal slide
we have to apply the map Φ, or its inverse, two times. This means that we are effectively computing
the split form of 9 skew tableaux, even though we only need 3 tableaux (the first, the third and the last
one) to have all column heights in each end of the tableau.

Now we compute both keys using the direct way. In here we only need to compute one split form,
and make some calculations on it, and on subtableaux of the split form.

To compute the right key, via direct way, we need to compute the columns K1
+


2 3 3 4
4 4 4 4
5 3 2
4
3

,

K1
+

 3 3 4
4 4 4
3 2

= K1
+

 3 4
4 4
2

 and K1
+

(
4
4

)
.

We start by splitting and matching, and every 7→ marks when new entries, written in blue, are
added to a right column, and we do these until there are no columns left.

2 3 3 4
4 4 4 4
5 3 2
4
3

split→

1 2a 2a 3 3 3 3 4
2 4 4b 4 4 4 4 3
5 5b 3c 2 2 2
4 3c

3 1

7→

1 2 2 3a 3a 3 3 4
2 4 4 5 4b 4 4 3
5 5 3 4b 2c 2
4 3 2c

3 1 1

7→

1 2 2 3 3 3a 3a 4
2 4 4 5 4 5 4b 3
5 5 3 4 2 4b

4 3 2 2
3 1 1 1

7→

1 2 2 3 3 3 3 4
2 4 4 5 4 5 4 5
5 5 3 4 2 4 3
4 3 2 2 2
3 1 1 1 1

;

3 4
4 4
2

split→
3 3a 3a 4
4 4b 4b 3
2 2

7→
3 3 3 4
4 4 4 3
2 2 2

;

4
4

split→ 3 4
4 3

.
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To compute the left key, via direct way, we need to compute the columns K1
−


2 3 3 4
4 4 4 4
5 3 2
4
3

,

K1
−


2 3
4 4
5 3
4
3

= K1
−


2 3 3
4 4 4
5 3 2
4
3

 and K1
−


2
4
5
4
3

. We start by splitting and matching, and every

7→ marks when entries are removed from a left column, and we do these until there are no columns
left. Recall that this algorithm goes from right to left.

2 3 3 4
4 4 4 4
5 3 2
4
3

split→

1 2 2 3 3 3a 3a 4
2 4 4 4 4 4b 4b 3
5 5 3 2 2 2
4 3
3 1

7→

1 2 2 3a 3a 3 3 4
2 4 4 4b 4b 4 4 3
5 5 3 2
4 3
3 1

7→

1 2a 2a 3 3 3 3 4
2 4 4b 4 4 4 4 3
5 5b

4 3
3 1

7→

2 2 3 3 3 3 4
2 4 4 4 4 4 3
5 5 2 2

In the final step, we are removing 3 from ℓC1, because the entry directly Northeast of it is 5,
because the 3 of rC1 has already been slid out.

2 3
4 4
5 3
4
3

split→

1 2a 2a 3
2 4 4b 4
5 5b 3c 2
4 3c

3 1

7→

2 2 3
2 4 4
5 5 3 2

3
3

2
4
5
4
3

split→

1 2
2 4
5 5
4 3
3 1



Chapter 6

Realization of the Lusztig involution in
types An−1 and Cn

In this chapter we present an involution on a crystal, known as Lusztig involution [30]. For the type
An−1 crystal of SSYT’s this involution is usually known as Schützenberger involution or evacuation,
and can be realized via jeu da taquin or, equivalently, via column insertion. Here we adapt the type
An−1 Schützenberger evacuation to type Cn KN tableaux, via SJDT or Baker-Lecouvey insertion. We
relate the right and left key maps of a tableau via Lusztig involution.

6.1 Lusztig involution and evacuation algorithms

In type An−1, the Lusztig involution [30] on the crystal with set SSYT(λ ,n) coincides with the
Schützenberger involution or evacuation [13, 38, 40], Ev, and takes T ∈ SSYT(λ ,n) to T Ev ∈
SSYT(λ ,n), whose weight is ω0(wtT ), where ω0 is the longest permutation of Sn, in the Bruhat
order. Note that ω0(wtT ) is the vector wtT in reverse order, i.e., ω0(v1, . . . ,vn) = (vn, . . . ,v1). In
type Cn we will work with KN tableaux instead of SSYT’s. Consider T ∈KN(λ ,n). In this case,
T Ev ∈KN(λ ,n) and wtT =−wtT Ev = ωC

0 (wtT Ev), where ωC
0 is the longest permutation of Bn.

Definition 6.1.1. The Lusztig involution L : Bλ →Bλ is the only set involution such that for all i ∈ I
(I = [n−1] in type An−1 and I = [n] in type Cn):

1. wt(L(x)) = ω0(wt(x)), where ω0 is the longest element of the Weyl group;

2. ei(Lx) = L( fi′(x)) and fi(Lx) = L(ei′(x)) where i′ is such that ω0(αi) =−αi′ and αi is the i-th
simple root;

3. εi(Lx) = ϕi′(x) and ϕi(Lx) = εi′(x).

Remark 6.1.2. One can prove that the map defined by this three conditions is, in fact, unique [9,
Chapter 5].

For type An−1 we have that ω0 is the reverse permutation and i′ = n− i, and for type Cn we have
ω0 =−Id and i′ = i, where Id is the identity map. In type Cn the involution can be seen as flipping the
crystal upside down.
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The type Cn Lusztig involution can be seen as a realization of the dual crystal:

Definition 6.1.3. [9] Let C be a connected component in the type Cn crystal Gn. The dual crystal C∨

is the crystal obtained from C after reversing the direction of all arrows. Also, the if x ∈ C, then for its
correspondent in C∨, x∨, we have wt(x) =−wt(x∨).

In type Cn, since i′ = i and ω0 =−Id, it follows from the definition of Lusztig involution that C
and C∨, as crystals in Gn, have the same highest weight. Therefore, they are isomorphic. Hence the
crystal Bλ with set KN(λ ,n) is self-dual. We shall see other realizations of the dual.

The complement of a tableau or a word in types An−1 or Cn consists in applying ω0 or ωC
0 ,

respectively, to all of its entries. In type An−1, it sends i to n+1− i for all i ∈ [n], i.e., ω0(i) = n+1− i
and in type Cn we have ω0(i) =−i. Given a SSYT, there are several algorithms, due to Schützenberger,
to obtain a SSYT with the same shape whose weight is its reverse. We recall some versions of them
for which one is able to find analogues for KN tableaux.

Algorithm 6.1.4.

1. Define w = cr(T ).

2. Define w⋆ the word obtained by complementing its letters and writing it backwards.

3. T Ev := P(w⋆).

Example 6.1.5. In type A, the tableau T =
1 1 2 3
2 3 3
4

has reading w = 32313124. Then w⋆ =

13424232, and the column insertion of this word is T Ev =
1 2 2 3
2 4 4
3

.

In type C, consider the KN tableau T =
1 3 1
3 3
3

. Then, w = cr(T ) = 133133 and w⋆ = 3313331.

So now we insert w⋆, obtaining the following sequence of tableaux:

3
3
3

3
3
1

2 2
3
1

2 2
3 1
3

1 2 2
3 1
3

= P(w⋆).

Algorithm 6.1.6.

1. Define T 0 := complement(π-rotate(T )).

2. T Ev := rectification of T 0.

Example 6.1.7. In type A, consider the tableau T =
1 1 2 3
2 3 3
4

. After π-rotation and complement we

have the skew tableau T 0 =
1
322
4432

which, after rectification, gives the tableau T Ev =
1 2 2 3
2 4 4
3

.
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In type C, consider the KN tableau T =
1 3 1
3 3
3

. Then, T0 =
3
33
131

. So now we have to

rectify this skew tableau obtaining T Ev =
1 2 2
3 1
3

.

Given a KN tableau (resp. SSYT) T , the algorithm characterize T Ev as the unique KN tableau
(resp. SSYT) Knuth equivalent to wt(T )⋆ and coplactic equivalent to T .

In both Cartan types we have that algorithms 6.1.4 and 6.1.6 produce the same tableau since the
column reading of T 0 is w⋆, P(w⋆) = rect(T 0) = rect(w⋆), assuming that, in type Cn, T 0 is admissible.
This can be concluded using the following lemma.

Lemma 6.1.8. For type Cn, the split of a column C, (ℓC,rC) is the rotation and complement of the
split of the column C0 = complement(π-rotate(C)), (ℓC0,rC0).

Proof. Let’s say that (ℓC,rC) = A′ A
B B′ where C = A

B
, ℓC = A′

B
and rC = A

B′ , where A and A′

are the unbarred letters of the columns C and ℓC, respectively, and B and rB are the barred letters of C
and rC, respectively. Note that ℓC and C share the barred part and C and rC share the unbarred part.

We have that C0 = B0

A0
and its split (ℓC0,rC0) = B0′ B0

A0 A0′
. Ignoring bars and counting multi-

plicities, the letters that appear in C and C0 are the same. Hence B0′ has the same letters as B′, but
they appear unbarred, hence B0′ = B′0. The same happens with A0′ and A′0. Now it is easy to see
that (ℓC0,rC0) is obtained from (ℓC,rC) rotating and complementing. In particular (rC)0 = ℓC0 and
(ℓC)0 = rC0.

We now set the Cartan type to be Cn. Given a word w ∈ [±n]∗, we define the w⋆ like in the
Algorithm 6.1.4 and show that the map ⋆ preserves Knuth equivalence.

Theorem 6.1.9. Let v,w ∈ [±n]∗. Then v ∼ w if and only if v⋆ ∼ w⋆.

Proof. It is enough to consider v and w only one Knuth relation apart, because all other cases are
obtained by composing multiple Knuth relations. It is enough to consider each transformation applied
in one direction, since the other direction is the same case, after swapping the roles of v and w.

K1 Consider v = vpγβαvs, with γ < α ≤ β and (β ,γ) ̸= (x,x), where vp is a prefix of v, vs is a

suffix of v, and γβα are three consecutive letters of v. Then, v K1∼ w = vpβγαvs. Note that

v⋆ = v⋆s αβγv⋆p and w⋆ = v⋆s αγβv⋆p, with (γ,β ) ̸= (x,x) and β ≤ α < γ . Hence v⋆ K2∼ w⋆, so they
are Knuth related.

K2 Consider v = vpαβγvs, with γ ≤ α < β and (β ,γ) ̸= (x,x), where vp is a prefix of v, vs is a

suffix of v, and αβγ are three consecutive letters of v. Then, v K2∼ w = vpαγβvs. Note that

v⋆ = v⋆s γβαv⋆p and w⋆ = v⋆s βγαv⋆p, with (γ,β ) ̸= (x,x) and β < α ≤ γ . Hence v⋆ K1∼ w⋆, so they
are Knuth related.
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K3 Consider v = vp(y+ 1)y+1βvs, with y < β < y, where vp is a prefix of v, vs is a suffix of

v, and (y+ 1)y+1β are three consecutive letters of v. Then, v K3∼ w = vpyyβvs. Note that

v⋆ = v⋆s β (y+1)y+1v⋆p and w⋆ = v⋆s βyyv⋆p, with y < β < y. Hence v⋆ K4∼ w⋆, so they are Knuth
related.

K4 Consider v = vpαxxvs, with x < α < x, where vp is a prefix of v, vs is a suffix of v, and αxx are

three consecutive letters of v. Then, v K4∼ w = vpα(x+1)x+1vs. Note that v⋆ = v⋆s xxαv⋆p and

w⋆ = v⋆s (x+1)x+1αv⋆p, with x < α < x. Hence v⋆ K3∼ w⋆, so they are Knuth related.

K5 Consider w and {z,z} ∈ w such that w K5∼ w\{z,z}. It is clear to see that a word v breaks the
1CC at z if and only if v⋆ breaks the 1CC at z. So, if w is non admissible and all its factors are
admissible then the same will happen to w⋆, because all of its factors are obtained after applying
⋆ to a factor of w. So we have that w⋆ K5∼ w⋆ \{z,z}.

Hence the word operator ⋆ preserves Knuth equivalence.

Consider a KN tableau T with column reading w. The column reading of the tableau obtained
after applying Algorithm 6.1.4 to T is Knuth-related to w⋆, because both give the same tableau if
inserted. Since ⋆ is an involution ((w⋆)⋆ = w), if we apply the algorithm again we will get a tableau
whose column reading, by the last theorem, is Knuth equivalent to (w⋆)⋆ = w, hence we will have
T again. So Algorithm 6.1.4 is an involution. Next we conclude that algorithms 6.1.4 and 6.1.6 is a
realization of the Lusztig involution for type Cn.

Theorem 6.1.10. Let w ∈ [±n]∗. The connected component of the crystal Gn that contains the word w
is isomorphic to the one that contains the word w⋆. Therefore P(w) and P(w⋆) have the same shape
and weights of opposite sign. Moreover, the two crystals are dual of each other and the ⋆ map is a
realization of the dual crystal.

Proof. Remember the crystal operators ei and fi from the definition of crystal. Note that ( fi(w))⋆ =
ei(w⋆), because in the signature rule applied to w and w⋆, the distance of the leftmost unbracketed +

of w to the beginning of the word is equal to the distance of the rightmost unbracketed − of w⋆ to
the end of this word. Hence, the letter that changes when applying fi to w is the complement of the
letter that changes when applying ei to w⋆, and the letter obtained on their position after applying the
crystal operators are also complement of each other. Hence the crystal that contains the word w⋆ is
the dual to the one that contains w. But the crystal that contains w is self-dual, hence the crystals that
contains any of the words are isomorphic. From [25, Theorem 3.2.8] P(w) and P(w⋆) have the same
shape.

6.2 Right and left keys and Lusztig involution

The next result shows that the right and left key maps defined for KN tableaux anticommutes with the
Lusztig involution. The evacuation of the right key of a tableau is the left key of the evacuation of the
same tableau.
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Proposition 6.2.1. Let T be a KN tableau and Ev the type Cn Lusztig involution. Then

K+(T )Ev = K−(T Ev).

Proof. Since the tableaux K+(T ) and K−(T Ev) are key tableaux, they are completely determined by
their weights. Then we just need to prove that their weights are symmetric.

Fix a column C of K+(T ). There is a frank word w, Knuth related to cr(T ), such that C is the
right column of the first column of w. Let’s say the wk is the first column of w. From Proposition
6.1.9, w⋆ is Knuth related to cr(T )⋆, hence P(w⋆) = T Ev. Also note that the w⋆ has the same number
of columns of each length as w, hence it is a frank word, and its last column is w⋆

k . Note that Lemma
6.1.8 implies that if v is an admissible column, then l(v⋆) = (rv)⋆. So we have that l(w⋆

k) = (rwk)
⋆ is

a column of K−(T Ev). Therefore, for each column C of K+(T ) there is a column of K−(T Ev) whose
weight is ω0(wt(C)), hence K+(T ) and K−(T Ev) have symmetric weights.

Remark 6.2.2. Using Proposition 6.2.1 and the definition of the Lusztig involution, it is now clear
that the tableau weights in Bv and in Bop

−v are symmetric.





Chapter 7

Final remarks and open questions

In this chapter we discuss some unfinished work and open problems related to the topics presented in
this thesis.

7.1 Type Cn Fu-Lascoux non-symmetric Cauchy kernel

Let’s start by recalling the type Cn Fu-Lascoux non-symmetric Cauchy kernel:

∏
1≤i< j≤n

(1− xix j)

n
∏

i, j=1
(1− xiy j)

n
∏

i, j=1
(1− xi/y j)

= ∑
v∈Nn

κ̂v(x1, . . . ,xn)κ−v(y1, . . . ,yn)

⇔ ∏
1≤i, j≤n

(1− xiy j)
−1

∏
1≤i≤ j≤n

(1− xiy−1
j )−1 = ∏

1≤i< j≤n
(1− xix j)

−1
∑

v∈Nn

κ̂v(x)κ−v(y).

In this section we present a combinatorial interpretation for each side of the last identity, and
propose an algorithm that relates both combinatorial interpretations.

7.1.1 Warm up for the combinatorial interpretations

Let λv be the only partition on the Sn-orbit of v, for v ∈ Nn. The next lemma is a reformulation of the
tableau criterion for the Bruhat order on Sn.

Lemma 7.1.1. Let u = (u1, . . . ,un),v = (v1, . . . ,vn) ∈Snλ .

u ≤ v if and only if ∀i ∈ [n],λ(u1,...,ui) ⊇ λ(v1,...,vi).

Proof. From Theorem 3.4.4, restricted to the symmetric group, we have that u ≤ v if and only if
K(u)≤ K(v). For all i ∈ [n], if we know the first i entries of u then we know all entries of K(u) less or
equal than i. Also, the shape occupied by this entries is exactly λ(u1,...,ui). The shape occupied by the
entries less or equal than i in K(u) contains the shape occupied by the entries less or equal than i in
K(v). Hence K(u)≤ K(v) if and only if λ(u1,...,ui) ⊇ λ(v1,...,vi), ∀i ∈ [n].
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Due to the natural embedding of Bn into S2n, this can be extended to Bn. Given a v ∈ Zn, its

correspondent in N2n is the vector v#, with 2n entries indexed by [±n], where v#
i =

0 if i× v|i| ≤ 0

|v|i|| otherwise
.

For instance, if u = (4,1,3,2,3). Then u# = (4,1,0,0,3,0,2,3,0,0).
Embedding Bn into S2n and applying the previous lemma, we have the following:

Corollary 7.1.2. Let u = (u1, . . . ,un),v = (v1, . . . ,vn) ∈Bnλ .

u ≤ v if and only if ∀i ∈ [±n],λ(u#
1,...,u

#
i )
⊇ λ(v#

1,...,v
#
i )
.

The next proposition is the conjugate version of [13, Proposition 7, Appendix A].

Proposition 7.1.3. Let T be a SSYT tableau of shape λ . Let µ/ν be a skew diagram with same
number of rows of each length as T . Then there is a unique KN skew tableau S with shape µ/ν that
rectifies to T .

Proof. The number of skew tableaux of shape µ/ν that rectify to T of shape λ is given by the
Littlewood-Richardson coefficient cµ

λ ν
.

Remember the identity cµ

λ ν
= cµ ′

λ ′ ν ′ [1, 2, 15], where µ ′, ν ′ and λ ′ are the conjugate diagrams of
µ , ν and λ , respectively. Given λ , µ and ν like in the statement we have that λ ′ and µ ′/ν ′ have the
same number of columns of each length, hence from [13, Proposition 7, Appendix A], we have that
cµ ′

λ ′ ν ′ = 1. So cµ

λ ν
= 1.

We can generalize the last proposition to KN tableaux, obtaining the following:

Proposition 7.1.4. Let T be a KN tableau of shape λ . Let µ/ν be a skew diagram with same number
of rows of each length as T . Then there is a unique KN skew tableau S with shape µ/ν that rectifies
to T .

Proof. If T is the Yamanouchi tableau K(λ ) and S ∈KN(µ/ν ,n) rectifies to K(λ ), then, since S and
K(λ ) have the same number of cells, all entries of S are unbarred, hence S is a semistandard skew
tableau. So, it follows from 7.1.3 that S exists and is unique. If T is not the Yamanouchi tableau,
note that T is crystal connected to K(λ ) and from [25, Theorem 6.3.8] we have that the SJDT slides
commute with the action of the crystal operators. Consider Yλ the only tableau on the skew shape
µ/ν that rectifies to K(λ ), which exists due to 7.1.3. Since S rectifies to T , which is crystal connected
to K(λ ), and Yλ rectifies to K(λ ), then S is crystal connected to Yλ and the path has same sequence of
colours as the one from T to K(λ ). Hence S exists and is uniquely defined.

7.1.2 Combinatorial interpretation of the left hand side of the identity

Let’s look at the left hand side of type Cn Fu-Lascoux non-symmetric Cauchy kernel:

∏
1≤i, j≤n

(1− xiy j)
−1

∏
1≤i≤ j≤n

(1− xiy−1
j )−1.

In the same spirit of the combinatorial proof of the Cauchy identity via RSK correspondence [13,
Section 4], we can see that this is the generating function of all biwords in which the top column
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only have positive letters and if i is the top letter of a column then the bottom letter is less or equal
than i. If a word satisfies this, we say it satisfies the LHS (left hand side) condition. In same spirit of
the biwords from Er

n, from Subsection 4.4.1, we will consider our biletters ordered lexicographically,
obtaining:(

1 . . . 1 2 . . . 2 . . . n
x1 ≤ xi xi+1 ≤ xi′ . . . xi′′

)
Note that the top row separates the bottom row into weakly increasing sequence of words.

7.1.3 Combinatorial interpretation of the right hand side of the identity

Now, recall the right hand side of type Cn Fu-Lascoux non-symmetric Cauchy kernel:

∏
1≤i< j≤n

(1− xix j)
−1

∑
v∈Nn

κ̂v(x)κ−v(y).

Our combinatorial interpretation of this side will be a tuple consisting of three entries: a biword, a
reverse SSYT and a KN tableau. Our biword will have billeters ordered lexicographically, and all
entries in [n], and with the top entry bigger than the respective bottom entry. Before translating the
key polynomial and the Demazure atom as generating functions of some sets of tableaux, we will start
by doing an algebraic manipulation, and with that in mind we will need the following lemma:

Lemma 7.1.5. [6, Proposition 2.3.4] Let u,v ∈ Bnλ . If u ≤ v then −v ≤−u.

Hence:

∑
v∈Nn

κ̂v(x)κ−v(y) = ∑
v∈Nn

κ̂v(x) ∑
u≤−v

κ̂u(y)

= ∑
v∈Nn

∑
u≤−v

κ̂v(x)κ̂u(y)

= ∑
u∈Zn

∑
v∈Nn

u≤−v

κ̂v(x)κ̂u(y)

= ∑
u∈Zn

∑
v∈Nn

v≤−u

κ̂v(x)κ̂u(y)

Using the tableau criterion for the Bruhat order on Lemma 7.1.1, we can find a maximal u′ such
that u′ ∈ Nn ⊂ Zn and u′ ≤−u in the following way:

We will determine the entries of u′ recursively. The first entry of u′ is −u1 if −u1 is positive
and λn otherwise. For i going from 2 to n, u′i is the minimal not yet used entry of λ such that
λ(−u#

1,...,−u#
i )
⊇ λ(u′1,...,u

′
i)

. Hence we find a vector u′ such that

∑
v∈Nn

v≤−u

κ̂v(x) = κu′(x).

Example 7.1.6. Consider −u = (1,−4,4,0,−3). Then u′ = (1,0,4,3,4).
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7.1.4 Reverse SSYT’s

Let λ be a partition and consider the type An−1 crystal SSYT(λ ,n). For every SSYT in SSYT(λ ,n),
π-rotate it, obtaining a reverse skew SSYT. Now rectify each tableau, using the jeu de taquin for
reverse SSYT, obtaining a straight reverse SSYT’s. Now we have a crystal of reverse SSYT’s. We call
this crystal RSSYT(λ ,n). Their reading word also follows the signature rule if applied backwards
(swapping left and right).

Example 7.1.7. The type A2 crystal of reverse SSYT’s B(2,1,0) is represented by the graph, where red
represents f1 and blue represents f2.

2 1
12 2

1
3 1
1

3 2
1

3 1
2

3 2
2

3 3
2

3 3
1

7.1.5 Another cocrystal of KN tableaux

Inspired by Lascoux’ double crystal graph, we create a cocrystal, similar to the one in Section 4.4.
Although, the cocrystal here is created based on RSK correspondence, instead of the dual RSK,
meaning that the crystal operators on the cocrystal are jeu de taquin moves between consecutive rows.

Fix a partition λ and a KN tableau T ∈KN(λ ,n). Starting from the bottom, label n rows with the
numbers 1 to n. In these rows we will place some cells (possibly 0) that form a skew tableau.

Now we create a map from RSSYT(λ ,n) to cocrystal consisting of skew KN tableaux connected
to T via SJDT. We will also force all skew tableau to have columns of length 1, by moving all rows
horizontally via SJDT. So all of skew tableau in the cocrystal will only have columns of length 1 and
are SJDT connected to T . This forces the reverse of the row reading word (the word obtain after
concatenating each row, from bottom to top) of our skew tableaux to be Knuth equivalent to T . This
happens because the reverse of the row reading word of the skew tableaux will be its column reading
word, and since the skew tableau rectifies to T , the column reading word of the skew tableau is Knuth
related to the column reading word of T .

The highest weight of the cocrystal is a KN skew tableau Knuth equivalent to T , with exactly one
cell per column, and with λi cells in the i-th row. This tableau is unique thanks to Proposition 7.1.4. It
is obtained from T by doing some horizontal SJDT slides.

Given a tableau Q in RSSYT(λ ,n), if we can apply fi to it (i.e. fi(Q) ̸= 0) then the correspondent
of fi(Q) in the cocrystal is obtained from the correspondent of Q by taking a cell from the i-th row to
the i+1-th row via SJDT. An arrow of colour i (just like in the the crystal) connects both skew tableaux.
Thus, we create a graph isomorphic (as a coloured graph) to SSYT(λ ,n), in which each vertex is
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Knuth equivalent to T and the number of cells in the row i is the weight of i in the corresponding
vertex on the crystal graph. This is done by Lascoux in [22] when T is a SSYT. The extension of the
cocrystal to type Cn objects (even though it is still a type A crystal) follows the same idea presented in
Section 4.4.

Hence, given a KN tableau and a RSSYT with same shape, we have a unique skew tableau without
two cells in the same column. Note that in Section 4.4 we had something similar to this, where given a
skew SSYT T we could get a biword, and RSK∗ sent that word to a pair consisting of two conjugated
tableaux, one identifying the Knuth class of T and the other identifying its skew shape.

Example 7.1.8. Let T =
2 2
2

. Here we have, side by side, the crystal RSSYT(λ ,n) and the

cocrystal associated to it with respect to T , where the crystal operators are SJDT moves on consecutive
rows. To the left of each tableau in the cocrystal we have a numbering of the rows, in order to be
easier to keep track of its row lengths. They are isomorphic type A2 crystal.

2 1
12 2

1
3 1
1

3 2
1

3 1
2

3 2
2

3 3
2

3 3
1

1
2
3

1 1
2

1
2
3

2
2 2

1
2
3

2
2

2

1
2
3

2

2 2

1
2
3

2
2 2

1
2
3

1 1

2

1
2
3

1
1

2

1
2
3

1 1
2

7.1.6 The algorithm

In this subsection we present an algorithm that given L, a biword with positive entries, where the top
letter is strictly bigger then the bottom letter, a KN tableau T with right key K(u) and a reverse SSYT
Q in the Demazure crystal Bu′ , returns a biword that satisfies the LHS condition. The creation of the
biword is somewhat close to Sundaram’s combinatorial bijection for the type Cn symmetric Cauchy
kernel in [41].

The algorithm relies heavily on the inverse of the Baker-Lecouvey insertion [5, 25]. The inverse
algorithm accepts two possible inputs, each one having its output:

• Case 1: The input is a KN tableau T and one of its corners. The algorithm returns a tableau T̃
without that corner and a number y ∈ [±n], such that if we insert y in T̃ we recover T .

• Case 2: The input is a KN tableau T and a cell outside of T such that the shape of T together
with that cell is a Ferrers diagram of shape λ . The inverse Baker-Lecouvey insertion returns a
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tableau T̃ of shape λ and a number y ∈ [±n], such that if we insert y in T̃ we recover T . Note
that, in this case, Baker-Lecouvey insertion of y in T̃ incurs in a loss of cells.

The algorithm starts by looking to the smallest number in L or Q, x. In each step of the algorithm
there are two different cases, with the second case having two subcases:

• Case 1: If x is in Q, delete the rightmost x in Q, and, via the inverse of the Baker-Lecouvey

insertion, we remove the entry in T in the same position, obtaining a y, and we write
x
y

in the

biword.

• Case 2: if x is in L and not in Q, we row insert in Q the biggest x′ paired with x in L, obtaining
a tableau one cell bigger, and let y be the letter that causes that change on the shape. Note that y
is uniquely determined by the reverse Baker-Lecouvey insertion the case where the insertion
makes the tableau lose cells, hence its reverse makes the tableau gain cells, which is this case.
So

– Case 2a: if −y ≥ x, we add
x
y

in the biword.

– Case 2b: if −y < x we add
x x′

x x
to the biword (the second biletter may be misplaced, and

needs to be corrected later). Q,T returns to what they were in the beginning of this case,

and L loses the biletter
x′

x
.

Example 7.1.9. Let T =
2 2
2

. Then u = wt(K+(T )) = (−1,2,0). Then u′ = (1,0,2). Let Q =

3 1
2

∈Bu′ and let L =

(
2 3
1 1

)
.

We will now apply the algorithm:

Case applied T Q L biword

2 2
2

3 1
2

(
2 3
1 1

)
/0

Case 1 2
1

3
2

(
2 3
1 1

)
1
1

Case 2a, y = 1 2 2
2

3 3
2

(
2
1

)
1 1
1 1

Case 2a, y = 1 1 2 2
2

3 3 2
2

/0
1 1 1
1 1 1

Case 1, four times /0 /0 /0
1 1 1 2 2 3 3
1 1 1 1 2 2 2

And now we shall see a small example in which we have the case 2b.

Example 7.1.10. Let T = /0, the empty tableau. Then u = wt(K+(T )) = (0) = u′ and Q = /0 and let

L =

(
3
2

)
.
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Case applied T Q L biword

/0 /0

(
3
2

)
/0

Case 2b, y = 1 /0 /0 /0
2 3
2 2

Conjecture 7.1.11. The algorithm is a bijection between all tuples consisting of a biword with positive
entries where the top letter is strictly bigger then the bottom letter, a KN tableau in B̂u and a reverse
SSYT in Bu′ , and biwords that satisfies the LHS condition.

If this conjecture is true, then we have a combinatorial proof of the type Cn Fu-Lascoux non-
symmetric Cauchy kernel:

∏
1≤i, j≤n

(1− xiy j)
−1

∏
1≤i≤ j≤n

(1− xiy−1
j )−1 = ∏

1≤i< j≤n
(1− xix j)

−1
∑

v∈Nn

κ̂v(x)κ−v(y).

In fact, it is not even clear that the output of the algorithm always satisfies the LHS condition.
Here we will not prove the conjecture, and we will not even prove that its output satisfies the LHS
condition. However, when L is empty, then the output of the algorithm satisfies the LHS condition:

Lemma 7.1.12. Let L be empty and u ∈ Zn. If T ∈ B̂u and Q ∈Bu′ LHS condition holds for the
biword produced by the algorithm.

Proof. Remember the double cocrystal in Subsection 7.1.5.
Given T and Q, consider the skew tableau obtained from T and Q. The biword obtained from T

and Q is found in this skew tableau, because each biletter represents a row and an entry of each cell of
the skew tableau. In particular, if T = K(u) and Q = K(u′), the LHS condition holds because of the
way u′ was constructed.

If T ≤ K(u) by entrywise comparison, the skew tableau associated to T with Q-symbol K(u′) is,
entrywise, smaller or equal than the skew tableau associated to K(u) with Q-symbol K(u′). Hence,
the LHS condition holds.

Now we assume T =K(u). Fix an element Q in Bu′ . Since Q≤K(u′), the skew tableau associated
to Q is obtained from the skew tableau with Q-symbol K(λ ) by pushing less cells to higher rows
than the skew tableau with Q-symbol K(u′), which satisfies. Hence, the LHS condition holds fro the
biword obtained from K(u) and Q ∈Bu′ .

So, LHS condition holds for the biword obtained from T ∈ B̂u and Q ∈Bu′ .

7.2 Further questions

7.2.1 Types B and D Kashiwara-Nakashima tableaux

In [20], Kashiwara-Nakashima also presented two other families of tableaux, compatible with a type
B and type D crystal structure. Lecouvey, in [26], explored the crystal of these families of tableaux
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and endowed them with a plactic monoid compatible with a RSK correspondence and an insertion
algorithm. In fact, for type B he even introduced a jeu de taquin. Hence, a natural question is to ask
whether the algorithms developed in this thesis, to compute right or left keys with or without jeu de
taquin, are applicable to these types.

7.2.2 Type Cn semi skyline augmented filling

In [32], Mason showed that Demazure atoms are specializations of non-symmetric Macdonald
polynomials of type An−1 with q = t = 0. This allowed us to use the shapes of semi-skyline augmented
fillings, in the combinatorial formula of non-symmetric Macdonald polynomials [14], which are in
weight preserving bijection with semi standard Young tableaux, to detect the right keys. It would
be interesting to obtain a similar object for a KN tableau in type Cn. For example, semi-skyline
augmented fillings have been instrumental to obtain a RSK type bijective proof [3] for the Lascoux
non-symmetric Cauchy identity in type An−1 [22]. Such a generalization of skyline fillings for type
C could also lead to a combinatorial formula for some specialization of nonsymmetric Macdonald
polynomials in type Cn.
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