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Abstract

Conic optimization is one of the most important and thriving research areas in the optimization field
and it has a clos connection with polynomial optimization through semidefinite programming. In fact,
it is known that global nonnegativity of a polynomial can be checked using sums of squares and this
amounts to solving a semidefinite program. However, semidefinite programming is expensive for
large-scale problems. Several attempts have been done in literature to inner approximate the positive
semidefinite cone by replacing the psd condition with conditions that are cheaper but still effective
in practice. In this thesis, we give some certificates for nonnegativity of polynomials using bounded
factor width matrices since the cones of matrices of bounded factor width give a hierarchy of inner
approximations to the PSD cone. The concept of factor width for a positive semidefinite matrix has
been introduced recently and very few works have been done in this area, with the most relevant being
an exploration on the cone of factor width two matrices as an inner approximation for SOS problems,
by Ahmadi and Majumdar, the so called SDSOS. We will prove new results for matrices with bounded
factor width and use them to derive new results on the existence of certificates of nonnegativity of
polynomials.

We also propose the use of the cone of nonnegative factor width two matrices as a natural in-
ner approximation for the completely positive cone. Using projections of this cone we derive new
graph-based second-order cone approximation schemes for completely positive programming. This
approach is a compromise between the expressive power of existing SDP and speed of LP based inner
approximations. We also present numerical results on random problems and the stable set problem to
illustrate the effectiveness of our approach.

Keywords: Bounded factor width matrices, sums of squares, conic optimization, polynomial
optimization, copositive optimization





Resumo

A optimização cónica é uma das áreas mais importantes e ativas no campo da otimização e está
intimamente ligada à otimização polinomial através da programação semidefinida. De facto, é sabido
que a não negatividade de polinómios pode ser verificada recorrendo a somas de quadrados, e isto
resume-se a um programa semidefinido. Contudo, a programação semidefinida é dispendiosa para
problemas de grande escala. Vários métodos foram propostos na literatura para aproximar pelo interior
o cone de matrizes semidefinidas positivas substituindo a condição de sdp por condições mais leves
mas ainda eficientes na prática. Nesta tese, estudamos certificados de não negatividade de polinómios
com recurso a matrizes com largura de factores limitada, já que os cones de matrizes de largura de
factores limitada formam uma hierarquia de aproximações interiores ao cone SDP. O conceito de
largura de factores para uma matriz semidefinida positiva foi introduzido recentemente e poucos
trabalhos formas produzidos nesta área, com o mais relevante sendo uma exploração da utilização
do cone de matrizes de largura de factores menor ou igual a dois como aproximação interior para
problemas de soma de quadrados, por Ahmadi e Majumdar, designada de SDSOS. Provaremos novos
resultados para matrizes de largura de factores limitada e usá-los-emos para derivar novos resultados
sobre a existência de certificados de não negatividade de polinómios.

Propomos ainda o uso do cone das matrizes não negativas de largura de factores no máximo dois
como uma aproximação interior natural para o cone de matrizes completamente positivas. Usando
projeções deste cone derivamos novos esquemas de aproximação por cones de segunda ordem para
programação completamente positiva. Esta abordagem oferece um compromisso entre o poder expres-
sivo da programação semidefinida e a velocidade das aproximações interiores por programas lineares.
Apresentamos ainda resultados numéricos para problemas aleatórios e problemas de independência
em grafos para ilustrar a eficiência da nossa abordagem.

Palavras-chave: Matrizes com largura de factores limitada, somas de quadrados, otimização
cónica, otimização polinomial, otimização copositiva
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Chapter 1

Introduction

Recently, many important developments in convex optimization have been concentrated on conic
programming. A conic program or conic optimization problem is the problem of optimizing a linear
function over the intersection of a hyperplane and a proper cone. The major conic optimization
problems that we will cover are linear, second order, semidefinite, copositive and completely positive
optimization problems. Each of these classes can be used as a tool to deal with many diverse problems.
In fact, these problems permit us to manifest the rich structure that some convex programs possess and
to use this structure in order to process the program in a more efficient way. In general, linear, second
order and semidefinite programming problems are more tractable than copositive and completely
positive programmings since the two later ones are known to be NP-hard optimization problems,
but even for those there are several approximation techniques to make them more tractable. In this
dissertation we will review all of these conic programs and their connections to other problems. One
optimization problem which is closely connected to conic programing is polynomial optimization.
This problem can be reduced to certifying global nonnegativity of a polynomial and it is known to
be NP-hard if the degree of the polynomial is at least four. Hence a usual strategy is to replace the
nonnegativity constraint by a condition that is more tractable. A well known sufficient condition
for checking nonnegativity of a polynomial is being a sum of squares of other polynomials since
then it is clearly nonnegative. The advantage of using sum of squares is that that condition can be
numerically checked efficiently by way of semidefinite programming (SDP). However, semidefinite
programming does not scale well with the size of the problem and this limits the use of SDP for large
scale problems. There are some attempts to increase the scalability of the sums of squares technique
in the literature including taking advantage of the problem structure [24], customizing solvers for sos
programs [55] or replacing the psd condition with some cheaper conditions to obtain a more efficient
inner approximation to the sos problem [3]. The idea in [3] is to replace the psd condition used in
sums of squares by a diagonally dominant or scaled diagonally dominant condition. The authors call
these two problems DSOS and SDSOS problems respectively. These optimization problems are linear
and second order cone programs and are in general more scalable with the size of the problem.

Scaled diagonally dominant matrices are a special case of bounded factor width matrices. The
concept of factor width was introduced recently by Boman, et al [10] and it is defined as the smallest
positive integer k for which the positive semidefinite matrix A can be written as A =VV T where each
column of V contains at most k non-zeros. The cones of matrices of bounded factor width provide a

1



2 Introduction

hierarchy of inner approximations to the PSD cone. For k = 2 we recover scaled diagonally dominant
matrices. In this thesis we explore the use of the cone of bounded factor width matrices for both
polynomial and copositive (completely positive) optimizations.

The contribution of the thesis

This thesis has been constructed based on two papers. Chapter 3 is based on a paper entitled as On
sums of k-nomial squares [26]. This paper is about bounded factor width matrices and using them as a
certificate for nonnegativity of polynomials. The factor width is a concept which has been introduced
recently and very little work has been done in this area. It has been proven by Boman [10] that matrices
with factor width at most two are scaled diagonally dominant and from a polynomial optimization
point of view, a Gram matrix of a polynomial having factor width two corresponds to the polynomial
being sum of binomial squares, a fact that motivated Ahmadi and Majumdar [3] to reduce semidefinite
programming to a second order cone programming which is more scalable. Nevertheless, very few
results have been explored in literature for matrices with factor width more than two. In Chapter 3,
we will prove some results on the geometry of the cones of matrices with bounded factor widths and
their duals, and use them to derive new results on the existence of certificates of nonnegativity of
polynomials by sums of k-nomial squares.

As another contribution of this thesis, in Chapter 4 we present another paper entitled as Inner
approximating the completely positive cone via the cone of scaled diagonally dominant matrices [27].
Copositive programming and its dual counterpart of completely positive programming are classes of
convex optimization problems that have in the past decades developed as a particularly expressive
tool to encode optimization problems, especially for many problems arising from combinatorial or
quadratic optimization. Since copositive and completely positive programs are in general NP hard
problems, there are several inner and outer approximations to this problem. Although there are
several outer approximations to the completely positive cone, for inner approximation the literature
is somehow sparser with only a few existing LP and SDP based inner approximations. In Chapter 4
we propose a new inner approximation for the completely positive cone based on nonnegative factor
width two or scaled diagonally dominant matrices. This approach is a compromise between the speed
of LP and expressive power of SDP based inner approximations. We will support our idea with some
numerical results for both random and stable set problems.

Organization of the thesis

This thesis is divided in four chapters. The first of which is this introduction. Chapter 2 is mainly
reviewing some important definitions and concepts. We start it by reviewing conic programming,
specially linear programming, second order cone programming, semidefinite programming and
copositive and completely positive programming. We will cover more carefully the two later ones
corresponding to the cones of copositive and completely positive matrices. We will describe the
structure of these problems and their possible applications. We then review the bases of polynomial
optimization reducing it to checking global nonnegativity of a polynomial. In Chapter 3 using the
concept of factor width for positive semidefinite matrices and its connection to sums of squares,
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we give new certificates for checking global nonnegativity of polynomials. Finally in Chapter 4,
using nonnegative scaled diagonally dominant matrices, we give a new inner approximation for the
completely positive cone.





Chapter 2

Conic programming and polynomial
optimization

In this chapter, we first give some basic definitions and concepts regarding convex cones and conic
programming, we will review several types of conic programs that we will use throughout the thesis. In
addition, we bring some geometric concepts of convex cones which are crucial for proving the results
of Chapter 3. Then we will look to the problem of nonnegativity of a polynomial which is known to
be a NP hard problem, hence we will review the sum of squares approach as an approximation for that.
However, since this approximation does not scale well, we will review some techniques to improve
the performance obtained from sums of squares problems trading off accuracy.

2.1 Convex cones

Throughout the thesis, we denote the matrices by upper case letters and their entries are represented in
the corresponding lower case letters, e.g., di j as the (i, j)th entry of the matrix D. We also use lower
case letters to denote vectors. For vectors u, v ∈ IRn, we write u ≥ 0 if u is elementwise nonnegative,
and use [u,v] to denote the line segment between u and v, i.e.,

[u,v] := {tu+(1− t)v : t ∈ [0,1]}.

For a set S ⊆ IRn we define the span of S as

span(S) = {λ1x1 + . . .+λkxk | xi ∈ S, λi ∈ IR}

We also define the affine hull of S as

aff(S) = {λ1x1 + . . .+λkxk | xi ∈ S, λi ∈ IR, λ1 + . . .+λk = 1}

A set S is convex if the line segment between any two points in S lies in S, i.e., if for any x1,x2 ∈ S
and any λ with 0 ≤ λ ≤ 1, we have λx1 +(1−λ )x2 ∈ S.

5



6 Conic programming and polynomial optimization

We call the set of all convex combinations of points in S the convex hull of a set S and we define it as

Conv(S) = {λ1x1 + . . .+λkxk | xi ∈ S, λi ≥ 0, λ1 + . . .+λk = 1}

A set C is called a cone, if for every x ∈C and λ ≥ 0, we have λx ∈C. A set C is a convex cone if
it is convex and a cone, which means that for any x1,x2 ∈C and λ1,λ2 ≥ 0, we have

λ1x1 +λ2x2 ∈C.

Given a cone K in the Hilbert space H, we can define the dual cone by

K∗ = {y ∈ H∗ | ⟨y,x⟩ ≥ 0, for all x ∈ K}

where ⟨ , ⟩ is the inner product on H.
For instance, letting H = Sn to be the set of symmetric n×n matrices, for given two matrices A and
B in Sn, their standard matrix inner product is denoted by ⟨A,B⟩ := ∑i, j Ai jBi j = tr(AB) where we
denote the trace of X as tr(X) and for a cone K of matrices in Sn, its dual cone K∗ can be defined as

K∗ = {Y ∈ Sn | ⟨Y,X⟩ ≥ 0, for all X ∈ K}.

Note that the cone K∗ is a convex closed cone regardless of K being closed and convex or not. In
addition, (K∗)∗ is the closure of K, if K is convex. Also K1 ⊆ K2 implies (K2)

∗ ⊆ (K1)
∗, for any two

cones K1,K2. Proof for these properties can be found in [13].

A cone is called self-dual when K = K∗. Examples of self-dual cones that we will explain here
are the nonnegative orthant, second order cone, positive semidefinite cone and nonnegative symmetric
matrices.

Example 2.1.1. Consider the nonnegative orthant, IRn
+ := {x ∈ IRn : xi ≥ 0}, the dual to this cone is

itself since xT y ≥ 0 for all x ≥ 0 if and only if y ≥ 0.

A second-order cone is defined as

Qn = {x ∈ IRn | x = (xn, x̄),xn ≥ ∥x̄∥}

where x̄ is a subvector of x consisting of entries 1 to n−1 and ∥.∥ is the standard Euclidean norm
defined as ∥x̄∥= (∑n−1

i=1 x2
i )

1
2 . This cone is also called the Lorentz cone or the ice cream cone.

The dual cone to the cone Qn is defined as

(Qn)∗ = {y ∈ IRn | yT x ≥ 0, for all x ∈ Qn}.

Example 2.1.2. The second order cone is self-dual. To see this, first we will show Qn ⊆ (Qn)∗. If
x,y ∈ Qn, then from Cauchy-Schwartz inequality we have

xT y = xnyn +
n−1

∑
i=1

xiyi ≥ xnyn −

√
n−1

∑
i=1

x2
i

√
n−1

∑
i=1

y2
i
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and from x,y ∈ Qn, we have

xnyn −

√
n−1

∑
i=1

x2
i

√
n−1

∑
i=1

y2
i ≥ 0.

Hence xT y ≥ 0. Next we will show that (Qn)∗ ⊆ Qn. Suppose yT x ≥ 0, for all x ∈ Qn. There are two
cases. First, if (y1, . . . ,yn−1) = (0, . . . ,0), then consider x1, . . . ,xn−1 = (0, . . . ,0) and xn = 1. Then we
have

yT x ≥ 0 ⇔ yn ≥ 0 ⇔ y2
n ≥

n−1

∑
i=1

y2
i ⇔ y ∈ Qn.

Otherwise, set xn =
√

∑
n−1
i=1 y2

i and xi =−yi for i = 1, . . . ,n−1, and hence

yT x ≥ 0 ⇔ yn

√
n−1

∑
i=1

y2
i −

n−1

∑
i=1

y2
i ≥ 0 ⇔ y2

n ≥
n−1

∑
i=1

y2
i ,yn ≥ 0 ⇔ y ∈ Qn.

A symmetric matrix A is positive semidefinite (psd), if xT Ax ≥ 0 for all x ∈ IRn. The set of positive
semidefinite n×n symmetric matrices is denoted by Sn

+, more precisely

Sn
+ = {A ∈ Sn | xT Ax ≥ 0 for all x ∈ IRn}.

A positive semidefinite matrix is denoted by the standard notation ≽ 0. The following proposition
gives some useful properties of positive semidefinite matrices.

Proposition 2.1.1. Let A ∈ Sn. The following conditions are equivalent

• A ≽ 0

• The eigenvalues of A are nonnegative

• There exists L ∈ IRn×n lower triangular such that A = LLT (Cholesky factorization) and we
denote by L = chol(x)

• A = ∑
Rank(A)
i=1 vivT

i , for some vi ∈ IRn
+

• det(AI)≥ 0, for all I ⊆ {1,2, . . . ,n} where AI denotes the (principal) submatrix of A composed
from rows and columns of A with indices in I

Proof. Proofs to these properties can be found in [30].

Example 2.1.3. The positive semidefinite cone is self-dual, i.e., for Y ∈ Sn,

tr(XY )≥ 0 for all X ≽ 0 ⇔ Y ≽ 0.

Assume that Y /∈ Sn
+, then there exists x ∈ IRn such that xTY x = tr(xT xY ) < 0. Thus the positive

semidefinite matrix X = xxT satisfies tr(XY )< 0 which leads to Y /∈ (Sn
+)

∗. Now suppose X ,Y ∈ Sn
+.

Then X can be written in terms of its eigenvalue decomposition as X = ∑
n
i=1 λixixT

i , where (the
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eigenvalues) λi ≥ 0, i = 1, . . . ,n. Then we have

tr(XY ) = tr

(
Y

n

∑
i=1

λixixT
i

)
=

n

∑
i=1

λixT
i Y xi ≥ 0.

This shows that Y ∈ (Sn
+)

∗.

Another well known self-dual cone is the set of nonnegative symmetric matrices defined as

N n = {A ∈ Sn | (A)i j ≥ 0, for all i, j}.

It can be easily seen that this cone is also self-dual, i.e., N n = (N n)∗.
Naturally, not all cones are self-dual. Examples of cones that are not self-dual include copositive

and completely positive cones, that will play an important role in this work.
A symmetric matrix X is defined to be copositive if vT Xv ≥ 0 for all nonnegative vectors v, and

we denote the copositive cone by

COPn = {X ∈ Sn| vT Xv ≥ 0, for all v ≥ 0}.

A symmetric matrix X is defined to be completely positive if there exists a nonnegative matrix B
such that X = BT B, and we denote the completely positive cone by

CPn = {X ∈ Sn| ∃B ≥ 0, X = BT B}.

Proposition 2.1.2. [6, Theorem 2.3] Copositive and completely positive cones are dual to each other,
i.e., CPn = (COPn)∗ and COPn = (CPn)∗.

Proof. Let A be an n× n symmetric matrix. Then A ∈ (CPn)∗ if and only if for every completely
positive matrix B, tr(AB) ≥ 0. Since B is completely positive, there exists a nonnegative matrix C
such that B = CTC. Hence A ∈ (CPn)∗ if and only if for every nonnegative matrix C with n rows
tr(ACTC)≥ 0 if and only if for every c ∈ IRn

+, cT Ac ≥ 0, which means that A is copositive. The dual
claim that CPn = (COPn)∗ follows from the fact that ((CPn)∗)∗ = CPn since both these cones are
closed.

We will talk about copositive and completely positive cones in more details in Chapter 4.
A cone K is pointed if K ∩ (−K) = {0}, and solid if the interior of K is not empty. A cone that is

convex, closed, pointed and solid is called a proper cone. Nonnegative orthants, second order cones,
semidefinite cones, nonnegative cones and copositive and completely positive cones are all proper
cones [21]. Another interesting example is that of nonnegative polynomials.

Proposition 2.1.3. The set of nonnegative polynomials of fixed degree is a proper cone.

Proof. We identify a polynomial with its coefficients and note that the constraints p(x)≥ 0 are linear
in the coefficients of p for every fixed x, then it follows directly that this set is a convex set. it is also
clear that this cone is solid and closed. In addition, this cone is pointed since if p(x)≥ 0 and p(x)≤ 0,
then we have p(x) = 0.
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The dual cone of a proper cone is also a proper cone. A good introduction about convex cones
and their duals can be found in [5].

2.2 Conic programming

Conic optimization is a subfield of convex optimization that studies problems consisting of minimizing
a convex function over the intersection of an affine subspace and a proper cone. A standard conic
programming problem in the primal form is

min
x∈IRn

⟨c,x⟩

s.t. Ax = b
x ∈ K,

(2.1)

where c ∈ IRn, and b ∈ IRm, A ∈ IRm×n, and ⟨ , ⟩ denotes the standard Euclidean inner product.
The dual problem to problem (2.1) can be formulated as

max
y∈IRm

⟨b,y⟩

s.t. AT y+ s = c
s ∈ K∗.

(2.2)

There is an important connection between these two problems which is called weak duality.

Lemma 2.2.1. For every x in the feasible set of problem (2.1) and y in the feasible set of problem (2.2),
we have

⟨c,x⟩ ≥ ⟨b,y⟩

Proof. For all x in the feasible set of problem (2.1) and y in the feasible set of (2.2), we have

⟨c,x⟩= ⟨AT y+ s,x⟩= ⟨AT y,x⟩+ ⟨s,x⟩= ⟨y,Ax⟩+ ⟨s,x⟩= ⟨y,b⟩+ ⟨s,x⟩ ≥ ⟨b,y⟩

where ⟨s,x⟩ ≥ 0 follows since s ∈ K∗.

When the optimal values of these problems are equal, we say that there is strong duality. In
order to have strong duality, the most common sufficient condition considered is when one of the
problems (2.1) or (2.2) is strictly feasible, i.e., there is a feasible point even if we replace the cone by
its interior. This condition is called Slater condition.

Among the classes of problems that can be interpreted as particular cases of the general conic
programming we have linear programming (LP), which has the following form

min cT x
s.t. Ax = b

x ∈ IRn
+

where c ∈ IRn, b ∈ IRm, and A ∈ IRm×n.
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A set defined by finitely many linear inequalities or equations is called a polyhedron. Thus, linear
programming corresponds exactly to the minimization of a linear function over a polyhedron. If a
polyhedron is bounded, it is called a polytope.

In addition, to every LP problem we can associate a corresponding dual problem. This is another
LP problem which can be formulated as following

max bT y
s.t. AT y+ s = c

s ∈ IRn
+.

One of the most interesting properties of linear program is that strong duality always holds. In
particular, when the primal problem is feasible and has bounded optimal objective value, then the
primal and the dual both attain their optima with no duality gap.

Another kind of conic programming is called semidefinite programming (SDP). A semidefinite
programming is a broad generalization of linear programming, where the decision variables are
symmetric matrices and has the following primal form

min ⟨C,X⟩
s.t. ⟨Ai,X⟩= bi, i = 1, . . . ,m

X ∈ Sn
+

where ⟨ , ⟩ denotes the matrix inner product.

The positive semidefinite cone is a self-dual proper cone and we can construct the dual SDP
problem as

max bT y
s.t. C−∑

m
i yiAi ∈ Sn

+.

Semidefinite programming problem in dual form corresponds to the optimization of a linear function
subject to a linear matrix inequality (LMI) constraint (an LMI has the form A0 +∑

m
i=1 Aixi ≽ 0 where

Ai ∈ Sn are given symmetric matrices). The set defined by an LMI is called a spectrahedron, hence
the feasible set of a semidefinite program is a spectrahedron. An important difference between a
linear program and a semidefinite program is that in semidefinite programming there may be a finite
or infinite duality gap. The primal and/or dual may or may not attain their optima. However both
programs will attain their common optimal value if both programs are strictly feasible. Semidefinite
programming can be cast as a powerful technique for tackling a diverse set of problems in applied and
computational mathematics. We refer the interested readers to [52] for a more thorough introduction
to semidefinite programming.

Another well known type of conic program is second-order cone programming (SOCP) formulated
as

min cT
1 x1 + . . .+ cT

r xr

s.t. A1x1 + . . .+Arxr = b
xi ∈ Q, i = 1, . . . ,r



2.3 Geometry of convex cones 11

where ci,xi ∈ IRni , Q is the Cartesian product of several cones, which means Q = Qn1 × . . .×Qnr ,
where each Qni ⊆ IRni

+ is a second order cone, and n = ∑
n
i=1 ni is the dimension of the problem, m is

the number of rows in each Ai and Ai ∈ IRm×ni .
Recall that again, second order cones are self-dual proper cones and therefore so is Q, the dual

SOCP problem can be formulated as

max bT y
s.t. AT

i y+ zi = ci, i = 1, . . . ,r
zi ∈ Q, i = 1, . . . ,r.

with zi ∈ IRni . Second-order cone programs partially enjoy the expressive modeling power that
nonpolyhedral cones such as the PSD cone have, but at the same time share with LP the scalability
properties necessary for solving large-scale instances (of the order of tens of thousands of variables),
which are currently out of reach for SDP.

Two other well known conic programming types are copositive and completely positive program-
ming. Completely positive problem has the following primal form

min ⟨C,X⟩
s.t. ⟨Ai,X⟩= bi, i = 1, . . . ,m,

X ∈ CPn,

where C and Ai, i = 1, . . . ,m are symmetric matrices and ⟨ , ⟩ denotes the matrix inner product.
The dual problem which is a copositive programming problem has the following form

max bT y
s.t. C−∑

m
i=1 yiAi ∈ COPn,

where COPn is copositive cone.
Contrary to other types of conic programming that we mentioned before, copositive and completely

positive programs can not be solved efficiently. Hence we need to solve them approximately. However,
copositive and completely positive program have very high expressive power and many problems in
combinatorial and quadratic optimization can be exactly formulated using them. We will study these
problems in Chapter 4. Also, a more thorough introduction about copositive and completely positive
programming can be found in [22] and references therein.

2.3 Geometry of convex cones

In this section we study some geometric properties of convex sets taken from [47]. We will need these
definitions and concepts later on throughout the thesis. We start by defining a face of a convex set.

A face of a convex set S is a convex subset F of S such that every (closed) line segment in S with
a relative interior point in S has both endpoints in S. The empty set and S itself are faces of S. The
zero dimensional faces of S are called the extreme points of S. Thus we say that a point x ∈ S is an
extreme point of S if and only if there is no way to express x as a convex combination (1−λ )y+λ z
such that y ∈ S, z ∈ S and 0 < λ < 1, except by taking y = z = x.
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Fig. 2.1 Face, edge and vertex of a polyhedron

The concept of an extreme point for convex cones is not very useful since the origin would be the
only candidate for an extreme point. Instead we study extreme rays of the cone. An extreme ray is a
face which is a half-line emanating from the origin. Now, we explain when certain faces of convex
sets are called exposed faces.

If we call F the set of points where a certain linear function h achieves its maximum over S, then
F is a face of S. Namely, F is convex because it is the intersection of S and {x | h(x) = a}, where a is
the maximum, and if the maximum is achieved on the relative interior of a line segment L ⊂ S, then
h must be constant on L, so that L ⊂ F . A face of this type is called an exposed face. The exposed
faces of S (aside from S itself and possibly the empty set) are thus precisely the sets of the form S∩H,
where H is a non-trivial supporting hyperplane to S.

We derive immediately from the definition of exposed face the following definition for exposed
point of the convex set S. An exposed point of S is an exposed face which is a point, i.e. a point
through which there is a supporting hyperplane which contains no other point of S. An exposed ray
of a convex cone is an exposed face which is a half-line emanating from the origin. Notice that an
exposed point is an extreme point and an exposed ray is an extreme ray. Figure 2.1 shows a two
dimensional face, an edge and a vertex of a polyhedron. We also have the following lemma regarding
the faces of a polyhedron.

Lemma 2.3.1. [5, p55]. Every face of a polyhedron is exposed.

It has been also proven in [44] that every face of a spectrahedron is exposed. We will talk about
this later in Chapter 3.

2.4 Polynomial optimization

We start this section with some basic definitions, then we state the polynomial optimization problem.
For a vector variable x ∈ IRn and a vector α ∈ Zn

+, we denote by xα the monomial xα = ∏
n
i=1 xαi

i

which by definition has degree ∑
n
i=1 αi.

Definition 1. A polynomial p in x1, . . . ,xn is a finite linear combination of monomials:

p = ∑
α

cαxα = ∑
α

cαxα1
1 . . .xαn

n

where the sum is over a finite number of n-tuples α = (α1, ...,αn), αi ∈ Z≥0 and cα belong to some
field K.
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The set of all polynomials in x is denoted by K[x]. In this work we will only consider K = IR, and
let Pn be the ring of real polynomials in n variables x = (x1, . . . ,xn) and Pn,d be the vector space of
real polynomials in n variables and of degree less than or equal to d.

When all the monomials of a polynomial have the same degree, we call it a homogeneous
polynomial or a form. It is well-known that there is a correspondence between forms and polynomials.
A form in n variables and degree d can be dehomogenized to a polynomial in n−1 variables, of degree
less than or equal to d, by fixing any variable to the constant value 1. Conversely, given a polynomial,
it can be converted into a form by multiplying each monomial by powers of a new variable, in such a
way that the degree of all monomials is the same.

A multivariate polynomial p(x) = p(x1, . . . ,xn) ∈ Pn,d is nonnegative if it takes only nonnegative
values, i.e.,

p(x)≥ 0 for all x ∈ IRn.

We denote by POSn,2d the cone of nonnegative polynomials in Pn,2d ,

POSn,2d = {p ∈ Pn,2d : p(x)≥ 0, ∀x ∈ IRn}.

The problem of minimizing a polynomial globally over IRn is a standard NP-hard problem in
optimization [9]. This problem can be expressed as

λ ∗ = min p(x)
s.t. x ∈ IRn.

(2.3)

We can reformulate this in terms of checking non-negativity of a polynomial p(x) in the following
way

λ ∗ = max λ

s.t. p(x)−λ ≥ 0, ∀x ∈ IRn.
(2.4)

Checking non-negativity of a polynomial is still an NP-hard problem. A usual approach to this
problem is to replace the nonnegativity constrain on p(x)−λ by something easier to check. A popular
such condition is being able to write it as a sum of squares of real polynomials.

2.5 Sums of squares

A multivariate polynomial p := p(x1, . . . ,xn) is a sum of squares (sos) if it can be written as the sum
of squares of some other polynomials. Formally, we have the following.

Definition 2. A polynomial p(x) ∈ Pn,2d is a sum of squares (sos) if there exist q1, . . . ,qm ∈ Pn,d such
that

p(x) =
m

∑
k=1

q2
k(x).

Example 2.5.1. As an example the polynomial p = 3x4 +4x3y+4x2y2 +2xy3 + y4 is sum of squares
and it can be decomposed as p = (x2)2 +(x2 + xy)2 +(x2 + xy+ y2)2

We denote the cone of sum of squares polynomials of n variables and degree 2d by SOSn,2d .
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SOSn,2d = {p(x) = ∑
i

q2
i (x) for some qi ∈ Pn,d}

A sufficient condition for nonnegativity of a polynomial is being a sum of squares of polynomials,
hence one can formulate a relaxation of problem (2.4) as following.

λSOS = maxλ

s.t. p(x)−λ is sos
(2.5)

Since sum of squares implies nonnegativity (i.e., SOSn,2d ⊆ POSn,2d), we have λSOS ≤ λ ∗.
Now, a natural question is to understand when a nonnegative polynomial can be written as a

sum of squares. More than a century ago, David Hilbert showed that equality between the set of
nonnegative polynomials POSn,2d and sum of squares polynomials SOSn,2d holds only in the following
three cases [29]

• Univariate polynomials (i.e., n = 1).

• Quadratic polynomials (2d = 2).

• Bivariate quartics (n = 2,2d = 4).

For all other cases, there always exist nonnegative polynomials that are not sum of squares. Perhaps
the most celebrated example is the ternary sextic (n = 3,2d = 6) due to Motzkin [38], given by

M(x,y,z) = x4y2 + x2y4 + z6 −3x2y2z2.

This polynomial is nonnegative but is not a sum of squares. Nonnegativity of M(x,y,z) follows from
the arithmetic-geometric inequality as following

x4y2 + x2y4 + z6

3
≥ x2y2z2.

Non-existence of a sos decomposition can be shown by assuming a decomposition M = ∑i q2
i (with

each qi being a ternary form of degree 3), in other words, if we assume that M(x,y,z) has a sos
decomposition, then we can write it as

M(x,y,z) = ∑
k
(Akx3 +Bkx2y+Ckx2z+Dkxy2 +Ekxyz+Fkxz2 +Gky3 +Hky2z+ Ikyz2 + Jkz3)2

Since M(x,y,z) does not have x6,y6,x4z2, y4z2, x2z4 ,y2z4, then we have Ak = Gk =Ck = Hk = Fk =

Ik = 0. So
M(x,y,z) = ∑

k
(Bkx2y+Dkxy2 +Ekxyz+ Jkz3)2

Hence the coefficient of x2y2z2 in M(x,y,z) is

∑
k

E2
k ≥ 0

which is a contradiction. So we conclude that not all of nonnegative polynomials are sums of squares.
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The next question that comes to our mind is how many nonnegative polynomials are sum of
squares? Or, more precisely, is there any quantitative relationship between sum of squares polynomials
and nonnegative polynomials?

Blekherman answered this question in [8] by comparing the relative sizes of theses two cones. He
used the Urysohn’s inequality as a main tool for computing the volumes of the sections of these two
cones.

Lemma 2.5.1. Let K ⊂ IRn be a convex body with 0 in its interior and let K◦ be the dual convex body.
The following is known as Urysohn’s inequality [49].(

VolK
VolBn

) 1
n

≤
∫

Sn−1
GK◦(x)dσx =

∫
Sn−1

max
y∈K

⟨x,y⟩

where GK◦ is the Gauge function of K◦ and Bn and Sn−1 denote the unit ball and unit sphere
respectively.

Since the cones SOSn,2d and POSn,2d are unbounded objects, in order to compare the relative sizes
of them, a section of each cone is taken with the same hyperplane so that both sections are compact.
Let Ln,2d to be an affine hyperplane in Pn,2d consisting of all forms which integrate to 1 on the unit
sphere Sn−1 in IRn

Ln,2d =

{
p ∈ Pn,2d |

∫
Sn−1

pdσ = 1
}
,

where σ is the rotation invariant probability measure on Sn−1.

First, compact sections of both cones are taken by intersecting them with the hyperplane Ln,2d .

SOSn,2d = SOSn,2d ∩Ln,2d ,

POSn,2d = POSn,2d ∩Ln,2d .

Then, since cones should contain the origin, they are translated using a form v2d = (x2
1 + . . .+x2

n)
d

which is constantly 1 on the unit sphere and the compact convex bodies

S̃OSn,2d = SOSn,2d − v2d = {p ∈ Pn,2d | p+ v2d ∈ SOSn,2d}

and
P̃OSn,2d = POSn,2d − v2d = {p ∈ Pn,2d | p+ v2d ∈ POSn,2d}

are obtained. Then the volumes of both convex bodies are bounded using Urysohn’s inequality. The
results are as following

Theorem 2.5.2. [8, Theorem 1.1] There are the following bounds on the volume of P̃OSn,2d

1
2
√

4d +2
n

−1
2 ≤

(
VolP̃OSn,2d

VolBN

) 1
N

≤ 4
(

2d2

4d2 +n−2

) 1
2

.
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Theorem 2.5.3. [8, Theorem 1.1] There are the following bounds on the volume of S̃OSn,2d

d!2

42d2d!
√

24
n

d
2

(n
2 +2d)d ≤

(
VolS̃OSn,2d

VolBN

) 1
N

≤ 42d2d!
√

24
d!

n−
d
2 .

In both cases N is the ambient dimension. These bounds are asymptotically exact if the degree
is fixed and number of variables tends to infinity. By comparing these two volumes the following
relations between the volumes of these two convex bodies can be found [8].

Theorem 2.5.4. (
VolP̃OSn,2d

VolS̃OSn,2d

) 1
N

≥ d!2

2(2d!)42d
√

24(4d +2)
n

d−1
2

When the degree is larger than two, if we fix the degree of the polynomials and let the number of
variables increase, then there are significantly more nonnegative polynomials than sum of squares
polynomials.

Although there are significantly more nonnegative polynomials than sum of squares polynomials,
sum of squares still can be used as a main tool for checking nonnegativity of a polynomial.

2.6 Sums of squares as a semidefinite program

Now continuing our problem (2.5), one may ask how we can solve an sos problem? The problem (2.5)
can be solved easily using semidefinite programming. We write the monomials in x1,x2, . . . ,xn up
to degree d as a column vector z(x)d := [1,x1, ...,xn,x2

1,x1x2, ...,xd
n ]

T . By standard combinatorial
reasoning, this vector has

(n+d
d

)
entries.

Proposition 2.6.1. A polynomial p(x) of degree 2d is sum of squares if and only if p(x) can be written
as p(x) = z(x)T

d Qz(x)d where z(x)d is the vector of monomials of degree at most d and the matrix Q
where we will call a Gram matrix for p, is positive semidefinite.

Proof. Assume that the matrix Q is psd, then it can be factorized as Q = LT L (where L is an upper
triangular matrix) and we have

p(x) = z(x)T
d Qz(x)d = z(x)T

d LT Lz(x)d = ∥Lz(x)d∥2 = ∑
i
(Lz(x)d)

2
i

Here Lz(x)d is a vector of polynomials and when it is multiplied by its transpose, it gives a sum of
squares polynomial, hence p(x) has a sum of squares representation. Conversely, when p(x) is a sum
of squares, for some vectors of coefficients ai, we must have

p(x) = ∑
i
(aT

i z(x)d)
2 = ∑

i
((z(x)T

d ai)(aT
i z(x)d)) = z(x)T

d (∑
i

aiaT
i )z(x)d

so the positive semidefinite matrix Q := ∑i aiaT
i can be extracted.

Note that when p(x) is homogeneous, we can pick the vector of monomials z(x) to be also
homogeneous and of degree exactly d. But when the polynomial p(x) is not homogeneous, the vector
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of monomials z(x)d is of degree at most d. In addition, the size of the Gram matrix Q is
(n+d−1

d

)
when

polynomial p(x) is a form, otherwise it has size
(n+d

d

)
.

The following example uses the certificate given in Proposition (2.6.1) to check whether a given
polynomial is a sum of squares or not and, if yes, how we can decompose it as a sum of squares.

Example 2.6.1. Consider the polynomial p(x,y) = x4 +2x3y+4x2y2 +4xy3 +3y4, this polynomial
is a sum of squares if and only if p(x,y) = z(x,y)T Qz(x,y) and Q is positive semidefinite, where
z(x,y) = [x2,xy,y2].
In other words, p(x,y) is a sum of squares if and only if

p(x,y) =
[
x2 xy y2

]q11 q12 q13

q12 q22 q23

q13 q23 q33


︸ ︷︷ ︸

Q

x2

xy
y2



and Q is positive semidefinite. Note that the equality can be rewritten as

x4 +2x3y+4x2y2 +4xy3 +3y4 = q11x4 +2q12x3y+2q13x2y2 +2q23xy3 +q33y4 +q22x2y2,

so by comparison of coefficients, we have the following system of equalities

q11 = 1,
2q12 = 2,
2q13 +q22 = 4,
2q23 = 4,
q33 = 3.

So p(x,y) is sum of squares if and only if there exists x such that

Q =

1 1 x
1 4−2x 2
x 2 3

≽ 0.

For example, for x = 1, the matrix

Q =

1 1 1
1 2 2
1 2 3


is positive semidefinite. Note that this x is not unique and different choices of x lead to different matrix
Q and accordingly different sum of squares decompositions.
In order to recover the sum of squares decomposition, we factorize the matrix Q as Q =UTU using
Cholesky factorization 1 1 1

1 2 2
1 2 3

=

1 1 1
0 1 1
0 0 1


T 1 1 1

0 1 1
0 0 1
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Also, note that this factorization is not unique and other factorizations can be used like the ones
obtained by SVD or LU factorizations. Now by the factorization obtained above we have,

z(x,y)UTUz(x,y)T =
[
x2 xy y2

]1 1 1
0 1 1
0 0 1


T 1 1 1

0 1 1
0 0 1


x2

xy
y2



=

∥∥∥∥∥∥∥
x2 + xy+ y2

y2 + xy
y2


∥∥∥∥∥∥∥

2

= (y2)2 +(y2 + xy)2 +(x2 + xy+ y2)2

and this gives us a decomposition of polynomial P(x,y) as a sum of squares. Note that here the matrix
Q has rank three, therefore p(x,y) is a sum of three squares.

Now, based on the certificate of sum of squares, problem (2.5) can be formulated as an SDP
problem

λSDP = maxλ

s.t. p(x)−λ = z(x)T
d Qz(x)d

Q ≽ 0
(2.6)

This problem can be solved efficiently using semidefinite programming solvers [37]. Although
semidefinite programming is very useful in practice, it does not scale well when the size of the problem
increases. In fact, in the absence of problem structure, sum of squares problems involving degree 4 or
6 polynomials are currently limited to around a dozen variables.

2.7 DSOS and SDSOS

In order to increase the scalability of sum of squares techniques, some contributions can be found in
the literature. One approach is to take advantage of problem structure which means using sparsity or
symmetry of the underlying polynomials to reduce the size of the SDP problem. This approach has
been explored in [24], [51], [19].

Another approach is to customize solvers for SOS programs. Some works in this direction
include [7], [40], [55]. There has also been recent work by Lasserre et al [35], that increases scalability
of sum of squares optimization problems at the cost of accuracy of the solutions obtained. This can be
done by bounding the size of the largest SDP constraint which appears in the SOS formulation, and
this leads to what the authors call the BSOS (bounded SOS) hierarchy.

Recently Ahmadi and Majumdar [3] introduced more scalable alternatives to SOS optimization
that they refer to as diagonally dominant sum of squares (dsos) and scaled diagonally dominant sum
of squares (sdsos) programs.

The idea in [3] is to replace the conditions that the Gram matrix Q should be positive semidefinite
with conditions which are stronger but cheaper, to obtain more efficient inner approximations to the
SOS cone. Two such conditions come from the concepts of diagonally dominant and scaled diagonally
dominant matrices in linear algebra.
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Fig. 2.2 PSD cone versus SDD and DD cones.

Definition 3. A symmetric matrix A is diagonally dominant (dd) if aii ≥ ∑ j ̸=i |ai j| for all i. We say
that A is scaled diagonally dominant (sdd) if there exists a diagonal matrix D, with positive diagonal
entries, which makes DAD diagonally dominant.

Note that this differs from the standard definition of diagonal dominance, since we are requiring
the entries of the diagonal to be nonnegative.

Example 2.7.1. Consider the matrices

A =

 1 0.6 0.5
0.6 2 0.2
0.5 0.2 2

 , D =

1 0 0
0 0.5 0
0 0 0.5

 , DAD =

 1 0.3 0.25
0.3 0.5 0.05
0.25 0.05 0.5

 .
Since DAD is diagonally dominant, A is scaled diagonally dominant.

We denote by DDn and SDDn the cones of all n×n diagonally dominant and scaled diagonally
dominant matrices, respectively, and recall that Sn

+ denotes the cone of positive semidefinite matrices.
Then, from Gershgorin’s circle theorem [25], it is clear that DDn ⊆ Sn

+ and since sdd matrices are
diagonally dominant matrices scaled by a diagonal matrix, and scaling rows and columns does not
effect psd-ness of a matrix, we have

DDn ⊆ SDDn ⊆ Sn
+.

In order to illustrate this inclusion, in Figure 2.2 we generated two random symmetric matrices A and
B of size 10×10. The outermost set is the feasible set of an SDP with the constraint I + xA+ yB ≽ 0.
where I denotes the identity matrix. The green and blue areas inside correspond to the points (x,y) for
which I + xA+ yB are respectively sdd and dd.

Definition 4. Recall that z(x)d denotes the vector of monomials of degree at most d . A polynomial
p(x) of degree 2d is said to be diagonally dominant sum of squares (resp. scaled diagonally dominant
sum of squares) dsos (resp. sdsos) if it admits a representation as p(x) = z(x)T

d Qz(x)d where the Gram
matrix Q is a diagonally dominant (resp. scaled diagonally dominant) matrix.
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Now, the problem (2.6) can be approximated by the following DSOS and SDSOS problems

λDSOS = maxλ

s.t. p(x)−λ = z(x)T
d Qz(x)d

Q is dd
(2.7)

λSDSOS = maxλ

s.t. p(x)−λ = z(x)T
d Qz(x)d

Q is sdd
(2.8)

The problems (2.7) and (2.8) are linear and second order cone programs respectively and hence are
more scalable with the size of the problem compared to the semidefinite problem (2.6). It is clear
that DSOS and SDSOS programming are inner approximations to the SOS problem and hence are in
general weaker than SOS, but solutions to these problems can be strengthened. Two strengthening
techniques are basis pursuit and column generation which have been studied in [2] and [1] respectively.
We will briefly explain these two techniques in the next sections.

Barker and Carlson in [4] gave another characterization of sdd matrices which will be very useful
throughout this thesis. They proved that a matrix is sdd if and only if it can be written as the sum
of positive semidefinite matrices whose supports are contained in some 2 by 2 submatrices. Here,
support of a matrix X is defined as supp(X) = {(i, j) ∈ {1,2, ...,n}2 : xi j ̸= 0}. In other words,

Proposition 2.7.1. A matrix A is scaled diagonally dominant if and only if it can be expressed as

A = ∑
i< j

Mi j
2×2

where each Mi j is an n×n matrix with zeros everywhere except on the 2×2 submatrix

[
Mi j

ii Mi j
i j

Mi j
ji Mi j

j j

]
which is symmetric and positive semidefinite.

As an example, the following matrix is scaled diagonally dominant since it can be written as sum
of psd matrices with 2×2 support.

Example 2.7.2. 1 0.6 0.5
0.6 2 0.2
0.5 0.2 2

=

0.3 0.6 0
0.6 1.8 0
0 0 0

+
0.7 0 0.5

0 0 0
0.5 0 1

+
0 0 0

0 0.2 0.2
0 0.2 1


Definition 5. A polynomial p := p(x) is sum of binomial squares (sobs) if it can be written as

p = ∑
i, j
(αi jmi +βi jm j)

2

where mi and m j are monomials and αi j,βi j ≥ 0.

The characterization of SDD given by Barker and Carlson immediately implies that sdsos and
sobs coincide, as illustrated in the example below.
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Example 2.7.3. Consider the polynomial p(x,y) = x4 +1.2x3y+3x2y2 +0.4xy3 +2y4. This polyno-
mial is a sum of binomial squares since there exists a symmetric matrix Q ∈ R3×3

Q =

 1 0.6 0.5
0.6 2 0.2
0.5 0.2 2


such that p(x,y) = z(x)T Qz(x) with z(x,y) = [x2,xy,y2] and Q is sdd. This is true because as we can
see from Example (2.7.2), the matrix Q can be written as a sum of psd matrices with 2×2 support,
hence p(x,y) is sum of binomial squares. One such sobs decomposition is the following

p(x,y) = 0.3(x2 +2xy)2 +0.6(xy)2 +(0.5x2 + y2)2 +0.45(x2)2 +0.2(xy+ y2)2 +0.8(y2)2.

Now, based on the Proposition 2.7.1, the SDSOS problem can be reformulated as

λSDSOS = maxλ

s.t. p(x)−λ = z(x)T
d Qz(x)d

Q = ∑i< j Mi j
2×2

Mi j
2×2 ≽ 0

(2.9)

The constraints (Mi j
2×2 ≽ 0) are rotated quadratic cone constraints and can be imposed using second

order cone programming (SOCP), in other words

λSDSOS = maxλ

s.t. p(x)−λ = z(x)T
d Qz(x)d

Q = ∑i< j Mi j
2×2∥∥∥∥∥

(
2Mi j

i j

Mi j
ii −Mi j

j j

)∥∥∥∥∥≤ Mi j
ii +Mi j

j j

Mi j
ii +Mi j

j j ≥ 0.

(2.10)

As we mentioned before, second order cone programs can be solved easily for larger scale problems.
The problem (2.10) is weaker than the problem (2.5), since we strengthened the restrictions, but it
can be altered to better approximate the SOS problem which is the topic of the next section. We will
mainly focus on strengthening techniques for the SDSOS problem.

2.8 Basis pursuit

As we mentioned before SDSOS programming can be strengthened to better approximate the SOS
problem. One such strengthening is proposed by Ahmadi and Hall in [2].

The idea of basis pursuit can be illustrated by the following example which is taken from [2].

Example 2.8.1. Suppose we would like to show that the degree-4 polynomial

p(x) = x4
1 −6x3

1x2 +2x3
1x3 +6x2

1x2
3 +9x2

1x2
2 −6x2

1x2x3 −14x1x2x2
3 +4x1x3

3 +5x4
3 −7x2

2x2
3 +16x4

2
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has a sum of squares decomposition. One way to do this is to try to write p as p = z(x)T Qz(x) where

z(x) = (x2
1,x1x2,x2

2,x1x3,x2x3,x2
3)

T , (2.11)

and the matrix Q is symmetric and positive semidefinite. As we explained before the search for such a
Q can be done with semidefinite programming, and one feasible solution is as follows.

1 −3 0 1 0 2
−3 9 0 −3 0 −6
0 0 16 0 0 −4
1 −3 0 2 −1 2
0 0 0 −1 1 0
2 −6 4 2 0 5


Suppose now that instead of the basis z in (2.11), we pick a different basis

z̃(x) = (2x2
1 −6x1x2 +2x1x3 +2x2

3, x1x3 − x2x3, x2
2 −

1
4

x2
3)

T (2.12)

With this new basis, we can get a sum of squares decomposition of p by writing it as

p = z̃(x)T

1/2 0 0
0 1 0
0 0 4

 z̃(x).

In fact, by using a better basis, the Gram matrix has been simplified to be diagonal. Now positive
semidefiniteness can be imposed as a linear constraint (diagonals should be nonnegative).

Hence, the goal of basis pursuit is to “pursue” the basis which simplifies the problem by starting
with an arbitrary basis (typically the standard monomial basis), and then iteratively improving it by
solving a sequence of SOCPs and performing some efficient matrix decomposition tasks in the process.
In what follows we explain this method briefly.

Assume that we want to approximate the following SDP problem

min ⟨C,X⟩
s.t. ⟨Ai,X⟩= bi, i = 1, . . . ,m
X ≽ 0

(2.13)

In other to do this, first a family of cones is defined as following

SDD(U) := {M ∈ Sn|M =UT QU for some sdd matrix Q}
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parametrized by an n× n matrix U . Optimizing over the set SDD(U) is an SOCP and we have
SDD(U)⊆ PSD. This leads to the following iterative SOCP sequence

SDSOSk = min ⟨C,X⟩
s.t. ⟨Ai,X⟩= bi, i = 1, . . . ,m
X ∈ SDD(Uk)

(2.14)

Assuming existence of an optimal solution Xk at each iteration, we can define the sequence {Uk}
iteratively as

U0 = I

Uk+1 = chol(Xk).

Note that the first SOCP problem of this iterative approach is problem (2.8) where the Gram matrix
is scaled diagonally dominant. Then by defining Uk+1 = chol(Xk), the optimal solution improves at
each iteration. In fact, since Xk =UT

k+1IUk+1, and the identity matrix is scaled diagonally dominant,
Xk ∈ SDD(Uk+1) and hence it is a feasible solution for iteration k+1 and therefore the optimal value
improves at each iteration which means SDSOSk+1 ≤ SDSOSk. Now, since the sequence {SDSOSk}
is lower bounded by SOS∗ and monotonic, it must converge to a limit SDSOS∗ ≥ SOS∗.

Ahmadi and Hall [2] proved that if Xk is positive definite, then the solution improves strictly from
step k to k+1. They proved this result for DSOS case, but the same is true for SDSOS.

Theorem 2.8.1. [2, Theorem 3.1], Let Xk (resp. Xk+1) be an optimal solution of iterate k (resp.k+1)
of problem (2.14) and assume that Xk is positive definite and SOS∗ < SDSOSk. Then,

SDSOSk+1 < SDSOSk

Since our original problem was to check nonnegativity of polynomial using sum of squares
program, we iteratively improve SDSOS approximation to the SOS problem. In order to do that, yet
another family of cones of degree 2d polynomials are defined as following

SDSOS(U) = {p | p(x) = z(x)T
d UT QUz(x)d for some sdd matrix Q}

This set can also be viewed as the set of polynomials that are sdsos in the basis Uz(x)d . In order
to construct a sequence of SOCPs that generate improving bounds on the SOS optimal value, the
constraint p is sos is replaced by p ∈ SDSOS(Uk)

λSDSOSk = maxλ

s.t. p(x)−λ = z(x)T
d UT QUz(x)d

Q ∈ SDD(Uk)

(2.15)

The sequence of matrices {Uk} is defined as

U0 = I

Uk+1 = chol(UT
k QkUk).
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where Qk is an optimal Gram matrix of iteration k.

2.9 Column generation

Another strengthening technique is the one proposed by Ahmadi and Hall in [1] which is called
column generation. In this iterative approach, the solutions to the SOCP problem improve iteratively
by adding some atoms (columns) to the problem at each iteration. Geometrically, this amounts to
optimizing over structured subsets of sum of squares polynomials that are larger than the set of sum of
binomial squares polynomials.

In fact, SOS or SDSOS approaches can be considered as ways of proving that a polynomial is
nonnegative by writing it as a nonnegative linear combination of certain atom polynomials that are
already known to be nonnegative. For SOS, these atoms are all the squares and for SDSOS, these
atoms are all the binomial squares. The idea of column generation is to start with a certain cheap
subset of atoms (columns) and only add new ones, one or a limited number in each iteration if they
improve the desired objective function.

We start column generation for a general SDP problem in the following form

max bT y
s.t. C−∑

m
i yiAi ≽ 0

(2.16)

with b ∈ IRm, C,Ai ∈ Sn and its dual

min ⟨C,X⟩
s.t. ⟨Ai,X⟩= bi, i = 1, . . . ,m
X ≽ 0

(2.17)

SOCP-based column generation optimizes over structured subsets of the positive semidefinite cone
that are SOCP representable and are larger than the set of scaled diagonally dominant matrices. This
will be achieved by working with the following SOCP

maxy∈IRm,Λi∈S2 bT y
s.t. C−∑

m
i yiAi = ∑

t
i=1ViΛiV T

i

Λi ≽ 0, i = 1, . . . , t
(2.18)

Here, the decision matrices Λi are 2×2 and the positive semidefiniteness constraints on them can be
imposed via rotated quadratic cone constraints. The n×2 matrices Vi are fixed for all i = 1, . . . , t.

To generate a new SOCP atom, we work with the dual of (2.18)

min ⟨C,X⟩
s.t. ⟨Ai,X⟩= bi, i = 1, . . . ,m
V T

i XVi ≽ 0, i = 1, . . . , t
(2.19)

Now, if the optimal solution X∗ to the problem (2.19) is psd, we are done, if not, one way to use X∗

for producing new SOCP-based cuts is to put the two eigenvectors of X∗ corresponding to its two
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most negative eigenvalues as the columns of an n×2 matrix Vt+1, in this way a new useful atom is
produced.

We will always be initializing our SOCP iterations with the SDSOS bound. It is not hard to see that
this corresponds to the case where we have

(n
2

)
initial n×2 atoms Vi, which have zeros everywhere,

except for a 1 in the first column in position j and a 1 in the second column in position k > j. If only
one exists, we can complete it with a row of zeros.





Chapter 3

Bounded factor width matrices and sums
of squares polynomials

In 2005, Boman et al [10] introduced the concept of factor width for a positive semidefinite matrix
A. This is the smallest positive integer k for which one can write the matrix as A =VV T with each
column of V containing at most k non-zeros. The cones of matrices of bounded factor width give a
hierarchy of inner approximations to the PSD cone. In the polynomial optimization context, the Gram
matrix of a polynomial having factor width k corresponds to the polynomial being a sum of squares
where each polynomial being squared has support of size at most k.

Recently, Ahmadi and Majumdar [3] explored this connection and proposed to replace the reliance
on sum of squares polynomials in semidefinite programming to sum of binomial squares polynomials
(sobs) which they call SDSOS, for which semidefinite programming can be reduced to a second order
programming to gain scalability at the cost of some tolerable loss of precision. In fact, the study of
sobs goes back to Reznick [46] and Hurwitz [31]. In this chapter we will prove some results on the
geometry of the cones of matrices with bounded factor widths and their duals, and use them to derive
new results on the existence of certificates of nonnegativity of polynomials by sums of k-nomial
squares.

3.1 On the factor width of a matrix

The concept of factor width for a matrix was first introduced by Boman et al in [10]. They gave the
following definition for the factor width of a matrix

Definition 6. The factor width of a positive semidefinite matrix A is the smallest integer k such that
there exists a real (rectangular) matrix V where A =VV T and each column of V contains at most k
non-zeros.

Example 3.1.1. As an example the following matrix has factor width 2

A =

4 0 4
0 1 1
4 1 5


27
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since it can be factorized as 4 0 4
0 1 1
4 1 5

=

2 0
0 1
2 1


2 0

0 1
2 1


T

and each column of V =

2 0
0 1
2 1

 has two non zeros.

It has been proved in [10, Proposition 2] that diagonally dominant (dd) and scaled diagonally
dominant (sdd) matrices have factor width at most two.

Theorem 3.1.1. A matrix has factor width at most two if and only if it is diagonally dominant or
scaled diagonally dominant.

We let

FW n
k = {symmetric positive semidefinite n×n matrices of factorwidth ≤ k.}.

We have of course
FW n

1 ⊂ FW n
2 ⊂ FW n

3 ⊂ ·· · ⊂ FW n
n = Sn

+.

Next assume A =VV T is a symmetric positive semidefinite matrix where each column of V has at
most k nonzero entries. By the rules of matrix multiplication, for any i, j ∈ {1, ...,n}, and writing V∗ν

and Vν∗ for the ν-th column or row of a matrix V, respectively, we have

(VV T )i j =
m

∑
ν=1

Viν(V T )ν j =
m

∑
ν=1

(V∗νV T
ν∗)i j =

m

∑
ν=1

(V∗νV T
∗ν )i j.

Write A = ∑v∈V (V∗νV T
∗ν ). Note that each V∗νV T

∗ν is a symmetric n×n rank 1 matrix, whose support
lies within a cartesian product K2 = K ×K for some K ⊆ {1,2, ...,n} of cardinality k. Since at the
other hand every n×n matrix with the latter properties can be written as vvT for some v with number
of nonzero entries≤ k, we have the following

Proposition 3.1.2. Let A be an n×n symmetric positive semidefinite matrix, and assume k ∈ Z≥1.

Then A ∈ FW n
k if and only if A is the sum of a finite family of symmetric positive semidefinite n×n

matrices whose supports are all contained in sets K ×K with |K|= k.

Example 3.1.2. As an example, the following 4×4 matrix in the left hand side has factor width 3
since it can be written as sum of psd matrices on the right hand side which these matrices are zeros
everywhere except on some 3×3 sub matrices.

3 2 2 2
2 3 2 2
2 2 3 2
2 2 2 3

=


1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 0

+


1 1 0 1
1 1 0 1
0 0 0 0
1 1 0 1

+


1 0 1 1
0 0 0 0
1 0 1 1
1 0 1 1

+


0 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1

 ,
From Proposition 3.1.2, it follows immediately that each set FW n

k is a convex closed subcone of
Sn
+.
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Let us determine the dual cone of FW n
k .

Proposition 3.1.3. a. The dual of FW n
k is given by

(FW n
k )

∗ = {X ∈ Sn | XK ∈ Sk
+ for all K ⊆ {1,2, ...,n} with |K|= k}.

b. There hold the following inclusions between FW n
k and its dual and double dual:

FW n
k ⊆ (FW n

k )
∗ and FW n

k = (FW n
k )

∗∗.

Proof. a. We have the following computation

(FW n
k )

∗ = {X ∈ Sn | ⟨X ,A⟩ ≥ 0 for all A ∈ FW n
k }

= {X ∈ Sn | ⟨X ,B⟩ ≥ 0 for all B ∈ Sn
+with supp(B)⊆ K for some k− set K ⊆ {1, ...,n}}

= {X ∈ Sn | ⟨XK ,B⟩ ≥ 0 for all B ∈ Sk
+ and all K ⊆ {1, . . . ,n},with |K|= k}

= {X ∈ Sn | XK ∈ (Sk
+)

∗ for all K ⊆ {1, . . . ,n}, with |K|= k}
= {X ∈ Sn | XK ∈ Sk

+ for all K ⊆ {1, . . . ,n}, with |K|= k},

where the first equality follows from the definition of a dual cone, the second from the characterization
of the cone FW n

k given in the Proposition 3.1.2, the third by one of the possibilities to write the
inner product ⟨,⟩ on Sn, the last two equalities are then consequences of the characterization and the
selfduality of the cone Sn

+ mentioned in Chapter 2.
b. If X ∈ FW n

k then as seen, X is a symmetric positive semidefinite matrix and so XK ∈ Sk
+ for any

K ⊆ {1,2, ...,n} with |K|= k, by [30]. So by part a, X ∈ (FW n
k )

∗. The final equality follows from the
fact that FW n

k is a closed convex cone.

3.2 On the geometry of bounded factor width matrices

In this section, we give some geometric properties of the cone of bounded factor width matrices. In
particular, we characterize some of the extreme rays of their duals.

We start with the following lemma about exposedness of the extreme rays of (FW n
k )

∗.

Lemma 3.2.1. The cone (FW n
k )

∗ is (linearly equivalent to) a spectrahedron. Therefore a matrix in
(FW n

k )
∗ which spans an extreme ray is an exposed ray.

Proof. Let E{i, j} be the symmetric n×n matrix which has zeros everywhere except at the entries (i, j)
and ( j, i) where it has 1s and define for l = 1,2, . . . ,

(n
k

)
the matrix

E l
{i, j} =


E{i, j} if i, j are both contained in the lth of the sets I1, I2, . . . , I(n

k)
which

they are
(n

k

)
distinct k element subsets of {1,2, . . . ,n};

0 otherwise.

Consider now the condition

∑
1≤i≤ j≤(n

k)

bi j(E1
{i, j}⊕E2

{i, j} . . .⊕En
{i, j})≽ 0.
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Since a direct sum of matrices is positive semidefinite if and only if each of its summands is positive
semidefinite, the attentive reader finds that this condition expresses precisely that the submatrices BIr ,
r = 1, . . . ,

(n
k

)
with |Ir|= k, Ir ⊆ {1, . . . ,n} of B = (bi j) ∈ Sn should be positive semidefinite. Since

this is the defining property of B to be in (FW n
k )

∗ we find that (FW n
k )

∗ is a spectrahedron. The second
part is a consequence of the theorem that every face of a spectrahedron is exposed. This is proved in
[44, Corollary 1].

Our first result about the extreme rays of the cone (FW n
k )

∗ is as following

Lemma 3.2.2. The matrix A ∈ Sn
+ spans an extreme ray of (FW n

k )
∗ if and only if it has rank 1.

Proof. Let A ∈ Sn
+ span an extreme ray of (FW n

k )
∗ and assume rank(A) = r ≥ 2. Then, as A ∈ Sn

+,

one can write A = x1xT
1 + · · ·+ xrxT

r with real pairwise orthogonal xi. Since the xixT
i ∈ Sn

+, i = 1, ...,r,
these xixT

i are elements of (FW n
k )

∗ since FW n
k ⊂ Sn

+ ⊂ (FW n
k )

∗ and are not multiples of each other,
thus A is not an extreme ray. So for extremality of A rank equal to 1 is necessary.

Now we prove that if the matrix A has rank 1, then it spans an extreme ray of (FW n
k )

∗. Assume
not. i.e., A = xxT = X +Y with some X ,Y ∈ (FW n

k )
∗ and some x ∈ IRn. Then for any k element subset

I ⊆ {1,2, . . . ,n}, xIxT
I = XI +YI. By the characterization of (FW n

k )
∗, XI,YI are positive semidefinite;

that is we have found in Sn
+ a representation of a rank 1 matrix as a sum of two other matrices. Since

the null space of a sum of two psd matrices is contained in the nullspace of each, we infer that XI ,
YI are multiples of xIxT

I : for some real λI , XI = λIxIxT
I , YI = (1−λI)xIxT

I . Now, considering any two
k× k submatrices of X indexed by I and J, we have if i ∈ I ∩ J, then xii = λIx2

i = λJx2
i so if xii ̸= 0

then λI = λJ . Note that if xii = 0, the entire i-th row and column of X must be zero. For any I and J
such that i ∈ I and j ∈ J with xii ̸= 0 and x j j ̸= 0, we can pick K such that {i, j} ∈ K and the above
argument gives λI = λJ = λK . So all are equal to some λ and X = λxxT .

Next, we present a simple fact which will help us in the next theorem to characterize the extreme
rays of (FW n

n−1)
∗.

Lemma 3.2.3. Assume that A ∈ (FW n
n−1)

∗ and let AI to be an n−1×n−1 principal submatrix of A
for some I with I ⊆ {1,2, . . . ,n}, if rank(AI)≤ n−3, then A is psd.

Proof. Since A ∈ (FW n
n−1)

∗, all its proper principal minors are nonnegative. So A is psd if and only if
det(A)≥ 0. But by Cauchy’s interlacing theorem [30] if β1, . . . ,βn−1 are the eigenvalues of AI and
γ1, . . . ,γn are the eigenvalues of A,

γ1 ≤ β1 ≤ γ2 ≤ β2 ≤ . . .≤ βn−1 ≤ γn

Now, since rank(AI) ≤ n− 3, β1 and β2 should be zero which leads to γ2 = 0 and so det(A) = 0,
hence A is psd.

Theorem 3.2.4. If the matrix A∈ (FW n
n−1)

∗ is not psd, the matrix A spans an extreme ray of (FW n
n−1)

∗,
if and only if all of its (n−1)× (n−1) principal submatrices have rank n−2.

Proof. We first prove that if the matrix A spans an extreme ray of (FW n
n−1)

∗, then all of its (n−
1)× (n−1) principal submatrices have rank n−2. Assume that this does not happen, which means
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there is one (n− 1)× (n− 1) principal submatrix which is full rank, otherwise by Lemma 3.2.3
A will be psd and suppose A{1,2,...,n−1} is such principal submatrix. Since the cone (FW n

n−1)
∗ is a

spectrahedron, by Lemma 3.2.1 every face of it is exposed. Hence A is an exposed extreme ray of
(FW n

n−1)
∗. So, there exists a B ∈ (FW n

n−1)
∗∗ = FW n

n−1 such that ⟨B,A⟩ = 0 and ⟨B,X⟩ > 0 for all
X ∈ (FW n

n−1)
∗ \{λA | λ ≥ 0}.

This B ∈ FW n
n−1, and so it can be written as

B = ∑
I⊆{1,2,...,n},|I|=n−1

ιI(BI), for BI ∈ Sn−1
+ .

We thus get

0 = ⟨B,A⟩= ∑
I⊆{1,2,...,n},|I|=n−1

⟨ιI(BI),A⟩= ∑
I⊆{1,2,...,n},|I|=n−1

⟨BI,AI⟩.

Since the (n−1)× (n−1) principal submatrices of A are all positive semidefinite, we get that all the
inner products are nonnegative and hence must be 0. Which means ⟨BI,AI⟩= 0 for all I.

Under the current supposition that A{1,2,...,n−1} is not singular, we conclude that B{1,2,...,n−1} = 0.

Let now a be the n-th column of A and let Ã = aaT . Of course Ã ∈ Sn
+ and so Ã ∈ (FW n

n−1)
∗. We

have
⟨ιI(BI), Ã⟩= ⟨ιI(BI),aaT ⟩= ⟨BI,aIaT

I ⟩.

But note that aI is a column of AI for I ̸= {1,2, . . . ,n−1}, so AI = aIaT
I +A′

I for some A′
I ≽ 0 and

⟨BI,AI⟩= 0 implies ⟨BI,aIaT
I ⟩= 0. Since we know already B{1,2,...,n−1} = 0 we get ⟨B, Ã⟩= 0 . Now

evidently Ã is not a multiple of A so it does not span the same ray and we have a contradiction.

For the reverse direction, assume that A does not span an extreme ray of (FW n
n−1)

∗ which means
that we can write it as

A = γX +(1− γ)Y for some X ,Y ∈ (F̃W
n
n−1)

∗ and γ ∈ [0,1]

where (F̃W
n
n−1)

∗ is the compact section of the cone (FW n
n−1)

∗ where every matrix in this section has
the same trace as matrix A.

Let Xλ = λX +(1−λ )Y, λ ∈ IR+. Given some I, we know that (Xλ )I has rank at most n− 2,
in fact, there is a 2 dimensional space, ker(AI), which is always contained in ker(Xλ )I . Then the
set L = {λ |Xλ ∈ (FW n

n−1)
∗}= [λmin,λmax] since L∩ (FW n

n−1)
∗ ⊆ (F̃W

n
n−1)

∗ which is compact. The
eigenvalues and eigenvectors of (Xλ )I change continuously with λ . Since two zero eigenvalues
correspond to fixed eigenvectors, the only way for (Xλ )I to stop being psd is if a third eigenvalue
switches from positive to negative, which implies that for some I, rank((Xλmax)I)≤ n−3 and the same
for (Xλmin)I and this means by Lemma 3.2.3 that both are psd. Hence A is psd since it is a convex
combination of both.

In the following observation, we observe that conjugate permutation and scaling of a matrix does
not affect extreme rays.
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Observation 1. Let D be a positive definite n×n diagonal matrix and P a n×n permutation matrix.
Then

a. The operation • 7→ D•D defines a bijection from IRn×n onto itself which also induces bijections
from Sn onto itself and from Sn

+ onto itself and similarly bijections of the families of extreme
rays of these cones onto themselves.

b. The cones FW n
k and (FW n

k )
∗ are by • 7→ D•D also bijectively mapped onto themselves and

analogous claims are true for the families of respective extreme rays.

c. The claims of parts a and b remain literally true if we replace in them the corresponding
operation by • 7→ PT •P.

Proof. a. The operation • 7→ D •D is evidently a map of IRn×n to itself. Since with D also D−1

is a well defined and positive definite diagonal matrix, the map • 7→ D−1 •D−1 is evidently the
inverse of the former map on space IRn×n. It is clear that these maps preserve symmetry. Also if
x ∈ IRn, and A ∈ Sn

+, then xT DADx = xT DT ADx = (Dx)T A(Dx)≥ 0. So the cone Sn
+ is also preserved.

Take next a matrix, E, say that spans an extremal ray of Sn
+. If we had DED = E1 +E2 for two

matrices E1,E2 that are not multiples of DED then they are not multiples of each other, and we have
E = D−1E1D−1 +D−1E2D−1 where the matrices on the right are in Sn

+ and are not multiples of each
other and hence are not multiples of E. Hence E would not be extreme. A similar argument goes for
the extreme rays of Sn.

b. If A∈FW n
k then A is a sum of k matrices of the form ιI(B) with I ⊂ [n], |I|= k and B is a positive

semidefinite k×k matrix. It is clear that DιI(B)D = ιI(DIBDI) and that DIBDI is positive semidefinite
again. Consequently DAD is again sum of k matrices ιI(B′) with B′ all positive semidefinite. So
DAD ∈ FW n

k . Similarly as above we see that our operation will also yield a bijection from the
extreme rays of FW n

k to itself. Finally if A ∈ (FW n
k )

∗ then all its principal k× k matrices are positive
semidefinite. So the arguments above can also serve to show the invariance of (FW n

k )
∗ and the

invariance of the set of extreme rays.
c. The proofs we gave in parts a and b can with minimal changes be transferred to valid proofs for

the map • 7→ PT •P. Observe that PT P = I.

3.2.1 Characterizing extreme rays of (FW 4
3 )

∗

We start this section with the following lemma

Lemma 3.2.5. If Q is positive semidefinite and Q ̸∈ FW 4
3 then there exists a symmetric 4×4 matrix

B and a positive definite diagonal matrix D such that

i. B spans an extreme ray in (FW 4
3 )

∗

ii. B has the diagonal only entries all equal to 1

iii. ⟨DQD,B⟩< 0.
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Proof. Suppose first that for all B ∈ (FW 4
3 )

∗ we had ⟨Q,B⟩ ≥ 0. This would show by definition of
dual cones, that Q ∈ (FW 4

3 )
∗∗. But we know by Proposition 3.1.3 that (FW 4

3 )
∗∗ = FW 4

3 . So we get a
contradiction. So there exists a matrix B ∈ (FW 4

3 )
∗ such that ⟨Q,B⟩< 0. Now every matrix in (FW 4

3 )
∗

is a finite positive linear combination of some matrices that span extreme rays of (FW 4
3 )

∗. Hence for
at least one of these extreme-ray- defining matrices whose combination is B, taken at the place of B,
we again must have the inequality. We call this extremal matrix now B.

By hypothesis Q ∈ S4
+; so ⟨Q,B⟩< 0, implies B ̸∈ S4

+. Since every diagonal entry of B is diagonal
entry of some principal 3× 3 submatrix of B, and these submatrices are positive semidefinite, the
diagonal entries of B are all nonnegative. Assume now that some diagonal entry, say b11 = 0. Then
by a standard argument, see e.g. [30, p400c3], all the entries of column 1 and row 1 would be 0.
The nonzero entries of B are thus found in B234, which is positive semidefinite. Hence B is psd, a
contradiction.

Thus we have b11,b22,b33,b44 > 0 and the diagonal matrix D = Diag(b−1/2
11 ,b−1/2

22 ,b−1/2
33 ,b−1/2

44 )

is well defined. By Observation 1, the matrix B′ = DBD will be again an extreme ray of (FW 4
3 )

∗

and it is clear that B′ = (b−1/2
ii bi jb

−1/2
j j )4

i, j=1 is a matrix which has only ones on the diagonal. Finally
⟨D−1QD−1,B′⟩= ⟨Q,B⟩< 0. Thus renaming D−1,B′ to D,B, respectively, we get the claim.

Based on the results that we have proven so far, we can fully characterize the extreme rays of
(FW 4

3 )
∗.

Proposition 3.2.6. Let B be a symmetric 4×4 not positive semidefinite matrix which spans an extreme
ray of (FW 4

3 )
∗, then for some a,c ∈]−π,π[\{0}, some permutation P and some nonsingular diagonal

matrix D, the matrix B has the following form

DPBPT DT =


1 cos(a) cos(a− c) cos(c)

cos(a) 1 cos(c) cos(a− c)
cos(a− c) cos(c) 1 cos(a)

cos(c) cos(a− c) cos(a) 1

 .

Proof. First note that by the considerations of the previous lemma, we can always assume a scaling
that takes all diagonal entries of B to 1. Furthermore, by assumption, B ∈ (FW 4

3 )
∗ which means all

of its 3× 3 and accordingly its 2× 2 principal submatrices are psd, hence for all i, j ∈ {1,2,3,4},
0 ≤ biib j j −b2

i j = 1−b2
i j and hence b2

i j ≤ 1 for all pairs (i, j). Therefore, using that the image of the
cossine function is [−1,1], we can write B as

B =


1 cos(a) cos(b) cos(c)

cos(a) 1 b23 b24

cos(b) b23 1 b34

cos(c) b24 b34 1

 ,

for some a,b,c ∈]−π,π[. Now since B spans an extreme ray of (FW 4
3 )

∗, by Theorem 3.2.4 all of its
3× 3 principal submatrices have rank 2 and hence have zero determinant. Hence by starting with
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principal submatrix B123, we have

0 = det


 1 cos(a) cos(b)

cos(a) 1 b23

cos(b) b23 1


= 1−b2

23 − cos(a)2 +2b23 cos(a)cos(b)− cos(b)2.

By solving this quadratic equation for b23 one finds

b23 ∈ {cos(a)cos(b)±
√

1− cos(a)2 − cos(b)2 + cos(a)2 cos(b)2}
= {cos(a)cos(b)±

√
(1− cos2(a))(1− cos2(b))}

= {cos(a)cos(b)± sin(a)sin(b)}
= {cos(a∓b)}.

We do completely analogous calculations for principal submatrices B134 and B124 and obtain
b34 ∈ {cos(b± c)} and b24 ∈ {cos(a± c)}, respectively. Now we have eight matrices that emerge
from choosing one of the symbols + or − in each of the patterns a± b,a± c,b± c existent in the
matrix below by taking care that the symmetry of the matrix is preserved.

1 cos(a) cos(b) cos(c)
cos(a) 1 cos(a±b) cos(a± c)
cos(b) cos(a±b) 1 cos(b± c)
cos(c) cos(a± c) cos(b± c) 1

 .
The following table indicates in the first column the possible selections of signs in a±b,a± c,b± c,
respectively; and in the second column and the third column the determinants of the respective
matrices B234 and B.

x± y det(B234) det(B)
+,+,+ 4sin(a)sin(b)sin(c)sin(a+b+ c) −4sin(a)2 sin(b)2 sin(c)2

+,+,− 0 0
+,−,+ 0 0
+,−,− −4sin(a)sin(b)sin(a+b− c)sin(c) −4sin(a)2 sin(b)2 sin(c)2

−,+,+ 0 0
−,+,− −4sin(a)sin(b)sin(c)sin(a−b+ c) −4sin(a)2 sin(b)2 sin(c)2

−,−,+ 4sin(a)sin(b)sin(a−b− c)sin(c) −4sin(a)2 sin(b)2 sin(c)2

−,−,− 0 0

Now assume one of the reals a,b,c is 0 or ±π. Then the table shows that all entries in columns two
and three vanish. Hence the matrix B in this case is positive semidefinite. Thus in order that B, as
required, is not positive semidefinite it is necessary that a,b,c ̸= {−π,0,π}. In this case column
3 guarantees we get a not positive semidefinite matrix B in exactly the cases of the sign choices
+++,+−−,−+−,−−+ for a±b,a± c,b± c, respectively. The matrices corresponding to rows,
2,3,5,8 of the table are positive semidefinite independent of choices a,b,c.. Explicitly this means that
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B must be one of the following four matrices
1 cos(a) cos(b) cos(c)

cos(a) 1 cos(a+b) cos(a+ c)
cos(b) cos(a+b) 1 cos(b+ c)
cos(c) cos(a+ c) cos(b+ c) 1

 ,


1 cos(a) cos(b) cos(c)
cos(a) 1 cos(a+b) cos(a− c)
cos(b) cos(a+b) 1 cos(b− c)
cos(c) cos(a− c) cos(b− c) 1

 ,


1 cos(a) cos(b) cos(c)
cos(a) 1 cos(a−b) cos(a+ c)
cos(b) cos(a−b) 1 cos(b− c)
cos(c) cos(a+ c) cos(b− c) 1

 ,


1 cos(a) cos(b) cos(c)
cos(a) 1 cos(a−b) cos(a− c)
cos(b) cos(a−b) 1 cos(b+ c)
cos(c) cos(a− c) cos(b+ c) 1

 .
Note by substituting the letter c by −c in the left upper matrix we get the right upper matrix because
cos(−c) = cos(c). Exactly the same remark leads from the left lower matrix to the right lower matrix.
Finally note that after doing the transpositions of rows and columns 3,4, the upper left matrix shown
takes the form 

1 cos(a) cos(c) cos(b)
cos(a) 1 cos(a+ c) cos(a+b)
cos(c) cos(a+ c) 1 cos(b+ c)
cos(b) cos(a+b) cos(b+ c) 1


and after changing the name of variable c to −b and of variable b to c and noting that cos(b− c) =
cos(c−b) we see we have obtained the following matrix

1 cos(a) cos(b) cos(c)
cos(a) 1 cos(a−b) cos(a+ c)
cos(b) cos(a−b) 1 cos(c−b)
cos(c) cos(a+ c) cos(c−b) 1

 .
Hence we have one form and its possible permutations. Now, we know that the determinant of
the submatrix B234 is 4sin(a)sin(b)sin(a−b− c)sin(c). We know by Theorem 3.2.4 that all 3×3
principal minors must vanish, so det(B234) = 0 which happens if and only if b = a− c+ kπ , k ∈ Z.
Substituting this in the start matrix B we get the following two forms

1 cos(a) δ cos(a− c) cos(c)
cos(a) 1 δ cos(c) cos(a− c)

δ cos(a− c) δ cos(c) 1 δ cos(a)
cos(c) cos(a− c) δ cos(a) 1

 ,
with δ =±1. But note that these are the same up to scaling by a diagonal matrix, so we may assume
δ = 1, finishing the proof.
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3.3 Factor width k matrices and sums of k-nomial squares polynomials

Ahmadi and Majumdar in [3] considered the following example

pa
n = (

n

∑
i=1

xi)
2 +(a−1)

n

∑
i=1

x2
i

when n = 3 and proved that if a < 2 then no nonnegative integer r can be chosen so that (x2
1 + x2

2 +

x2
3)

r pa
3 is a sum of squares of binomials, although it is clearly nonnegative for a ≥ 1.

In this section, we give negative results along the same direction. We first characterize when pa
n is

a sum of k-nomial squares, then we show that pa
n,r, that is, the multiplication of pa

n with (∑n
i=1 x2

i )
r,

is a sum of k-nomial squares if and only if this is the case for r = 0. Before presenting our proof,
we make the connection between factor width k matrices and sums of k-nomial squares polynomials
which will be used along the proof. The following proposition states this connection

Proposition 3.3.1. A multivariate polynomial p(x) of degree 2d is a sum of k-nomial squares (soks)

if and only if it can be written in the form p(x) = z(x)T
d Qz(x)d with matrix Q ∈ FW (n+d

d )
k .

Proof. Consider an expression a1m1+ · · ·+akmk with reals a1, . . . ,ak and monomials m1, . . . ,mk. Note
that monomials m1, . . . ,mk occur necessarily in the column z(x)d at positions i1, . . . , ik, say. Construct
a column q of size

(n+d
d

)
by putting into positions i1, . . . , ik respectively the reals a1, . . . ,ak, and into

all other positions 0s. Then evidently z(x)T
d q = a1m1+ · · ·+akmk, and consequently z(x)T

d qqT z(x)d =

(a1m1 + · · ·+akmk)
2. Consequently, a polynomial which is a sum of, say, t squares of k-nomial can

be written as z(x)T
d Qz(x)d , where Q = ∑

t
ν=1 qνqT

ν , with suitable columns q1, . . . ,qt of size
(n+d

d

)
each

of which has at most k nonzero entries. It follows that Q is a matrix of factor width k. Conversely if
Q is of factor width k, then we already know we can write Q = ∑q∈Q qqT where each column has at
most k nonzero real entries. Clearly from the arguments above follows now that z(x)T

d Qz(x)d yields a
polynomial which is a finite sum of k-nomial squares.

We shall also need the following proposition.

Lemma 3.3.2. Consider a quadratic form q(x) = xT Qx and a polynomial p related to q by p =

(∑n
i=1(λixi)

2)r q. Then every monomial of p has at most two odd degree variables and we have p(i, j) =
2(∑n

i=1 λ 2
i )

rqi j and p0 = (∑n
i=1 λ 2

i )
r tr(Q) where p(i, j) is the sum of coefficients of the monomials in

which xi and x j have odd degree and p0 is the sum of coefficients of even monomials of p and qi j is
the coefficient of xix j in q, i < j.

Proof. The quadratic form is

q(x) = ∑
1≤i, j≤n

xiqi jx j =
n

∑
i=1

qiix2
i + ∑

1≤i< j≤n
2qi jxix j,

while by the multinomial theorem [14] we have

((λ1x1)
2 + · · ·+(λnxn)

2)r = ∑
i1+···+in=r

(
r

i1, . . . , in

)
(λ1x1)

2i1(λ2x2)
2i2 . . .(λnxn)

2in .
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Thus, putting the λ s into evidence, by definition of p, we get

p = ∑
(i,i)∈J1

qii

(
r
i

)
λ

2i1
1 · · ·λ 2ii

i · · ·λ 2in
n · x2i1

1 · · ·x2ii+2
i · · ·x2in

n

+ ∑
((i, j),i)∈J2

2qi j

(
r
i

)
λ

2i1
1 · · ·λ 2in

n · x2i1
1 . . .x2ii+1

i . . .x2i j+1
j . . .x2in

n

where i = (i1, . . . , in) and, with |i|= i1 + · · ·+ in,

J1 = {(i, i) : i ∈ {1, . . . ,n}, i ∈ Zn
≥0, |i|= r},

J2 = {((i, j), i) : 1 ≤ i < j ≤ n, i ∈ Zn
≥0, |i|= r}.

From the above equation for p , we recognize that

p(i, j) = 2qi j ∑
i1+···+in=r

(
r

i1, . . . , in

)
λ

2i1
1 · · ·λ 2ii

i = 2qi j(λ
2
1 + · · ·+λ

2
n )

r,

again by the multinomial theorem; and similarly we have

p0 =
n

∑
i=1

∑
i1+···+in=r

qii

(
r

i1, . . . , in

)
λ

2ii
i · · ·λ 2in

n =
n

∑
i=1

qii ∑
i1+···+in=r

(
r

i1, . . . , in

)
λ

2ii
i · · ·λ 2in

n

= (λ 2
1 + · · ·+λ

2
n )

rtrace(Q).

In addition, we find the following useful fact proved in Muir’s treatise [39, p 61].

Lemma 3.3.3. For the determinant at the left hand side below which has only a’s except on the
diagonal, we have ∣∣∣∣∣∣∣∣∣∣

b1 a ... a
a b2 ... a
...

...
. . .

...
a a ... bn

∣∣∣∣∣∣∣∣∣∣
=

n

∏
i=1

(bi −a)+a
n

∑
j=1

n

∏
i:i ̸= j

(bi −a)

Now we are ready to prove our results regarding Ahmadi and Majumdar’s example.

Proposition 3.3.4. If a ≥ n−1
k−1 , then pa

n is a sum of k-nomial squares.

Proof. The quadratic form pa
n, can be written as a∑

n
i=1 x2

i +2∑i< j xix j, so p = z(x)T Qz(x) by means
of the n×n matrix Q shown.

Q =


a 1 · · · 1 1
1 a · · · 1 1
...

. . .
...

1 1
1 1 · · · 1 a

 .
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Now there exist
(n

k

)
subsets K of cardinality k of the set {1,2, . . . ,n}. Let i, j ∈ {1,2, . . . ,n}. A pair

(i, i) lies in exactly
(n−1

k−1

)
of the sets K ×K while a pair (i, j) with i ̸= j lies in K ×K if and only if

{i, j} ⊆ K. It hence lies in exactly
(n−2

k−2

)
sets K ×K. Consider the k× k matrix B as following

B =

(
n−2
k−2

)−1



(k−1)a
n−1 1 · · · 1 1
1 (k−1)a

n−1 · · · 1 1
...

. . .
...

1 1
1 1 · · · 1 (k−1)a

n−1

 ,

and define ιK(B) to be the n×n matrix of support K ×K which carries on it the matrix B. Then our
arguments yield that ∑K:|K|=k ιK(B) = Q.

Take an arbitrary l× l submatrix of the matrix factor of B. By the previous lemma , this submatrix
has determinant ( (k−1)a

n−1 − 1)−1+l)( (k−1)a
n−1 − 1 + l). It follows from the hypothesis for a that this

determinant is nonnegative. So B, and thus ιK(B), is a positive semidefinite matrix and Q hence a
matrix of factor width ≤ k by Proposition 3.1.2. This means by Proposition 3.3.1 that pa

n is a sum of
k-nomial squares.

Theorem 3.3.5. For integers n ≥ 0 and r ≥ 0, define

pa
n,r = (

n

∑
i=1

x2
i )

r pa
n = (

n

∑
i=1

x2
i )

r ·

(
(

n

∑
i=1

xi)
2 +(a−1)

n

∑
i=1

x2
i

)
.

Then pa
n,r is a sum of k-nomial squares if and only if pa

n = pa
n,0 is a sum of k-nomial squares.

Proof. Clearly, if pa
n is a soks then pa

n,r is a soks. So we need to show the inverse. Assume that the
degree 2(r+ 1) polynomial pa

n,r is a soks. Let In,r+1 = {(i1, . . . , in) s.t. ik ∈ N0,∑
n
k=1 ik = r+ 1} be

the set of vectors of exponents in Zn
≥0 that occurs in the family of monomials of a homogeneous

polynomial of degree r+1 in variables x1, ...,xn. Let this family of monomials be also the one that
occurs in z(x)r+1.

By Proposition 3.3.1, we can write

pa
n,r = z(x)T

r+1Hn,rz(x)r+1 for some Hn,r ∈ FW (n+r
r+1)

k .

Call an i ∈ Zn
≥0 even if it has only even entries and consider now the matrix Bn,r ∈ IRIn,r+1×In,r+1 given

by

(Bn,r)i j =

{
k−1 if i+ j is even,
−1 otherwise.

We will show now that Bn,r ∈ (FW (n+r
r+1)

k )∗; that is we shall prove that every k×k principal submatrix of
Bn,r is positive semidefinite, see Proposition 3.1.3. Since n,r are fixed, we write B and H for matrices
Bn,r,Hn,r respectively.
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Note that a sum i+ j of such n-uples is even if and only if the sets of positions in i where odd
entries occur equals the corresponding set in j. (Example: The 5-uple i = (1,0,0,3,2) has {1,4} as
the set of positions of odd entries.)

So take a k× k submatrix M of B with rows and columns indexed by the n-uples i1, . . . , ik, say.
Determine for each n-uple its set of positions of odd entries. Let S1, . . . ,Sl (l ≤ k) be the distinct non
empty sets of such positions. Now rearrange the n-uples so that the first few n-uples each have S1 as
set of positions of odd entries, the next few have S2 as such set of positions, etc. Let s1, . . . ,sl be the
sizes of these sets. To the rearrangement of the n-uples corresponds a k×k permutation matrix P such
that PMPT is ‘a direct sum of blocks of sizes s1 × s1, . . . ,sl × sl with entries k−1 over a background
of −1s’. Formally, for suitable P we can express this as

PMPT = (−1)Jk + k(Js1 ⊕ Js2 ⊕·· ·⊕ Jsl )

This same matrix can be produced as follows. Define l × l matrix N and l × k matrix C by

N = (−1)Jl + kIl =


k−1 −1 . . . −1
−1 k−1 . . . −1

...
. . .

−1 . . . k−1

 ,

C =


1 1 · · · 1

1 1 · · · 1
....

1 1 · · · 1


where rows, 1,2, ..., l of C have, respectively, s1,s2, ...,sl entries equal to 1. Check that then PMPT =

CT NC. Now, again by Lemma 3.3.3, N is positive semidefinite, Hence M will be psd. Since the k× k

submatrix M of B was arbitrary, we are done with proving that B ∈ (FW (n+r
r+1)

k )∗. By definition of the
concept of a dual cone, we have ⟨B,H⟩ ≥ 0, and by the definitions of ⟨,⟩ , H and B, hence

⟨B,H⟩= (k−1) ∑
i, j:i+ j even

hi j +(−1) ∑
i, j:i+ j non-even

hi j ≥ 0.

Since the quadratic form underlying our construction of pa
n,r is pa

n = a∑
n
i=1 x2

i +2∑i< j xix j, and it has
defining matrix Q mentioned in the previous proposition, we get by Lemma 3.3.2 that

∑
i, j:i+ j even

hi j = nrtrQ= nr+1a, and ∑
i, j:i+ j non−even

hi j = 2nr× ∑
1≤i< j≤n

qi j = 2nr 1
2

n(n−1)= nr+1(n−1).

Hence the inequality above reads (k−1)nr+1a ≥ nr+1(n−1) or a ≥ n−1
k−1 , which means by the previous

proposition that pa
n is a sum of k-nomial squares.
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3.4 Factor width 2 matrices and sum of binomial squares

For the case of k = 2, sums of squares of k-nomials are also known as sums of binomial squares [23]
or scaled diagonally dominant sums of squares (SDSOS) [3]. In this section we will try to generalize
Ahmadi And Majumdar’s [3] counterexample in this setting. We prove that a quadratic form is
a r-sobs, if and only if it is a sobs. But before we proceed further, we shall need the following
proposition.

Proposition 3.4.1. [23, Corollary 2.9] Given a quadratic form P(x) = ∑
n
i=1 qix2

i +∑i< j qi jxix j, then
if F(x) = ∑

n
i=1 qix2

i −∑i< j |qi j|xix j is nonnegative, P(x) is sum of binomial squares.

Theorem 3.4.2. Let q(x) = q(x1, . . . ,xn) be a real quadratic form and let r ∈ Z≥0. Then if q(x)(x2
1 +

· · ·+ x2
n)

r is sum of squares of binomials, so is q(x) itself.

Proof. Assume that q(x)(x2
1 + · · ·+ x2

n)
r is a sum of binomial squares. We will prove that q(x) is a

sum of binomial squares. Write q(x) = ∑
n
i=1 aix2

i +∑1≤i< j≤n di jxix j, say. Then considerations as in
the proof of Lemma 3.3.2 yield

q(x).(x2
1 + . . . ,+x2

n)
r = ∑

(i,i)∈J1

ai

(
r
i

)
x2i1

1 · · ·x2ii+2
i · · ·x2in

n

+ ∑
((i, j),i)∈J2

di j

(
r
i

)
x2i1

1 · · ·x2ii+1
i · · ·x2i j+1

j · · ·x2in
n ,

where again,

J1 = {(i, i) : i ∈ {1, . . . ,n}, i ∈ Zn
≥0, |i|= r}, J2 = {((i, j), i) : 1 ≤ i < j ≤ n, i ∈ Zn

≥0, |i|= r}.

Now the monomials of degree r are of the form xi1
1 xi2

2 . . .xin
n with i1+ · · ·+ in = r. There are as we know

L =
(r+n−1

r

)
such monomials. We order these and denote them by m1, . . . ,mL. Every binomial is of

the form (αi jmi+βi jm j) with some selection of i, j with 1 ≤ i < j ≤ L. By possibly redefining αii, we
can thus assume the binomials are of the form αiimi, 1 ≤ i ≤ L or (αi jmi +βi jm j) with 1 ≤ i < j ≤ L.
A sum of binomial squares is thus given as

L

∑
i=1

α
2
iim

2
i + ∑

1≤i< j≤L
(αi jmi +βi jm j)

2 =
L

∑
i=1

α
2
iim

2
i +∑

i< j
α

2
i jm

2
i +∑

i< j
β

2
i jm

2
j + ∑

1≤i< j≤L
2αi jβi jmim j

=
L

∑
i=1

(α2
ii +α

2
i,i+1 + . . .+α

2
iL +β

2
1i + . . .β 2

i−1,i)m
2
i + ∑

1≤i< j≤L
2αi jβi jmim j.

Now assuming, as we do, that q(x)(x2
1 + · · ·+ x2

n)
r is a sobs, by means of comparison of coefficients,

we get a system of |J1|+ |J2| equations between reals. It is easily seen that these can be obtained as
follows: For each (i, i) ∈ J1 define

T (i, i) = {indices t ∈ {1, . . . ,L} for which m2
t = x2i1

1 · · ·x2ii+2
i · · ·x2in

n },

S(i, i) = {index pairs s1 < s2 for which ms1ms2 = x2i1
1 · · ·x2ii+2

i · · ·x2in
n }
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and write the equation

ai

(
r
i

)
ri1,...,in = ∑

t∈T (i,i)
(α2

tt + . . .+α
2
tL +β

2
1t + . . .+β

2
t−1,t)+ ∑

(s1,s2)∈S(i,i)
2αs1s2βs1s2

for each ((i, j), i) ∈ J2, let

S′((i, j), i) = {index pairs s′1 < s′2 for which ms′1
ms′2

= x2i1
1 . . .x2ii+1

i . . .x2i j+1
j . . .x2in

n },

and write the equation

di j

(
r
i

)
= ∑

s′1,s
′
2∈S′((i, j),i)

2αs′1s′2
βs′1s′2

.

Every system of reals ({ai}n
i=1,{di j}n

i, j=1,{αi j}1≤i≤ j≤L,{βi j}1≤i< j≤L) which satisfies the system of
equations gives rise to a quadratic form q and binomials so that q(x)(x2

1 + · · ·+ x2
n)

r is sum of squares
of these binomials and if we have a system of reals satisfying the system, then we can find a particular
new solution by replacing the di j which are positive by −di j and simultaneously replacing the βs′1s′2

for
which s′1,s

′
2 ∈ S′((i, j), i) by −βs′1s′2

. Indeed note that the sets S′((i, j), i) are disjoint from the sets S(i, i)
and (−βs′1s′2

)2 = (βs′1s′2
)2, hence the first set of |J1| equations will again be satisfied. In what concerns

the second set of equations we note that the sets S′((i, j), i) are also mutually disjoint, because a choice
(s′1,s

′
2) defines via forming ms′1

ms′2
a unique power product x2i1

1 . . .x2ii+1
i . . .x2i j+1

j . . .x2in
n with exactly

two odd exponents determining i, j and then i. In the other words (s′1,s
′
2) lives in only one of the

sets S′((i, j), i) hence carrying through the replacements indicated we change the sign at the left hand
side of equation if and only if we change the sign of the corresponding right hand side. We therefore
satisfy also the second group of equations.

The new solution tells us that q̂(x)(x2
1 + · · ·+ x2

n)
r is sum of squares of binomials where q̂(x) =

∑
n
i=1 aix2

i −∑1≤i< j≤n |di j|xix j. Now since the multiplier is evidently positive definite, q̂ is nonnegative.
Hence by Proposition 3.4.1, q is a sum of squares of binomials.

The following example illustrates the theorem for a quadratic form in 3 variables and r = 1 .

Example 3.4.1. Let q(x,y,z) = ax2+by2+cz2+dxy+exz+ f yz be a ternary quadratic form. Assume
that q.(x2 + y2 + z2) is a sum of binomial squares, then q itself is a sobs. By direct computation we
find that

(x2 + y2 + z2).q(x,y,z)

= ax4 +by4 + cz4

+(a+b)x2y2 +(a+ c)x2z2 +(b+ c)y2z2

+dx3y+dxy3 + ex3z+ f y3z+ exz3 + f yz3

+dxyz2 + exy2z+ f x2yz

In such forms all possible monomials in three variables of degree 4 occur. In order to show these
polynomials as sobs, think of 6 degree 2 monomials as laid out lexicographically xx, xy, xz,yy yz,zz.
These monomials have ordinal 1,2,3,4,5,6 respectively. Any binomial is a linear combination of two
of these monomials, the i-th and the j-th say, with i ≤ j. We index the coefficients of the monomials in
such a binomial by αi j and βi j.
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Thus, examples of our binomials are α12x2+β12xy and α23xy+β23xz. Also the binomials αiix2+βiix2

can be simplified to αiix2 via redefining αii so we will suppress βii throughout. There remain thus(6
2

)
+6 = 21 index pairs. Assume now a quartic form is a sum of the 21 squares of binomials. Then

the monomials of this form have the following coefficients:

x4
α

2
11 +α

2
12 +α

2
13 +α

2
14 +α

2
15 +α

2
16 = a

y4
β

2
14 +β

2
24 +β

2
34 +α

2
44 +α

2
45 +α

2
46 = b

z4
β

2
16 +β

2
26 +β

2
36 +β

2
46 +β

2
56 +α

2
46 = c

x2y2
β

2
12 +α

2
22 +α

2
23 +α

2
24 +α

2
25 +α

2
26+ 2α14β14 = a+b

x2z2
β

2
13 +β

2
23 +α

2
33 +α

2
34 +α

2
35 +α

2
36+ 2α16β16 = c+a

z2y2
β

2
15 +β

2
25 +β

2
35 +β

2
45 +α

2
55 +α

2
56+ 2α46β46 = c+b

x3y 2α12β12 = d

xy3 2α24β24 = d

xyz2 2α26β26 +2α35β35 = d

x3z 2α13β13 = e

xy2z 2α25β25 +2α34β34 = e

xz3 2α36β36 = e

x2yz 2α23β23 +2α15β15 = f

yz3 2α56β56 = f

y3z 2α45β45 = f

In this scheme at the right hand side you find also the respective coefficients of q.(x2 +y2 + z2). So the
following is clear:

Every family of reals αs, β s and a,b, . . . , f that satisfies the system of equations at the right hand
side gives rise to a quadratic form q(x,y,z) such that q.(x2 + y2 + z2) is a sobs, and conversely if q
is a ternary quadratic form such that q.(x2 + y2 + z2)2 is a sobs it produces such a system. We also
denote q̂ as following

q̂ = ax2 +by2 + cz2 −|d|xy−|e|xz−| f |yz

A quadratic form q is a sobs if and only if q̂ is positive semidefinite. So all we need to show is that q̂ is
positive semidefinite.

In order to do this in our system of equations, whenever d,e, f is positive, replace in the system
the β⋆s that occur in the LHS of those equations that have d,e, f at RHS by −β⋆s and d,e, f by
−d,−e,− f . This yield a new set of reals which satisfies the old system. The old a,b,c together with
partially new d,e, f give a system that corresponds to saying that for q̂, we have that q̂.(x2 + y2 + z2)

is a sobs. Hence it is a nonegative form. Now since x2 + y2 + z2 is positive definite it follows that q̂ is
positive semidefinite and then q is a sobs.

The Theorem 3.4.2 is true only for quadratics which means that in general it is not true for other
polynomials with degree greater than two. The Motzkin polynomial is an example which shows this
fact. In what follows we will show that Motzkin polynomial is neither a sobs nor a 1-sobs , but it is a
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Fig. 3.1 Newton polytope of polynomial p(x,y) = 5− xy+ x2y2 −5y2 + x3y

2-sobs. In our proof, we shall need the concept of Newton polytope for polynomials which is defined
as following.

Definition 7. Consider a multivariate polynomial p(x1, . . . ,xn) = ∑α cαxα . The Newton polytope of
p, denoted by New(p), is the convex hull of the set of exponents α , considered as vectors in Rn.

Example 3.4.2. As an example consider the polynomial p(x,y)= 5−xy−x2y2+3y2+x3y. Its Newton
polytope N(p), displayed in Figure 3.1, is the convex hull of the points (0,0),(1,1),(2,2),(0,2),(3,1).

Theorem 3.4.3. ( [45, Theorem 1]) If polynomial p(x) is a sums of squares, then the Newton polytope
of p has only even vertices corresponding to positive coefficients of p. Moreover, the Newton polytope
of any square on the decomposition is contained in New(p).

Example 3.4.3. Polynomial M = x4y2+x2y4+z6−3x2y2z2 which is the so called Motzkin polynomial,
is not a sobs neither a 1-sobs.

Proof. We prove that Motzkin Polynomial is neither a sobs nor a 1-sobs. First we will show that
the Motzkin polynomial is not a sobs. We have M(1,1,1) = 0, therefore, assuming M is a sobs
every binomial square entering in the representation of M has to vanish in (1,1,1). So, if αxi1yi2zi3 −
βx j1y j2z j3 enters in the representation, then we get (α −β )2 = 0 and so α = β . Hence, every binomial
square has to be of the form (m1−m2)

2 where m1,m2 are monomials of degree 2 which we can assume
to be distinct. For monomial −3x2y2z2 with negative coefficient, there must exist a binomial square
α2(m1 −m2)

2 so that m1m2 = x2y2z2.
We have the following sum representations for exponents of monomial −3x2y2z2, where we always
assume the first monomial smaller than the second (lexicographically) and where we order the first
monomial increasingly

222 =012+210

021+201

102+120
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Fig. 3.2 Newton polytope of Motzkin polynomial

in any case the resultant square has Newton polytope which is not contained in the Newton polytope
of M (shown in Figure 3.2). As a result −3x2y2z2 can not be obtained by any sum of binomial squares.
In order to show that Motzkin polynomial is not a 1-sobs, we do a similar argument, we first multiply
(x2 + y2 + z2) with Motzkin polynomial as following

p(x,y,z) = (x2 + y2 + z2)(x4y2 + x2y4 + z6 −3x2y2z2)

= 2x4y4 + x6y2 + x2y6 + y2z6 + x2z6 + z8 −2x4y2z2 −2x2y4z2 −3x2y2z4
(3.1)

By the same reasoning as before, for every degree 8 monomial m occuring in p with negative
coefficient, there must exist a binomial square α2(m1 − m2)

2 so that m1m2 = m. We have the
following sum representations for exponents of monomials with negative coefficients

224 = 004+220 242 = 022+220 422 = 022+400

= 013+211 = 211+031 = 112+310

= 022+202 = 040+202 = 121+301

= 103+121 = 112+130 = 202+220

The representations 211+031, 121+301, 022+400, 040+202, 022+220, 202+220 and 022+
202 are eliminated since in any case the resultant squares are not in representation of polyno-
mial p shown in (3.1). Figure 3.3 shows the Newton polytope of p which is the convex hull of
points {(0,0,8),(4,2,2),(2,4,2),(2,2,4),(2,0,6),(0,2,6),(2,6,0),(6,2,0),(4,4,0)}. Now we are
left with the following possibilities for monomials in p with negative coefficient

224 = 004+220 242 = 112+130 422 = 112+310

= 013+211

= 103+121
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Fig. 3.3 Newton polytope of p

and with these insights, if p has a sobs representation, then we can write

p= p1+α1(z4−x2y2)2+α2(yz3−x2yz)2+α3(xz3−xy2z)2+β (xyz2−xy3)2+γ(xyz2−x3y)2 (3.2)

Where p1 is a sobs which does not contain any of the shown binomials. Also p1 by previous arguments
cannot produce any of the terms with negative coefficients of p. From the representation (3.2) it
follows

p = p1 +α1z8 +α1x4y4 +α2x4y2z2 +α3x2z6 +α3x2z6 +α3x2y4z2

− (2α1 +2α2 +2α3)x2y2z4 +βx2y2z4 +βx2y6 + γx2y2z4 + γx6y2 −2βx2y4z2 −2γx4y2z2

by comparison with p, we find β = γ = 1 and α1 +α2 +α3 =
3
2 after cancellations we now have

2x4y4 + x6y2 + x2y6 + y2z6 + x2z6 + z8

= p1 +α1z8 +α1x4y4 +α2x4y2z2 +α3x2z6 +α3x2z6

+α3x2y4z2 + x2y2z4 + x2y6 + x2y2z4 + x6y2

or
(2−α1)x4y4 +(1−α1)y2z6 +(1−α3)x2z6 +(1−α1)z8

−α2x4y2z2 −α3x2y4z2 −2x2y2z4 = p1

Now we know −2x2y2z4 cannot be generated by p1 since it does not have the right binomials for this,
as we observed already and this is a contradiction which proves Motzkin polynomial is not a 1-sobs.

The following proposition determines when we can say that a general multivariate homogeneous
polynomial which vanishes in one, can be written as sum of binomial squares.
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Proposition 3.4.4. If p = p(x1, . . . ,xn) is a form for which p(1,1, . . . ,1) = 0, then the question
whether p is a sobs can be reduced to the question whether a certain system of linear equations has a
nonnegative solution.

Proof. We know already why p can be written as a nonnegative linear combination of expression
of the form (m−m′)2 where m amd m′ are monomials of degree d, where 2d is degree of p. If the
monomials are {mi}L

i=1, we have in case (p is a sobs) a representation p = ∑1≤i< j≤L αi j(mi −m j)
2

with αi j ≥ 0. It is now clear that a linear system of equations will emerge from coefficient comparisons.

In the following example we show that Motzkin polynomial is 2-sobs.

Example 3.4.4. Consider the polynomial

p(x) = (x2 + y2 + z2)2(x4y2 + x2y4 + z6 −3x2y2z2)

= x2y8 +3x6y4 +3x4y6 −2x4y4z2 − x2y6z2 −5x2y4z4 + x8y2

− x6y2z2 −5x4y2z4 + y4z6 + x4z6 − x2y2z6 +2x2z8 +2y2z8 + z10

By choosing monomial vector z(x) as

z(x) = [x4y,x3y2,x2y3,xy4,x2yz2,xy2z2,x2z3,y2z3,xz4,yz4,z5]

an sdd matrix M can be computed as

M =



1 0 0 0 −0.5 0 0 0 0 −0.5 0
0 3 0 0 0 −0.5 0 0 −2.5 0 0
0 0 3 0 −0.5 0 0 0 0 −2.5 0
0 0 0 1 0 −0.5 0 0 −0.5 0 0

−0.5 0 −0.5 0 1 0 0 0 0 0 0
0 −0.5 0 −0.5 0 1 0 0 0 0 0
0 0 0 0 0 0 1 −0.5 0 0 −0.5
0 0 0 0 0 0 −0.5 1 0 0 −0.5
0 −2.5 0 −0.5 0 0 0 0 3 0 0

−0.5 0 −2.5 0 0 0 0 0 0 3 0
0 0 0 0 0 0 −0.5 −0.5 0 0 1


and we have

p(x) = z(x)Mz(x)T

=
1
2
(x4y− x2yz2)2 +

1
2
(x4y− yz4)2 +

1
2
(x3y2 − xy2z2)2 +

5
2
(x3y2 − xz4)2

+
1
2
(x2y3 − x2yz2)2 +

5
2
(x2y3 − yz4)2 +

1
2
(xy4 − xy2z2)2 +

1
2
(xy4 − xz4)2

+
1
2
(x2z3 − y2z3)2 +

1
2
(x2z3 − z5)2 +

1
2
(y2z3 − z5)2.
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3.5 Factor width 3 matrices and sum of trinomial squares

The purpose of this section is to show that if a quarternary quadratic form q(w,x,y,z) is not a sum of
squares of trinomials then, given any positive integer r, the form (w2 + x2 + y2 + z2)r ·q is not a sum
of squares of trinomials. In fact it will be necessary to show more generally that for nonzero reals
λ1,λ2,λ3,λ4, the form (λ 2

1 w2 +λ 2
2 x2 +λ 2

3 y2 +λ 2
4 z2)r ·q is not a sum of squares of trinomials.

We will focus first on the case r = 1 and then indicate later the modifications necessary for the
case of larger r. We start with the following proposition.

Proposition 3.5.1. Let x = [w,x,y,z] and let q = xT Qx be a psd quadratic form and B a matrix such
that B spans an extreme ray in (FW 4

3 )
∗ and ⟨Q,B⟩< 0. Then the degree (2r+2) form p = (λ 2

1 w2 +

λ 2
2 x2 +λ 2

3 y2 +λ 2
4 z2)rq is not a sum of trinomial squares, for any, not all zero, reals λ1,λ2,λ3,λ4.

Proof. The inequality ⟨Q,B⟩< 0 implies that B is not psd. In addition, it spans an extreme ray, hence
by Proposition 3.2.6, for some permutation P and non singular matrix D and some a,c ∈]−π,π[\{0}
it has the following form

B2 = DPBPT DT =


1 cos(a) cos(a− c) cos(c)

cos(a) 1 cos(c) cos(a− c)
cos(a− c) cos(c) 1 cos(a)

cos(c) cos(a− c) cos(a) 1

 .

We now have the inequality 0 > ⟨Q,B⟩ = ⟨PT DT QDP,B2⟩. We work with the quadratic form qn

defined by qn = xT PT DT QDPx and show that given any λ ∈ (IR∗)4 \{0}, we have that the associated
quartic form pn = (λ 2

1 w2 +λ 2
2 x2 +λ 2

3 y2 +λ 2
4 z2)rqn, for any λ1,λ2,λ3,λ4 is not a sum of trinomial

squares. Since the property of ’not being a sum of trinomial squares for any λ ’ is invariant under
permutations and scalings of the variables in qn, we shall get the claim concerning the original p,q.
For simplicity of notation be aware that we redefine (Q,B) := (PT DT QDP,B2) and (p,q) := (pn,qn).

The original Q,B, p,q will not play any further role in this proof.
The polynomial p is of degree 2r + 2. From Theorem 3.3.1 we know that p has a -usually

nonunique- representation p = z(x)T
r+1Q′z(x)r+1, where z(x)r+1 collects all monomials of degree r+1

and hence Q′ is an
(r+4

3

)
×
(r+4

3

)
matrix. We define the matrix B′ = (b′i j) as follows (where we use

for the moment as the most natural indexation, the one given by the vectors of exponents of the
monomials), where i, j ∈ Z4

≥0 are uples with |i|= | j|= r+1 so that B′ is also an
(r+4

3

)
×
(r+4

3

)
matrix:

b′i j =


bkl iff i+ j has two odd entries exactly in positions k ̸= l

1 iff i+ j has only even entries
0 iff i+ j has 1 or 3 odd entries

ω iff i+ j has only odd entries

(The case that i+ j has exactly 1 or 3 odd entries can actually not happen in case |i| = | j|, but we

will need the given rules below also in cases where |i| ≠ | j|.) We will show that B′ ∈ (FW (r+4
3 )

3 )∗, and

then that ⟨B′,Q′⟩< 0, thus showing Q′ ̸∈ FW (r+4
3 )

3 , and hence showing by Propositions 3.1.3 and 3.3.1
that p is not a sum of squares of trinomials. We will then see from the fact that ‘being a sum of
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squares of trinomials is invariant under permutations’ that the original p is also not a sum of squares
of trinomials.

We split the proof that B′ ∈ (FW (r+4
3 )

3 )∗, into two parts, treating the cases r = 1 and r ≥ 2 separately.

Case r = 1. Then we have to show B′ ∈ (FW 10
3 )∗

In the current case the vector to represent p via Q′ above is given by, say,

z(x)2 = [w2,wx,wy,wz,x2,xy,xz,y2,yz,z2]

and the matrix B′ is the inner part of the table given below

B′ =

1 2 3 4 5 6 7 8 9 10
w2 wx wy wz x2 xy xz y2 yz z2

1 1 b12 b13 b14 1 b23 b24 1 b34 1
2 b12 1 b23 b24 b12 b13 b14 b12 ω b12

3 b13 b23 1 b34 b13 b12 ω b13 b14 b13

4 b14 b24 b34 1 b14 ω b12 b14 b13 b14

5 1 b12 b13 b14 1 b23 b24 1 b34 1
6 b23 b13 b12 ω b23 1 b34 b23 b24 b23

7 b24 b14 ω b12 b24 b34 1 b24 b23 b24

8 1 b12 b13 b14 1 b23 b24 1 b34 1
9 b34 ω b14 b13 b34 b24 b23 b34 1 b34

10 1 b12 b13 b14 1 b23 b24 1 b34 1

The bordering is for the convenience of the reader. For example, the entry in row 3, column 8 of matrix
B′ below corresponds to the pair of monomials (wy,y2) and thus to the pair of 4-uples of exponents
(1010,0020). The sum of these 4-uples is (1030) which has exactly two odd entries at positions 1 and
3 and therefore the entry of B′ is b13. One notices that B′ is a symmetric real 10×10 matrix in which
rows and hence also columns 1,5,8,10 are equal. Thus to show that all 3×3 principal submatrices are
positive semidefinite, it is sufficient to examine those of the 7×7 submatrix occurring after striking
out the rows and columns 5,8,10 of B′. Doing so one gets the reduced matrix B′

red.

B′
red =

1 2 3 4 6 7 9
w2 wx wy wz xy xz yz

1 1 b12 b13 b14 b23 b24 b34

2 b12 1 b23 b24 b13 b14 ω

3 b13 b23 1 b34 b12 ω b14

4 b14 b24 b34 1 ω b12 b13

6 b23 b13 b12 ω 1 b34 b24

7 b24 b14 ω b12 b34 1 b23

9 b34 ω b14 b13 b24 b23 1

To see that all principal 3× 3 submatrices of B′
red are positive semidefinite note first that the left

upper 4×4 matrix of B′
red coincides with B and more generally all principal 3×3 submatrices of B′

red
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which do not contain an ω are permutation equivalent to 3×3 principal submatrices of B and hence
are automatically positive semidefinite. The 3× 3 principal submatrices containing ω stem from
selecting sets of three line indices which contain one of the sets {2,9},{3,7},{4,6}. These matrices
are permutation equivalent to one of the following matrices: 1 ω b12

ω 1 b34

b12 b34 1

 ,
 1 ω b14

ω 1 b23

b14 b23 1

 ,
 1 ω b13

ω 1 b24

b13 b24 1

 .
So it is sufficient to find an ω ∈ IR such that these matrices are positive semidefinite. To see this, the
easiest choices possible are ω =±1; (These are universal choices valid for all 0< a,b,c< π that result
in determinants equal to 0. If one has given explicit real numbers for a,b,c, then putting ω =−1+ ε

or ω = 1− ε for sufficiently small ε > 0, one will obtain strictly positive definite (sub)determinants. )
With these checks the case is done.

Case r ≥ 2. To show that B′ is a matrix in (FW (r+4
3 )

3 )∗, we consider first the inner part of the
following 16×16 matrix which is a direct sum B̃ = B̂⊕ B̂ where B̂ is the left upper 8×8 matrix and
where blanks are zeros.

B̃ =

1 wx wy wz xy xz yz wxyz w x y z wxy wxz wyz xyz
1 b12 b13 b14 b23 b24 b34 ω

b12 1 b23 b24 b13 b14 ω b34

b13 b23 1 b34 b12 ω b14 b24

b14 b24 b34 1 ω b12 b13 b23

b23 b13 b12 ω 1 b34 b24 b14

b24 b14 ω b12 b34 1 b23 b13

b34 ω b14 b13 b24 b23 1 b12

ω b34 b24 b23 b14 b13 b12 1
1 b12 b13 b14 b23 b24 b34 ω

b12 1 b23 b24 b13 b14 ω b34

b13 b23 1 b34 b12 ω b14 b24

b14 b24 b34 1 ω b12 b13 b23

b23 b13 b12 ω 1 b34 b24 b14

b24 b14 ω b12 b34 1 b23 b13

b34 ω b14 b13 b24 b23 1 b12

ω b34 b24 b23 b14 b13 b12 1

For the convenience of the reader the top line contains a version of the column indexation of the
matrix; the same is used for the rows. The entries of the matrix are obtained as given by this example:
take the row indexed by wxy and the column indexed by wy. The product is w2x1y2z0. The 4-uple
of exponents, 2120 has precisely one odd entry. Hence by the rules for forming a matrix B′ - we
shall see why we use these rules also here - we have to put 0 in the entry of address (wxy,wy) or
(1110,1010). Similarly the entry of address (xy,xz) yields the product x2yz = 0211 which has exactly
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two odd entries namely at positions 3,4 therefore by the above rules we have to put the entry with this
address equal to b34.

Again we observe as before that the matrix B̃ has the matrix B as a 4× 4 submatrix in the left
upper corner and due to this many of the principal 3×3 submatrices of B̃ are positive semidefinite.
Furthermore it is clear that a 3×3 submatrix which ‘intersects’ both summands B̂ is positive semidefi-
nite. The positive semidefiniteness of the other 3×3 submatrices of B̃ was also already established in
the first part of the proof.

We now show that B′ is a submatrix of a certain Kronecker product with one factor equal to
B̂. To any string of exponents i = (i1, i2, i3, i4) ∈ Z4

≥0 we can associate a unique 4-uple ε = ε(i) =
(ε1,ε2,ε3,ε4) ∈ {0,1}4 defined by iν ≡ εν mod 2.

Consider the 2l ×2l matrix L obtained by stacking its first two rows l times one over the other.

L =


1 0 1 0 ... 0 1 0
0 1 0 1 ... 1 0 1

...
0 1 0 1 ... 1 0 1


Since by the definition of B′, the value of b′i j depends only on ε(i) and ε( j) it is evident that B′ and
hence any submatrix of B′ is a submatrix of L⊗ B̂ if l is sufficiently large. So it is sufficient to show
that every 3×3 submatrix of L⊗ B̂ is positive semidefinite.

To see this, for ease of explanation, assume the lines of B̂ indexed as 0,1,2, ...,7 and those of L⊗ B̂
as indexed by 00,10, ...,70,01,11, ...,71, ......,02l−1,12l−1, ...,72l−1. For line indices ii

′
, j j′ of L⊗ B̂ one

sees that

(L⊗ B̂)ii′ j j′ =

{
b̂i j if either i′, j′ ∈ 0,2, ...,2l −2 or i′, j′ ∈ 1,3, ...,2l −1;
0 in all other cases.

Let now ii
′
, j j′ ,kk′ be three distinct line indices. The principal 3×3 submatrix of L⊗ B̂ selected by

these line indices is in the case that i, j,k are distinct equal to the principal 3× 3 submatrix of B̂
defined by line indices i, j,k. This is the following matrix.

 b̂ii b̂i j b̂ik

b̂i j b̂ j j b̂ jk

b̂ik b̂ jk b̂kk


This matrix is by hypothesis positive semidefinite.

But if i, j,k are not distinct, say that i = j ̸= k, then the line indices are ii
′
, i j′ ,kk′ . Then the

submatrix obtained is the following matrix. b̂ii b̂ii b̂ik

b̂ii b̂ii b̂ik

b̂ik b̂ik b̂kk
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It is easy to see that this matrix inherits positive semidefiniteness from its left neighbour. The positive
semidefiniteness in the cases i = k, j = k and i = j = k can be similarly inferred. In fact the whole
purpose for the construction of L⊗ B̂ was to put the matrix B̃ to good use in case ε(i),ε( j),ε(k) in B′

are not all distinct as might happen in case of large r.

This concludes the case r ≥ 2. We now show the other claim we made for B′.

Claim: There holds ⟨B′,Q′⟩= (∑4
i=1 λ 2

i )
r ⟨B,Q⟩; and consequently ⟨Q′,B′⟩< 0.

By the definition of the inner product in matrix space, we have to show

∑{b′i jq
′
i j : i, j ∈ Z4

≥0, |i|= | j|= 1+ r}= (
4

∑
i=1

λ
2
i )

r
4

∑
i, j=1

bi jqi j.

Now, given i, j ∈ Z4
≥0, |i|= | j|= 1+ r, we have of course |i+ j|= 2r+2. Since for an s ∈ Z4

≥0 for
which |s| is even it is impossible that s has exactly one or three odd entries, we can write the left side
above as follows:

∑
|s|= 2r+2
s has four

even entries

∑
|i|= | j|= r+1

i+ j = s

b′i jq
′
i j + ∑

|s|= 2r+2
s has two
odd entries

∑
|i|= | j|= r+1

i+ j = s

b′i jq
′
i j + ∑

|s|= 2r+2
s has four

odd entries

∑
|i|= | j|= r+1

i+ j = s

b′i jq
′
i j.

By the definition of B′ given, this is equal to

∑
|s|= 2r+2
s has four

even entries

∑
|i|= | j|= r+1

i+ j = s

q′i j+ ∑
1≤k<l≤4

∑
|s|= 2r+2
s has odd

entries at k, l

∑
|i|= | j|= r+1

i+ j = s

bklq′i j+ ∑
|s|= 2r+2
s has four

odd entries

∑
|i|= | j|= r+1

i+ j = s

ωq′i j.

Now we remember that by its construction, polynomial p cannot have a monomial with only odd
exponents so the third sum is 0. The sum of the coefficients of monomials whose variables have only
even powers in p is given by Proposition 3.3.2 by

(
4

∑
i=1

λ
2
i )

r(q11 +q22 +q33 +q44);

while the second sum is

∑
1≤k<l≤4

bkl ∑
|s|= 2r+2
s has odd

entries at k, l

∑
|i|= | j|= r+1

i+ j = s

q′i j

The inner double sum here can be described exactly as the sum of the coefficients of the monomials of
p which have two odd entries at distinct k, l. Hence again by Proposition 3.3.2 the whole inner sum is
equal to 2(∑λ 2

i )
rqkl and so the sum is

2(
4

∑
i=1

λ
2
i )

r
∑

1≤k<l≤4
bklqkl = (

4

∑
i=1

λ
2
i )

r
∑

1 ≤ k, l ≤ 4,
k ̸= l

bklqkl.
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The claim now follows because ∑
4
i=1 λ 2

i > 0.
To conclude the proof we detail an idea we mentioned at the beginning. We have until now shown

that whatever the reals λ1λ2,λ3,λ4, not all zeros are, for a polynomial qn = xT P′T QP′x, with Q satis-
fying the hypotheses, the polynomial pn = (λ 2

1 w2 +λ 2
2 x2 +λ 2

3 y2 +λ 2
4 z2)rqn is not a sum of trinomial

squares. Now by its definition qn(w,x,y,z) = q(π(w),π(x),π(y),π(z)) where π embodies the permuta-
tion matrix P′. Since the property ‘to be a sum of squares of trinomials’ is evidently invariant under per-
mutations, it follows that (λ 2

1 π−1(w)2 +λ 2
2 π−1(x)2 +λ 2

3 π−1(y)2 +λ 2
4 π−1(z)2)rq(w,x,y,z) for what-

ever λ1, ...,λ4, is not sum of trinomial squares. Since {π−1(w),π−1(x),π−1(y),π−1(z)}= {w,x,y,z}
it follows that (λ 2

1 w2 +λ 2
2 x2 +λ 2

3 y2 +λ 2
4 z2)rq(w,x,y,z) is not sum of trinomial squares.

Theorem 3.5.2. Assume λ1, ...,λ4 are reals, not all zero. If the quadratic form q(x) = q(w,x,y,z) is
not a sum of squares of trinomials, the quarternary form (w2 + x2 + y2 + z2)rq(x) is not a sum of
squares of trinomials.

Proof. If the quadratic form is not positive semidefinite then the claim is trivial. So assume now
q is positive semidefinite and let it be written as q = xT Qx. Then Q is positive semidefinite and by
Proposition 3.3.1, Q ̸∈ FW 4

3 . So there exists B ∈ (FW 4
3 )

∗ spanning in (FW 4
3 )

∗ an extreme ray such
that ⟨B,Q⟩< 0. By Proposition 3.5.1 it follows that λ 2

1 w2 +λ 2
2 x2 +λ 2

3 y2 +λ 2
4 z2)rq(x) is not a sum

of squares of trinomials for any λ1λ2,λ3,λ4. In particular, (w2 + x2 + y2 + z2)q(x) is not a sum of
squares of trinomials.



Chapter 4

On completely positive programming
and its approximations

In this chapter, we first review the copositive and completely positive cones mentioned in Chapter 2
and then introduce copositive and completely positive programming. Motivated by the expressive
power of copositive and completely positive programming to encode hard optimization problems,
we will present some formulations of combinatorial and quadratic optimization problems and due
to the NP-hardness of these problems, we will review some approximations for them. Mainly our
focus will be on completely positive programming and its approximations. Hence, we will review
both outer approximations (approximations by larger cones) and some existing LP and SDP inner
approximations. Then, we propose the use of the cone of nonnegative scaled diagonally dominant
matrices as a natural inner approximation to the completely positive cone. Using projections of this
cone we derive new graph-based second-order cone approximation schemes for completely positive
programming, leading to both uniform and problem-dependent hierarchies. This offers a compromise
between the expressive power of semidefinite programming and the speed of linear programming
based approaches. We also present numerical results on random problems and the stable set problem
to illustrate the effectiveness of our approach.

4.1 Copositive and completely positive cones

Recall from Chapter 2 that we defined the cone of copositive matrices as

COPn := {X ∈ Sn| vT Xv ≥ 0, for all v ≥ 0}, (4.1)

and its dual, the cone of completely positive matrices as

CPn := {X ∈ Sn| ∃B ≥ 0, X = BT B}. (4.2)

53
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Example 4.1.1. As an example the matrix

X =

6 2 4
2 4 2
4 2 3



is completely positive since it can be written as X = BT B with B =

1 2 1
1 0 1
2 0 1


Recall from Chapter 2 that N n is the cone of nonnegative n× n symmetric matrices, and is

self-dual. By definition of N n and Sn
+ (the set of positive semidefinite matrices), it is obvious that

CPn ⊂ Sn
+∩N n and that Sn

++N n ⊂ COPn. We refer to Sn
+∩N n as the doubly nonnegative cone

(DNNn) and we have (DNNn)∗ = Sn
++N n. In fact, for n×n matrices of order n ≤ 4, we have equality

in the two inclusions above.

Example 4.1.2. As an example the matrix

X =

 1 1 −1
2 0 3
−1 1 1

 ∈ COP3

is copositive since  1 1 −1
2 0 3
−1 1 1

=

0 1 0
2 0 3
0 1 0


︸ ︷︷ ︸

∈N 3

+

 1 0 −1
0 0 0
−1 0 1


︸ ︷︷ ︸

∈S3
+

.

However, for n ≥ 5 both inclusions are strict. An example that illustrates DNNn ̸= CPn for n ≥ 5
is the following matrix

A =


1 1 0 0 1
1 2 1 0 0
0 1 2 1 0
0 0 1 1 1
1 0 0 1 3

 ∈ DNN5 \CP5.

We refer the readers for a good introduction to copositive and completely positive cones to [21],
[22]. Another important cone which we will use later to give an inner approximation for the cone of
completely positive matrices is the cone of nonnegative scaled diagonally dominant matrices defined
as

SDDn ∩N n = {A ∈ Sn | A is scaled diagonally dominant,(A)i j >= 0.} (4.3)

This cone lives naturally inside of the completely positive cone, thus we have the following chain of
inclusions among different cones for any positive integer n,

SDDn ∩N n ⊂ CPn ⊂ DNNn ⊂ Sn
+ ⊂ (DNNn)∗ ⊂ COPn ⊂ SDDn +N n.
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In order to illustrate theses inclusions, in Figure 4.1 we took a random 2 dimensional slice of different
cones using a 5× 5 matrix and plotted them in one figure. The outermost set colored in violet is
SDD∗+N , the green area inside is PSD+N and the areas colored in yellow, red and blue correspond
to PSD, PSD∩N and SDD∩N respectively. The cone CP is sandwiched between SDD∩N and
PSD∩N and also the cone COP is sandwiched between PSD+N and SDD+N .

Fig. 4.1 Two dimensional sections of different cones

4.2 Copositive and completely positive programming

In Chapter 2, we briefly reviewed several types of conic programming problems, namely linear pro-
gramming, semidefinite programming, second order cone programming and copositive and completely
positive programming. Among this list of conic programs, in this section we will look into completely
positive programming. Recall that this problem has the following form

vp := min tr(CX)

s.t. tr(AiX) = bi, i = 1, . . . ,m,

X ∈ CPn,

(4.4)

where C and Ai, i = 1, . . . ,m are symmetric matrices.

We also consider the dual problem of (4.4), which is the following copositive programming
problem

vd := max bT y
s.t. C−∑

m
i=1 yiAi ∈ COPn.

(4.5)

As for any conic programming, strong duality holds if Slater condition [13] holds and in that case the
optimal values of (4.4) and (4.5) are equal.

Completely positive programming and its dual counterpart of copositive programming are classes
of convex optimization problems that have in the past decades developed as a particularly expressive
tool to encode optimization problems, especially for many problems arising from combinatorial or
quadratic optimization. As a first example consider the standard quadratic problem of optimizing a
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quadratic objective over the standard simplex.

min xT Qx
s.t. eT x = 1,

x ≥ 0
(4.6)

where e denotes the all-ones vector. Easy manipulations show that the objective function can be
written as xT Qx = ⟨Q,xxT ⟩. Analogously the constraint eT x = 1 transforms to ⟨E,xxT ⟩ = 1, with
E = eeT . By considering X = xxT , we can rewrite problem (4.6) as the following problem

min ⟨Q,X⟩
s.t. ⟨E,X⟩= 1,

X ∈ CPn
(4.7)

which is obviously a relaxation of the problem (4.6). Now, since the objective is linear, an optimal
solution must be attained in an extremal point of the convex feasible set. It has been shown in [20,
Theorem 4.2] that these extremal points are exactly the rank-one matrices xxT with x ≥ 0 and eT x = 1.
Together, these results imply that (4.7) is in fact an exact reformulation of (4.6).

As a second example, this time combinatorial, consider the Stable Set Problem (SSP) of finding in
a graph G the largest set of vertices such that no two are connected by an edge. The cardinality of
such set is known as stability number of G, denoted by α(G). It was shown in [18] that this can be
solved by the completely positive program

α(G) = max ⟨E,X⟩
s.t. ⟨AG + I,X⟩= 1,

X ∈ CPn
(4.8)

where AG is the adjacency matrix of G and E is the matrix of ones.

Another classical example can be found in [16], which shows that general quadratic programs
with a mix of binary and continuous variables can be expressed as copositive programs. A large body
of work has been developed in the area and there is a series of survey papers that can be consulted for
further information. We refer the readers to [12, 17, 22] and references therein for more details.

In general, copositive and completely positive optimization problems are NP-hard problems and
thus we would not expect to be able to solve them exactly in an efficient way. Instead we consider
approximating the copositive and completely positive cones with other cones over which we can
optimize efficiently. In what follows we first define the concept of inner and outer approximations for
a closed convex set and then in the next sections we review some inner and outer approximations for
the completely positive cone.
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4.3 Inner and outer approximations to a convex set

In general, for a sequence of convex cones, {Ir|r ∈ Z+}, we say that Ir is an inner approximation
hierarchy for a closed convex set K if

I0 ⊆ I1 ⊆ . . .⊆
⋃

r∈Z+

Ir ⊆ K

and we say that an inner approximation hierarchy converges if

cl(
⋃

r∈Z+

Ir) = K.

In other words, for all X ∈ int(K), there exists an r ∈ Z+ such that X ∈ Ir. Similarly, for a sequence
of convex cones {Or|r ∈ Z+}, we say that Or is an outer approximation hierarchy for a closed convex
set K if

O0 ⊇O1 ⊇ . . .⊇
⋂

r∈Z+

Or ⊇ K

and we say that an outer approximation hierarchy converges if

⋂
r∈Z+

Or = K.

In other words, for all X /∈ K, there exists an r ∈ Z+ such that X /∈ Or.

Approximation hierarchies play an important role in conic programming. For example, consider
the following conic optimization problem

X∗ = min ⟨C,X⟩
s.t. ⟨Ai,X⟩= bi, i = 1, . . . ,m

X ∈ K.

(4.9)

Using inner and outer approximation hierarchies Ir and Or, we can approximate problem (4.9) and
obtain lower and upper bounds for the optimal solutions of this problem.

XIr = min ⟨C,X⟩
s.t. ⟨Ai,X⟩= bi, i = 1, . . . ,m

X ∈ Ir,

(4.10)

XOr = min ⟨C,X⟩
s.t. ⟨Ai,X⟩= bi, i = 1, . . . ,m

X ∈ Or,

(4.11)

then for all r ∈ Z+, we have

XIr ≥ XIr+1 ≥ X∗ ≥ XOr+1 ≥ XOr .
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Moreover, if problem (4.9) is strictly feasible and the hierarchies are convergent, then it can be seen
that limr→∞ XIr = X∗. Similarly, if the dual problem to problem (4.9) is strictly feasible, then it can
be seen that limr→∞ XOr = X∗.

4.4 Outer approximations to the completely positive cone

Several approximation schemes have been proposed and successfully used in the literature, based
on outer approximations to CPn. The simplest one is to replace CPn by the cone of nonnegative
positive semidefinite matrices (doubly nonnegative) which is strictly larger than CPn when n ≥ 5,
hence leading to a lower bound to vp. This approximation is exact for n < 5, but gets very weak as n
grows.

Another outer approximation is the one proposed by Parrilo in [41]. In fact, this approximation is
an inner approximation to the copositive cone, but it can be considered as an outer approximation to
the completely positive cone by defining corresponding dual cones. We explain this approach here
briefly.

Given a matrix A ∈ Sn, consider the polynomial PA(x) = ∑
n
i=1 ∑

n
j=1 ai jx2

i x2
j . Clearly, A ∈ COP if

and only if PA(x)≥ 0 for all x ∈ Rn [22]. Then according to what we saw in Chapter 2, a sufficient
condition for a polynomial to be nonnegative is that it can be written as sums of squares, and it is easy
to see that PA(x) has a sum of squares decomposition if and only if A ∈ (Sn

++N n), which yields the
relation Sn

++N n ⊆ COP . This idea can be extended using the following theorem from Reznick [46].

Theorem 4.4.1. If f (x1, . . . ,xn) is a homogeneous polynomial which is positive on IRn
+ \{0}, then for

sufficiently large r ∈ N, the polynomial

f (x1, . . . ,xn)

(
n

∑
i=1

x2
i

)r

has positive coefficients.

The following hierarchy of cones can be defined to approximate the COP cone from the interior.

Kr =

{
A ∈ Sn

+ | PA(x)

(
n

∑
i=1

x2
i

)r

has an sos decomposition

}

It can be shown that Sn
++N n =K0 ⊂K1 ⊂ . . ., and int(COP)⊆

⋃
r∈NKr, so when r increases, the

cones Kr converges to the COP . Similarly, a family of dual cones (Kr)∗ can be defined to approximate
the CP cone from the exterior. Since the sos condition can be written as a system of linear matrix
inequalities (LMIs), optimizing over Kr amounts to solving a semidefinite program. Figure 4.2 shows
sections of the inner approximations to COP cone. The innermost set is a section of S5

++N 5 which
is equal to the initial cone of Parrilo hierarchy and the red area behind shows the approximation given
by hierarchy when r = 1. As r gets bigger and bigger, the approximation gets finer.



4.5 Inner approximations to the completely positive cone 59

Fig. 4.2 Comparison of Parrilo approximation with S5
++N 5

Also, Peña et al [42] used another certificate for nonegativity of the same polynomial to define
other outer approximation for the CP cone. In their approach, optimizing over each of the cones
is again a semidefinite program. In the Parrilo and Peña approaches the system of LMIs becomes
very large quickly when r increases. Hence, dimension of the semidefinite programs increases very
fast and current SDP-solvers can only solve problems over those cones for small values of r, i.e.,
r ≤ 3 at most. Moreover, De Klerk and Pasechnik [18], and Bomze and De Klerk [11] used different
sufficient conditions for nonnegativity of the same polynomial to define other outer approximations
for the CP cone. In their approaches, each of the approximating cones is polyhedral, so optimizing
over one of them is solving an LP. All these approximation hierarchies approximate COP (resp. CP)
uniformly and thus do not take into account any information provided by the objective function of an
optimization problem.

4.5 Inner approximations to the completely positive cone

For upper bounds based on inner approximations to CPn, the literature is somewhat sparser. One
way of constructing inner approximations to CPn is to make use of the fact that the extreme rays
of CPn are matrices of the form vvT with v ∈ Rn

+\{0}; see [20, Theorem 4.2]. Thus, one can pick
uniformly spaced v ∈ ∆n =

{
x ∈ Rn

+ : ∑xi = 1
}

, and approximate CPn by the cone the matrices vvT

generate (see [15, 53]). This leads to linear programming (LP) approximations to (4.4). Another
inner approximation to CPn is that proposed in [34], based on the theory of moments, leading to
semidefinite programming (SDP) approximations to (4.4). In both cases we have hierarchies that give
upper bounds to (4.4), and dually lower bounds to (4.5), and converge to the optimal value/solutions of
(4.4). These inner approximations are uniform (i.e., problem-independent) approximations, giving rise
to either LP or SDP problems. See also [54] for a more thorough treatment of inner approximations.
An extra step taken as an adaptive linear approximation algorithm was proposed in [15]. This uses
information obtained from an upper bound approximation to selectively refine the hierarchy, leading
to problem-dependent LP approximations.

Here we will take a look to two approximations given by [15] and [34].

4.5.1 Bundfuss and Dür approximation

One inner approximation to CP cone is the one proposed by Bundfuss and Dür in [15]. This
approximation relies on the observation that A is copositive if and only if the quadratic form xT Ax ≥ 0
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on the standard simplex. In fact, letting v1, . . . ,vn to denote the vertices of a simplex, a point x in the
simplex can be written in barycentric coordinates as x = ∑

n
i=1 λivi with λi ≥ 0 and ∑

n
i=1 λi = 1. Using

this fact we have

xT Ax =
n

∑
i, j=1

vT
i Av jλiλ j

Thus, a sufficient condition for xT Ax to be nonnegative on the simplex is that

vT
i Av j ≥ 0, ∀i, j.

A simplicial partition P of the standard simplex ∆ is a family of smaller simplices ∆1, . . . ,∆m such
that ∆ =

⋃m
i=1 ∆i and int(∆i)∩ int(∆ j) = /0 for i ̸= j. In [15], the authors use such partition to define

an inner approximation.

Let VP denote the set of all vertices of simplices in P and EP the set of all edges of simplices in
P . Define the diameter of a partition P to be

δ (P) = max
{u,v}∈EP

∥u− v∥

Define also the following set corresponding to a given partition P

IP = {A ∈ Sn | vT Av ≥ 0, for all v ∈VP ,uT Av ≥ 0, for all (u,v) ∈ EP}

It is not difficult to see that IP is a closed, convex, polyhedral cone which approximates COP from
the interior. Similarly define the sets

OP = {A ∈ Sn | vT Av ≥ 0, for all v ∈VP}

and this set is also a closed, convex, polyhedral cone which approximates COP from the exterior. In
fact, it is not also hard to see that for any partition P of ∆,

I∗
P = { ∑

{u,v}∈EP

λuv(uvT + vuT )+ ∑
v∈VP

λvvvT : λuv,λv ∈ R+}

is an outer approximation of CP , and

O∗
P = { ∑

v∈VP

λvvvT : λv ∈ R+}

is an inner approximation of CP . Both inner and outer approximations of COP (resp. CP) converge
to COP (resp. CP) if the diameter of the partitions goes to zero. Note that since inner and outer
approximations are polyhedra, optimizing over them is solving an LP problem.

They then create a refining strategy for the partitions, starting at an initial partition and subdividing
simplices where the constraints are active. This partitioning strategy is guided adaptively by the
objective function, which yields to a good approximation of the completely positive cone in those
parts that are relevant for the optimization and only a coarse approximation in those parts that are
not and more complete description about the adaptive approach can be found in [15]. Occasionally
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we can use this approach trivially in a non-adaptive way by uniformly dividing the simplex in equal
simplices reduced by a factor of k, where k is a positive integer. We call that a k-regular partition. As
we increase k we get convergence as well.

4.5.2 Lasserre approximation

Another inner approximation to CP cone is the one proposed by Lasserre in [34] that we briefly
explain it here.

Recall that a Borel measure on Rn is a nonnegative set function on Borel sets of Rn, such that
µ( /0) = 0 and µ(

⋃p
i=1 Ei) = ∑

p
i=1 µ(Ei) for any countable collection of disjoint Borel sets E1, . . . ,Ep ⊆

Rn. A Borel measure µ is a probability measure if and only if µ(Rn) = 1. Define the support of a
Borel measure µ as the minimal closed set U ⊆Rn such that µ(Rn \U) = 0 and denote it by supp(µ).
For any α ∈ Nn, define the α moment of a Borel measure µ as

yα :=
∫
Rn

xαdµ(x).

Recall that Pn is the ring of real polynomials in n variables x = (x1, . . . ,xn) and Pn,d is the vector
space of real polynomials in n variables and of degree less than or equal to d. Also let Nn

d = {α ∈
Nn | ∑i αi ≤ d}. Then the moment matrix is defined as following.

Definition 8. With a sequence y = (yα), α ∈ Nn, let Ly : Pn → R be the linear functional

h = ∑
α

hαxα 7→ Ly(h) = ∑
α

hαyα , h ∈ Pn.

With d ∈ N, let Md(y) be the symmetric matrix with rows and columns indexed in Nn
d , and defined by

Md(y)(α,β ) := Ly(xα+β ) = yα+β , (α,β ) ∈ Nn
d ×Nn

d .

The matrix Md(y) is called the moment matrix associated with y.

It can be easily checked that

Ly(g2)≥ 0 for all g ∈ Pn ⇔ Md(y)≽ 0, d = 0,1, . . .

Let us now consider a polynomial f (x) = ∑γ∈Nn fγxγ and let Md( f y) be the symmetric matrix
with rows and columns indexed in Nn

d . We define the localizing matrix associated with f and y as

Md( f y)(α,β ) := Ly( f (x)xα+β ) = ∑
γ

fγyα+β+γ , (α,β ) ∈ Nn
d ×Nn

d . (4.12)

It can be seen that
⟨g,Md( f y)g⟩= Ly(g2 f ), for all g ∈ Pn,d .

A well-known theorem when considering moments in connection to polynomials is the following.
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Theorem 4.5.1. [33, Theorem 3.2] Consider a finite Borel measure µ and a polynomial f , such that
the support of µ is equal to K ⊆ Rn. The polynomial f (x) is nonnegative if and only if∫

K
g2 f dµ ≥ 0, for all g ∈ Pn. (4.13)

If y = (yα), α ∈ Nn is the sequence of moments of µ then (4.13) is in turn equivalent to

Md( f y)≽ 0 for all d = 0,1, . . .

where Md( f y) is the localizing matrix associated with f and y, defined in (4.12).

In [35], the authors particularize this result to the case of copositive matrices viewed as homoge-
neous forms of degree 2, nonnegative on the closed set K = IRn

+.
So with A = (ai j) ∈ Sn, let fA = xT Ax be a quadratic form and let µ be the joint probability

measure associated with n i.i.d. exponential variables (with mean 1), with supp(µ) = IRn
+, and with

moments y = (yα), α ∈ Nn, given by

yα =
∫
Rn
+

xαdµ(x) =
∫
Rn
+

xαexp(−
n

∑
i=1

xi)dx =
n

∏
i=1

αi!, for all α ∈ Nn. (4.14)

Recall that a matrix A ∈ Sn is copositive if fA(x)≥ 0 for all x ∈ IRn
+ and denote by COP ⊂ Sn the

cone of copositive matrices, i.e.,

COP = {A ∈ Sn | fA(x)≥ 0, for all x ∈ IRn
+}.

Next, introduce the following sets Cd ⊂ Sn, d = 0,1, . . . defined by

Cd = {A ∈ Sn | Md( fAy)≽ 0}, d = 0,1, . . . (4.15)

where Md( fAy) is the localizing matrix defined in (4.12), associated with the quadratic form fA and
the sequence y in (4.14).

It can be easily seen that the entries of the matrix Md( fAy) are homogeneous and linear in A.
Therefore, the condition Md( fAy)≽ 0 is a homogeneous linear matrix inequality and hence defines a
spectrahedron of Sn. Each Cd ⊂ Sn is a convex cone defined solely in terms of the entries of A ∈ Sn,
and the hierarchy of spectrahedra Cd , with d ∈ N, provides a nested sequence of outer approximations
for COP .

Theorem 4.5.2. [35, Theorem 2.1] Let y be as in (4.14) and let Cd ⊂Sn, d = 0,1, . . . be the hierarchy
of convex cones defined in (4.15). Then C0 ⊃C1 ⊃ . . .⊃Cd . . .⊃ COP and COP =

⋂
∞
d=0Cd .

In Figure 4.3 we compared two outer approximations for COP cone given by Bundfuss-Dür and
Lasserre approaches for a 2 dimensional slice of the 5×5 symmetric matrix. In Lasserre approach,
we considered the moment vectors to be in the form (4.14). We did the test for d = 2,3 and plotted
two dimensional slices of each which in the Figure 4.3 corresponds to two outermost bluish areas.
The innermost sets are those approximated by Bundfuss-Dür approach using k-regular partitions
with k = 2,6,10 and the green area inside is S5

++N 5. It is clear that the approximation given by
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Bundfuss-Dür approach is better since it is closer to S5
++N 5 compared to the approximation given

by Lasserre. Also in Lasserre approach the underlying SDP problem grows very fast as d increases
and this approximation becomes inefficient.

Fig. 4.3 Comparison of dual Lasserre (d = 2,3) with dual linear approach of Bundfuss-Dür with
partition numbers K = 2,6,10 and S5

++N 5

4.6 Inner approximating the completely positive cone via the cone of
scaled diagonally dominant matrices

In this section, we propose a new inner approximation scheme to CPn that is based on second-order
cone programming (SOCP) problems and can be either uniform or problem-dependent. Our approach
is motivated by the recent work in [2, 3] that uses the cone of scaled diagonally dominant matrices
for inner-approximating the cone of positive semidefinite matrices which we reviewed in Chapter 2.
Specifically, we use the cones of nonnegative scaled diagonally dominant matrices (SDD+) and their
projections as a natural inner approximation to CPn, and derive a new SOCP-based approximation
scheme for completely positive and copositive programming. Our approximation scheme has a
natural graphical interpretation. By exploiting this interpretation, we can flexibly expand or trim the
SOCP problems in our hierarchy, leading to both uniform and problem-dependent approximation
schemes. The use of SOCP offers a compromise between the expressive power of SDP, that comes at a
significant computational cost, and the speed of LP approaches, that have inherently lower expressive
power. Numerical experiments on solving random instances and the stable set problem demonstrate
the effectiveness of our approximation schemes.

4.6.1 Blanket assumptions

We make the following blanket assumptions concerning (4.4) and (4.5):

A1. Problem (4.4) is feasible.

A2. The mapping X 7→ (tr(A1X), . . . , tr(AmX)) is surjective.

A3. Problem (4.5) is strictly feasible, i.e., there exists ȳ satisfying

C−
m

∑
i=1

ȳiAi ∈ intCOPn.



64 On completely positive programming and its approximations

Under these assumptions, the dual Slater condition holds [13]. Therefore we have vp = vd , with both
values being finite and the primal optimal value vp being attained.

4.7 The scaled diagonally dominant cone and beyond

In this section, we present the basis for our construction of inner approximations in Sections 4.8
and 4.9. Our construction is motivated by the work in [2, 3], which studied inner approximations
of the cone of positive semidefinite matrices based on the cones of diagonally dominant and scaled
diagonally dominant matrices which we reviewed in Chapter 2. While their work can be directly
applied to the existing SOS hierarchies to yield outer approximations of CPn (see [3, Section 4.2]) we
show an alternative approach, based on the same cones but using them in a fundamentally different
way, in order to obtain an inner approximation to CPn.

Recall from Chapter 2 that, the cone SDDn of n×n sdd matrices is given by

SDDn := ∑
1≤i< j≤n

ιi j(S2
+), (4.16)

where ιi j : S2 →Sn is the map that sends an S ∈ S2 to the matrix D given by

drs :=



s11 if (r,s) = (i, i),

s12 if (r,s) = (i, j),

s21 if (r,s) = ( j, i),

s22 if (r,s) = ( j, j),

0 otherwise.

This cone is therefore given in terms of 2×2 semidefinite constraints or, in other words, second-order
cone constraints, which makes it quite suitable to use in convex optimization.

One can prove the following basic properties of SDDn, and of the set SDDn
+ := SDDn ∩N n. Note

that item (i) in Proposition 4.7.1 below can be found in [2], and a more general version of it can be
found in [43, Lemma 5]. We include it here for completeness. In what follows ι∗i j denotes the adjoint
of the map ιi j, which in this case can be defined by saying that ι∗i j(S) is the 2× 2 submatrix of S
indexed by rows and columns i and j.

Proposition 4.7.1. The following statements hold.

(i) (SDDn)∗ = {Q ∈ Sn : ι∗i j(Q)≽ 0, ∀1 ≤ i < j ≤ n}.

(ii) (SDDn
+)

∗ = (SDDn)∗+N n.

(iii) SDDn
+ = ∑1≤i< j≤n ιi j(S2

+∩N 2).

Proof. We first prove (i). Recall from (4.16) that SDDn = ∑1≤i< j≤n ιi j(S2
+). Thus, we have from [47,

Corollary 16.3.2] that
(SDDn)∗ =

⋂
1≤i< j≤n

(ιi j(S2
+))

∗,
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Fig. 4.4 Comparison of S5
+∩N 5 with SDD5

+

from which the desired equality follows immediately.
Next, we prove (ii). Note that

∑
1≤i< j≤n

ιi j(E) ∈ SDDn ∩ intN n.

Thus, we conclude from [47, Corollary 16.3.2] that

(SDDn
+)

∗ = (SDDn ∩N n)∗ = (SDDn)∗+N n.

Finally, we prove (iii). It is clear that SDDn
+ ⊇ ∑1≤i< j≤n ιi j(S2

+∩N 2). For the converse inclusion,
consider any Q ∈ SDDn

+. Then Q is nonnegative and can be written as ∑1≤i< j≤n ιi j(Si j) for some
Si j ∈ S2

+, 1 ≤ i < j ≤ n. Observe that each Si j has nonnegative diagonal entries, and moreover, its
nondiagonal entry equals the (i, j)th entry of Q, which is also nonnegative. Thus, Si j ∈ S2

+∩N 2 and
hence Q ∈ ∑1≤i< j≤n ιi j(S2

+∩N 2). This completes the proof.

Since 2× 2 nonnegative positive semidefinite matrices are completely positive, we see from
Proposition 4.7.1(iii) that SDDn

+ is an inner approximation to CPn. In Figure 4.4 we show a random 2
dimensional slice of the cone of doubly nonnegative 5×5 matrices (i.e., S5

+∩N 5) with the slice of
SDD5

+ highlighted in red. The cone CP5 is sandwiched between them. This simple inner approxima-
tion can be used as a basis to construct more general inner second-order cone approximations for CPn.
To do that we consider a useful variant of SDDn

+ that will help us construct inner approximations of
CPn.

Definition 9. Let U ∈ Rt×n
+ have row sum 1. Define

SDDn
+(U) := {UTYU : Y ∈ SDDt

+}=UT (SDDt
+)U. (4.17)

The above definition is similar to the development in [2, Section 3.1], which makes use of the
so-called DD(U). Here we assume that U has nonnegative entries so that SDDn

+(U) will be a subcone
of CPn; see Proposition 4.7.3 below. In addition, we assume that the rows of U have sum one: we
can then always think of the rows of U as points in the simplex ∆n. This is no less general than just
considering U ∈ Rt×n

+ with nonzero rows, because scaling rows of U by positive scalars does not
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change SDDn
+(U). Note that SDDn

+(U) is simply a linear image of SDDt
+ into Sn.

Some basic properties of this set are that SDDn
+(In) = SDDn

+, and that if U ∈ IRt×n
+ is a submatrix of

Ũ ∈ IRs×n
+ then SDDn

+(U)⊆ SDDn
+(Ũ). We show in the next example that SDDn

+(U) can be strictly
larger than SDDn

+ in general.

Example 4.7.1. One can see that the matrix

M =

6 5 5
5 6 5
5 5 6


is in S3

+∩N 3. However, M /∈ SDD3
+; indeed, if we define

W :=

 1 −1 −1
−1 1 −1
−1 −1 1

 ,
then tr(WM)< 0 but W ∈ (SDD3

+)
∗ thanks to Proposition 4.7.1(ii), showing that M /∈ SDD3

+.
Now, suppose we set U to be the 4×3 matrix constructed from concatenating the identity I3 with

an all 1
3 row vector, i.e.,

U =


1 0 0
0 1 0
0 0 1
1
3

1
3

1
3

 ,
and consider the set SDD3

+(U). Then we know SDD3
+ ⊆ SDD3

+(U) because I3 is a submatrix of U.
Furthermore, we have

M =UT


1 0 0 3
0 1 0 3
0 0 1 3
3 3 3 27

U ∈ SDD3
+(U),

where the inclusion holds because
1 0 0 3
0 1 0 3
0 0 1 3
3 3 3 27

=


1 0 0 3
0 0 0 0
0 0 0 0
3 0 0 9

+


0 0 0 0
0 1 0 3
0 0 0 0
0 3 0 9

+


0 0 0 0
0 0 0 0
0 0 1 3
0 0 3 9

 ∈ SDD4
+.

Consequently, SDD3
+(U) is a strictly larger set than SDD3

+.

We next give an important characterization of SDDn
+(U) that is crucial in our development of

inner approximation schemes in Sections 4.8 and 4.9. Recall from (4.2) that CPn can be seen as the
convex hull of all vvT with v ∈Rn

+. The next theorem shows that one can think of SDDn
+(U) similarly.

Theorem 4.7.2. Let U ∈ Rt×n
+ have row sum 1. Then SDDn

+(U) is the conic hull of all vvT with v
belonging to some line segment [ui,u j], where ui is the i-th row of U.
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Proof. Note from Proposition 4.7.1(iii) and (4.17) that any matrix in SDDn
+(U) can be written as

∑
1≤i< j≤n

UT
ιi j(Si j)U

for some Si j ∈ S2
+ ∩N 2. Moreover, any matrix S ∈ S2

+ ∩N 2 can be written as S = v1vT
1 + v2vT

2

for some nonnegative vectors vi ∈ R2
+. Furthermore, we know that for any v ∈ R2, it holds that

ιi j(vvT ) = wwT where w ∈ Rt is the vector whose ith entry is v1, jth entry equals v2, and is zero
otherwise. Hence, we deduce that any matrix in SDDn

+(U) can be written as

N

∑
k=1

UT wkwT
k U,

where each wk ∈ Rt is nonnegative and has a support of cardinality at most 2. Conversely, it is easy to
see that any matrix that can be written as such a sum is in SDDn

+(U). But each UT w, with w ̸= 0, is
simply a (nonzero) conic combination of two rows of U , ui and u j; so, up to positive scaling, it is in
[ui,u j], proving our claim.

We can now prove the following properties of SDDn
+(U).

Proposition 4.7.3. Let U ∈ Rt×n
+ have row sum 1. Then the following statements hold.

(i) The cone SDDn
+(U) is a closed sub-cone of CPn.

(ii) (SDDn
+(U))∗ = {Y : UYUT ∈ (SDDt

+)
∗}= {Y : UYUT ∈ (SDDt)∗+N t}.

Proof. From Theorem 4.7.2, it follows that SDDn
+(U) is a sub-cone of CPn. It remains to prove

closedness. Since U is nonnegative and has no zero rows, the origin is not in the convex hull of vvT ,
where v belongs to some [ui,u j], and ui is the i-th row of U . Hence SDDn

+(U) is the conic hull of a
compact convex set not containing the origin. Thus, it is closed.

To prove (ii), recall that SDDn
+(U) =UT (SDDt

+)U . From this we see that Y ∈ (SDDn
+(U))∗ if

and only if
tr(Y (UTWU))≥ 0 ∀W ∈ SDDt

+,

which is the same as UYUT ∈ (SDDt
+)

∗. This proves the first equality. The second equality in (ii)
follows from Proposition 4.7.1(ii). This completes the proof.

Note that the construction of SDDn
+(U) is fairly general. Anytime we have a cone C ⊆ CP t and a

matrix U ∈ Rt×n
+ whose rows have sum one, with t ≥ n, one can define the cone

C(U) := {UTYU : Y ∈ C}=UTCU. (4.18)

This is easily seen to always verify C(U)⊆ CPn, since C(U)⊆UTCP tU ⊆ CPn. It is helpful to state
in this language the usual LP inner approximations to CPn. Let Diagn

+ be the set of nonnegative n×n
diagonal matrices. Clearly Diagn

+ ⊆ CPn, so we can define

Diagn
+(U) := {UTYU : Y ∈ Diagt

+}. (4.19)
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This is nothing more than the conic hull of the matrices uiuT
i , i = 1, . . . , t, where ui is the i-th row of

U . The use of (4.19) for inner approximation corresponds to the standard LP approximation strategy
used, for example, in [15], where strategies for efficient choices of U were explored.

Another possibility for obtaining an LP relaxation would be to use the cone of n×n symmetric
nonnegative diagonally dominant matrices, denoted by DDn

+. We have Diagn
+ ⊆ DDn

+ ⊆ SDDn
+. So,

if we define
DDn

+(U) := {UTYU : Y ∈ DDt
+}, (4.20)

we would get Diagn
+(U) ⊆ DDn

+(U) ⊆ SDDn
+(U). However, since one can easily see that DDn

+ is
the conic hull of (ei + e j)(ei + e j)

T for 1 ≤ i ≤ j ≤ n, it is not hard to see that DDn
+(U) is simply the

conic hull of (ui +u j)(ui +u j)
T for 1 ≤ i ≤ j ≤ t, and hence can be expressed in terms of Diagn

+(U
′)

for some U ′ that contains U as a submatrix.
Other choices would be to use not submatrices in S2

+, as we did for SDDn
+, but matrices in S3

+ or
S4
+. Note that it is still true in these two cases that S i

+∩N i ⊆ CP i. These cones would give better
approximations, but we would get a much higher number of constraints that would not be second-order
cone constraints but fully semidefinite. While the semidefinite constraints would still be small, the
process would become more cumbersome and significantly less tractable.

4.7.1 A graphical refinement

We saw above that SDDn
+(U) is a natural inner approximation to CPn. Furthermore, Theorem 4.7.2

suggests that the fundamental property of U that guides the approximation is the collection of segments
[ui,u j]. We might associate to the points ui vertices of a graph, and to the segments its edges, and
think of the collection of points and segments as a concrete realization of the graph in IRn. This insight
can be used to refine the approximation, making it more flexible. We start by generalizing the notion
of SDD.

Given a graph G with vertex set {1, . . . ,n} and edge set E , we define

SDDG := ∑
{i, j}∈E

ιi j(S2
+),

and we set SDDG := {0} if E = /0 by convention. The graph G simply encodes which principal 2×2
submatrices will be required to be semidefinite. In particular, if we consider G to be the complete
graph Kn, this is simply SDDn. We can define SDDG

+ as the nonnegative matrices in SDDG, similarly
as before. Then we can naturally define a generalization of SDDn

+(U):

Definition 10. For a graph G with t vertices and a matrix U ∈ IRt×n
+ whose rows have sum one, we

define the cone SDDG
+(U) as

SDDG
+(U) := {UTYU : Y ∈ SDDG

+}=UT (SDDG
+)U.

It will be helpful to think of the rows of U as points in the standard simplex ∆n (i.e. with
nonnegative coordinates summing to one). These points correspond to vertices of the graph G, and
the edge set of G simply encodes which pairs of rows of U (vertices) are “connected". In other words,
the pair (G,U) is a realization of the graph G inside ∆n with segments for edges. We will denote by
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seg(G,U) the set of points in some of the segments, i.e,

seg(G,U) =
⋃

{i, j}∈E
[ui,u j],

where ui is the i-th row of U . This set completely controls the geometry of the cone. Based on
this notion and the proof of Theorem 4.7.2, we can immediately obtain the following refinement of
Theorem 4.7.2 for the representation of SDDG

+(U).

Theorem 4.7.4. Let G be a graph with t vertices and U ∈ IRt×n
+ be a matrix whose rows have sum

one. Then SDDG
+(U) is the conic hull of all vvT with v ∈ seg(G,U).

Theorem 4.7.4 gives a simple way of translating results from the graph language to results
about cones. In particular if we have seg(G,U) ⊆ seg(G′,U ′), we have SDDG

+(U) ⊆ SDDG′
+ (U ′),

and furthermore SDDG
+(U) ⊆ SDDKt

+ (U) = SDDn
+(U) ⊆ CPn, for all graphs G with t vertices and

matrices U ∈ IRt×n
+ whose rows have sum one.On the other hand, if every node of the graph G is

covered by some edges, then SDDG
+(U)⊇ Diagn

+(U), the usual LP inner approximation. Thus, the
graphical notation allows us to construct intermediate approximations somewhere in between the
simple LP inner approximation and the full SDDn

+(U) version.
We end the section by noting that most of our other previous results concerning SDDn

+ and
SDDn

+(U) can be adapted with no effort to this new cone.

Theorem 4.7.5. Given a graph G with t ≥ n vertices and edge set E , and a matrix U ∈ Rt×n
+ whose

rows have sum one, we have the following properties.

(i) (SDDG)∗ = {Q ∈ Sn : ι∗i j(Q)≽ 0 ∀{i, j} ∈ E};

(ii) SDDG
+ = ∑{i, j}∈E ιi j(S2

+∩N 2);

(iii) (SDDG
+(U))∗ = {Y : UYUT ∈ (SDDG

+)
∗};

(iv) SDDG
+(U) is a closed sub-cone of CPn.

Proof. Immediate from the proofs of Proposition 4.7.1 and Proposition 4.7.3.

4.8 Inner approximation schemes for the completely positive cone

The main idea of this section is to approximate the solution to (4.4) by using the cones SDDG
+(U) to

replace CPn. More concretely our scheme is based on the following family of optimization problems,
which depends on a graph G on t ≥ n vertices and a U ∈ IRt×n

+ whose rows have sum one:

vp(G,U) := min tr(CX)

s.t. tr(AiX) = bi, i = 1, . . . ,m,

X ∈ SDDG
+(U),

(4.21)

and its dual problem given by

vd(G,U) := max bT y
s.t. C−∑

m
i=1 yiAi ∈ (SDDG

+(U))∗.
(4.22)
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Note that the semidefinite constraints in (4.21) are imposed only on 2× 2 matrices. Thus, these
problems are SOCP problems.

Recall from Theorem 4.7.5 that SDDG
+(U) and (SDDG

+(U))∗ are both closed convex cones. Also,
notice that (4.22) has a strictly feasible point due to Assumption A3 and the fact that COPn ⊆
(SDDG

+(U))∗ (which follows from SDDG
+(U)⊆ CPn). Consequently, if Problem (4.21) is feasible,

then vp(G,U) = vd(G,U), both values are finite and vp(G,U) is attained. Moreover, we conclude
from SDDG

+(U)⊆CPn that vp(G,U)≥ vp. Furthermore, we have already pointed out that augmenting
the embedded graph (G,U) leads to an enlargement in SDDG

+(U). In view of these observations,
we will discuss strategies for constructing an “enlarging" sequence of graphs {(Gk,Uk)} to possibly
tighten the gap vp(Gk,Uk)− vp as k increases.

To simplify our terminology, we make the following definition.

Definition 11. A sequence of embedded graphs {(Gk,Uk)} is called a positively enlarging sequence
if seg(Gk,Uk)⊆ seg(Gk+1,Uk+1), each U is a nonnegative matrix having at least n rows, each row of
U (the realizations of vertices of G) sums to one, and each node of G is covered by at least one edge.

Positively enlarging sequences verify vp(Gk,Uk) ≥ vp(Gk+1,Uk+1) ≥ vp by construction. Fur-
thermore, once (4.21) is feasible for some k = k0, it will remain feasible whenever k ≥ k0, since the
sequence of sets {SDDGk

+ (Uk)} are monotonically increasing. Moreover, we have noted above that
we might think of the rows of U to be in the simplex ∆n so that we can think of this as an enlarging
family of graphs embedded in ∆n.

We next study convergence of our inner approximation schemes for (4.4) based on (4.21) when
{(Gk,Uk)} is a positively enlarging sequence. We first prove a convergence result concerning a similar
approximation scheme, which uses Diagn

+(U) (as defined in (4.19)) in place of SDDG
+(U) in (4.21).

This strategy was used in [15], which studied the pairs (4.21) and (4.22) with Diagn
+(U) in place of

SDDG
+(U), and constructed an “enlarging" sequence {Uk} by adding new rows to Uk from ∆n at each

step. To determine what rows to add, they solve another LP approximation scheme based on U , which
they see as the set of vertices of a simplicial partition of ∆n, and use its results to construct a sequence
of {Uk} with an increasing number of rows. In studying the convergence of that method they proved
a version of the following result for copositive programming problems in [15, Theorem 4.2]. The
version presented below will be useful for studying convergence of our inner approximation schemes
for (4.4).

Theorem 4.8.1. Assume that (4.4) is strictly feasible. Let {Uk} be a sequence of matrices whose rows
have sum one, where for each k, Uk ∈ Rtk×n

+ for some tk ≥ n. Suppose that

lim
k→∞

max
x∈∆n

min
i=1,...,tk

∥x−uk
i ∥= 0, (4.23)

where uk
i is the i-th row of Uk. Consider for each k the following problem

ṽp(Uk) := min tr(CX)

s.t. tr(AiX) = bi, i = 1, . . . ,m,

X ∈ Diagn
+(U

k).

(4.24)

Then the following statements hold.
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(i) ṽp(Uk) is finite for all sufficiently large k and limk→∞ ṽp(Uk) = vp.

(ii) The solution set of (4.24) is nonempty and uniformly bounded for all sufficiently large k.

(iii) Let Xk be a solution of (4.24) whenever the solution set is nonempty. Then any accumulation
point of {Xk} is a solution of (4.4).

Proof. Note that the Diagn
+(U

k) defined in (4.19) is the conic hull of uk
i uk

i
T , where uk

i are rows of Uk.
Note also that any element X in CPn can be written as the conic combination of n(n+1)

2 matrices vvT ,
with v ∈ ∆n. Thus, in view of (4.23), X can then be written as the limit of a sequence {Xk}, where
Xk ∈ Diagn

+(U
k) for each k. This together with Diagn

+(U
k) ⊆ CPn shows that the sequence of sets

{Diagn
+(U

k)} converges to CPn in the sense of Painlevé-Kuratowski [48, Chapter 4B].

Since the mapping X 7→ A(X) := (tr(A1X), . . . , tr(AmX)) is surjective by Assumption A2 and
(4.4) is strictly feasible, the vector b and the set A(CPn) cannot be separated in the sense of [48,
Theorem 2.39]. Thus, [48, Theorem 4.32] shows that the sequence of feasible sets of (4.24) converges
to the feasible set of (4.4) in the sense of Painlevé-Kuratowski.

It now follows from [48, Theorem 4.10(a)] and the nonemptiness of the feasible set of (4.4)
that the feasible sets of (4.24) are nonempty for all sufficiently large k. Hence ṽp(Uk) < ∞ for all
sufficiently large k. Note that for each k, the dual problem to (4.24) is dual strictly feasible because of
Assumption A3 and COPn ⊆ (Diagn

+(U
k))∗. Thus, ṽp(Uk) is indeed finite for all sufficiently large

k. Moreover, thanks to the dual strict feasibility, the solution sets of (4.24) are nonempty whenever
ṽp(Uk) is finite hence, in particular, are nonempty for all sufficiently large k.

Next, note that by Assumption A3 the dual problems of (4.24) for each k actually have a common
Slater point, i.e., there exists a matrix

Ȳ :=C−
m

∑
i=1

ȳiAi ∈ intCOPn ⊆ int(Diagn
+(U

k))∗.

Therefore, there exists ε > 0 so that Ȳ + εB ⊆ intCOPn, where B is the unit closed ball centered at
the origin (in Fröbenius norm). Consequently, for any X ∈ CPn, it holds that tr(Ȳ X)≥ ε∥X∥F . We
now argue that the solution sets of (4.24) are uniformly bounded for all k. Indeed, fix any k so that the
solution set of (4.24) is nonempty, and let Xk be a solution. Then Xk is a Lagrange multiplier for the
dual problem. In particular,

ṽp(Uk) = max
y

{
bT y+ tr

(
Xk

[
C−

m

∑
i=1

yiAi

])}
≥ bT ȳ+ tr(XkȲ )≥ bT ȳ+ ε∥Xk∥F ,

where the last inequality holds because Xk ∈ Diagn
+(U

k)⊆ CPn. Since {ṽp(Uk)} is nonincreasing,
we conclude from the above inequality that {Xk} can be bounded above by a constant independent of
k. Thus, the solution sets of (4.24) are uniformly bounded for all k.

Finally, since the sequence of sets {Diagn
+(U

k)} is monotonically increasing, we see from [48,
Proposition 7.4(c)] that the objective function (with the constraint considered as the indicator function)
of (4.24) epi-converges to that of (4.4) in the sense of [48, Definition 7.1]. The desired conclusion
concerning limits of {ṽp(Uk)} and {Xk} now follows from [48, Theorem 7.31(b)].
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Since Diagn
+(U) ⊆ SDDG

+(U) if the edges of G cover all nodes, we get the convergence of
the sequence of problems (4.21) for a positively enlarging sequence {(Gk,Uk)} under the same
assumptions on Uk. But we can actually obtain the desired convergence result under a weaker
condition.

Theorem 4.8.2. Assume that (4.4) is strictly feasible. Let {(Gk,Uk)} be a positively enlarging
sequence such that

lim
k→∞

max
x∈∆n

min
y∈seg(Gk,Uk)

∥x− y∥= 0. (4.25)

Then it holds that:

(i) vp(Gk,Uk) is finite for all sufficiently large k and limk→∞ vp(Gk,Uk) = vp.

(ii) The solution set of (4.21) with (G,U) = (Gk,Uk) is nonempty and uniformly bounded for all
sufficiently large k.

(iii) Let Xk be a solution of (4.21) with (G,U) = (Gk,Uk) whenever the solution set is nonempty.
Then any accumulation point of {Xk} is a solution of (4.4).

Proof. Note that from Theorem 4.7.4 and the description of Diagn
+(U) as the conic hull of all

matrices uiuT
i where ui is a row of U , if every node of G is covered by some edges and if we

construct U ′ by adding rows such that each new row lies in [ui,u j] for some {i, j} ∈ E , we have
Diagn

+(U
′)⊆ SDDG

+(U).
For each Uk, subdivide each segment [uk

i ,u
k
j] into segments no longer than 1/k, and adding these

new points to Uk to form Ũk ∈ Rt̃k×n
+ . Then for each x ∈ ∆n, we have

min
i=1,...,t̃k

∥x− ũk
i ∥ ≤ min

y∈seg(Gk,Uk)
∥x− y∥+ 1

k
,

where ũk
i is the i-th row of Ũk. Thus, the sequence {Ũk} satisfies the conditions of Theorem 4.8.1.

Consequently, from the proof of Theorem 4.8.1, the sequence of sets {Diagn
+(Ũ

k)} converges to CPn

in the sense of Painlevé-Kuratowski. In view of this and [48, Exercise 4.3(c)], {SDDn
+(U

k)} converges
to CPn. The rest of the proof follows exactly the same arguments as in the proof of Theorem 4.8.1.

An obvious way of guaranteeing the satisfaction of the condition (4.25) in Theorem 4.8.2 is to
consider the rows of Uk to be the set of points in x ∈ ∆n such that kx ∈ Zn, i.e. an equally spaced
distribution of points in the simplex, with a growing number of points. This is in fact the strategy
explored in [53] with the linear programming approach. As guaranteed by Theorem 4.8.2, this is
sufficient to get convergence in our case, independently of the edges considered, but we can get
away with much less. Indeed, it is easy to see, for example, that we do not need to map vertices
to the interior of the simplex to get convergence and, in fact, it is enough to uniformly sample the
boundary of the simplex, and form a graph with all possible edges between the chosen vertices.
Finding embedded graphs that optimally cover ∆n in the sense of minimizing the maximum distance
to a point of the simplex seems to be a hard problem with no obvious answer, but many different
strategies can be attempted. For practical purposes, it might be helpful to use the problem structure to
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design strategies for constructing {(Gk,Uk)}; these may not satisfy condition (4.25) and hence the
convergence behavior can be compromised, but their corresponding problem (4.21) may be easier to
solve. Indeed, as discussed in [36, Section 1.4], the amount of work per iteration for solving (4.22) is
O((m+ t2

k )
2(4|E|+ t2

k )) when (G,U) = (Gk,Uk). Hence, we will explore some problem-dependent
inner approximation schemes in the next section.

Before ending this section, we would like to point out that the approach in [53] using Diagn
+(U)

for (rows of) U equally distributed in the simplex is one of the few problem-independent inner
approximations to CPn presented in the literature. The only other approach is that of [34], which
leads to SDP problems. Although conceptually very interesting and with guaranteed convergence, this
latter approach performs poorly in practice, because the size of the constraints grows very fast and
the small instances that can be reasonably computed give weak approximations. In some sense, our
SOCP based approximation schemes may lend some of the power of semidefinite programming to the
LP approximation without completely sacrificing computability.

4.9 Problem-dependent inner approximation schemes

In this section, we propose some problem-dependent heuristic schemes for constructing {(Gk,Uk)}.
They typically lead to computationally more tractable problems than a positively enlarging sequence
satisfying (4.25). As we shall see later in our numerical experiments, these problem-dependent
schemes in general return solutions with reasonable quality, though their convergence behaviors
are still unknown. A related problem-dependent approach was developed in [1] for semidefinite
programming. In there, they proposed the use of the cone SDDn(U) and progressively enlarge the U
to obtain efficient inner approximations to Sn

+. We propose in this section a related approach. The
main difference is that in the semidefinite case considered in [1], enlarging the U is relatively simple,
as we can always separate the dual solution to the inner approximation from Sn

+, if it is not there. In
the case of completely positive cone, however, there is no realistic way of even checking if the dual
solution is copositive. Thus, a direct separation procedure, like the one proposed in [1], is not viable.

4.9.1 Problem-dependent positively enlarging sequence

In this section, we describe a problem-dependent strategy for constructing a positively enlarging
sequence {(Gk,Uk)} that can potentially perform better on specific problem instances.

After solving (4.21) with a choice of (Gk,Uk), if the problem is feasible, one will obtain a
solution X ∈ SDDG

+(U). By Theorem 4.7.4, this X can be written as a conic combination of vvT for
v ∈ seg(G,U). Our plan here is to add these v as vertices to G and add some new edges from them, in
order to increment the graph. The decomposition is not unique, so one has to carefully define what is
meant by it.

First, note that for an M ∈ S2
+∩N 2, there exist a ≥ 0, b ≥ 0 and v ∈ R2

+ so that

M = vvT +

[
a 0
0 b

]
. (4.26)
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This is trivially true if any element in the diagonal of M is zero. For other matrices, the above
decomposition can be realized by taking for example v = (

√
m11,m12/

√
m11), implying a = 0 and

b = m22 −m2
12/m11, which is greater than or equal to zero since M ≽ 0.

Now, for any U ∈ Rt×n
+ , one can see that UT ιi j(M)U = auiuT

i + bu juT
j +(v1ui + v2u j)(v1ui +

v2u j)
T , where ui is the ith row of U , 1 ≤ i < j ≤ t. So, besides the vertices ui and u j, we need at most

one point coming from each edge [ui,u j] to describe UT ιi j(M)U . Since elements of SDDG
+(U) are

sums of matrices of this type for {i, j} ∈ E by Theorem 4.7.4, we have the following lemma refining
Theorem 4.7.4.

Lemma 4.9.1. Any element X ∈ SDDG
+(U) can be written as

X =
t

∑
i=1

λiuiuT
i + ∑

{i, j}∈E
γi jwi jwT

i j

where ui is the i-th row of U ∈ Rt×n
+ , wi j ∈ [ui,u j] and λi,γi j ≥ 0.

A natural question to ask is which points we can pick in each segment. To answer this question,
we assume without loss of generality that m12 > 0 (and hence m11 > 0 and m22 > 0) in (4.26) and
demonstrate how the v there can be chosen. Note that UT vvTU is supposed to correspond to a γi jwi jwT

i j

in the decomposition in Lemma 4.9.1.

Since m12 > 0, we must have v1 > 0 and v2 > 0. Then we just need to see what the ratio r = v1/v2

can be. What we saw above right after (4.26) was the largest case, where we get r = m11/m12. The
smallest it can get is attained by setting v = (m12/

√
m22,

√
m22), which gives us r = m12/m22. These

two values for r can be seen by noting that any extremal ratio v1/v2 for the v in (4.26) must correspond
to a = 0 or b = 0. A balanced option, defined in a way that the ratio between diagonal entries of vvT

preserves the ratio between the diagonal entries of M, is to take

v =
√

m12


(

m11
m22

) 1
4(

m22
m11

) 1
4

 , (4.27)

which corresponds to r =
√

m11/m22, the geometric mean of the largest and smallest possible ratios.

Based on these observations, we can now describe a general strategy for an iterative procedure to
obtain upper bounds for (4.4).
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Scheme 1: Successive upper bound scheme for (4.4)

Step 0. Start with a complete graph G0 and its embedding (G0, I) in ∆n. Set k = 0 and U0 = I.

Step 1. For an optimal solution Xk of (4.21) with (G,U) = (Gk,Uk), apply Lemma 4.9.1 to
obtain points wi j for some {i, j} ∈ E ′ ⊆ E such that X is a conic combination of wi jwT

i j

for {i, j} ∈ E ′ and uiuT
i for the vertex i of G.

Step 2. Define a new graph embedding (Gk+1,Uk+1) by adding new vertices at the points wi j

(or at least some subset of them) and some new edges connecting those vertices to some
of the previously defined ones, and possibly remove redundant edges and go to Step 1.

The general idea is therefore to, augment the graph at each step by adding some vertices in the
edges that were active in the optimal solution and some edges incident with them. All the steps have,
however, some subtleties that need to be addressed.

The initial embedding (G0,U0) is currently taken to be simply the embedding of Kn into the
vertices of ∆n, so that SDDG0

+ (U0) = SDDn
+. If that is infeasible, however, the strategy does not work.

Nevertheless, assuming strict feasibility of (4.4), we know from Theorem 4.8.1 that there is some
small enough uniform simplicial partition of ∆n that will make the problem feasible.

The decomposition obtained in Step 1 is not unique. There are two sources of variations. First, as
discussed above, given a 2×2 semidefinite matrix M such that ιi j(M) appears in the decomposition
of X , we have some leeway on which point to pick in the edge [ui,u j]. Second, notice that even these
matrices M are not uniquely defined. Since the matrices M will be a side result of the solution to
(4.21), the choice of algorithm and the way the problem is encoded will have some impact in the
decomposition. As for defining the v given the matrix M, we will use the balanced approach described
above in (4.27) as it seems to perform well in practice.

The augmenting step (Step 2) is the most delicate of all. Different augmenting techniques will give
rise to very different procedures. Here and in our numerical experiments, we consider two different
approaches. We will present more implementation details in Section 4.10.

The Maximalist Approach: In this approach, we add some new vertices and then connect all
vertices to form a complete graph. This is memory consuming and induces some redundancies: every
node we add is in the middle of an already existing edge. Adding edges to those does not enlarge
the cone SDDG

+(U) and might lead to numerical inaccuracies, as we create multiple ways of writing
points in a segment. Some pruning techniques could be applied.

The Adaptive Simplicial Partition Approach: This is mimicking the technique introduced in [15],
which maintains the set of edges as that of a simplicial partition. At every step we would pick edges to
subdivide and subdivide all the simplices containing that edge. The choice of nodes and edges to add to
Gk in our approach is based on the solution we obtain from solving (4.21) for (G,U) = (Gk−1,Uk−1).
This is different from [15], which relies solely on an outer approximation to guide the subdivision
process.
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Note that we do not have any guarantee of convergence for Scheme 1. However, geometrically one
can see what must happen in order for the method to get stuck, i.e., for SDDGk

+ (Uk) = SDDGk+1

+ (Uk+1).
As an immediate consequence of Theorem 4.7.4, this happens if and only if all the newly added edges
in the embedding are contained in previously existing edges. This is because rank one nonnegative
matrices are on the extreme rays of CPn (see [6]). Thus, we see from Theorem 4.7.4 that SDDGk

+ (Uk)=

SDDGk+1

+ (Uk+1) if and only if seg(Gk,Uk) = seg(Gk+1,Uk+1). This is an extremely strong condition,
that implies essentially (depending on the scheme chosen to enlarge the graph) that the scheme gets
stuck if for some iteration the optimal solution can be attained as a combination of only the nodes,
and no elements from the edges. Or, in other words, the problem (4.21) has the same solution if we
replace SDDGk

+ (Uk) by Diagn
+(U

k). On passing, we would like to point out that, in occasions where
convergence is a serious concern, one can modify Step 2 of Scheme 1 by adding a random vertex in
∆n in addition to those wi j: this resulting scheme is guaranteed to converge in view of Theorem 4.8.2
if (4.4) is also strictly feasible.

4.9.2 A forgetfulness scheme

The use of a positively enlarging sequence {(Gk,Uk)} can lead to large-scale SOCP problems when k
is huge. As a heuristic to alleviate the computational complexity, we propose a simple forgetfulness
scheme.

In this approach, we maintain the complete graph throughout. However, we always form Uk by
appending only the newly generated vertices to U0, which we choose to be the identity matrix. The
details are described below.

Scheme 2: A forgetfulness upper bound scheme for (4.4)

Step 0. Start with a complete graph G0 and its embedding (G0, I) in ∆n. Set k = 0 and U0 = I.

Step 1. For an optimal solution Xk of (4.21) with (G,U) = (Gk,Uk), apply Lemma 4.9.1 to
obtain points wi j for some {i, j} ∈ E ′ ⊆ E such that X is a conic combination of wi jwT

i j

for {i, j} ∈ E ′ and uiuT
i for the vertex i of G.

Step 2. Define a new graph embedding (Gk+1,Uk+1): starting with (G0, I), add new vertices at
the points wi j and then add edges between each new vertex and all vertices in G0. Go to
Step 1.

Note that, in general, one cannot guarantee that the forgetfulness scheme is even monotonous, as
we are dropping the factors uiuT

i that were a part of the representation of the optimal solution X in
Step 1. However, in most studied random instances in our numerical experiments, the forgetfulness
scheme appears to be monotonous. The main reason could be that the algorithm tends to write X as a
conic combination of just the matrices wi jwT

i j for {i, j} ∈ E ′. When this happens, we are guaranteed
that the next iteration will be non-increasing, but this need not always be the case.
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4.10 Numerical simulations

In this section, we report on numerical experiments to test our proposed approaches. All experiments
were performed in Matlab (R2017a) on a 64-bit PC with an Intel(R) Core(TM) i7-6700 CPU (3.40GHz)
and 16GB RAM. We used the convex optimization software CVX [28], running the solver MOSEK to
solve the conic optimization problems that arise. In our tests, we specifically consider the following
strategies:

∆-partition: In this approach, controlled by a parameter k ≥ 2, we generate the vertices of the graph
Gk as the

(n+k−1
k

)
vertices in the uniform subdivision of the simplex ∆n into simplices of size 1

k ∆n.
We then add edges between two vertices whenever their supports differ by 2.

Note that by Theorem 4.8.2, if (4.4) is in addition strictly feasible, then vp(Gk,Uk) will be close
to vp for all sufficiently large k, so this strategy is guaranteed to converge as k increases.

Max: This is a variant of Scheme 1. Specifically, in Step 1, we decompose Xk as described in
Lemma 4.9.1 using the balanced option given in (4.27). Then, in Step 2, we add all wi j whose Xk

i j is
sufficiently large as new vertices, and add edges between all vertices so that the new graph Gk+1 is
complete.

Max1: This is another variant of Scheme 1. Step 1 is the same as in Max. However, in Step 2, we
only add the wi j corresponding to the largest Xk

i j (if Xk
i j exceeds a certain threshold) as a new vertex.

We then add edges between all vertices so that the new graph Gk+1 is complete.

Adaptive ∆-partition: This is also an variant of Scheme 1. Step 1 is the same as in Max. For
Step 2, the way of adding vertices is the same as in Max1. However, the way we add edges mimics
the approach introduced in [15], which maintains the set of edges as that of a simplicial partition.
Specifically, we subdivide the edge corresponding to the wi j we added, and subdivide all the simplices
containing that edge.

Forgetfulness: This is a variant of Scheme 2. We perform Step 1 as in Max. As for Step 2, we add
all wi j whose Xk

i j is sufficiently large as new vertices to the original graph G0. We then add edges to
join each newly added vertex to all vertices in G0.

In Section 4.10.1, we compare the strategies Max, Adaptive ∆-partition and Forgetfulness on
random instances of (4.4). We will also present results obtained via ∆-partition (with k = 2) as
benchmark. In Section 4.10.2, we will first review the standard completely positive programming
formulation of the stable set problem, and then examine how Max1 performs for some standard test
graphs.

4.10.1 Random instances

In order to test the performance of our method in a generic setting, we test it for randomly generated
instances of problem (4.4). We generate our objective function by setting C = MT M where M is an
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n×n matrix with i.i.d. standard Gaussian entries, guaranteeing strict feasibility of (4.5). Furthermore,
we generate the constraints by setting Ai = (Mi +MT

i )/2, where the Mi are also n×n matrices with
i.i.d. standard Gaussian entries, and choosing bi such that bi = tr(Ai(E +nI)). This guarantees strict
feasibility of (4.4).

For the first of our tests we varied the number of variables, n, and the number of constraints
m, so that n is either 10 or 25 and m is either 5, 10 or 15. Given the complexity of copositive
programming, there is actually no reliable way to find the true solution for these problems and there is
no available implemented method that can generate lower bounds with which to compare our results.
As a work-around, throughout this section we will compare the results we obtain with the classical
(and somewhat coarse) lower bound provided by replacing CPn by Sn

+∩N n in problem (4.4). We
will use the difference of our approximations to this lower bound, normalized by dividing it by the
bound, as a proxy for the quality of the methods, and will simply denote it by relative gap. Precisely,
this quantity is defined by gap(x) = x−x∗

|x∗| , where x is the objective value attained by the method being
studied and x∗ the doubly nonnegative lower bound. This makes it somewhat easier to compare
different methods across different instances of the problem. The drawback is that the gap we compute
is actually the sum of the gaps of the proposed method and the doubly nonnegative approximation,
which we don’t know how to independently estimate.

Max Adaptive ∆-Partition Forgetfulness ∆-Partition
n m time (sec) Relative Gap time (sec) Relative Gap time (sec) Relative Gap time (sec) Relative Gap

10 5 8.2 5.035e-02 25.3 6.362e-02 13.0 2.006e-02 4.6 4.620e-01
10 10 19.5 2.281e-02 25.3 7.920e-02 23.0 1.849e-02 4.5 4.095e-01
10 15 41.7 1.212e-02 27.6 8.207e-02 27.0 1.179e-02 5.0 2.995e-01
25 5 23.0 6.748e-01 55.1 5.828e-01 38.4 2.975e-01 — —
25 10 45.8 4.660e-01 62.9 7.841e-01 52.7 2.020e-01 — —
25 15 71.8 3.715e-01 56.1 8.565e-01 61.5 1.545e-01 — —

Table 4.1 Comparison of different iterative approaches

The results obtained can be seen in Table 4.1, where we present both the average gaps and the
average running time for the studied methods. A few technical details are needed to be able to replicate
the experiment. The results presented are averages of 30 instances per parameter pair. Moreover we
fix the maximum number of iterations for the Max, Adaptive ∆-partition and Forgetfulness schemes as,
respectively, 5, 20 and 15 for n = 10 and 5, 15 and 12 for n = 25. This was done (in an ad hoc way)
to try to keep the average execution time as similar as possible across iterative methods, so that a fair
comparison can be made. Also, since the maximalist approach can occasionally explode in size, we
also stop this approach early when tk+1 > 200 (Recall that Uk ∈ Rtk×n

+ for all k). For the forgetfulness
approach, we prune the Uk in each step by removing redundant rows: we compute δ k

i j := ∥uk
i −uk

j∥1,
where uk

i and uk
j are the i-th and the j-th rows of Uk respectively, j > i, and discard uk

j if δ k
i j < 10−6.

We also stop this approach early when tk+1 > 200 for the Uk+1 after pruning. The static ∆-partition is
not computed for n = 25 as it takes too long.

These results show that the forgetfulness scheme dominates the others in all categories as far as the
relation quality/time is concerned. The relative gaps of the attained solutions jumps from between 1%
and 2% for n = 10 to between 15% and 30% for n = 25. Once again, we stress that these are upper
bounds for the forgetfulness scheme quality as well as for the doubly nonnegative approximation
quality, and we cannot separate the contributions from each method.
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Fig. 4.5 Evolution of the gap for the forgetfulness scheme as iterations increase

We also plot in Figure 4.5 the evolutions of the gaps for the forgetfulness scheme for 10 random
instances of the problem (4.4) with n = 25 and m = 10. We can see the logarithmic scale plot of
the gap as iterations increase, and the diminishing returns in improvement percentage. Again, note
that the true gap might actually be decreasing faster, as what we are seeing is the gap to the doubly
nonnegative lower bound.

4.10.2 Stable set problems

While in the previous section we focus on random problems, the main focus of the completely
positive/copositive programming literature has been in highly structured combinatorial optimization
problems. One of the most common applications is to the stable set problem, i.e., the problem of
finding in a graph G a set of vertices of maximal cardinality such that no two are connected with an
edge. The cardinality of such a set is known as the independence number of G, denoted by α(G). In
[18, Equation (8)], the following completely positive formulation was introduced for that problem.

α(G) = max tr(EX)

s.t. tr((AG + I)X) = 1,
X ∈ CPn,

(4.28)

where AG is the adjacency matrix of G.
In this setting we have a single constraint, so m = 1. Our inner approximations of CPn will yield

in this case lower bounds, from which one might be able to extract an actual feasible stable set with
given cardinality. There are a number of good heuristic approaches to the stable set problem with
good results, as there exist implementations of exact algorithms that can handle small to medium sized
graphs, all performing necessarily much better than our all-purpose conic programming approach.
However, we can still see how our approach performs on its own, to get some indication of its
performance on low codimension structured problems.

In this class of problems, symmetry and structure likely imply that the growth of the matrix U in
the greedier maximalist approach but also in the forgetfulness approach is too fast and adds too much
redundancy. To avoid this phenomenon we take the Max1 approach: at every iteration we only add to
U the vertex that has the largest weight in the solution found. This yields a greedy sort of algorithm,
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that in practice tends to grow the stable set greedily one by one. We stopped as soon as the greedy
process got stuck and there was no improvement in two consecutive iterations.

We computed both stability numbers, α(G), and clique numbers, ω(G), which are simply the
stability numbers of the complementary graph. Following [15], we started by computing the clique
numbers of the graphs where their method was tested. Our method yields the correct answers in a
relatively short time, as can be seen in Table 4.2, where our results are presented under the column
“result", and the column “ω(G)" corresponds to the known clique numbers. Note that this is not too
surprising, as finding a large stable set, or clique, is in a general sense computationally easier than
proving that a larger one does not exist. In other words, lower bounding the stable set and clique
numbers of particular graphs tends to be easier than upper bounding them, so our problem has a
smaller scope than what was attempted in [15], leading to much faster times. The graphs in the table
come from two sources, the first is a 17 vertex graph from [42] that is notoriously hard for upper
bounding by convex approximations, the other five come from the 2nd DIMACS implementation
challenge test instances [32], and only hamming6-4 and johnson8-2-4 could be solved by Bundfuss
and Dür’s method in less than two hours as reported in their paper [15].

graph vertices iterations time(sec) result ω(G)

pena17 17 5 13.8 6.0000 6
hamming6-2 64 31 836.7 32.0000 32
hamming6-4 64 3 64.0 4.0000 4
johnson8-2-4 28 3 11.7 4.0000 4
johnson8-4-4 70 13 322.5 14.0000 14

johnson16-2-4 120 7 637.0 8.0000 8
Table 4.2 Clique number for different graphs

To explore the limits of our approach we tried a few more instances of the stable set problem. We
tried Paley graphs, known to mimic some properties of random graphs, with some degree of success,
and a few small-sized instances of graphs derived from error correcting codes, available at [50]. The
results are much worse in this family, with our algorithm failing in small instances, as can be seen in
Table 4.3, where our results are reported under the column “result", and the true stability numbers
are presented under the column “α(G)". One word of caution is that the entire procedure is highly
unstable, and simply changing the solver from MOSEK to SDPT3 can result in changes in the result,
e.g. Paley137 becomes exact in SDPT3.
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graph vertices iterations time(sec) result α(G)

Paley137 137 4 977.4 5.0000 7
Paley149 149 6 1841.6 7.0000 7
Paley157 157 6 2254.1 7.0000 7
1tc.16 16 6 15.7 7.0000 8
1tc.32 32 10 85.5 11.0000 12
1dc.64 64 7 235.8 8.0000 10
1dc.128 128 13 2491.0 14.0000 16
2dc.128 128 4 823.6 5.0000 5

Table 4.3 Stability number for different graphs
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