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Abstract

Computational complexity has been the bottleneck for applying physically

based simulations in large urban areas with high spatial resolution for efficient

and systematic flooding analyses and risk assessment. To overcome the issue

of long computational time and accelerate the prediction process, this paper

proposes that the prediction of maximum water depth can be considered an

image-to-image translation problem in which water depth rasters are gener-

ated using the information learned from data instead of by conducting simula-

tions. The proposed data-driven urban pluvial flood approach is based on a

deep convolutional neural network trained using flood simulation data

obtained from three catchments and 18 hyetographs. Multiple tests to assess

the accuracy and validity of the proposed approach were conducted with both

design and real hyetographs. The results show that flood prediction based on

neural networks use only 0.5% of the time compared with that of physically

based models, with promising accuracy and generalizability. The proposed

neural network can also potentially be applied to different but relevant prob-

lems, including flood analysis for flood-safe urban layout planning.
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1 | INTRODUCTION

The combination of rapid urbanization and the rainfall
intensity increase due to climate change is posing great
challenges for flood risk management (Plate, 2002). Fast
flood prediction methods are required to conduct system-
atic analyses and investigations of different urban plan-
ning and climate change scenarios (Zheng, Thibaud,
Leonard, & Westra, 2015). Furthermore, if rapid urban
pluvial flood predictors are integrated with high temporal
resolution online rainfall forecast services, it will be

possible to inform citizens of likely urban pluvial flooding
in advance, so that precautionary measures can be taken.

1.1 | Rapid flood modelling

The current bottleneck for rapid urban pluvial flood ana-
lyses is the long computational time required by physi-
cally based simulation models. The problem becomes
extremely significant for large simulation areas with high
spatial resolutions (small raster grid size). Solutions for
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solving this issue have been previously identified, which
include reducing the dimensionality of flood representa-
tion (e.g., Samuels, 1990) or neglecting the inertial and
advection terms of the momentum equation (e.g., Bates,
Horritt, & Fewtrell, 2010; Bradbrook, Lane, Waller, &
Bates, 2004; Chen, Djordjevic, Leandro, & Savic, 2007).
However, according to Teng et al. (2017), physically
based models are still not suitable for areas larger than
1,000 km2 with a raster grid size smaller than 10 m. In
urban areas, the required raster grid size should be
between 1 m and 5 m to capture the urban features
(Fewtrell, Bates, Horritt, & Hunter, 2008; Leit~ao, Boonya-
Aroonnet, Prodanovi�c, & Maksimovi�c, 2009).

Non-physically based models, on the other hand, are
based on simplified hydrological concepts such as topo-
graphic depressions (L'homme et al., 2008) or the transi-
tion rules of cellular automata (e.g., Ghimire et al., 2013;
Guidolin et al., 2016). These methods can be
implemented using parallel computing techniques to sig-
nificantly improve the computational speed. Recently,
Jamali, Bach, Cunningham, and Deletic (2019) have
shown that the cellular automata models can predict
maximum water depths of large urban areas in a few
minutes. But the main drawback lies in its sensitivity to
simulation time steps and raster grid size. Reducing the
time step or grid size still causes a significant increase in
simulation time. Non-physically based approaches have
become significantly faster than physically based
approaches, however, they are still considered not fast
enough for applications that require a considerable num-
ber of simulations, such as flood-driven optimizations
and planning. Also, it is known that the computational
time is non-linearly related with the raster resolutions.
Doubling the resolution may cause ten times more simu-
lation times (Guidolin et al., 2016).

1.2 | Data-driven methods for flow and
flood related problems

Recently, solving physics-related problems with machine
learning techniques has become a research field receiving
growing attention due to its computational efficiency and
the ability to learn and generalize from data
(e.g., Greydanus, Dzamba, & Yosinski, 2019). This direc-
tion is also called “surrogate modelling” because the
machine learning models act as the “surrogate” of the
physically based simulations hypothesising that the
models will learn the target system regardless of the
actual physical process if sufficient data are provided.
Making surrogate models for flow and flood related prob-
lems has been investigated using different methods. The
noticeable early attempts can be found from the field of

computer graphics. For example, regression forest was
used to learn the dynamic process of particle-based simu-
lations for real-time animation and layout planning
(Feng, Yu, Yeung, Yin, & Zhou, 2016; Ladický, Jeong,
Solenthaler, Pollefeys, & Gross, 2015). Later, a fully-
connected neural network was proposed by Mustafa
et al. (2018) for flood-driven urban planning. However,
the approach had a main drawback that the training data
for the neural network was the input parameters of a ter-
rain generator rather than raw elevation data, and conse-
quently the results cannot be extended to other scenarios.
Recently, this issue was handled by introducing a prior
terrain feature extraction process (e.g., Leit~ao, Zaghloul, &
Moosavi, 2018; Zaghloul, 2017).

Using artificial neural networks (or neural networks)
for flood prediction and susceptibility mapping has
recently become more frequent due to (a) neural net-
works were shown to be able to approximate any strong
non-linear correlation and (b) recurrent neural networks
(Schuster & Paliwal, 1997), a neural network structure
which stacks multiple layers dynamically, were found
effective for processing time series data. Recurrent neural
networks were used to forecast long-term water level for
individual locations from corresponding inputs of rainfall
intensity (e.g., Chang, Chen, Lu, Huang, & Chang, 2014;
Gude, Corns, & Long, 2020), or combined with self-
organizing maps to estimate maximum water depths
(Kim & Han, 2020a). Fully-connected neural networks
were used to estimate water levels and flow velocities at
specific coordinates based on statistical and topographical
inputs such as slope, aspect and curvatures (e.g., Bui
et al., 2020; Kim & Han, 2020b). However, a main draw-
back of fully-connected neural networks is the exponen-
tial growth of parameters on large inputs (LeCun,
Bengio, & Hinton, 2015), which cause significant chal-
lenges when trying to utilize spatial information from
adjacent pixels (raster cells) for two-dimensional simula-
tions. A workaround of this problem was shown by
Berkhahn, Fuchs, and Neuweiler (2019) through a com-
bination of pruning zero-cells from the neural network
inputs and using multiple small neural networks that are
responsible for different local areas instead of one large
network that predicts the entire catchment area.

1.3 | Data-driven flow and flood
modelling using convolutional neural
networks

Despite the variety of available algorithms, convolutional
neural networks (CNNs) in particular, have received
strong attention due to their ability to (a) process raw
data in image format and (b) utilize spatial information
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from adjacent pixels with many fewer parameters com-
pared to other type of neural networks. Beyond its origi-
nal goal for image classification and object detections in
computer graphics, CNNs have been used to solve flow-
related problems in a way that the boundary conditions
were discretized into images (rasters) with multiple
image channels. For example, the velocity and pressure
fields of steady inlet air flow around objects of interest
were inferred by CNNs from discretized inputs (e.g., Guo,
Li, & Iorio, 2016; Thuerey, Weißenow, Prantl, &
Hu, 2020; Tompson, Schlachter, Sprechmann, &
Perlin, 2017). Chu and Thuerey (2017) used weight-
sharing CNNs (multiple CNN instances sharing the same
trainable parameters) to learn the feature descriptor of
smoke flows for synthesizing high-resolution predictions
from low-resolution simulations. Hennigh (2017)
predicted the flow dynamics by decoding the compressed
initial conditions through a series of weight-sharing
CNNs that stack on after each other. Gao, Sun, and
Wang (2020) used CNNs for handling inputs with irregu-
lar boundaries using elliptic coordinate transformations.

The use of CNNs for flood-related problems, espe-
cially for urban pluvial flood predictions, has not
received much attention. This may be justified by, first,
in contrast to the fluid dynamic experiments focusing on
objects that can be rasterized to a relatively low resolu-
tion without significant information loss (e.g., 256 × 256
pixels), flood prediction is usually conducted in large
catchment areas that require sufficient spatial resolution
to be preserved. Therefore, building the CNNs for flood
prediction typically require large input sizes and thus
more layers, creating difficulties in the training step of
CNNs. Second, for the purpose of flood prediction, train-
ing CNNs requires a large dataset in raster format. Con-
sidering the scale and spatial and temporal resolutions of
typical flood simulation tasks, it is computationally and
memory expensive to prepare a large dataset. Lacking
proper datasets has been the main obstacle for data-
driven flood modelling and prediction studies. Neverthe-
less, a few recent studies have shown that CNNs are
promising for solving flood-related problems with
corresponding data available. For example, CNNs can be
effective for flood extent mapping using aerial or street
view imagery (e.g., Gebrehiwot, Hashemi-Beni, Thomp-
son, Kordjamshidi, & Langan, 2019; Moy de Vitry,
Kramer, Wegner, & Leit~ao, 2019). These methods can
potentially be used to replace physically based simulators
for massive data collection. Wang, Fang, Hong, and
Peng (2020) adopted CNNs for flood susceptibility map-
ping from multiple topographic features that are derived
from the raw elevation data. Based on the input informa-
tion, the model predicts the flood sensitivity as five out-
put categories.

2 | PROBLEM STATEMENT

The above review has suggested that data-driven methods
are promising for addressing physics-related problems,
including urban pluvial flood prediction. However, most
previous flood-related studies using artificial neural net-
works did not utilize the spatial information of catch-
ment areas. Among the few existing studies, CNNs were
used for classifications (e.g., flood susceptibility mapping
and flood extent mapping) rather than numerical predic-
tions. Therefore, we propose to use CNNs for rapid data-
driven flood predictions, specifically, to predict the maxi-
mum water depth from the inputs of both elevation ras-
ters and hyetographs. Our main contributions include
(a) investigating CNNs as an end-to-end method for flood
predictions, which means the model directly predicts the
water depth values from the raw inputs; (b) introducing a
CNN architecture that combines both spatial inputs (ras-
ters) and vector inputs (hyetographs); and (c) providing a
systematic pipeline that can potentially be used to
address other relevant problems.

Our study currently focuses on the prediction of maxi-
mum water depth and neglects the temporal dynamic of
flooding. The maximum water depth reflects the worst
flooding cases and is critical for urban planning, risk
management, and damage assessment (Jamali
et al., 2018). The prediction of maximum water depth can
be further divided into three cases: (a) different storms in
the same catchment; (b) same storm in different catch-
ments, and (c) considering both the rainfall and catch-
ment variations. As a first step, we would focus on the
first case and investigate the ability of generalization of
CNNs on different rainfall inputs in specific catchments.
The present work does not include flow velocity, but
other studies have shown that it can be done by adding
extra image channels to the output, and the predictions
between different image channels are independent
(e.g., Hennigh, 2017; Thuerey et al., 2020).

3 | PROPOSED APPROACH

3.1 | Framework

Our urban pluvial flooding approach proposes a CNN
model as the main prediction mechanism. The key idea
is that the flood prediction task can be regarded as an
image-to-image translation problem where both the input
and output are images (rasters) of different data. The pro-
posed CNN model operates on the patches rather than
the entire catchment area. The reasons for working with
patches includes: (a) patches from different locations
may share similarities that help the CNN learn and
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generalize; (b) the patch-based method is an effective
way to produce more training data from a limited num-
ber of physically-based simulation results; and
(c) patches can effectively reduce the input size of the
CNN, easing the CNN training challenges.

The pipeline of the approach can be described as four
main steps, as presented in Figure 1. First, flood simula-
tions of several design storms in different catchment
areas are conducted to produce a flood (maximum water
depth) dataset. The obtained water depth results are split
into training and test data sets according to their
corresponding hyetographs. Second, the elevation data of
the catchment areas are pre-processed into images with
multiple image channels. Each channel corresponds to a
different surface feature. The hyetographs of the design
storms are represented as vectors in which each dimen-
sion corresponds to the average rainfall intensity in a
5-minute interval. Third, patch locations are randomly
generated within the catchment area. The patch size
equals the input size of the CNN. The patches are used to
train the CNN model by supervised learning, for which
the ground truths are the water depth patches, and the
inputs are the corresponding hyetographs and terrain
patches. Finally, after the training, the flood predictions
of new storms are performed, but the locations of patches
are sampled from a grid in order to minimize the number
of necessary patches. The obtained maximum water
depth patches are assembled as the final output.

3.2 | Catchment representation

Five terrain surface features are included in the terrain
image for catchment representation: elevation, slope,
aspect, curvature and mask. The slope is defined as the
magnitude of the gradient vector at each raster cell, rep-
resenting the maximum rate of change in value from the
centre cell to its neighbours and reflecting the steepness
of the terrain and the overall movement of the water.
The aspect identifies the direction of the water flow at

each raster cell and is the directional component of the
gradient vector. The curvature is defined as profile curva-
ture which describes the acceleration and deceleration of
the flow, and plan curvature which describes the conver-
gence and divergence of the flow. Our approach uses the
difference between these two curvatures (De Smith,
Goodchild, & Longley, 2007) for simplicity. The mask is a
binary image that indicates the catchment areas and no-
data areas as 1 and − 1, respectively. The above features
are rescaled linearly to the range of [−1, 1] and
concatenated as a multichannel image.

3.3 | CNN-based prediction model

As shown in Figure 2, the prediction network consists of
a convolutional autoencoder (the main network) and a
feedforward fully connected neural network (the sub-net-
work) that attaches to the main network's latent layer.
The main network and sub-networks process the terrain
and hyetograph data, respectively. After the latent layer,
the main network decodes the combined data and pre-
dicts the water depth values (metres). This type of neural
network that processes data in different formats is usu-
ally called a joint model (Ngiam et al., 2011).

The encoder of the main network is a chain of con-
volutional modules that consists of three convolutional
layers and one pooling layer. The decoder is a chain of
up-sampling modules that contain one deconvolution
layer (or formally called transposed convolution layer)
followed by two convolutional layers. The dimensions of
the input and output are 256 × 256 × 5 and
256 × 256 × 1, respectively (height × width × number of
features). The sub-network consists of one fully con-
nected layer and one reshape layer. The size of the fully
connected layer is 4,096 for convenient concatenation to
the main network. The kernel sizes are 3 × 3 for all the
convolutional layers and 2 × 2 for all the pooling and
deconvolution layers. We use a small kernel size to pre-
serve the thin structure of the terrain and deep layers to

FIGURE 1 Data-driven flood emulation framework
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extend the receptive field (Luo, Li, Urtasun, &
Zemel, 2016). The activation functions for all the layers
are Leaky-ReLU (Maas, Hannun, & Ng, 2013) to avoid
the “vanishing gradient problem” (Hochreiter, 1998) for
sigmoid units and the dead neuron problem for rectified
linear units caused by bad weight initialization (Nair &
Hinton, 2010).

Water simulation results usually contain more no-
water and shallow-water areas than deep-water areas,
meaning that the dataset is imbalanced and can lower
the accuracy of deep-water areas. Therefore, a weighted
mean squared error is proposed for the loss function
instead of the standard mean squared error. The defini-
tion of the loss is given as:

1
n

X
ey+ c y− ŷð Þ2

where the loss weights are calculated by the exponentia-
tion of the simulated water depth y plus the constant c; ŷ
is the predicted water depth and n is the number of sam-
ples. We found that with a larger c, the model tends to
underestimate in deep-water areas. For all the tests in
this paper, we use c = − 1.

3.4 | Aggregating cell values from
patches

The final water depth prediction is aggregated from the
output water depth patches. As already mentioned, the
patch locations (centre points) are determined by an
orthogonal grid. The grid size is user-specified and should
not be greater than the patch size. When the grid size
equals the patch size, the adjacent patches touch each
other's boundary without overlaps. Smaller grid sizes lead
to more patches that overlap with each other, which pro-
vides redundant predictions for the overlapping areas to
reduce outliers but increases the computational time.

Choosing the grid size is a balance between time and
accuracy. Our study investigated four patch aggregation
options: patches without overlaps, and patches with over-
laps aggregated by mean, median, or maximum values,
respectively. The grid size for sampling prediction pat-
ches is 128 (half of the patch size). All results presented
below are obtained using mean values unless mentioned
otherwise.

4 | EXPERIMENTAL SETUP

We applied our framework to three different catchment
areas located in Luzern and Zurich, Switzerland, and
Coimbra, Portugal, using rasters with a grid size of 1 m.
The CNN models are trained separately for each catch-
ment. The framework was implemented in Python using
TensorFlow 1.10 (Abadi et al., 2016). All the processes,
including simulation, training, and validation, were per-
formed with Graphics Processing Unit (GPU) parallel
computing acceleration.

4.1 | Training data

To prepare the training data for the experiment, 18 one-
hour rainfall events were created based on return periods
of 2, 5, 10, 20, 50 and 100 years. Each return period corre-
sponds to three different events. These events were ran-
domly labelled as training and test sets except that each
return period only occurs once in the test set (Figure 3).
The same 18 events were used for the flood simulations
in three catchment areas. The CNNs were trained using
only the training set and were evaluated using the
test set.

The simulations were conducted using the CADDIES
cellular-automata flood model (Guidolin et al., 2016) for
the Zurich and Luzern catchments, and Infoworks ICM
software (Innovyze, 2019) for the Coimbra catchment.

FIGURE 2 The flood prediction network
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CADDIES is a cellular-based surface flood model,
whereas Infoworks ICM is a physically based model that
can consider coupled pipe/surface flow in urban areas.
All the simulations were performed using rasters with a
grid size of 1 m and a minimum time step of 0.01 s.
Bruwier et al. (2018) have suggested that the 90th percen-
tile should be used for analysing simulation results in
order to represent the reality better. However, as we
aimed to replicate the output of a flood simulator, we
kept the raw simulation outputs without further
postprocessing.

The training data were the hyetograph vectors and
the patches sampled from the terrain elevation data and
the water depth simulations. For each catchment area,
10,000 patch locations were randomly sampled. As there
are 18 rainfall events created for the dataset, each patch
location corresponds to 1 terrain patch and 18 water
depth patches. The ground truth data are the water depth
patches. One flood prediction model was trained for each
catchment area in order to study the generalizability of
CNN on different hyetograph inputs. We used identical
meta parameters to train all models. Specifically, we used
the Adam optimizer (Kingma & Ba, 2014) for 200 epochs,
with a batch size of 32 and a fixed learning rate of 0.0001.

4.2 | Evaluation and validation

The performance of the proposed model was evaluated
based on computational time, prediction accuracy and
the ability of generalization on hyetographs. The compu-
tational times were measured by repeating the prediction
process and calculating the average time. The time for
necessary pre-processing (e.g., calculating the terrain fea-
tures) is also reported. In addition, both the accuracy and
computational time of different aggregation methods
were analysed to discuss the trade-offs between speed
and accuracy.

The accuracy was assessed by the mean absolute error
(MAE) and the 2D histogram between all the raster cells
of the predicted and simulated water depths. The MAE is
defined as 1

n

Pn
i j ŷi−yi j , where ŷi and yi are the i-th

predicted and simulated raster cells, respectively. We
used the MAE to assess the accuracy of the results pro-
duced by different meta parameters, such as the patch
aggregation methods and the grid size for patch sam-
pling. The 2D histogram is a plot in which the pixel at
row i and column j represents the number of water depth
raster cells that are yi m by prediction and yj m by simula-
tion. The plot can also be used to show the simulation-
error relation by replacing yi to errors. The histograms
serve as the alternative to scatter plots for better readabil-
ity. In addition to these two assessment methods, the
local performance in different areas such as upstream,
downstream and depressions, and the spatial distribution
of errors Δy= ŷi−yi and relative error δyi = Δyi/yi are also
reported.

The trained models were also validated using real
rainfall events1 that were not included in the training
data to further investigate the generalizability of our
flood prediction model. Real rainfall events that were less
than 70 minutes were selected, clipped to 60 minutes,
and resampled to 12-dimensional vectors. The accuracies
were reported using histograms as well as spatial plots.

5 | RESULTS

In this section, we present the result of comparing differ-
ent patch aggregation methods as well as the detailed
analysis of the best patch aggregation method. The latter
consists of the accuracy analysis on the heaviest rainfall
event (100-year event) from the test set as well as the vali-
dation on real rainfall events. We chose the heaviest rain
as it could reflect the performance of our model in
extreme conditions.

FIGURE 3 Hyetographs used for simulations
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5.1 | Comparison of the patch
aggregation methods

5.1.1 | Computational time

In Table 1, we present the average time of different patch
aggregation methods of our approach. We found that a
trained model significantly reduces the computational
time for water depth prediction compared with that of
the cellular automata-based models, using only 0.5% sim-
ulation time. For all three catchment areas, the no patch
overlap option takes the least time. The computation
times of using the mean value and maximum value
options are close, and the time difference is less than
6.2% on average. In contrast, the median value option is
the slowest because the computer needs to keep all the
data in the memory before the median value can be
obtained.

5.2 | Prediction accuracy

The MAEs and the error distributions of the different
patch aggregation methods are presented in Figure 4.
The figure shows no significant difference between the
results of the different methods and suggests that choos-
ing different aggregation methods has negligible effect on
the accuracy in general. Moreover, the results of rainfall
events from the test data set do not show higher MAEs
than those from the training set, suggesting that our
model generalizes well with rainfall variations. A more
detailed analysis of the results shows that using over-
lapping patches generally results in lower MAEs than
those with the “No overlapping” option. Using the
median value usually gives better results than the Mean
and Maximum value options. In addition, the histograms
of the prediction error on the right-hand side of Figure 4
show that the “No overlapping” option generates more
under- and over-predictions in the three catchments,
suggesting that it generates a large number of outliers. As

a short conclusion, using the “Mean value” option for
patch aggregation shows a good balance between accu-
racy and prediction time.

5.3 | Prediction accuracy of the best
patch aggregation method

5.3.1 | Accuracy in shallow and deep
waters

The prediction accuracies of the proposed urban pluvial
flood prediction approach in the three catchments are
presented as 2D histograms in Figure 5. The first row
shows the density plots of raster cells with simulated
water depth in the x axis and predicted water depths in
the y axis. The second row are density plots with simu-
lated water depth in the x axis and prediction error in the
y axis. The second row plots are essentially the 45� shear
of the first row plots, but they are coloured by the ratio of
cells in each simulated water depth. The histograms serve
as the alternatives of scatter plots for better readability.
The diagonal and horizontal dots in the plots show the
baseline of an ideal model with 100% accuracy - models
with higher accuracy are less divergent from the baseline.
As seen, the histograms clearly show that our model pro-
duces accurate results. The first row of the figure shows a
higher level of divergence in shallow-water areas than in
deep-water areas. But it does not suggest lower accuracy
as the plots are coloured logarithmically and the percent-
age of cells that have an absolute error below 0.1 m is
constant (second row in Figure 5).

5.3.2 | Spatial distribution of errors

Figure 6 shows the predicted and simulated water depth
of the three catchment areas, and Figure 7 shows the
corresponding spatial distribution of absolute and relative
errors (note that the errors are coloured non-linearly so

TABLE 1 Average time performance of the prediction model

Catchment
Catchment
size (# pixel)

Pre-
processing
time (s)

Prediction time (s)a

Simulation
time (s)a

Training
timeb (s)

No
overlapping

Mean
value

Median
value

Maximum
value

Luzern 3,369 × 3,110 1.898 0.678 s 2.693 s 14.749 s 2.556 s 2 h 20 min 5 h 25 min

Zurich 6,175 × 6,050 6.627 1.366 s 5.677 s 75.12 s 5.293 s 4 h 54 min

Coimbra 1,625 × 2,603 0.636 0.242 s 0.965 s 5.048 s 0.902 s 2 h 18 min

aThe times are averaged and per rainfall event.
bFor each catchment area, the amount of training data and training parameters were the same, and identical meta parameters were used; therefore, the average

time is presented.
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that the small values can be better visualized). The plots
suggest that the CNNs successfully retrieved the spatial
pattern of water depth, showing no significant prediction
errors in the different areas. The distribution of errors is
relatively even for different areas, with most raster cells
an error between −0.1 m and 0.1 m. The relative errors,
on the other hand, are higher for shallow-water areas
than deep-water areas. Another observation seen from
the enlargement areas is that the CNNs tend to smooth
the output and thus are less accurate for very fine spatial
scales.

The model's local performance is presented in
Figure 8, in which catchments are indicated in different
colors. The x marks of the figure are the maximum and
minimum extents of outliers and the numbers on top are
the total number of raster cells of each category. The fig-
ure shows that the performance difference is not signifi-
cant. However, in a more detailed analysis, it can be seen
that the model tends to perform better for flat areas
(slope < 3%) than steep areas (slope ≥ 15%), and for
upstream areas (highest 33% terrain elevation) than
downstream areas (lowest 33% terrain elevations). For
example, in the Luzern case, raster cells that are dry in
simulations are more likely to be marked as wet by the

CNN prediction for downstream areas (upper right area
shown in Figure 6) than upstream areas (bottom left area
shown in Figure 6). The accuracy of areas around build-
ings is also lower than in upstream areas. The hypothesis
is that the CNNs are sensitive for large input values such
as the slopes caused by the radical change of elevations
next to buildings and other urban features. Another
observation is that the accuracy for places where there is
more water than the surroundings, such as streamlines
and depressions, is lower compared to other areas of the
catchments. The performance difference between stream-
lines and depression areas is not significant.

5.3.3 | Analysis of high-error cells

It is noteworthy in Figure 5 that some raster cells that
have 0 m water depth in the physically-based simulation
results were over-predicted by up to 2 to 3 m. To under-
stand what causes such high prediction error, we zoomed
in to where the errors are larger than 1 m and found that
these errors are due to the “smoothing” CNNs make
around the radical changes of simulated water depths.
These radical changes seem to be caused by the artefacts

0.025

0.030

0.035

M
ea

n 
A

bs
ol

ut
e 

E
rr

or no overlaps

use max value

use mean value

use median value

Zurich

10 0

10 2

10 4

10 6

10 8

F
re

qu
en

cy

no overlaps

use max value

use mean value

use median value

Zurich

10 0

10 2

10 4

10 6

F
re

qu
en

cy

no overlaps

use max value

use mean value

use median value

Coimbra

0.015

0.020

0.025

M
ea

n 
A

bs
ol

ut
e 

E
rr

or no overlaps

use max value

use mean value

use median value

Coimbra

−4 −3 −2 −1 0 1 2 3 4
Error (m)

10 0

10 2

10 4

10 6

10 8

F
re

qu
en

cy

no overlaps

use max value

use mean value

use median value

Luzern

2-
ye

ar
(t

es
t)

5-
ye

ar

10
-y

ea
r

(t
es

t)

20
-y

ea
r

50
-y

ea
r

10
0-

ye
ar

(t
es

t)

2-
ye

ar
 2

5-
ye

ar
 2

(t
es

t)

10
-y

ea
r 

2

20
-y

ea
r 

2

50
-y

ea
r 

2

10
0-

ye
ar

 2

2-
ye

ar
 3

5-
ye

ar
 3

10
-y

ea
r 

3

20
-y

ea
r 

3
(t

es
t)

50
-y

ea
r 

3
(t

es
t)

10
0-

ye
ar

 3

Rainfall Pattern

0.025

0.030

0.035

0.040

M
ea

n 
A

bs
ol

ut
e 

E
rr

or no overlaps

use max value

use mean value

use median value

Luzern

FIGURE 4 The mean absolute errors of each hyetograph (left) and the error histograms of all hyetographs (right) in the Zurich,

Coimbra and Luzern catchments (top to bottom) using different aggregating methods

8 of 14 GUO ET AL.

 1753318x, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jfr3.12684 by U

niversidad D
e C

oim
bra, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



0.0 1.0 2.0 3.0 4.0 5.0 6.0
Simulations (m)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0

101

102

103

104

105

106

0.0 1.0 2.0 3.0 4.0 5.0 6.0
Simulations (m)

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

10− 5

10− 4

10− 3

10− 2

10− 1

100

Luzern

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
Simulations (m)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0
P

re
di

ct
io

ns
 (

m
)

0

101

102

103

104

105

106

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
Simulations (m)

-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

3.5

E
rr

or
s 

(m
)

10− 5

10− 4

10− 3

10− 2

10− 1

100

Zurich

0.0 1.0 2.0 3.0 4.0
Simulations (m)

0.0

1.0

2.0

3.0

4.0

0

101

102

103

104

105

0.0 1.0 2.0 3.0 4.0
Simulations (m)

-2.0

-1.0

0.0

1.0

2.0

10− 5

10− 4

10− 3

10− 2

10− 1

100

Coimbra

FIGURE 5 2D histograms that show the density of raster cells. The x axes are simulated water depths and y axes are predicted water

depth (first row) or prediction error (second row). The first row shows the actual number and the second row shows the ratio. Note that the

plots are coloured logarithmically

Predicted Water Depth (tr100)

0.00 m

0.05 m

0.10 m

0.50 m

1.00 m

3.00 m

7.00 m

Simulated Water Depth (tr100)

0.00 m

0.05 m

0.10 m

0.50 m

1.00 m

3.00 m

7.00 m

Zurich
Simulated Water Depth (tr100)

0.00 m

0.03 m

0.10 m

0.30 m

1.00 m

3.00 m

Coimbra

Predicted Water Depth (tr100)

0.00 m

0.05 m

0.10 m

0.50 m

1.00 m

3.00 m

7.00 m

Simulated Water Depth (tr100)

0.00 m

0.05 m

0.10 m

0.50 m

1.00 m

3.00 m

7.00 m

Luzern

Predicted Water Depth (tr100)

0.00 m

0.03 m

0.10 m

0.30 m

1.00 m

3.00 m

FIGURE 6 The simulated (top) and predicted (bottom) water depths of 100-year event for the Zurich, Coimbra and Luzern catchments

(left to right)

GUO ET AL. 9 of 14

 1753318x, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jfr3.12684 by U

niversidad D
e C

oim
bra, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



0 1000 2000 3000 4000 5000 6000

0

1000

2000

3000

4000

5000

6000

Spatial Plot of Error (tr100)

-5.00 m

-0.50 m

-0.10 m

0.10 m

0.50 m

5.00 m

Zurich

0 1000 2000 3000 4000 5000 6000

0

1000

2000

3000

4000

5000

6000

Spatial Plot of Relative Error (tr100)

-500.0 %

-50.0 %

-10.0 %

10.0 %

50.0 %

500.0 %

0 500 1000 1500 2000 2500

0

500

1000

1500

Spatial Plot of Relative Error (tr100)

-200.0 %

-50.0 %

-10.0 %

10.0 %

50.0 %

200.0 %

0 500 1000 1500 2000 2500

0

500

1000

1500

Spatial Plot of Error (tr100)

-2.00 m

-0.50 m

-0.05 m

0.05 m

0.50 m

2.00 m

Coimbra

0 1000 2000 3000

0

500

1000

1500

2000

2500

3000

Spatial Plot of Error (tr100)

-5.00 m

-0.50 m

-0.10 m

0.10 m

0.50 m

5.00 m

Luzern

0 1000 2000 3000

0

500

1000

1500

2000

2500

3000

Spatial Plot of Relative Error (tr100)

-500.0 %

-50.0 %

-10.0 %

10.0 %

50.0 %

500.0 %
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FIGURE 8 Errors by local areas for all catchment areas

FIGURE 9 The enlargement of the area with the highest prediction error in the Luzern case
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in the elevation data. An example of such cases is pres-
ented in Figure 9. Considering that each pixel has a rela-
tively small size (1 × 1 m) compared to the size of the
catchment area (more than 1,000 × 1,000 m), these errors
do not affect the interpretation of the prediction result in
practice as: (a) the predicted water depth in the centre is
correct; (b) all high-error cells are adjacent to the centre
rather than far from it; (c) a practitioner with experience
can quickly identify such errors, and; (d) considering the
scale and the short time, predictions containing these
errors are still of high value. A detailed counting of the
high-error cells and areas (group of cells with distance
between each other less than 16 pixels) is shown in
Table 2. These numbers presented in Table 2 can be con-
sidered small bearing in mind the millions of rasters cells
of each catchment.

5.4 | Validation with real rainfall events

Figure 10 shows the validation results of our model on
three real rainfall events of the Coimbra case. The results
show that the predictions made by the CNN model are
accurate compared to the simulations. Considering that
the real rainfall events contain multiple peaks that did
not exist in the training data and are thus “unfamiliar” to
the CNNs, we can conclude that the model can general-
ize well to different hyetograph inputs and have the
potential to manage arbitrary rainfall patterns.

6 | DISCUSSIONS

In this study we investigated the potential of CNNs to
predict urban pluvial flooding using elevation and
hyetograph data. Compared to other data-driven tech-
niques, the main advantage of CNNs is that they can uti-
lize spatial information and handle inputs of large areas
without facing exponential growth of model parameters.
Therefore, the entire catchment area can be handled by

one model rather than several independent models
(e.g., Berkhahn et al., 2019). Moreover, validation tests
have shown that our model is accurate when provided
with “unfamiliar” inputs, suggesting that the
generalisability of the proposed approach is high. Addi-
tionally, unlike physically based models, which could
potentially take 10 times more computational time
when doubling the raster resolutions (Guidolin
et al., 2016), the time increase of CNN models is
expected to be linear as it only correlates with the num-
ber of input patches.

Despite the various advantages presented and dis-
cussed above, several challenges and drawbacks remain
and require further investigations. The main challenge is
the ability to generalize to different terrain inputs, which
means a CNN model trained on one catchment area can
be used in different catchment areas. Currently, this is
not possible for our model, and to our knowledge, there
are no other models that have achieved this goal.
Another challenge is the lack of large flood datasets due
to the long computational time for simulations and the
difficulty of massively deploying sensors for observational
data. This problem can be handled by oversampling and
data augmentation techniques. Data augmentation is also
beneficial for the problem of the quality of input data.
For example, it is possible to address the problem of low
quality or incomplete input data by adding random noise
to the training data. Another limitation of the proposed
approach is that the input hyetograph vectors have a
fixed length, which is not suitable for rainfall events that
are longer than one-hour. This problem can be solved by
encoding input hyetographs using recurrent neural net-
works (e.g., Chang et al., 2014). Also, recent studies have
suggested that recurrent neural networks can be
implemented in a convolution manner to predict flood-
dynamics directly (Liang & Hu, 2015). Finally, the
method presented in this study can still be improved by
considering other flood relevant factors such as flow
velocity. This can be done by adding extra image chan-
nels to the output rasters.

TABLE 2 Raster cells with high prediction error for 100-year event in all catchments

Absolute
errors (m)

Zurich Coimbra Luzern

Number of
cells

Number of
areas

Number of
cells

Number of
areas

Number of
cells

Number of
areas

[0.5, 1) 7,949 4,160 210 59 3,140 1,600

[1, 2) 835 354 5 4 212 101

[2, 3) 57 28 0 0 10 4

[3, ∞) 10 4 0 0 2 1
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7 | CONCLUSIONS AND FUTURE
STEPS

Computational complexity has been the bottleneck of
performing systematic flood analyses using physically
based models. Regarding this challenge, this paper pro-
poses that maximum water depth predictions can be gen-
erated using CNNs as an image-to-image translation task
from elevation and hyetograph inputs. The proposed
approach was tested in three different catchment areas,
and the results showed that the improvement in compu-
tational time was substantial and the accuracy was
acceptable for practice purposes. The main contributions
of this study are: (a) in contrast to other approaches, the
proposed model uses spatial information to predict maxi-
mum urban pluvial flood water depth; (b) the proposed
model combines both spatial and vector inputs; (c) the
obtained results are accurate with the ability to general-
ize to different rainfall inputs, and (d) the proposed
model can be potentially used to address other relevant
applications without changing the network designs.

For future work, it would be interesting to extend the
current investigation by combining elevation rasters of
different catchments with different hyetographs, produc-
ing flood prediction models that can generalize to both
terrain and rainfall inputs. Another interesting direction
would be to train and validate the model using observa-
tional data to bypass the issue of long computational time
for preparing the dataset. This direction is becoming pos-
sible through the combination of crowdsourcing methods

(Zheng et al., 2018) and computer vision techniques
(Moy de Vitry et al., 2019).
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