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1 Introduction

The Standard Model (SM) is an extremely successful quantum field theory framework
that accurately describes all processes involving known elementary particles. Nevertheless,
several crucial open problems remain unsolved within this framework and have motivated
a plethora of extensions in the literature.

On the one hand, several open problems are related to fine-tuning issues, such as the
stability of the electroweak scale (the ‘hierarchy problem’), the smallness of the cosmo-
logical constant or the severe constraints on CP-violation in strong interactions. These
issues can, however, only be seen at most as hints for new physics.1 On the other hand,
there are four problems that definitely point towards the existence of new particles and/or
interactions: (1) neutrino masses, (2) dark matter, (3) the cosmological baryon asymmetry
and (4) inflation. Neutrino masses cannot be accounted for with only the field content of
the SM (see e.g. [1] for a review); there is mounting evidence for a particle nature of dark

1Finely-tuned parameters are not a problem per se within a renormalizable quantum field theory, but
only a symptom of their sensitivity to unknown physical properties at high energy scales.
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matter, as opposed to a modification of gravity (also reviewed in [1]); CP-violation within
the SM is manifestly insufficient to generate the observed matter-antimatter asymmetry
(see e.g. [2]); and standard cosmology fails to explain the nearly scale-invariant spectrum
of Cosmic Microwave Background (CMB) anisotropies, inflation being the leading mech-
anism to generate this, alongside explaining the apparent fine-tuning of initial conditions
embodied in the so-called horizon and flatness problems (see e.g. [3]).

While several ‘top-down’ frameworks can address these problems, most predict a
plethora of new physical states that have yet to be found in colliders or require too many
unknown parameters to be fully tested experimentally. Arguably, a ‘bottom-up’ approach
of building minimalistic models, with as few novel ingredients as possible, may prove more
fruitful from both the theoretical and experimental perspectives, keeping in mind that such
models may find different embeddings in more complete theories, such as grand unification
or superstring/M-theory. In fact, if suitable minimal models can be found to agree with
experiment, this may provide further guidance into developing UV-complete theories.

Hence, in this work, we focus on building a minimal quantum field theory model where
the four problems singled out above can be simultaneously addressed. We elect the frame-
work of warm inflation [4, 5] as our primary arena, since in this context interactions between
the inflaton scalar field and other physical states play a relevant role in both the dynamics
and observational consequences of inflation. This thus provides a natural paradigm within
which to connect the high-energy physics relevant to describe the inflationary dynamics to
low-energy observables and related open problems.

The fundamental difference between warm inflation and the more conventional cold in-
flation models is the inclusion of dissipative effects that result from energy transfer between
the inflaton field and an ambient radiation bath. These are non-equilibrium processes as-
sociated with particle production that, if significant, may counteract the diluting effect
of accelerated expansion and keep the thermal heat bath at a slowly-varying temperature
above the Hubble scale (which sets the Hawking temperature of the de Sitter horizon)
(see [6] for a review). These effects also source thermal fluctuations of the inflaton field,
which in turn produce a nearly scale-invariant spectrum of primordial curvature perturba-
tions [7–10]. The shape of this spectrum, which is imprinted in CMB maps, depends on the
form of the interactions between the inflaton field and particles in the thermal bath, which is
the most interesting aspect of this alternative paradigm from a particle physics perspective.

A finite temperature during inflation is, however, challenging to realize in practice,
due to potentially large thermal corrections to the inflaton’s mass that could hinder the
slow-roll dynamics, despite the additional dissipative friction [11, 12]. The typically large
classical values of the inflaton field also tend to make the particles it couples to quite heavy,
greatly suppressing dissipative effects unless a large multiplicity of fields is present, which
is a challenge in realistic extensions of the SM (see e.g. [13, 14]). These problems have been
recently overcome in the ‘Warm Little Inflaton’ (WLI) scenario [15], where, as we detail
below, collective symmetry breaking of a U(1) gauge symmetry and an additional discrete
symmetry protect the flatness of the scalar potential against large thermal corrections and
keep the mass of particles coupled to the inflaton field parametrically below the temperature
of the heat bath (see also [16, 17]).
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The WLI scenario also offers new ways to connect inflation to the other SM shortcom-
ings outlined above. It has already been shown that the discrete interchange symmetry
also makes the inflaton stable at late times. Since it only interacts directly with heavy
particles, these interactions are only relevant at the high-temperatures attained during in-
flation. This implies that a cold, weakly interacting relic of the inflaton field remains until
the present day and can account for the dark matter abundance [18].2

The simple structure of the WLI Lagrangian is also quite suggestive of the particular
implementation we seek in this work. The inflaton interacts with heavy fermions, which in
turn may decay into a light scalar and a light fermion through standard Yukawa terms. It is
thus natural to try to identify these heavy fermions with the right-handed neutrinos missing
in the SM, and which commonly appear in unification theories based e.g. on the gauge group
SO(10). Their light decay products then correspond to the SM Higgs and lepton doublets.
We will show that consistently realizing warm inflation within this setup requires Majorana
masses for the right-handed neutrinos just below the GUT scale, at around 1015 GeV, and
neutrino Yukawa couplings . 1. The standard type-I seesaw mechanism then naturally
yields light neutrino masses . 0.1 eV, in agreement with neutrino oscillation experiments.
We will then explore in detail how the basic WLI structure can be modified to accommodate
realistic neutrino masses and mixings by considering an additional spontaneously broken
Z3 family symmetry.

Finally, the inclusion of Majorana right-handed neutrino singlets leads to the well-
known thermal leptogenesis scenario in standard Big Bang cosmology [23]. We will show
that our setup is no exception, and that this may occur, in particular, via the CP-violating
decays of the lightest right-handed neutrino, which fall out-of-equilibrium after radiation
has smoothly taken over the inflaton as the dominant component in the Universe. As we
will see, the lightest right-handed neutrino species is not directly involved in the dissipative
processes that keep the Universe warm during inflation, but obtaining a realistic neutrino
mass spectrum at low-energies necessarily implies that these neutrinos are thermally pro-
duced before decaying after inflation.

This scenario constitutes the first successful implementation of warm inflation within a
concrete extension of the SM, building upon a large body of work over the past decades in
terms of understanding the intricacies of non-equilibrium processes during inflation [24–42],
model building [43–54] and observational predictions [55–66]. Our construction further at-
tests to the ability of the warm inflation framework to address several different open prob-
lems in both particle physics and cosmology [67–70] and, as we will discuss, provides several
experimental/observational imprints of its different aspects that would not be possible if
the inflationary Universe were cold and empty as conventionally assumed.

This work is organized as follows. In the next section we review the warm inflation
paradigm, discussing its dynamics and observational predictions, describing in detail the
WLI scenario on which our model is based. We then introduce our basic particle physics
model in section 3, highlighting the role of the different fields and symmetries involved. We

2Such an inflaton remnant may also act as quintessence at late times [19], although this requires particular
non-renormalizable forms of the potential that can only be justified within a more complete theory (see
also [20–22] for related scenarios).
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analyze the cosmological dynamics associated with our scenario in section 4, first during
inflation and then the post-inflationary evolution, in particular discussing how the inflaton
may account for dark matter. Section 5 is devoted to the spectrum of light neutrino masses,
obtained through the seesaw mechanism, and here we explain how introducing a family-
symmetry breaking flavon field can be accommodated within our basic setup. We use these
results to show, in section 6, that thermal leptogenesis naturally occurs after inflation in
this scenario. We summarize our main results in section 7, also discussing possible avenues
for future research.

2 Elements of warm inflation

Warm inflation (WI) is an inflationary paradigm where dissipative processes transfer energy
from the inflaton scalar field, φ, to light degrees of freedom in a nearly-thermal radiation
bath.3 The cosmological dynamics of the inflaton-radiation system is described by the
dynamical equations for the inflaton and radiation, alongside the Friedmann equation de-
termining the Hubble expansion rate H:

φ̈+ 3Hφ̇+ Υφ̇+ ∂φV (φ) = 0, (2.1)
ρ̇r + 4Hρr = Υφ̇2, (2.2)

H2 = ρφ + ρr
3M2

p

, (2.3)

where ρφ = φ̇2/2 + V (φ) is the inflaton’s energy density, ρr ≡ (π2/30)g∗T 4 is the radiation
energy density, with g∗ denoting the number of relativistic degrees of freedom, and Mp ≡√
~c/(8πG) ≈ 2.44 × 1018 GeV is the reduced Planck mass. The dissipation coefficient

Υ = Υ(φ, T ) can in general be computed using standard non-equilibrium quantum field
theory techniques from the fundamental Lagrangian of a given particle physics scenario, at
least close to thermal equilibrium with T & H.4

In the slow-roll approximation, the inflaton field and radiation fluid are slowly-varying:
φ̈ ≈ 0, ρ̇r ≈ 0 while ρφ ≈ V (φ)� ρr, therefore

φ̇ ≈ −∂φV (φ)/(3H(1 +Q)), (2.4)

ρr ≈
3
4Qφ̇

2, (2.5)

H2 ≈ V (φ)
3M2

p

, (2.6)

3The inflaton transfers essentially its kinetic energy into the thermal bath, thus slowing down in the
process.

4This condition ensures that curved-space corrections may safely be neglected, since the momenta of the
produced particles, which is of the order of the ambient temperature, is large compared to the space-time
curvature. Note that the dissipation coefficient can also be obtained by directly computing the particle
production rates, as done in [36]. In this perspective, one can see that the dynamics of the background
inflaton field changes the properties of the particles in the radiation bath. The latter responds to this dis-
turbance of its equilibrium configuration through particle production. The homogeneity of the inflaton field
on super-horizon scales implies nearly uniform particle production rates throughout the inflationary patch.
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where Q = Υ/(3H) > 0. This slow evolution occurs while the conditions:

εφ, |ηφ| < 1 +Q, (2.7)

are valid, which generalizes the standard slow-roll conditions on the inflaton potential
parameters εφ ≡ (M2

p /2)(∂φV/V )2 and ηφ ≡ M2
p (∂φφV/V ). This means that the scalar

potential needs not be as flat as in conventional models due to the additional dissipative
friction.

Since inflation is a period of exponential expansion of the universe, it is more convenient
to work with the number of e-folds of expansion, Ne, rather than the cosmological time.
As such, eq. (2.4) can be written in the form:

φ′

φ
= − σφ

1 +Q
, (2.8)

where primes denote derivatives with respect to the number of e-folds and σφ =
M2
p (∂φV/V φ).
Then, using eqs. (2.4)–(2.6), the ratio of radiation to inflaton potential energy density

is given by;
ρr
V
≈ 1

2
εφ

1 +Q

Q

1 +Q
. (2.9)

The radiation energy density thus remains a subdominant component (ρr/V < 1) while
the slow-roll conditions hold, but may become comparable to the inflaton’s energy density
towards the end of inflation (εφ ∼ 1+Q) if the system enters the strong dissipation regime,5

Q > 1.
While the background homogeneous inflaton field evolves according to (2.1), the full

inhomogeneous field satisfies a Langevin-like equation with an additional Gaussian white
noise term on the right-hand side. This essentially reflects the fluctuation-dissipation the-
orem, with the variance of the noise term being determined by the dissipation coefficient
Υ, and can be rigorously derived using non-equilibrium quantum field theory techniques.
Although we refer the interested reader to the existing literature for further details (see
e.g. [6]), we point out that this is a fundamental property of any dissipative system. For
instance, consider the Brownian motion of a particle in a gas - the average effect of random
collisions with the gas molecules is a damping of the particle’s motion (analogous to the
effect of the Υφ̇ term in eq. (2.1)), but the particle’s velocity can never truly reach zero
due to the effect of individual collisions (which yield the random noise term).

This signals a fundamental difference between the cold and warm inflation paradigms.
Whereas in the former inflaton fluctuations start in a quantum regime and then evolve
towards a classical limit due to gravitational particle production in de Sitter space, in warm
inflation the interactions with the heat bath source thermal inflaton fluctuations, which are
born classical. The full power spectrum of primordial curvature perturbations generated by
these thermal inflaton fluctuations has been computed in detail by several different works

5Note that Q is a dynamical quantity, so that inflation may e.g. start in the weak dissipation regime
and end in the strong dissipation regime, or vice-versa.
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in the literature (see e.g. [10] and references therein), taking into account the dynamics of
the fluctuations themselves (with the extra friction resulting in an earlier freezeout), the
occupation numbers of inflaton particles in the thermal bath and the interplay between
inflaton and radiation perturbations:

∆2
R = V (φ∗)

24π2M4
p

(1 +Q∗)2

εφ∗
F (Q∗), (2.10)

where starred quantities are evaluated at the instant when fluctuations at the CMB pivot
scale became super-horizon during inflation, generically 50-60 e-folds before it ended. The
function F (Q∗) is given by:

F (Q∗) =
(

1 + 2n∗ + 2
√

3πQ∗√
3 + 4πQ∗

T∗
H∗

)
G(Q∗), (2.11)

where n∗ is the phase-space distribution of the inflaton fluctuations and G(Q∗) is the
correction due to the coupled evolution of inflaton and radiation fluctuations due to the
temperature dependence of the dissipation coefficient. In general, this has to be computed
numerically and depends on the form of Υ(T, φ), as well as (mildly) on the scalar potential
V (φ). For the case Υ ∝ T (at least near-horizon crossing) and V (φ) ∝ φ4 that we will be
interested in, a numerical fit gives G(Q∗) ≈ 1 + 0.0185Q2.315

∗ + 0.335Q1.364
∗ [15].

The amplitude of the power spectrum ∆2
R ≈ 2.1 × 10−9 [71] leads to a constraint on

the magnitude of the inflaton potential, whereas the spectral index constrains the slow-roll
parameters:

ns − 1 = d log ∆2
R

d log k ' d log ∆2
R

dNe
≈ 2ηφ∗ − 6εφ∗

1 +Q∗

(
1− 2Q∗

3 + 5Q∗
− Q∗(1 +Q∗)

3 + 5Q∗
∂Q∗F (Q∗)
F (Q∗)

)
.

(2.12)
Note that this is similar to the spectral index in cold inflation, ns − 1 = (2ηφ∗ − 6εφ∗),
but multiplied by a Q∗-dependent factor which is smaller than 1 (note that φ∗ and Q∗ are
related via eq. (2.9)). Therefore, the curvature power spectrum is typically more blue-tilted
in warm inflation than in cold inflation, although differences in the background evolution
have to be taken into account.

Neither dissipative processes nor the finite temperature during inflation are, however,
expected to source additional gravitational waves, given that the temperature is generically
3-4 orders of magnitude below the Planck scale. Hence, the enhancement of scalar curvature
perturbations due to thermal effects typically leads to a suppression of the tensor-to-scalar
ratio relative to cold inflation:

r ≡ ∆2
t

∆2
R

= 16εφ∗
(1 +Q∗)2F (Q∗)

. (2.13)

We note again that, due to the difference in background evolution, the value of φ∗ in
cold and warm inflation is generically different for the same form of the inflaton potential.
However, most warm scenarios are characterized by a low tensor-to-scalar ratio, even in
the weak dissipation regime at horizon-crossing, Q∗ � 1. This is an attractive feature of
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warm inflation, which allows, in particular, for an agreement between inflationary models
with simple monomial potentials with the primordial spectrum inferred from CMB ob-
servations [15–17, 61, 72]. This is not the case of the cold inflation scenario, where the
simplest renormalizable monomials, φ2 and φ4, have been ruled out by the results of the
Planck mission [71].

In summary, warm inflation has several attractive features: an unobservable late re-
heating period is replaced by a smooth transition into a radiation-dominated epoch, with
interactions between the inflaton field and other particles in the heat bath leaving an im-
print on the primordial curvature spectrum; the additional friction facilitates slow-roll and
the suppression of the tensor-to-scalar ratio brings the simplest models into agreement with
observational data.

2.1 The Warm Little Inflaton scenario

Building successful realizations of warm inflation within quantum field theory remained,
despite its appealing features, a challenge for more than two decades, since in general (i)
the heat bath backreacts on the scalar potential, yielding in particular potentially large
thermal mass corrections to the inflaton field that can spoil the slow-roll dynamics, despite
the dissipative friction; (ii) particles in the thermal bath gain mass from the inflaton field,
and may become too heavy to yield any significant dissipative effects. For instance, a
Yukawa coupling of the form gφψ̄ψ yields a mass gφ� T for the fermions in the thermal
bath, as well as a thermal correction ∼ gT � H to the inflaton’s mass, unless the Yukawa
coupling g � 1, which would in turn also suppress the dissipation coefficient.

These problems were overcome, for the first time, in the ‘Warm Little Inflaton’ (WLI)
model,6 where in essence the inflaton field is coupled to two particle species in the thermal
heat bath. The masses of these particles are oscillatory functions of the inflaton field, and
hence bounded, and their combined effect leads to a cancellation of the leading thermal
corrections to the scalar potential [15].

The original model, on which we will base our subsequent construction, extends the
SM by a U(1) gauge symmetry, under which two complex scalar fields Φ1 and Φ2 are
equally charged. Both scalar fields acquire equal vacuum expectation values (VEVs) below
a critical temperature and collectively break the U(1) symmetry. The vacuum manifold of
the theory can then be parametrized as:

Φ1 = 1√
2

(M + ρ1)ei(π+ϕ)/(
√

2M), Φ2 = 1√
2

(M + ρ2)ei(π−ϕ)/(
√

2M), (2.14)

where M sets the scale of spontaneous symmetry breaking. The overall phase π can be
removed, constituting the Goldstone boson that becomes the longitudinal component of
the massive gauge boson. The remaining angular degree of freedom, φ, then remains as a
physical field that will act as the inflaton. Note that this corresponds to the relative phase
between the two complex scalars, which does not change under U(1) gauge transformations.
The inflaton is therefore a gauge singlet and the U(1) symmetry does not constrain its
potential.

6More recently, a realization of warm inflation based on an axion-like inflaton field with only derivative
interactions with the thermal bath has been proposed in [73].
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The complex scalars are also coupled, via standard Yukawa terms, to two additional
fermions, ψ1 and ψ2, in the thermal bath. While the left-handed components of the fermions
have the same charge as the complex scalars, their right-handed counterparts are gauge
singlets. To avoid the ‘η-problem’, i.e. inducing large thermal corrections to the inflaton’s
mass, one imposes a discrete interchange symmetry, Φ1 ↔ iΦ2 and ψ1 ↔ ψ2, yielding an
interaction Lagrangian of the form:7

− Lφ,ψ = 1√
2

(g1Φ1 + g2Φ2)ψ1Lψ1R + 1√
2

(−ig2Φ1 + ig1Φ2)ψ2Lψ2R + h.c. . (2.15)

If one chooses g1 = g2 = g, as in the original proposal in [15], the fermion masses after
symmetry breaking are given by M1 = gM cos (φ/M), M2 = gM sin (φ/M). Since these
are bounded functions, this allows the fermion fields to remain light throughout inflation
and ensures non-negligible dissipation with only two fields. Alternatively, one can choose
g1,2 = g and g2,1 = 0 [18], in which case the fermion masses are independent of the inflaton
field, M1 = M2 = gM/2. In both cases, the combination M2

1 + M2
2 that determines the

leading finite temperature correction to the scalar potential is independent of the inflaton
field, φ, thus preventing the dangerous O(T 2) thermal mass corrections that can preclude
slow-roll. In this work, we will considert he general case where g1 6= g2 6= 0, which exhibits
in fact these very same features, as we show in detail in appendix A.

Note that the interchange symmetry leads to a reflection symmetry for φ:

Φ1 ↔ iΦ2 ⇐⇒ φ↔ π

2M − φ, (2.16)

which in practice is a Z2 symmetry acting on φ/M − π/4. Therefore, only interactions
involving even powers of the (shifted) inflaton field are possible. This prevents the inflaton
from decaying when close to the minimum at the origin, thus necessarily yielding a stable
remnant at late times that can act as dark matter [18], as we will explore in more detail
below in the context of the general model. Note also that the interchange symmetry
requires equal charges and VEVs for Φ1 and Φ2, as assumed above.

With this basic setup in mind, we will now build a concrete extension of the SM where
the fermions ψ1 and ψ2 are identified with two of the right-handed neutrinos.

3 Basic particle physics setup

Our concrete implementation of the WLI scenario is based, as mentioned above, on an
identification of the ψ1,2 fermions with two of the missing right-handed neutrinos in the SM,
and which are singlets under the latter’s gauge group. Naturally, the additional (gauged)
U(1) symmetry can then be identified with lepton number or B − L, and generically we
denote it by U(1)X . Given the three fermion families in the Standard Model, it is natural
to consider three additional right-handed neutrino Weyl fermions, N1,2,3, as well as three
additional complex scalar fields Φ1,2,3. However, the discrete interchange symmetry only
acts on the fields in the first two generations, i.e. Φ1 ↔ iΦ2, N1 ↔ N2. While it may a

7For simplicity one works with φ ≡ ϕ/
√

2, even though this is not the normalized field.
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Φ1,2 Φ3 N1,2 N3 H L1,2 L3 `1,2 `3

SU(3)c 1 1 1 1 1 1 1 1 1
SU(2)L 1 1 1 1 2 2 2 1 1
U(1)Y 0 0 0 0 1

2 -1
2 -1

2 -1 -1
U(1)X 2 2 -1 -1 0 -1 -1 -1 -1

Z3 (option I) ω ω2 ω ω2 1 ω ω2 ω ω2

Z3 (option II) ω ω2 ω ω2 1 ω ω ω ω

Table 1. Field content of the model, for X = B −L. We give two optional charge assignments for
the discrete Z3 family symmetry (ω = e2iπ/3), differing only for L3 and `3.

priori seem that the additional third family could be eliminated, we will see that the third
right-handed neutrino state is crucial for obtaining realistic neutrino masses and mixings,
with the VEV of Φ3 setting its Majorana mass. Including three right-handed neutrinos
may also allow for a possible embedding into e.g. an SO(10) GUT.

Given the additional particle content required for a realistic model, compared to the
original WLI setup, we also impose a discrete Z3 family symmetry that ensures that both
N3 and Φ3 do not affect the inflationary dynamics, in particular the cancellation of the
leading thermal corrections to the inflaton’s mass. In table 1, we describe the particle
content of the model and corresponding charge assignments for the gauge and flavour
symmetry, with two possibilities in the latter case. Note that quarks are not directly
involved in the inflationary dynamics, such that their charge assignments are left free. We
assume that all three complex scalar fields collectively break the U(1)X symmetry upon
acquiring VEVs, with the interchange symmetry imposing equal VEVs for Φ1 and Φ2. The
vacuum manifold is then given by:

Φ1 = 1√
2

(M + ρ1)eiπ/MT eiξθ/MT eiφ/M ,

Φ2 = 1√
2

(M + ρ2)eiπ/MT eiξθ/MT e−iφ/M , (3.1)

Φ3 = 1√
2

(M ′ + ρ3)eiπ/MT e−2iξ−1θ/MT ,

where M2
T = 2M2 + M ′2, ξ = M ′/M and in general M 6= M ′. In this parametrization,

π denotes the Goldstone boson that is ‘eaten’ by the X-gauge boson after spontaneous
symmetry breaking, and which can be explicitly removed by going to the unitary gauge.8

This leaves two physical gauge-invariant fields, φ and θ. We take φ to play the role of the
inflaton field, corresponding to the relative phase between the fields Φ1 and Φ2, as in the
original WLI model. The interchange symmetry imposes only that the scalar potential for
φ must be an even function of φ/M − π/4, being otherwise arbitrary. The scalar potential
for θ is arbitrary, being unconstrained by the interchange symmetry, and we assume, to

8We note that in the collective breaking of a U(1) symmetry by n equally charged complex scalar fields
with VEVs

√
2〈Φi〉 = vie

iϕi/vi , i = 1, . . . , n, the Goldstone boson is the linear combination π =
∑

i
viϕi/v,

where v2 =
∑

i
v2
i .
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simplify our analysis, that θ has a sufficiently large mass that we may set θ = 0 both during
and after inflation.

We also assume, for simplicity, that the gauge coupling and scalar self-couplings are
O(1), such that both the gauge field and the radial fields ρ1,2 gain masses ∼M and hence
decouple from the dynamics at temperatures below the symmetry breaking scale at which
inflation occurs. We may also neglect the radial field ρ3, since its coupling to the inflaton
field can be taken as arbitrarily small in a technically natural way.

The relevant interactions for the inflationary dynamics are those between the complex
scalars and the right-handed neutrinos, which yield Majorana mass terms, alongside the
Yukawa couplings involving Ni and the SM Higgs and lepton doublets. The interchange
and family symmetries then yield the general beyond the SM Yukawa Lagrangian density:

LYuk =
∑
i,j

(
GijΦiN

c
jNj − YijN iH

†Lj + h.c.
)
, (3.2)

with Y1i = Y2i and

G =

 g1 g2 0
−ig2 ig1 0

0 0 g3

 . (3.3)

This structure implies that the inflaton field only interacts with two of the right-handed
neutrinos, N1,2, and only these are involved in the dissipative dynamics leading to warm
inflation as we describe in the next section. The Yukawa terms allow these right-handed
neutrinos to decay into SM leptons and Higgs doublet states (the Higgs boson itself and
the components that will be ‘eaten’ by the weak gauge fields after the electroweak phase
transition). Dissipation of the inflaton’s energy then occurs via the two-stage process
φ → N1,2 ↔ LH in a near-equilibrium regime. These are therefore the light degrees of
freedom that make up the thermal bath during inflation, and later we will describe how
the remaining SM states are thermally excited close to the end of inflation.

These very same interactions are also responsible for generating light neutrino masses
at low energies through the type I seesaw mechanism [74], such that:

mν = −mT
DM

−1
R mD, (3.4)

whereMRii = Gij〈Φj〉 is the diagonal Majorana mass matrix for the right-handed neutrinos
and mD = vY is the Dirac mass matrix, with v ' 174GeV denoting the Higgs VEV after
electroweak symmetry breaking. For a single family, this would yield mν ∼ y2v2/MR.
Taking this to match the largest mass splitting from atmospheric neutrino oscillations,√
m2

atm ∼ 0.05 eV [1], we find MR ∼ 1014−1015 GeV for y . 1 Yukawa couplings. As we
will see in the next sections, this is precisely the parametric range required to consistently
realize warm inflation.

We note that, by imposing the Z3 family symmetry, the third right-handed neutrino
N3 is effectively decoupled from the inflaton field, which is required to enforce the WLI
mechanism for the cancellation of large thermal corrections to the inflaton’s mass, which
as described earlier and detailed in appendix A involves only two fields interacting with
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the inflaton. While this fixes the Z3 charge of the right-handed neutrinos, there is still
an ambiguity in the charge assignments for the SM leptons. The first option in table 1
assigns the same Z3 charge for N3 and L3, `3, effectively discriminating all the third family
of leptons, which would allow for e.g. an embedding in an SO(10) GUT. In the second
option, only N3 has a different Z3 charge from the other leptons, effectively decoupling it
from the low-energy theory. This leads to a two RH seesaw scenario, which is simpler and
more predictive. We note that both options yield consistent realizations of warm inflation,
although distinct low-energy phenomenology as we will explore below.

4 Cosmological dynamics

4.1 Inflation

To describe the dynamics of the inflaton field and radiation bath, we need to specify (i) the
scalar potential for φ and its thermal corrections due to the right-handed neutrinos N1 and
N2 and (ii) the dissipation coefficient associated with the production of the latter in the
thermal bath by the slowly varying inflaton field.

As mentioned above, the inflaton is a gauge singlet and its potential function is arbi-
trary up to the reflection symmetry imposed by the underlying interchange symmetry. We
note that this is very different from e.g. an axion field, which is a (pseudo-)Goldstone boson
and therefore inherits a shift symmetry from the underlying U(1) Peccei-Quinn symmetry.
In our model, the Goldstone mode corresponds to the π phase and not the inflaton field,
which is invariant under U(1) transformations. Within an effective field theory approach,
which underlies our ‘bottom-up’ philosophy, we consider the most general renormalizable
tree-level potential for φ including a quadratic and a quartic term:

V (φ) = 1
2m

2
φ

(
φ− π

4M
)2

+ λ

(
φ− π

4M
)4
. (4.1)

During inflation, we will see that the field will take large background values φ � M for
which the quartic term dominates and is well approximated by λφ4, while at late times the
field behaves as non-relativistic matter while oscillating close to the minimum, where the
quadratic mass term dominates.

This potential is corrected at finite temperature due to the φ-dependence of the N1
and N2 masses, which are given by:9

M2
1 = M2

4
[
g2

+ cos2(φ/M) + g2
− sin2(φ/M)

]
,

M2
2 = M2

4
[
g2

+ sin2(φ/M) + g2
− cos2(φ/M)

]
,

(4.2)

where g± = g1 ± g2. Inflation will occur mostly in the regime where T & M1,2, where the
high-temperature expansion of the effective potential is a good approximation and given

9We use N1,2 for the flavor and mass states interchangeably and distinguish between the two when
necessary.
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by (per fermionic degree of freedom) [75, 76]:

Vhigh-T(T ) = T 4
[
−7π2

720 + 1
48
m2

T 2 + 1
64π2

m4

T 4

(
ln
(
m2

T 2

)
− cf

)

− 1
2
m2

T 2

n∑
l=2

(
−m2

4π2T 2

)l (2l − 3)!!ζ(2l − 1)
(2l)!!(l + 1)

(
22l−1 − 1

) , (4.3)

where cf ' 2.635. SinceM2
1 +M2

2 = M2(g2
+ +g2

−)/4 is independent of the inflaton field, the
leading thermal corrections to the inflaton’s mass cancel out when adding the contributions
of N1 and N2, which is the essence of the WLI mechanism that is therefore preserved in our
implementation. An alternative way of showing this is to compute the thermally corrected
inflaton self-energy in the high temperature regime, a computation we describe in detail in
appendix A. We note that quadratic divergences in the quantum loop-corrections to the
inflaton’s mass also cancel for the same reason, which is reminiscent of the ‘Little Higgs’
mechanism to address the electroweak hierarchy problem.

There remain sub-leading thermal corrections of the Coleman-Weinberg form, which
add up with the corresponding zero-temperature corrections. Remarkably, the two con-
tributions add up in such a way that the argument of the logarithm in eq. (4.3) above
becomes simply µ2/T 2, where µ is the renormalization scale. It is therefore natural to
take this close to the temperature of the thermal bath, for instance at horizon-crossing.
Since the temperature varies slowly during inflation, the magnitude of this contribution is
suppressed and, more importantly, it only induces oscillatory contributions to the slow-roll
parameters, which have a negligible effect as described in the original WLI proposal [15].10

Since we will consider the post-inflationary evolution, when the temperature falls below
the mass scale of the right-handed neutrinos, we must consider also the low-temperature
approximation of the effective potential (per fermionic degree of freedom) [75, 76]:

Vlow-T(T ) = −T 4e−m/T
(
m/T

2π

)3/2 t∑
l=0

1
2ll!

Γ(l + 5/2)
Γ(l − 5/2)

(
T

m

)l
, (4.4)

where the Boltzmann-suppression of thermal effects is manifest. In our numerical sim-
ulations we use both forms of the effective potential matched in such a way (similar to
section 2.2. of [75]) that a precise description of the full effective potential is obtained. We
find that using n = 3 (high-T ) and t = 3 (low-T ), with the latter turned on at T/M1 ∼ 0.5
provides a smooth enough transition, yielding an error around 1% (see also e.g. [77]).

The thermal dissipation coefficient Υ can be computed using non-equilibrium quantum
field theory techniques at finite temperature, provided that (i) the temperature exceeds
the Hawking temperature of de Sitter space H/2π, so that the computation can be done
in flat space; (ii) the thermal bath remains close to thermal equilibrium, which requires
equilibration processes to occur faster than expansion; and (iii) the inflaton’s dynamics

10We note that dissipative friction is only a sub-leading effect compared to the leading thermal corrections
to the inflaton’s mass, which cancel out in our model. While oscillatory contributions to the slow-roll
parameters do not average out to zero completely, since both the field and temperature are varying slowly
on the Hubble time scale, their net contribution is nevertheless substantially suppressed.
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is ‘adiabatic’ compared to the thermal processes, which is justified within the slow-roll
approximation provided that the latter condition is satisfied. Physically, the dissipative
friction will correspond to a non-equilibrium production of right-handed neutrinos N1 and
N2, which are kept close to equilibrium via their decays into light leptons and Higgs particles
(including the would-be W and Z longitudinal modes). The above conditions may then be
satisfied in the regime T & ΓN1,2 & H, which will constrain the parametric regimes where
warm inflaton can successfully be realized.

We detail the computation of the dissipation coefficient in appendices B and C, where
in the former we describe the computation of the thermal mass and decay width of the
right-handed neutrinos, which are needed to compute Υ. For clarity, here we give only
the approximate expressions for the contribution of each right-handed neutrino to the
dissipation coefficient in the high and low-temperature regimes:11

Υi =
(
g2

1 + g2
2
)

cos2 δ

4y2
π

9− 6 ln (Mi/T )T, T &Mi (4.5)

Υi =
(
g2

1 + g2
2
)

cos2 δ

2y2

(2MiT

π

)1/2
e−

Mi
T , T �Mi (4.6)

for i = 1, 2, where we have defined the effective neutrino Yukawa coupling y2 =
∑3
j=1 Y

2
1j =∑3

j=1 Y
2

2j and the inflaton-neutrino ‘mixing angle’:

− δ = tan−1
(
g−
g+

tan(φ/M)
)

+ tan−1
(
g−
g+

cot(φ/M)
)
. (4.7)

We note that in the expressions above it is implicit that the right-handed neutrino masses
include thermal corrections, although for simplicity we used the same notation as for the
zero-temperature inflaton-dependent masses. Furthermore, we use, in our numerical sim-
ulations, the more complete expressions given in appendix C, that are suitable to explore
the regime T ∼Mi. We also point out that the inverse dependence on the effective Yukawa
coupling, i.e. on the right-handed neutrinos’ decay width, is the result of their on-shell pro-
duction and the Breit-Wigner form of their spectral function, as detailed in appendix C.
However, one cannot make the dissipation coefficient arbitrarily large by taking y → 0,
since this would violate the near-equilibrium or adiabatic condition ΓN1,2 > H.

Although an inverse dependence on a coupling constant may a priori seem counter-
intuitive, we note that dissipation is a non-equilibrium process, in which the inflaton’s
motion disturbs the local thermal equilibrium of the radiation bath, and the latter re-
sponds through particle production, in this case the right-handed neutrinos, as well as
their decay products. The inverse decay width Γ−1

N can then be identified with the thermal
bath’s relaxation time, and the dissipation coefficient being proportional to the latter is in
line with generic results in linear response theory, as discussed e.g. in [6]. The longer the
radiation bath takes to respond, the larger the disturbance induced by the inflaton’s mo-
tion, therefore enhancing particle production. Of course the relaxation time cannot be too

11This is the leading result in the narrow width approximation for the right-handed neutrinos, which
vanishes if only one of the couplings is non-zero (i.e. g− = ±g+). In the latter case one needs to go beyond
this leading approximation, as shown in [18].
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long or otherwise the inflaton’s disturbance cannot be treated as a small perturbation to
the equilibrium state, and within the inflationary context this can certainly not exceed the
Hubble time. Hence, the condition ΓN > H > φ̇/φ prevents us from considering arbitrarily
small values of the Yukawa coupling h as mentioned above.

In this high-temperature regime there are higher-loop diagrams contributing to the
dissipation coefficient at the same order as the one-loop result that we have employed - the
so-called rung-diagrams that are discussed in some detail in [37]. Hence, a more rigorous
calculation of the dissipation coefficient would need to include a resummation of these
contributions which, to our knowledge, has not yet been done in the literature. Analogous
resummation procedures have, however, been used in calculations of shear viscosities in
simpler scalar field theories, resulting in an O(1) increase of the corresponding coefficients.
Thus, it is expected [37] that the one-loop result is nevertheless a good (under)estimate
of the dissipation coefficient and that a more complete analysis will imply at most O(1)
changes in the relevant parameters, which will not affect the main conclusions of our work.

In this parametric regime, the dissipation coefficient is essentially proportional to the
temperature, as in the original WLI model.12 In the opposite limit dissipative effects
become Boltzmann-suppressed,13 and the right-handed neutrinos effectively decay away.
As we will see below and originally shown in [18], this leaves a stable relic inflaton field that
interacts very weakly with SM particles, and is therefore a natural dark matter candidate.

We now have everything in place to study the dynamics of the inflaton-radiation sys-
tem, and it is convenient to rewrite eqs. (2.1)–(2.3) in terms of the number of e-folds of
expansion, dt = HdNe,

φ′′ + 3
(

1 + H ′

H
+ Υ
H

)
φ′ + ∂φV (φ)

H2 = 0, (4.8)

ρ′r + 4ρr = ΥHφ′2, (4.9)

H2 = ρφ + ρr
3M2

p

. (4.10)

Note that the radiation energy density can be computed from the contribution of all light
particles to the thermal effective potential given above via ρr = VT +Ts with s = −dVT /dT .
In the high-temperature regime, this yields at leading order the well-known expression
ρr ' (π2/30)g∗T 4, but this allows us to accurately track the contribution of N1,2 to g∗(T )
as the temperature falls below their mass threshold.

The above system of equations can be solved analytically in the high-temperature, slow-
roll regime, where Υ ∝ T and V (φ) ∝ φ4. However, since the temperature of the thermal
bath is close to the masses of the right-handed neutrinos in the interesting parametric
regimes, it is more accurate to numerically solve the above dynamical system using the full
forms of the dissipation coefficient and effective potential with minimal approximations. In
figure 1 we give a representative example of the dynamics of warm inflation in our model.

12There is an oscillatory dependence on the inflaton field through the mixing angle δ, but for large field
excursions ∆φ�M we may take an averaged value of cos2 δ.

13There are still residual contributions from virtual right-handed neutrino modes, but these are too
suppressed to have any significant impact on the cosmological dynamics.
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total number of e-folds of inflation is Neq ≈ 58 with (ns, r) = (0.967, 2.6 × 10−4) (nearly-thermal
inflaton fluctuations). The number of relativistic degrees of freedom during inflation is approx-
imately constant, g∗ ≈ 19. The ‘reheating’ temperature is TR ≈ 7.5 × 1013 GeV. Parameters:
Q∗ = 0.8, φ∗ ' 12Mp, λ ≈ 5× 10−16 (y = 0.74, g1 = 0.21, g2 = 0.17, M ≈ 3.3× 1015 GeV).

As one can see, the system remains in a warm (T > H), near-equilibrium (ΓN > H),
slow-roll (εφ < 1 +Q) regime for nearly 60 e-folds of accelerated expansion. We recall that
these conditions also validate the approximate computation of the dissipation coefficient in
the adiabatic regime and neglecting curvature corrections. At horizon-crossing, dissipative
effects are relatively weak Q∗ . 1, but become sufficiently strong towards the end of in-
flation for radiation to become a sizeable component and soon come to dominate over the
inflaton field, thus smoothly ending inflation (see also figure 3). We find that the temper-
ature at which radiation takes over, which constitutes an effective ‘reheating temperature’
although the Universe never cooled down during inflation, is typically TR ∼ 1013−1014 GeV.

We note that accelerated expansion only truly ends when ρr ≈ ρφ, since ä ∝ 2(ρφ−ρr),
which typically takes place 2-3 e-folds after the slow-roll conditions fail. Hence, the example
in figure 1 has ' 60 e-folds of accelerated expansion.
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Although the temperature (bottom red curve in figure 1) remains close to the right-
handed neutrino masses throughout inflation, it falls significantly below it at the end of the
slow-roll phase, which in turn shuts down dissipative effects due to Boltzmann suppression
as discussed above. Once dissipation can no longer counteract the diluting effect of expan-
sion at this stage, the temperature of the thermal bath simply redshifts as T ∝ a−1. One
must also take into account that other SM degrees of freedom also start being thermally
excited towards the end of inflation as the ratio T/H ∼ 104 and typical gauge processes
start competing with the expansion rate. Consequently, the temperature falls by an addi-
tional factor (g∗,inf/g∗,SM)1/3 ∼ 2, which also speeds up the shut down of dissipation at the
end of inflation.

Inflaton particles are also produced in the thermal bath via several processes, including
e.g. right-handed neutrino annihilation and Landau damping processes, as well as lepton-
Higgs annihilation via virtual right-handed neutrinos. The rate of each individual process
is typically suppressed compared to the right-handed neutrino decay rate, since g1,2 < y

is required to have sufficiently light right-handed neutrinos. Nevertheless, the number
of different processes producing inflaton particles in the thermal bath should partially
compensate for this, such that inflaton particle production may compete with Hubble
expansion already at horizon-crossing. This has implications for observational predictions,
since inflaton occupation numbers at horizon crossing influence the shape of the primordial
spectrum of perturbations, namely through the factor 2n∗ in eq. (2.11), with n∗ ∼ T∗/H∗
for a nearly-thermal distribution. Since a detailed analysis of inflaton particle production
rates is beyond the scope of this work, we consider the two limiting regimes n∗ � 1 and
n∗ ' T∗/H∗ in computing the spectrum of primordial perturbations.

In figure 2 we show the observational predictions for the curvature spectral index ns
and tensor-to-scalar ratio r in our model as a function of the dissipative ratio at horizon-
crossing, Q∗ (with other dynamical variables fixed by the number of e-folds of inflation and
the amplitude of the primordial curvature perturbation spectrum), in these two limiting
regimes.

These results are analogous to the original WLI scenario, which also considered a
quartic potential for the inflaton field. As one can see, the spectrum is more blue-tilted
than the corresponding cold inflation case, which is essentially a consequence of the thermal
nature of inflaton fluctuations and of the associated growth of the dissipative ratio Q and of
the ratio T/H during inflation, with modes leaving the horizon later during inflation having
a (slightly) larger amplitude. Alongside the suppression of the tensor-to-scalar ratio typical
of warm models, this makes the quartic inflaton potential agree with observational data
from Planck for Q∗ ∼ 10−2−1, which is quite remarkable since in the absence of dissipative
effects this model has been completely ruled out, as first pointed out in [15]. For Q∗ & 1 the
interplay between inflaton and radiation fluctuations leads to the appearance of a growing
mode in the spectrum, parametrised by G(Q∗) in (2.11), which renders the spectrum too
blue-tilted. One should bear in mind that such a growing mode may potentially be damped
by additional viscous effects in the thermal bath [58], such that Q∗ & 1 scenarios may also
be in agreement with observations. Such a possibility is, however, still the object of an
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Figure 2. Inflationary spectrum (ns, r) for V (φ) = λφ4 as a function of Q∗, with the r axis in
log-scale. The red (blue) shaded region corresponds to the case where the inflaton fluctuations have
a nearly-thermal (negligible) spectrum at horizon crossing. The left (right) contour of these regions
correspond to a Ne = 50 (60) of inflation. As Q∗ → 0, both regions converge to a straight line
encompassing the predictions of cold inflation, (ns, r) ∈ (0.94− 0.95, 0.32− 0.27) for Ne = 50− 60.
The black star represents the case of figure 1. The black (gray) contour signals the 95% (68%)
confidence limit of [71] for the TT,TE,EE+lowE+lensing +BK14+BAO dataset.

ongoing discussion so we will not pursue it any further, and restrict our analysis below to
the regime where Q∗ . 1.

Another distinctive observational signature of warm inflation that is also present in our
scenario is non-Gaussianity, with a particular bispectral shape. For Υ ∝ T , |fwarm

NL | . 10
for the range of Q∗ in agreement with observations mentioned above [56, 63]. Dedicated
searches made by the Planck collaboration for the ‘warm shape’ of the bispectrum are,
however, still far from reaching the required sensitivity, allowing for Q∗ < (3.2 − 4) × 103

(95% C.L.) [78, 79], which we hope may be improved with future experiments.
Finally, we note that one of the appealing features of warm inflation is the elimination

of the uncertainty in the number of e-folds of inflation after horizon-crossing of the relevant
CMB scales, due to the fast and smooth transition into a radiation-dominated universe, as
recently observed in [80]. In fact, one may argue that warm and cold inflation involve a
comparable number of free parameters, since interactions between the inflaton and other
fields are necessarily present in both inflationary paradigms. In warm inflation these deter-
mine the full dynamics of accelerated expansion, whereas in cold inflation they only affect
the reheating period and therefore result in an uncertainty in the total number of e-folds.
In figure 2 we nevertheless included a 50− 60 e-folds uncertainty to accommodate possible
non-standard cosmic histories after inflation. For instance, one or more short periods of
thermal inflation [81, 82]14 may be necessary to dilute any unobserved relics potentially
produced after warm inflation, given the large temperatures attained.

14Note that thermal and warm inflation are distinct scenarios, since in the former there is no dissipative
dynamics sustaining the temperature of the thermal bath and the inflaton is held by thermal effects at a
metastable minimum. In fact, the latter correspond to the very same thermal mass corrections that need
to be suppressed to realize warm inflation in the slow-roll regime.
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4.2 Inflaton dark matter

As we have seen above, once inflation ends dissipative effects quickly shut down and the
inflaton field becomes underdamped and starts oscillating about the minimum of the po-
tential. Since the potential is still dominated by the quartic term following inflation,
the oscillating inflaton field first behaves as a dark radiation component, with an am-
plitude φ ∝ a−1. This phase lasts until the amplitude of the inflaton field drops below
φDM = mφ/

√
2λ, after which the quadratic term of the potential becomes dominant and

the inflaton remnant behaves as non-relativistic (pressureless) matter, with φ ∝ a−3/2. Due
to the underlying interchange symmetry, which as discussed earlier corresponds to a Z2
reflection symmetry, the inflaton field becomes stable and, moreover, since the temperature
falls below the right-handed neutrino mass threshold, the inflaton can only interact with
SM particles via the exchange of virtual right-handed neutrinos. The inflaton field thus
becomes a cold, weakly interacting relic after inflation, making it a natural dark matter
candidate.

Scattering processes mediated by virtual right-handed neutrinos may nevertheless lead
to the thermalization of the oscillating inflaton condensate, in which case the inflaton would
become a WIMP-like candidate that would eventually decouple from the thermal bath.
The analysis made in [18] for a generic WLI model shows, however, that the large right-
handed neutrino masses M1 = M2 =

√
g2

1 + g2
2M/2 greatly suppress such processes, which

therefore do not significantly affect the field’s dynamics.15 The oscillating inflaton field
may nevertheless produce φ particles through the λφ4 self-interaction while in the quartic
regime. From the point of view of the cosmological dynamics, such inflaton particles are
indistinguishable from an oscillating field since they do not thermalize and behave first as
dark radiation and then as cold dark matter. As argued in [18], the transition between
these two regimes occurs essentially at the same time as for the oscillating field, since they
are produced with a momentum p ∼

√
λφ in the dark radiation phase, which redshifts

exactly like the amplitude of the oscillating field in the quartic potential. The amount of
expansion required to reach the non-relativistic regime p . mφ thus corresponds to the
amount needed for φ . φDM.

After inflation, there are three distinct contributions to the energy density of the
Universe, including (i) the dominant radiation composed by relativistic SM particles, (ii)
the remnant background inflaton field that behaves initially as dark radiation while the
field oscillates about the quartic potential, and (iii) inflaton particles in the thermal bath,
which thermalized with the remainder relativistic degrees of freedom during inflation and
decoupled from the latter once the right-handed neutrinos N1,2 became non-relativistic.
Note that thermalization of inflaton particles should occur before the end of inflation even
if not already at horizon-crossing as discussed above, given that the g1,2 couplings are not
too suppressed in parametric regimes where the strong dissipation regime is reached before
inflation ends.

15The results of [18] can be immediately translated to our model with the appropriate identification of
the generic scalar and fermion fields considered there with the right-handed neutrinos, leptons and Higgs
fields.
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The fractional contribution of the decoupled inflaton particles is given by:

ρδφ
ρr

(T ) = 1
g∗,SM

[
g∗(T )
g∗,SM

]1/3

, (4.11)

where we have used entropy conservation, while the background inflaton remnant, in its
dark radiation regime, contributes as:

ρφ
ρr

(T ) = f

[
g∗(T )
g∗,SM

]1/3

, (4.12)

where f is the ratio between the background inflaton and the radiation energy densities at
the onset of field oscillations, which remains constant apart from temperature jumps due
to varying g∗. Numerically, we find f ∼ 10−(4−5) in the parametric range of interest for a
successful realization of warm inflation.

Both these inflaton components will contribute to the present dark matter abundance,
and to assess which is the dominant one, we note, on the one hand, that the background
remnant starts behaving as dark matter (i.e. the quadratic term in the potential becomes
dominant) for field amplitudes . φDM = mφ/

√
2λ. This corresponds to a temperature:

TDM = mφ

( 30
2π2λf

)1/4 g
1/12
∗,SM

g∗(T1)1/3 . (4.13)

On the other hand, the decoupled inflaton particles behave as dark radiation for longer (and
hence are more diluted) than the background remnant, as they only become non-relativistic
at T = mφ . TDM, yielding for T < mφ:

ρδφ
ρφ
' 6× 10−4

(
10−4

f

)3/4 (
λ

10−16

)1/4
g∗(T1)1/3, (4.14)

so that the background remnant is generically the dominant dark matter component. Then,
using the present value of the dark matter abundance, we find for the inflaton mass and
temperature at which the remnant starts behaving as cold dark matter:

mφ ≈
( Ωc

0.25

)(
g∗

106.75

)(10−15

λ

) 1
2
(

103

φ/T

)3

eV,

TDM ≈ 0.11
( Ωc

0.25

)(
g∗

106.75

) 4
3
(

10−15

λ

)(
103

φ/T

)4

MeV,

(4.15)

where Ωc is the relative dark matter density present today. For the example depicted
in figures 1 and 3, mφ ≈ 0.4 eV and TDM ≈ 40 keV. We note that one should take into
account the radiative corrections from the two right-handed neutrinos to the inflaton’s mass
to assess whether such small values of the inflaton mass require fine-tuning. In particular,
one would expect Coleman-Weinberg contributions to the inflaton potential ∼ M4

i /64π2

from both N1 and N2. However, it is well known that this standard form of the Coleman-
Weinberg potential is obtained via mass-independent renormalization schemes, such asMS,
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Figure 3. Cosmological dynamics. The parameters are identical to those of figure 1. The dashed
lines represent the two inflaton-radiation equalities. Big bang nucleosynthesis (BBN) (T ∼ 1MeV)
and the last scattering surface (CMB) (T ∼ 0.3 eV) are also highlighted. The inset shows a close-up
of the energy densities during BBN, where f ≡ ρφ/ρr ∼ 10−5.

which do not respect the Appelquist-Carazonne decoupling theorem [83]. A computation of
the 1-loop effective potential (at zero temperature) using a mass-dependent renormalization
scheme gives a modified form of the Coleman-Weinberg term, generically given by [84]:

∆V (1) =
∑
i

(−1)F m4
i

64π2

[
log

(
m2
i

µ2

)
− I

(
m2
i

µ2

)]
, (4.16)

where µ is the renormalization scale, the sum is over all bosons and fermions with masses
mi, and

I(x) = log(x)− 2−
√

1 + 4x log
(√

1 + 4x− 1√
1 + 4x+ 1

)
. (4.17)

While for µ & mi this yields the standard Coleman-Weinberg expression, this is no longer
the case at low energies µ � mi. Thus, for µ � M1,2 the leading contribution of the
right-handed neutrinos to the effective potential is ∆V (1)

N1,2
= µ2(M2

1 +M2
2 )/192π2 +O(µ4).

As we have seen above, this is independent of the inflaton field, regardless of the specific
choice of µ in this limit. Thus, the right-handed neutrinos do not generate large radiative
corrections to the inflaton’s mass at low energies/temperatures, through exactly the same
mechanism that cancels large thermal corrections in the high-temperature limit. Hence, no
fine-tuning of the inflaton mass is needed to obtain the observed dark matter abundance
within the proposed setup.

As originally discussed in [18], the fact that the inflaton field plays a role in the
post-inflationary Universe, and in particular naturally accounts for all dark matter, yields
specific observational signatures in addition to the warm inflation observables discussed in
the previous section.
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First, inflaton fluctuations on super-horizon scales generate not only curvature pertur-
bations but also perturbations in the dark matter density itself, since ρφ ∝ φ2.16 Hence, the
model predicts cold dark matter isocurvature modes that are correlated with the leading
adiabatic curvature fluctuations. These can be parametrized via [85]:

Sc = −3H
(
δρc
ρ̇c
− δρr

ρ̇r

)
= δρc

ρc
− 3

4
δρr
ρr

= 2δφ
φ
− 3δT

T
. (4.18)

Since, during warm inflation with Υ ∝ T as in our scenario, we have at horizon-crossing:

δT∗
T∗

= 4Q∗
3 + 5Q∗

δφ∗
φ∗

, (4.19)

we find for the ratio between isocurvature and adiabatic modes:

Bc = Sc
R

= −
(

2− 12Q∗
3 + 5Q∗

)
σφ∗

1 +Q∗
, (4.20)

where we have used that R = H(δφ/φ̇) = δφ/φ′ and eq. (2.8). Since the primordial spec-
trum of curvature perturbations in our setup requires Q∗ < 3, we conclude that cold dark
matter isocurvature perturbations are anti-correlated with the main adiabatic component.

The Planck collaboration has placed stringent bounds on the magnitude of such modes,
typically parametrized in terms of βIso = B2

c/(B2
c +1). Using the values of Q and φ at hori-

zon crossing of the example in figures 1 and 3, we obtain βIso = 9.6× 10−5, approximately
one order of magnitude below Planck’s constraint on fully anti-correlated isocurvature per-
turbations, βPlanckIso < 8× 10−4 [71].

The isocurvature spectral index is generically different from the adiabatic one, and in
our case we obtain:

nI = ns + 36(6εφ∗ − 2ηφ∗)Q∗
(−3 +Q∗)(3 + 5Q∗)2 + 12σφ∗ + 4(−3εφ∗ + ηφ∗ + σφ∗)Q∗

(1 +Q∗)(3 + 5Q∗)
. (4.21)

Nevertheless, for our illustrative example, this yields nI ≈ 0.963, which differs from ns by
only ' 0.4%.

In addition to isocurvature modes, the inflaton also contributes to the effective number
of relativistic degrees of freedom while in the dark radiation phase. In this case, the contri-
bution from the background condensate is ∆Nφ

eff = 4.4(ρφ/ργ) which is typically quite sup-
pressed, e.g. ∆Nφ

eff ' 9×10−5 for the parameters employed in figures 1 and 3. More signifi-
cant is the contribution of decoupled inflaton particles, ∆N δφ

eff = (4/7) (43/4g∗)
4
3 ≈ 0.027,

which may be probed with the next generation CMB experiments and large-scale struc-
ture surveys [86]. An interesting aspect to emphasize is the fact that, while both these
contributions are present during nucleosynthesis, the background field already behaves as
dark matter at recombination, while the decoupled inflaton particles typically become non-
relativistic around this time or slightly afterwards. Hence, our setup generically predicts
a distinct effective number of relativistic species as inferred from light nuclear element
abundances and the CMB spectrum, which is a quite distinctive signature.

16Here we have shifted the inflaton field value φ by Mπ/4 without loss of generality.
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We note that in the WLI scenario analyzed in [18], where the possibility of inflaton
dark matter in warm inflation was first identified, corresponding to the case where only one
of the couplings g1,2 was non-zero, the inflaton-to-radiation ratio in the post-inflationary
dark radiation phase was larger than in the more general case analyzed in this work, where
g1 6= g2 6= 0, yielding larger values for ∆Nφ

eff. This is essentially due to the smaller values
of the dissipation coefficient in the case where only one of the couplings in non-zero, which
trigger earlier inflaton oscillations in the quartic potential and thus with a larger amplitude.

5 Neutrino masses

As we have showed in the previous section, the Yukawa terms of (3.2) lead to dissipative
dynamics during an inflationary period with Tinf ∼ 1015 GeV. These terms also lead to
the generation of neutrinos masses at low energies through the seesaw mechanism (see
section 3): in this model, the high-energy and low-energy physics are related because both
dissipation and the seesaw mechanism are realized through the same operators.

Recalling eq. (3.4) and table 1, and taking, without loss of generality, MR and the
charged lepton mass matrices to be diagonal, only the Dirac mass matrix mD remains to
be determined. This matrix will be shaped by the Z3 charge assignments of the left-handed
leptons, and the interchange symmetry (the latter imposing that the first and second rows
must be identical). Recalling the two possible Z3 configurations in table 1, we have the
following possible structures for the Dirac mass matrix:

1. Option I:

mI
D = v

a b 0
a b 0
0 0 c

 , (5.1)

resulting in the following light neutrino masses:

m(I)
ν =

(
0, v |c|

2

M3
, v (|a|2+|b|2)(M1+M2)

M1M2

)
, (5.2)

where |a|2 + |b|2 = y2.

2. Option II:

m
(II)
D = v

(
a b c

a b c

)
, (5.3)

which features two zero eigenvalues:

mII
ν =

(
0, 0, vM1+M2

M1M2
(|a|2 + |b2|+ |c|2)

)
, (5.4)

where, in this case, |a|2 + |b2| + |c|2 = y2. Although a spectrum with two mass-
less neutrinos is experimentally ruled out, the large separation between the solar
and atmospheric neutrino mass-squared differences indicates that two of the neutri-
nos have relatively similar masses. One may then envisage scenarios where small
deviations from the above Z3-symmetric structure are responsible for the necessary
mass-splitting.
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Figure 4. Running of the squared effective Yukawa coupling y2 from the Z mass scale to the U(1)
symmetry breaking scale M . The mass threshold of the lightest RHN (N3) is shown in light gray,
while the mass threshold of the heaviest degenerate RHN (N1,2) is shown in dark gray.

Regardless of the charge assignment, given the common prediction of a massless neutrino,
it is ultimately possible to identify the effective Yukawa coupling used in the dynamics of
warm inflation as being proportional to the mass scale

√
∆m2

atm ∼ 0.05 eV. There is, there-
fore, a very close relation between inflationary dynamics and low-energy phenomenology,
one of the attractive features of this model.

In order to obtain a more realistic mass spectrum, one has to account for the dynamical
nature of the Yukawa couplings caused by the large separation between the right-handed
neutrino mass scale (∼ 1015 GeV) and the electroweak scale (∼ 102 GeV), through the use
of the renormalization group equations (RGEs). In particular, we are interested in the
evolution of effective Yukawa coupling y, as this simultaneously determines the amount of
dissipation during inflation and the scale of the light neutrino masses.

For this, we use the REAP Mathematica package [87], which solves the RGEs of the
leptonic sector for the Standard Model plus right-handed neutrinos (SM+RHN) model.17

One finds that y2(µ ∼ 1015 GeV)/y2(µ ∼ 102 GeV) ∼ 1.4−1.5, as explicitly shown in
figure 4 for the “Z3-II” charge assignment. To obtain the correct neutrino masses at the
low-energy scale, one has to account for this effect. Let us take the results obtained in
section 4, and focus on the example of figures 1 and 2, with y = 0.74, g1 = 0.21, g2 =
0.17, M ≈ 3.3 × 1015 GeV. Using eq. (5.4), it becomes clear that the required Yukawa
couplings obtained in section 4 already result in masses compatible with the low energy
physics:

m
(µ=M)
3 = 2y

2v2

M1
∼ 0.07 eV running−−−−−→ m

(µ=mZ)
3 ∼ 0.05 eV.

A more detailed account of RGEs and the running of parameters is outside the scope of
this paper, and the interested reader is pointed to, e.g. [87, 88].

17This is well justified because the energy scales of interest here are below the SSB scale of U(1)X gauge
symmetry group: the theory is an effective SM+RHN.
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Figure 5. Predictions for inflationary observables (ns, r) and the largest left-handed neutrino
mass eigenstate, for V (φ) = λφ4, considering the two limiting cases where inflaton particles are
nearly thermalized or have negligible occupation numbers at horizon-crossing of the relevant CMB
scales. The blue contours correspond to the Planck TT,TE,EE+lowE+lensing +BK14+BAO 68%
and 95% C.L. regions [71]. The ellipses highlight the parametric regions where the neutrino mass
is in agreement with the experimental value.

We can relate inflationary observables and neutrino masses within our setup in the
following way. For each value of the dissipative ratio at horizon-crossing, Q∗, the number
of e-folds of inflation and the amplitude of the primordial curvature spectrum can be used
to infer φ∗ and T∗/H∗. In turn, these values can be used to determine the combination
(g2

1 + g2
2) cos2 δ/y2 that yields the magnitude of the dissipation coefficient. We set the

effective Yukawa coupling y at the minimum value for which the equilibrium condition
ΓN > H is satisfied at horizon-crossing, and the mass scaleM can be set by demanding that
T &M1,2 throughout inflation.18 In this analysis we set g2 = 0.8g1 for concreteness, noting
that similar results are obtained if there is no large hierarchy between these couplings. In
figure 5 we show the results of this analysis, simultaneously showing the predictions for
the inflationary observables and the mass m3 of the heaviest left-handed neutrino in the
“Z3-II” charge assignment (which is independent of the mass of the third right-handed
neutrino, M3).

As one can see in this figure, agreement with CMB observations corresponds to a
heaviest neutrino mass 0.04 eV < m3 < 0.1 eV, which is quite remarkable. The most
realistic scenarios, with m3 ' 0.05 eV, correspond to dissipative ratios at horizon-crossing
0.1 . Q∗ . 1.

Neither of the above charge assignments can, however, account for a realistic neutrino
mixing pattern compatible with neutrino oscillation experiments, requiring additional de-
grees of freedom involved in the seesaw mechanism. By including these, we should be

18More specifically, we find numerically that requiring T∗ > 1.7M1 is enough to ensure that the right-
handed neutrinos remain sufficiently light for ∼60 e-folds of inflation after horizon-crossing of CMB scales.
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careful in not spoiling the already successful realization of warm inflation with a realistic
mass scale for the heaviest left-handed neutrino.

One possible option is to consider an SU(2)L scalar triplet ∆L. The vacuum expec-
tation value of this field generates a renormalizable Majorana mass term for the light
neutrinos through the type II seesaw mechanism [89]. This would then result in a mixed
type I+II seesaw, with mν → mLL − mT

DM
−1
R mD. These sort of scalars are common in

UV-completions of the SM, such as LRSM [90] and SO(10) GUTs [91, 92]. The downside
of this approach is the introduction of a large number of new parameters in the theory.

A more economical path, on which we will focus our discussion, is the introduction
of a flavour-symmetry breaking “flavon” field, χ, singlet under the gauge group but with
a non-trivial Z3-charge. For instance, choosing a charge ω2 for the flavon field allows for
a dimension-5 term χN3HLL/Λ, where Λ & M is a heavy mass scale depending on the
UV-completion of the model. Upon acquiring an expectation value 〈χ〉 ≡ vχ � Λ, the
flavon field therefore allows for small Yukawa couplings involving the third right-handed
neutrino, which were thus far forbidden by the Z3 symmetry.

Since the Z3-II charge assignment yields a simpler neutrino mass spectrum, depending
only on a single effective Yukawa coupling in the Z3-symmetric limit, we will henceforth
consider only this option. The non-zero flavon VEV then allows for a Dirac mass matrix
of the form:

mD =

a b ca b c

0 0 0

 χ→vχ−−−−→

a b ca b c

d e f

 . (5.5)

The interchange symmetry is unaffected by these terms, and consequently the setup still
predicts one massless neutrino. The new entries (d, e, f) in (5.5) in the Dirac mass matrix
are O(vχ/Λ) and can therefore be treated as small deviations, yielding a light neutrino
mass matrix of the form:

mν = −v2


2a2

M1
+ d2

M3
2ab
M1

+ de
M3

2ac
M1

+ df
M3

. 2b2

M1
+ y2

M3
2bc
M1

+ ef
M3

. . 2c2

M1
+ f2

M3

 . (5.6)

Note that M3 is, so far, a free parameter, therefore a suppression of (d, e, f) ∝ vχ/Λ affect-
ing the flavon terms can be countered by a lower M3. Therefore, a hierarchy between M1
and M3, M1 � M3, may lead to sizable flavonic contributions, e.g. (2a2/M1) & (d2/M3),
to the effective neutrino mass matrix.

As a simple example, let us consider the case d, e = 0, which leads to:

m2 ' f2 v
2

M3

a2 + b2

y2 , m3 '
2y2v2

M1
+ f2 v

2

M3

c2

y2 , (5.7)

where we expanded the non-trivial eigenvalues of mνm
†
ν to second-order in f and, for sim-

plicity, took all couplings to be real. This shows that a single flavonic term in the Dirac
Yukawa matrix is sufficient to lift the unrealistic degeneracy of the neutrino mass spec-
trum. Inspecting eq. (5.7), it is clear that the choice c = 0 protects m3 against unwanted
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contributions. In this limit, a realistic value for the second non-vanishing neutrino mass
m2 can be obtained for:

f2 ≈ 4× 10−6 M3
1010 GeV . (5.8)

where we have included the Yukawa running. This illustrates that the third right-handed
neutrino, which we recall does not interact directly with the inflaton field, can be much
lighter than the other two, noting that the flavon-induced Yukawa couplings can be sup-
pressed for vχ � Λ.

We must ensure that the introduction of an additional flavon field and its induced
N3 Yukawa couplings do not spoil the successful realization of warm inflation obtained
earlier with only two right-handed neutrinos. If, on the one hand, the flavon field acquires
its VEV during inflation, this may lead to a direct coupling between the inflaton and
the third right-handed neutrino through dimension-5 operators of the form g3N c

3Φ1,2N3,
where g3 = O(vχ/Λ). These reintroduce dangerous thermal corrections to the inflaton
mass that could spoil inflation if N3 is thermalized, unless g3 � 1. Given that N3 can
be thermalized via decays and inverse decays, with ΓN3/H ∼ |y3|2(T/H) during inflation,
with |y3|2 ≡ |d|2 + |e|2 + |f |2, this leads to an upper bound on this effective coupling
|y3|2 . 10−5.

On the other hand, it is possible that the flavon field only acquires a VEV after
inflation ends, in which case N3 is not thermally excited during inflation and therefore
there are no additional thermal corrections to the inflaton’s mass. This would require mχ &
H & vχ during inflation. This could be due to e.g.- Planck-suppressed non-renormalizable
contributions to the flavon potential or a non-minimal coupling to gravity, ξχ2R, which
easily induce O(H) masses to scalar fields unprotected by any symmetry. In the case of
a non-minimal coupling to gravity, the induced flavon mass becomes highly suppressed
once radiation becomes dominant (R ' 0), so that the spontaneous breaking of the Z3
symmetry by the flavon field would naturally be triggered once inflation ends. One may
worry that this could lead to the formation of domain-walls that would eventually overclose
the Universe, but we note that the spontaneous breaking of the U(1) symmetry via the Φi

VEVs already leads to soft Z3-breaking terms such as χ2Φ1Φ†3
SSB−−−→ MM ′χ2 that ensure

that the flavon potential has a single global minimum. In this scenario vχ . 1012−1013 GeV,
such that if the scale of the non-renormalizable flavon operators Λ & M ∼ 1015 GeV, the
N3 Yukawa couplings should also be suppressed in this case, y3 . 10−3 − 10−2.

We thus conclude that, in both scenarios, the third right-handed neutrino must be
relatively light to accommodate a realistic neutrino mass spectrum, M3 . 1010−1011 GeV.

6 Leptogenesis

It is well known that the addition of right-handed neutrinos provides an elegant mechanism
for generating the cosmological baryon asymmetry known as leptogenesis [93], where lepton
number violation is a consequence of the Majorana mass terms and C/CP-violation arises
through the neutrino Yukawa couplings. In its simplest realization, a lepton asymmetry is
then generated via the out-of-equilibrium decays of an initially thermal population of right-
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handed neutrinos. For hierarchical Majorana masses, the lightest right-handed neutrino
is responsible for producing the largest contribution to the lepton asymmetry, which is
later converted into a baryon asymmetry by electroweak sphaleron processes, which violate
B + L while preserving the combination B − L [94].

It is then clear that leptogenesis can naturally be incorporated within our setup, where
the underlying U(1) gauge symmetry can be identified with lepton number or B − L, two
of the right-handed neutrinos are degenerate (at the minimum of the inflaton potential)
and the third right-handed neutrino is typically much lighter in order to obtain a realistic
light neutrino mass spectrum.

As we have seen in the previous section, consistency of warm inflation requires N3
to only be thermally produced after inflation, either because its Yukawa couplings are
suppressed by the ratio vχ/Λ � 1 or because the flavon field only breaks the Z3 family
symmetry after inflation ends. In either case, a thermal population of N3 is produced in the
radiation bath after inflation if the effective N3 Yukawa coupling y3 is not too suppressed.

The CP asymmetry due to N3 decays is given by [95]

ε =
Γ(N3 → Lj +H)− Γ(N †3 → L†j +H†)
Γ(N3 → Lj +H) + Γ(N †3 → L†j +H†)

= 1
8π(YνY †ν )33

∑
i 6=3

Im
([

(YνY †ν )3i
]2)(

f

(
M2
i

M2
3

)
+ g

(
M2
i

M2
3

))
,

(6.1)

where
f(x) =

√
x

[
1− (1 + x) ln

(1 + x

x

)]
, g(x) =

√
x

1− x, (6.2)

and f(x) results from the interference between the tree-level decay amplitude and the 1-loop
vertex correction, whereas g(x) stems from the absorptive part of the neutrino self-energy.19

For clarity we labeled the Yukawa matrix Yij defined in (3.2) as Yν .
This CP asymmetry of the N3 decays leads to a lepton asymmetry, diluted by wash-out

processes, such as scattering and inverse decays. The final lepton-to-entropy ratio is then
given by:

YL = d
ε

g∗
, (6.3)

where g∗ is the effective number of degrees of freedom, and d is the dilution factor, which
is well approximated by [96, 97]:

d = 1
2
√
K2 + 9

, K = ΓN3

2H

∣∣∣∣
T=m3

' MP

1.7× 8π√g∗
(YνY †ν )33
M3

, (6.4)

for K . 10, which is the region of interest in the present case.
Finally, the leptonic asymmetry is converted into a baryonic asymmetry through

sphaleron processes, yielding a baryon-to-entropy ratio:

YB = C

C − 1YL, C = 8NF + 4NH

22NF + 13NH
, (6.5)

19Note that the expression (6.1) differs from the one presented in [94] due to a different convention in the
definition of Yν , which are related through a h.c. transformation.
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Figure 6. Mass of the lightest right-handed neutrino, N3, as a function of its effective Yukawa
coupling, |y3|. All neutrino observables are required to be within the 3σ experimental range and
we have fixed y = 0.74, M1 = 4.6× 1014 GeV, and YB = 7.5× 10−11. The light-gray shaded region
shows the forbidden region if the N3 neutrino thermalizes during inflation, and the gray shaded
region estimates the breakdown of the approximation M3 �M1.

where NF is the number of families and NH the number of Higgs doublets. In this model,
which after inflation becomes simply the SM with right-handed neutrinos, NF = 3 and
NH = 1, giving C ' 1/3. The baryon asymmetry can be experimentally measured through
the BBN and CMB, with YB ' (8−10)× 10−11 [98].

We have performed a numerical parameter scan of our model, matching the full neu-
trino mass matrix to the measured values of the neutrino mass differences and mixing
parameters within three standard deviations [99], fixing the effective Yukawa coupling y
and the heaviest neutrino masses M1 = M2 to values yielding a technically and observa-
tionally consistent warm inflation scenario. Requiring that the baryon symmetry resulting
from out-of-equilibrium N3 decays matches the observational value, it is then possible to
relate the mass of the lightest right-handed neutrino, M3 (unconstrained by inflation), with
its effective Yukawa coupling y3 defined above. The results of this analysis are shown in
figure 6.

Taking into account our previous discussion on the size of the N3 Yukawa couplings,
we see that a successful model consistently yielding inflation, a realistic neutrino mass
spectrum and the observed cosmological baryon asymmetry requires M3 ∼ 109−1011 GeV,
consistently with the Davidson-Ibarra bound [100], with suppressed Yukawa coupling |y3| ∼
10−3−10−2 as expected from their flavon-induced origin.

7 Summary and future prospects

The present work addresses the main shortcomings of the SM except those involving fine-
tuning issues (which arguably are not true inconsistencies of the theory), within a unified
model: 1) inflation is driven by a slowly rolling scalar field, 2) neutrino masses are generated
via the seesaw mechanism, with right-handed neutrinos being the only particles interacting
directly with the inflaton field; 3) the remnant inflaton field naturally accounting for dark
matter at late times; and 4) a cosmological baryon asymmetry is generated via thermal
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leptogenesis. This is implemented within the first realization of warm inflation within a
concrete extension of the SM, based on the generic Warm Little Inflaton scenario. This is
a minimal extension with the addition of three right-handed neutrinos and three complex
scalar fields that are singlets under the SM gauge group but charged under a gauged
U(1) symmetry identified with lepton number or B − L. Moreover, all these problems
are addressed without modifying the gravitational sector, making it less sensitive to the
UV-completion of the model.

The model is endowed with two additional discrete symmetries: an interchange sym-
metry under which N1 ↔ N2 and Φ1 ↔ iΦ2, leaving N3 and Φ3 unchanged, and a Z3 family
symmetry. The inflaton field is identified with the relative phase of the complex fields Φ1
and Φ2, and interacts directly only with the right-handed neutrinos N1 and N2. These
interactions, alongside the decay of the right-handed neutrinos into leptons and Higgs de-
grees of freedom, are responsible for dissipative effects that sustain a warm thermal bath
during inflation, with the interchange symmetry protecting the scalar potential against
large thermal corrections that could prevent a slow-roll evolution. We have shown that
such a scenario consistently allows for a sufficiently long inflationary period with a quartic
scalar potential, with a scalar spectral index and tensor-to-scalar ratio within the range
allowed by Planck data, as in the original WLI model. In addition, the strong dissipation
regime is attained towards the end of inflation, causing the radiation (i.e. right-handed
neutrinos, leptons and Higgs doublets) to dominate smoothly at the end of the slow-roll
regime. At this stage, the ratio T/H also becomes sufficiently large to allow for the thermal
production of the remaining SM degrees of freedom.

One of the most interesting features of this setup is that the scale of the right-handed
neutrino masses, M1,2 ∼ 1014−1015 GeV, and effective Yukawa couplings, y . 1, is fixed
by the constraints of realizing warm inflation near thermal equilibrium at temperatures
above the right-handed neutrino mass threshold, since otherwise dissipative effects would
be exponentially suppressed. This automatically yields the scale of the heaviest left-handed
neutrino mass, via the seesaw mechanism, in agreement with neutrino oscillation experi-
ments, m3 ' 0.05 eV (taking into account the small running of the Yukawa couplings). The
interchange symmetry also leads to a specific prediction of at least one massless neutrino.

A full agreement with experimental results for neutrino masses and mixings requires
an extension of this basic setup with e.g. a flavon field that breaks the Z3 family symmetry,
since otherwise the third right-handed neutrino is not involved in the seesaw mechanism.
We have shown that this can be done without spoiling the successful realization of warm
inflation, since N3 need not be thermally excited during inflation.

Our setup also offers natural solutions to two other important cosmological problems.
First, the interchange symmetry makes the inflaton stable at late times and protects its
mass from large radiative corrections. Since the right-handed neutrino masses are bounded,
N1,2 are only relativistic and thermally produced during inflation, decoupling from the
dynamics once the temperature drops below their mass threshold at the end of inflation.
The resulting inflaton remnant thus corresponds to a cold and weakly interacting fluid
that may naturally account for dark matter for inflaton masses . 1 eV. Second, a thermal
population of the lightest right-handed neutrino is necessarily generated after inflation,
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and its out-of-equilibrium decays can produce a lepton asymmetry that is later converted
into the observed cosmological baryon asymmetry by electroweak sphaleron processes. In
our setup, the three right-handed neutrinos play separate roles, with N1 and N2 being
responsible for warm inflation and N3 for thermal leptogenesis after warm inflation, but all
within the same framework yielding a realistic pattern for neutrino masses and mixings.

In addition, the model can be probed via a plethora of different observables, with
both low-energy neutrino experiments and astrophysical observations, as best exemplified
by figure 5. Warm inflation leads to a specific consistency relation between the tensor
spectral index and the tensor-to-scalar ratio [49, 61], and within our particular setup we
predict the latter to lie in the range r ∼ 10−4−10−3 given the measured scale of neutrino
masses. Other observables include non-Gaussian features with a particular “warm” shape
that may be accessible in the near future and cold dark matter isocurvature modes roughly
an order of magnitude below the current Planck sensitivity, and anti-correlated with the
main adiabatic curvature perturbations. The fact that the inflaton remnant behaves as
dark radiation during BBN and cold dark matter at recombination also yields a very
distinctive probe of our scenario. In conjunction, all these observables make our setup
quite distinguishable from other interesting attempts to simultaneously address the same
problems (e.g. [101–104]).

It would be interesting to try to extend the present warm inflation scenario into the
full strong dissipation regime, i.e. Q∗ & 100, where the inflationary dynamics becomes less
reliable on the UV completion [27, 30, 105, 106]. Within the current understanding of
fluctuations in warm inflation, our setup would predict a too blue-tilted power spectrum
in this regime, due to the interplay between inflaton and radiation fluctuations. This may
require modifying the particle content and the inflaton potential, as recently proposed in
the modified WLI-construction of [72], or a better understanding of the non-equilibrium
properties of the thermal bath, which may have a significant impact on observational
predictions (e.g. [58]).

A natural possibility to investigate in the future is also embedding the minimalistic
setup presented in this work within grande unified theories, particularly those based on
SO(10) or larger gauge groups containing the latter as a sub-group, since right-handed
neutrinos are automatically included in the fundamental representation of SO(10) alongside
the known quarks and leptons. As we mentioned in section 3, the first option for the
Z3 charge assignments could accommodate such an embedding, and potentially both the
latter and the discrete interchange symmetry can have measurable effects on the low-energy
particle spectrum that could further help testing this model.
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A Inflaton self-energy

One of the most important features of the WLI paradigm is the removal of the leading
contributions to V (φ) that preclude inflation, as discussed in the main text. An alternative
way to see this is by computing the inflaton self-energy generated from the couplings to
the N1,2 fermions. To do so, one can start with the relevant Lagrangian (3.2) after SSB of
the U(1)X , working in the RH neutrino mass basis:20

− Lφ,N = N c
i

(1
2Mi + 1

2Vie
iδiδφ+ 1

4fiδφδφ
)
Ni + h.c. , (A.1)

where summation over the two RH neutrinos is implied and the background value of the
inflaton field was separated from its fluctuations, by replacing φ→ φ+ δφ and expanding
the exponential in powers of δφ/M up to quadratic order

eiφ/M = eiφ/Meiδφ/M = eiφ/M
∞∑
n=0

(iδφ/M)n

n! = eiφ/M
(
1 + iδφ/M − δφδφ/2M2 + . . .

)
.

(A.2)
Here, Mi, Vi and fi take real values, and are related to each other (see below). One can
now define Majorana fermions as

Ni = (Ni +N c
i ), Ni = (Ni +N c

i ), Ni = PRNi, N c
i = PLNi, (A.3)

and write (A.1) as

− Lφ,N =
(1

2MiNiNi + 1
2ViNie

iγ5δδφNi + 1
4fiNiδφδφNi

)
, (A.4)

where fi = −Mi/M
2 and V 2

i = M2
j /M

2, i = 1, 2 and j 6= i = 2, 1, with

M2
1 = M2

4
[
(g1 + g2)2 cos2(φ/M) + (g1 − g2)2 sin2(φ/M)

]
,

M2
2 = M2

4
[
(g1 − g2)2 cos2(φ/M) + (g1 + g2)2 sin2(φ/M)

]
,

−δ = tan−1
(
g−
g+

cot(φ/M)
)

+ tan−1
(
g−
g+

tan(φ/M)
)
,

(A.5)

where g± was defined in (4.2).

20Hence the appearance of the phases δi resulting from the appropriate rotations.
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Figure 7. Feynman diagrams contributing to the inflaton self-energy, (A.10) and (A.6), respec-
tively. The dashed line represents δφ while the solid one represents Ni.

There are two different contributions to the inflaton self-energy i) from the 4-point
interaction δφδφNN terms, ii) from the 3-point Yukawa interaction δφNN terms, repre-
sented in figure 7. The former is readily computed:

−iΠ4P(0) = 1
2(−1)

∫
d4p

(2π)4Tr
[
if1

i(/p−M1)
p2 −M2

1
+ if2

i(/p−M2)
p2 −M2

2

]

= 1
2

1
M2

∫
d4p

(2π)4

(
4M2

1
p2 −M2

1
+ 4M2

2
p2 −M2

2

)
.

(A.6)

where the symmetry factor of 1/2 is due to the Majorana nature of N [107] and we used
the relation between fi and Mi.

The cubic interactions are given by

− iΠi
3P(0) = −1

2V
2
i

∫
d4p

(2π)4

Tr
[(

(/p+Mi)(eiδPR + e−iδPL)
)2
]

(p2 −M2
i )2 , (A.7)

where

Tr
[(

(/p+Mi)(eiδPR + e−iδPL)
)2
]

= 4p2+4(cos2 δ−sin2 δ)M2
i = 4p2+4 cos(2δ)M2

i . (A.8)

so that the inflaton self-energy correction given by the Yukawa interaction is

− iΠi
3P(0) = −1

2V
2
i

∫
d4p

(2π)4

(
4p2 + 4 cos(2δ)M2

i

(p2 −M2
i )2

)
, (A.9)

Summing over the two fermionic contributions, from N1 and N2,

− iΠ3P(0) = −1
2

1
M2

∫
d4p

(2π)4

( 4M2
2

(p2−M2
1 )

+ 4M2
1

(p2−M2
2 )

+ 8M2
1M

2
2 cos2 δ

(p2−M2
1 )2 + 8M2

1M
2
2 cos2 δ

(p2−M2
2 )2

)
.

(A.10)
By combining (A.6) with (A.10), the leading order contributions (in p) to the inflaton
self-energy cancel. As a result, there are no quadratically divergent terms: only log-
divergent terms and finite terms. This holds true in the high temperature limit (HTL),
where the masses in the propagators can be neglected when compared to the magnitude of
Mi � p ∼ T .
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B Fermion decay width and thermal masses

Right-handed (RH) neutrino decay width. Knowledge of the RH neutrino decay
width is required for finding the dissipation coefficient, essential for the WI inflationary
dynamics. The relevant Lagrangian after the SU(2) contractions is:

LYuk,lep = −Y (NPLh0νL −NPLh
+l±L ) + h.c. , (B.1)

following the notation of (A.3). Above the EWSB scale, both charged and neutral processes
contribute to the RH neutrino decay width in a similar fashion, as they are mediated by the
same Yukawa couplings. Furthermore, the h.c. term above can be recast as νLh∗0PRN →
NPRν

c
Lh
∗
0, by making use of −NTC−1 = N [107], and γ0Cψ∗ = ψc [108], resulting in four

different processes, all of which identical due to the nature of the Cutkosky rules [109].
Following the finite-temperature generalization of the Cutkosky rules [110],

ImΣ = (1 + e−βp0)Γ̂d, Γ̂d = 1
2
∑
z

F (y1, y2, z), (B.2)

where Σ and Γ̂d is the self-energy and decay width of the RH neutrinos, respectively. The
sum in z is over different possibilities of circling internal vertices, and y1 (y2) is the vertex
associated with the incoming (outgoing) momenta, and is uncircled (circled).21 At the
1-loop level, there are no internal vertices

ImΣi(p) = 1
2(1 + e−βp0)(Y Y †)ii

∫
d4k

(2π)4PR∆+
s (k)PR∆+

f (p− k), (B.3)

in which no summation over repeated indexes is implied, and [110]

∆+
s (p) = 2π[θ(p0) + nB(p0)]δ(p2 −m2), (B.4)

∆+
f (p) = 2π[θ(p0)− nF (p0)](/p−m)δ(p2 −m2). (B.5)

In the massless limit, the above product is equal to

∆+
s (k)∆+

f (p− k) =(2π)2(/p− /k)δ((p− k)2)δ(k2)θ(p0 − k0)θ(k0) (B.6a)

+ (2π)2(/p− /k)δ((p− k)2)δ(k2)θ(p0 − k0)nB(k0) (B.6b)
− (2π)2(/p− /k)δ((p− k)2)δ(k2)θ(k0)nF (p0 − k0) (B.6c)
− (2π)2(/p− /k)δ((p− k)2)δ(k2)nB(k0)nF (p0 − k0). (B.6d)

For (B.6a), using∫
d4kθ(k0)δ(k2) =

∫
d3k

1
2k0

, and
∫
d4pδ((p− k)2) =

∫
d4pd4k′δ(k′2)δ((p− k)− k′),

(B.7)
21In the Cutkosky rules and their finite-temperature generalization, circled vertices are the h.c. of the

uncircled vertices.
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one obtains ∫
d4k

(2π)4 (2π)2(PR)2(/p− /k)θ(p0 − k0)θ(k0)δ(k2)δ((p− k)2)

= (2π)
∫

d3k

(2π)3PR
/p− /k

4|k||p− k|δ(p0 − |k| − |p− k|).
(B.8)

Dropping the δ(k0 + |k|) contributions (associated with scatterings and other pro-
cesses [111]) and keeping in mind that

nB(k0)nF (p0 − k0) = (1 + eβp0)−1(1 + nB(k0)− nF (p0 − k0)), (B.9)

we find the results

(B.6b) = (B.8) ∗ nB(|k|),
(B.6c) = −(B.8) ∗ nF (|p− k|), (B.10)
(B.6d) = −(1 + eβp0)−1((B.6a) + (B.6b) + (B.6c)

)
.

Therefore, the full contribution to the loop is(
1− (1 + eβp0)−1

)
2π PR

∫
d3k

(2π)3 (1+nB(|k|)−nF (|p− k|))δ(p0−|k|− |p− k|). (B.11)

Recalling (B.3) and using (1 + e−βp0)(1− (1 + eβp0)−1) = 1,

ImΣi(p) =
1
2(Y Y †)ii(2π)

∫
d3k

(2π)3 (PR) /p− /k
4|k||p− k|(1 + nB(|k|)− nF (|p− k|))δ(p0 − |k| − |p− k|).

(B.12)
Taking the limit where p and k are aligned,

/p− /k = /p

(
p0 − |k|
p0

)
, (B.13)

it is possible to compute Γ through [112],

Γi = − 1
2p0

Tr[(/p+mi)ImΣ] = −(Y Y †)ii
4p0

(2π)×∫
d3k

(2π)3Tr
[
(/p+mi)(PR) /p− /k

4|k||p− k|

]
(1+nB(|k|)− nF (|p− k|))δ(p0−|k| − |p−k|)

= −(Y Y †)iip2

16πp2
0|p|

∫ k+

k−
dk(1 + nB(|k|)− nF (|p− k|))(p0 − |k|),

(B.14)
where the angular integration was performed through the Dirac delta, which binds the
moduli integration by imposing the appropriate bounds on the cosine function:

δ(p0 − |k| − |p− k|) = |p− k|
|p||k| δ(cos θ − cos θ0), (B.15)

cos θ0 ≡
p0
|p| + |p|

2 − p2
0

2|p||k| , k± = 1
2 (p0 ± |p|) . (B.16)
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Taking into account all contributions,

ΓNi = 4× 1
2
m2
i

ωpi

T 2(Y Y †)ii
8π|p|ωpi

F (|p|/T,mi/T ), (B.17)

where F (|p|/T,mi/T ) is given by [15]

F (x,w) = f(x+, ωp/T )− f(x+, ωp/T ), (B.18)

with x± = k±/T , ωp =
√

p2 +m2(T ) and

f(x,w) =
∫
dx(w − x)

[
1 + 1

ex − 1 −
1

e(w−x) + 1

]
=− π2

3 − w
2 + xw − x2

2 + (w − x) ln
(

1− e−x

1 + e−w+x

)
+ Li2

(
e−x

)
+ Li2

(
−e−w+x

)
.

(B.19)
where w = ωp/T . As a consistency check, it can be seen that taking the zero-temperature
limit of (B.17) yields the result of [113].

Thermal masses. The thermal contribution to the masses of the right-handed neutrinos
result from the real part of the fermion self-energy diagram

Σi = i

∫
d4k

(2π)4V1G
(11)(k)V2S

(11)(p− k), (B.20)

composed by a left-handed neutrino/Higgs loop. V1,2 are the interaction vertices, V1 = V2 =
PLyij , with a sum over the SM lepton families implied, where

∑3
j=1 y

2
1j =

∑3
j=1 y

2
2j = y2.

Using the finite-temperature propagators

∆(p) = i

p2 −m2 + iε
= iP

( 1
p2 −m2

)
+ πδ(p2 −m2), (B.21)

where P (x) is the Cauchy principal value. The real and imaginary parts of the propagators
are [114]:

G(11)(k) =
[
iP

( 1
k2

)
+ 2πδ(k2)(1/2 + nB(k))

]
,

S(11)(k) =
[
iP

( 1
k2

)
+ 2πδ(k2)(1/2− nF (k))

]
/k,

(B.22)

for massless particles. Accounting for the factor i in (B.20), the real part of the self-energy
comes from the imaginary component of the propagator product:

ReΣi(p) =

4PLy2
∫

d4k

(2π)4

[
(/p− /k)2πδ(k2)(1/2 + nB(k))

(p− k)2 +
(/p− /k)2πδ((p− k)2)(1/2− nF (p− k))

k2

]
.

(B.23)
Redefining k → p− k in the second term, and separating the zero-temperature and finite-
temperature contributions, Σ = Σ0 + ΣT :

ReΣT
i (p)

4y2 = PL

∫
d4k

(2π)4

[
(/p− /k)nB(k)− /knF (k)

] 2πδ(k2)
(p− k)2 . (B.24)
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Unfolding δ(k2) = δ(k2
0 − k2) = (δ(k0 ± k))/(2k), taking the nearly-massless limit (p and

k are aligned), and performing the integration in k0, one obtains

ReΣT
i (p) =

2PLy2

4π3

∫
d3k

2k

[(p0 − k)nB(k)− knF (k)
2k(p− p0) + (p2

0 − p2)
+ (p0 − (−k)nB(−k)− (−k)nF (−k)

2k(p+ p0) + (p2
0 − p2)

]
/p

p0
.
(B.25)

In the limit p2 ≈ p2
0 and making use of

nB(−x) = −1− nB(x), nF (−x) = 1− nF (x), (B.26)

one obtains

ReΣT
i (p) = y2PL

8π2p0p2 /p

∫
dk
[
(p+ p0)

(
(p0 − k)nB(k)− knF (k)

)
+

+ (p− p0)
(
− p0(1 + nB(k))− k(nB(k) + nF (k))

)] (B.27)

Following [115], the leading T 2 contributions are generated by would-be quadratically di-
vergent terms if no thermal distribution were present to act as a k ∼ O(T ) cut-off in the
integration.

ReΣT ′
i (p) = PLy

2

8π2p0p2 /p

∫
dk
(
(nB(k) + nF (k))(p0 + p)− (nB(k) + nF (k))(p0 − p)

)
k

= PLy
2

4π2
/p

p2

∫
dk (nB(k) + nF (k)) k,

(B.28)
using p = p0. Since∫ ∞

0
dkknB(k) = π2T 2

6 ,

∫ ∞
0

dkknF (k) = π2T 2

12 , (B.29)

one obtains
ReΣT ′

i (p) = PLy
2

p2
T 2

16 /p. (B.30)

Taking into account all contributions, ReΣT ′
f (p) = 4ReΣT ′

i (p), and the thermal contribution
to the fermion masses is [115]

M2
T = Tr

4
[
/pReΣT ′

f (p)
]

= 4y2T 2

4× 16Tr
[1− γ5

2 /p/p

]
= y2T 2

8 . (B.31)

C Dissipation coefficient

The relevant Lagrangian for the computation of the dissipation coefficient has two vertices
for each Majorana fermion:

− LφYuk = Mi

2 NiNi + Vi
2 Niδφ

(
eiδPR + e−iδPL

)
Ni. (C.1)
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To obtain the correct result, one needs to take into account that the canonically normalized
inflaton field is ϕ = φ/

√
2. Doing so, the dissipation coefficient for each neutrino is given

by [37]

Υ = 1
4T

∫
d4p

(2π)4Tr[ρψiVρψiV]nF (p0)(1− nF (p0)). (C.2)

where V is the term inside parenthesis in (C.1) times Vi, defined in (A.5). Note that one still
has to sum over both fermionic contributions (i = 1, 2). The extra factor of 1/2 compared
to [37] is due to the symmetry factors of the Feynman diagrams (related to having identical,
Majorana, particles running in the loops). Expanding the fermionic trace above

V 2
i e

2iδTr
[
(/p+Mi)PR(/p+Mi)PR

]
= 2M2

i V
2
i e

2iδ,

sV 2
i e
−2iδTr

[
(/p+Mi)PL(/p+Mi)PL

]
= 2M2

i V
2
i e
−2iδ,

2V 2
i Tr

[
(/p+Mi)PR(/p+Mi)PL

]
= 4M2

i V
2
i .

(C.3)

where we used that p2 = M2
i . In the high-temperature regime, the 4-momentum integral in

eq. (C.2) is dominated by on-shell right-handed neutrino modes for which p2
0 = ω2

pi [37, 38]
and, hence, we may use the pole approximation for the spectral functions:

ρ2
B = π

2ω2
piΓNi

(δ(p0 − ωpi) + δ(p0 + ωpi)) , (C.4)

provided also that the narrow width approximation ΓNi .Mi is valid, which is generic for
perturbative couplings. The dissipation coefficient can then be written as:

Υi = V 2
i

T
cos2 δ

∫
d3p

(2π)3
M2
i

ω2
piΓNi

nF (ωpi)(1− nF (ωpi)). (C.5)

Summing over the two N contributions,

Υ = Υ1 + Υ2 = V 2
1 + V 2

2
T

cos2 δ Int., (C.6)

where we used M1 'M2, a good approximation when the thermal contribution dominates
the right-handed neutrino masses. The integral is then defined as

Int. =
∫

d3p

(2π)3
M2
i

ω2
pΓNi

nF (ωpi)(1− nF (ωpi)). (C.7)

Accounting for (B.17), the dissipation coefficient is:

Υi = πV 2
i

y2T 3 cos2 δ

∫
d3p

(2π)3 |p|
nF (ωpi)(1− nF (ωpi))
F (|p|/T,Mi/T ) , (C.8)

where y2 is the effective Yukawa coupling defined in (4.6), with F (|p|/T,Mi/T ) is defined
in (B.18). Performing the integration over the solid angle and changing the integration
variable to x ≡ |p|/T ,

Υi = π

4π3
V 2
i

y2 cos2(δ)T
∫ ∞

0

d3p

T 3
|p|
T

nF (1− nF )
F (|p|/T,Mi/T ) = 2V 2

i

πy2 T cos2(δ)
∫ ∞

0
dxx3nF (1− nF )

F (x,w) .

(C.9)
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Figure 8. Numerical evaluation of the integral in (C.9) and its analytical approximation, Υi/B

with B = T cos2(δ)V 2
i /y

2.

where w ≡Mi/T . In order to find a simple expression for the dissipation coefficient (C.9),
we analyzed two asymptotic regimes: i) the high-temperature limit (w � 1) and ii) the
low-temperature limit (w � 1). The final result is an interpolation between the two.

Assuming x ∼ 1, which is the most relevant region of the integral, the high-temperature
limit becomes

F (x,w) ∼ −2x log(w)⇒
∫ ∞

0
dx

x2

β − 2 log(w)nF (1− nF ) = π2

6(β − 2 log(w)) , (C.10)

where β is a constant to be determined. Numerically, we find that β = 3 results in a low
error in the estimate of the dissipation coefficient in the high-temperature limit. For the
low-temperature case,

F (x,w) ∼ xw

2 coth
(
w

2

)
⇒
∫ ∞

0
dx

x2

w coth
(
w
2
)e−w− x2

2w

(
1− e−w−

x2
2w

)
= 1

2
√
πe−2w

(
2
√

2ew − 1
)√

w tanh
(
w

2

) (C.11)

Finally, we may introduce Boltzmann factors to combine these two asymptotic limits in a
smooth way, yielding:

Υi = V 2
i

y2 T cos2 δ

(
πe−2(Mi/T )

(9−6e−(Mi/T ) log (Mi/T ))
+ e−(Mi/T )(2

√
2− e−(Mi/T )) tanh (Mi/T )√

π

)
,

(C.12)
which features a relative error never greater than 4% (see figure 8). Taking the thermal
corrections to be the dominant contribution to the heavy neutrino masses during inflation,
i.e., Mt �M0, thenMi ∝MtT and the contributions from N1 and N2 are easily combined:

Υ =
(
g2

1 + g2
2
)

2y2 T cos2(δ)

 πe−Mt

9eMt − 6 lnMt
+
e−2Mt

(
2
√

2eMt − 1
)√

Mt tanh (Mt
2 )

√
π

 .
(C.13)
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Replacing MT with the result obtained from the thermal mass computation, one arrives at

Υ = (g2
1 + g2

2)
2y2 cos2 δ

(
π

9− 6 ln(y/2
√

2)

)
T ≡ CTT, (C.14)

which is a function of the three coupling constants relevant to inflationary dynamics: g1, g2,
and y.
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