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Abstract: Collaborative robots (cobots) could help humans in tasks that are mundane, dangerous or 
where direct human contact carries risk. Yet, the collaboration between humans and robots is 
severely limited by the aspects of the safety and comfort of human operators. In this paper, we 
outline the use of extended reality (XR) as a way to test and develop collaboration with robots. We 
focus on virtual reality (VR) in simulating collaboration scenarios and the use of cobot digital twins. 
This is specifically useful in situations that are difficult or even impossible to safely test in real life, 
such as dangerous scenarios. We describe using XR simulations as a means to evaluate collaboration 
with robots without putting humans at harm. We show how an XR setting enables combining 
human behavioral data, subjective self-reports, and biosignals signifying human comfort, stress and 
cognitive load during collaboration. Several works demonstrate XR can be used to train human 
operators and provide them with augmented reality (AR) interfaces to enhance their performance 
with robots. We also provide a first attempt at what could become the basis for a human–robot 
collaboration testing framework, specifically for designing and testing factors affecting human–
robot collaboration. The use of XR has the potential to change the way we design and test cobots, 
and train cobot operators, in a range of applications: from industry, through healthcare, to space 
operations. 

Keywords: collaborative robotics; acceptability; uncanny valley; user experience; augmented 
reality; virtual reality; extended reality 
 

1. Introduction 
Motor collaboration between humans is essential for activities ranging from working 

together at construction sites to performing complex surgeries. This is because the human 
ability to read the motor intentions of another human is unparalleled: a skilled technician 
does not need much instruction to hold up an element that the other one is welding; a 
nurse does not need much guidance when feeding her patient with a spoon. However, 
situations such as the COVID-19 pandemic reveal threats to this traditional model of 
collaboration. The contagion risk posed by human contact had a severe socio-economic 
impact imposing changes for industry across the board, from factories to hospitals and 
care homes [1]. While many institutions have rapidly switched to remote work and 
communication, many others could not do the same, as human contact is required in 
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many industries. In situations of severe risk, such as a pandemic, human activities could 
be at least partially replaced by robots, thereby reducing contagion risk [2,3]. However, 
for industries requiring, at present, close human collaboration, this is less true. Even 
though the use of cobots could minimize the risk to humans, the collaboration between 
humans and robots is still far and away from nearing, let alone matching, the collaboration 
between humans [4,5].  

Therefore, especially in the area where the interaction between humans and robots 
may represent a risk for the human, collaborative robots may become of vital help to their 
human operators. This paper reviews the current work, highlights existing issues and 
challenges and proposes novel approaches to the use of virtual reality (VR) and, more 
generally, extended reality (XR), as a tool for safe testing collaborative robotics. We used 
a narrative review, which is why we did not use explicit and systematic criteria for the 
search and critical analysis of the literature. It was not our intention to exhaust the sources 
of information; however, we tried to carry out a deep search that includes articles from 
1997 to 2022. The selection of studies and their interpretation was performed to classify 
the main applications and critical factors involved in the use of XR in the broad domain 
of collaborative robotics, with special emphasis on the cobot, the users and the 
environment. 

2. Human-Robot Collaboration, Safety and Acceptability 
Human–robot collaboration (HRC) is a specific sub-domain of human–robot 

interaction (HRI), which studies a human operator and a robot working together on a 
common goal using physical manipulation [6]. The general idea of HRC is not new, and 
several companies have deployed collaborative robots capable of working along industry 
lines. Still, any progress in this domain is limited by the safety and acceptability of such 
collaboration [5,7]. Human safety is a critical factor: as industrial robots are often heavy 
and/or equipped with powerful effectors, they pose a physical danger. For this reason, 
most industrial robots are kept at a distance or inside safety cages (Figure 1). This solution 
is suboptimal for robots that are supposed to help humans perform their tasks since real 
cooperation assumes that both agents work simultaneously.  
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Figure 1. Top: Example VR robot models arranged according to their anthropomorphism. R0: one 
arm basic; (R1) an articulated arm; (R2): two arms Baxter; (R3): a humanoid robot. Bottom: an 
example VR-collaboration scene used by the authors, developed with Unity Game Engine (Unity 
Technologies, San Francisco, CA, USA). The scene shows a basic tool-passing task in which subject 
kinematic and physiological data can be recorded in response to manipulated scene features (e.g., 
cobot appearance, speed, etc.). 

Table 1 shows the different levels of collaboration with robots at present. Fenced 
robots are the non-collaborative, most popular ones. Then there are robots that allow for 
collaboration. Again, their use is usually limited to cases 2 and 3 due to safety. Finally, the 
last two columns denote actual dynamic collaboration. 

Table 1. Types of collaboration with industrial robots at present. As the level of collaboration 
increases (left to right), so does the requirement for intrinsic safety features vs. external sensors. 
Source: IFR Position Paper [4], adapted from Bauer et al. [8]. 

Level of 
Collaboration 

1 Cell 2 Coexistence 3 Sequential 
Collaboration 

4 Cooperation 5 Responsive 
Collaboration 

Requirement for 
intrinsic safety 

features vs. 
external sensors 

Fenced 
robot 

No fence but 
no shared 
workspace 

Robot and 
worker both 
active in the 

workspace but 
movements are 

sequential 

Robot and 
worker work 
on the same 
part at the 

same time, both 
in motion 

Robot 
responds in 

real time to the 
movement of 
the operator. 

When two agents are working together, they need to establish joint attention to form 
a joint intention and execute joint actions [9–11]. Mutual understanding of each other’s 
actions and the acceptability of robotic actions to a human is therefore an important issue 
in the field of human–machine interaction (HMI) [12,13]. It is implicitly assumed that, in 
the robot–human diad, the human defines the intentions the robot has to adapt to [9]. 
However, unlike the presently available robots, the human brain comes equipped with 
specialized “computational machinery” for recognizing and predicting actions. The 
human brain is extremely efficient in recognizing other people’s actions, for example, their 
action intentions or errors [14,15]. This recognition makes humans able to rapidly adapt 
to what the other human does, reacting accordingly. However, we do not know whether 
the human brain applies the same predictive processes to non-human agents as it does to 
humans [16]. For example, one could expect that, as collaborative robots become more 
human-like, the quality and efficiency of human interactions with them would steadily 
increase. This is not always true. In the domain of social HMI, it has been shown that if 
robots resemble humans too closely, they are perceived as strange and unpleasant to 
interact with [17]. This effect is called the “uncanny valley” and is not limited to humans: 
other social primates also show adverse behavior towards realistic avatars [18]. This 
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suggests that the primate brain may have hardwired neural systems allowing for intuitive 
discriminating of “natural” behavior. While the “uncanny valley” has been described for 
social HMI [19], virtually nothing is known about its impact on collaborative motor 
performance. Likewise, although it was previously reported [20] that humans operating 
assistive robots perform better if these robots follow human-like movement patterns (e.g., 
the relationship between curvature and speed), it is not known whether the same applies 
to scenarios where humans and cobots work autonomously (such as while cooperating). 

Human actions are predictable in the sense that arm/joint configurations define the 
degrees of freedom of movement, allowing the brain to construct models of the other per-
son’s actions based on natural motor repertoire [21]. For observing robot actions, this is 
less obvious, as robotic arms do not have the default biomechanical design constraints the 
human arm has and can execute much more complex movements (such as 360-degree 
rotations). Yet, the correct prediction of the other agent’s movements is needed for adapt-
ing one’s own actions and, as such, efficient cooperation. The intuitiveness of the other 
agent’s actions is of vital importance in situations where human cognitive effort has to be 
minimal, such as when under threat, stress, fatigue or heightened cognitive load. That is 
why it is important to understand how different robot designs (more or less human-like 
in terms of appearance and motion) might impact how humans perceive them and how 
this perception impacts manual collaboration.  

Using VR allows testing human interactions with diverse virtual models (digital 
twins) of real cobots, including those popular in industry. Several cobot models, such as 
Baxter or Kinova, already have their digital twins extensively developed and imple-
mented in different VR platforms, such as Unity 3D (Unity Technologies), including ad-
vanced motion planners and the physics of their virtual robotics limbs. The use of such 
digital twins allows, likewise, using the same robot-control-system (e.g., ROS) framework 
for controlling both the virtual and real industrial robots. Moreover, VR allows for the 
development of cobot models beyond the existing robot designs. This allows the testing 
of solutions not limited by the readily available technology and different, even hypothet-
ical, robot models of different appearance or action patterns, such as in the study by 
Weistroffer et al. [22]. While these authors report a complex relationship between robot 
appearance, motion patterns, human performance, self-reports and physiological signals, 
it is important to emphasize that they did not measure more detailed performance indi-
cators, such as human-motion-patterns (speed and accuracy) or eye-gaze data. Therefore, 
it remains to be further uncovered how robot anthropomorphism affects more subtle user 
performance. 

Figure 1 shows VR robot models of increased anthropomorphism, similar to those 
used by Weistroffer et al. [22]. The bottom of Figure 1 shows an example VR collaboration 
scene with Baxter, in which the cobot passes a tool to the user, mimicking real interaction. 
Note that the robot has a face, a feature found on the real Baxter. Robot anthropomor-
phism, apart from possibly affecting human motor performance, can also affect higher-
order cognitive aspects such as the feeling of presence (see, e.g., Dubosc et al. [23]), or 
attributing blame in the case of error (see, e.g., Furlough et al. [24]). The use of VR allows 
flexible manipulation of robot and scene designs to capture these cognitive aspects. 

3. The Use of Virtual Reality for Testing Human–Robot Collaboration 
Human–robot collaboration carries a physical risk to humans. For example, the robot 

arm can strike the operator or otherwise harm them. Therefore, operators can be stressed 
while collaborating with robots, which may result in their abnormal behavior, such as 
increased cognitive load or reduced motor performance [25]. Such dangerous scenarios 
are difficult to test in the natural world, implying significant limitations to user-experience 
testing of cobots.  

In recent years, a feasible solution to test cobots while maintaining human safety is 
to use immersive VR environments [22,26,27].Oyekan et al. [28] describe that, to design a 
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collaborative environment to understand human reactions to both predictable and unpre-
dictable robot motions, a virtual reality digital twin of a physical layout can be used. Dom-
browski et al. [29] give us an interactive simulation of HRC—a technique that uses real-
time physics simulation to immerse the design engineer or production planner inside a 
responsive virtual model of the factory—to optimize and validate manufacturing pro-
cesses to achieve a better understanding of the risks and complexity of the assembly pro-
cesses. Taken together, these studies demonstrate diverse approaches to testing different 
types of interaction scenarios and virtual cobots. This virtual testing can also be conducted 
for dangerous scenarios, but without putting humans at risk. For example, VR allows con-
structing scenes where the user is within the reach of a robot arm, thus collecting the user’s 
psychophysiological measures and movement patterns in those simulated dangerous 
scenes, but without an actual risk to the user. 

4. A Framework for Extended Reality in Testing Human–Robot Collaboration  
In the field of software engineering and human–computer interaction (HCI), specific 

methodologies exist that guide the design cycles of novel solutions and products in those 
areas [30] (see, e.g., Sommerville [31]). In the area of HRC, those systematic approaches 
are scarce to non-existent. While, at present, such agile approaches exist in robot design 
[32,33], these assume a given robot type and rely primarily on user feedback, such as self-
reports and other subjective measures of user experience. The use of such subjective 
measures is, however, not without problems, as we will discuss later. 

An XR framework for designing and testing HRC allows for an iterative development 
process, arguably at a reduced cost, since different iterations could be developed and 
tested before real-world deployment. In tandem, the study of human comfort with the 
robot could become a central part of the design. A feedback loop between the develop-
ment team and users can be implemented more easily when using virtual, as compared 
to real, cobot designs, leading to more agile cycles of design and redesign. This is partic-
ularly important, as it allows for the design, implementation and testing of collaboration 
models at higher levels of abstraction, without requiring to deal with low-level motor con-
trol and perceptual issues. The VR scenarios themselves may simulate a range of scenes, 
from those taking place in a factory to those of an assistive robot in a care facility. Such 
virtual scenarios can mimic realistic environments (such as a specific factory line) or hy-
pothetical ones (such as a space station). 

Given the flexibility of VR, in experiments, one can manipulate several variables re-
lating to different aspects of collaboration scenes. Based on the literature reviewed here, 
spanning across years from 1997 to 2022 and queried through major scientific article da-
tabases, we identify features implemented or that are possible to implement in such 
scenes, and we classify them as variables about the cobot, the user and the environment. 
We summarize those variables in Table 2.  
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Table 2. Critical variables for cobot testing using virtual/extended reality are defined based on the 
literature reviewed here. We divide manipulated (independent) variables as those about either the 
cobot, the context, or the user. In each box, examples of each manipulated/measured variable are 
provided. 

Critical Variables for HRC Experiments 
Manipulated (Independent) Measured (Dependent) 

Cobot Environment User Subjective Objective 
• Anthropomorphism 
• Presence of gaze 
• Speed 
• Accuracy 
• Fluidity 
• Proximity 
• Size 

• Auditory noise 
• Scene type (e.g., 

factory) 
• Lighting 

• Demographics 
(gender, age) 

• Cognitive load 
• Experience with 

technology  

• Acceptability/trust 
ratings 

• Attributing blame 
• Sense of presence 

(realism) 

• Physiological 
responses 

• Motor efficiency 
• Pupillometry 

It is known that robot anthropomorphism influences the human’s emotional and so-
cial perception of the robot, for example, the willingness to sacrifice it [34,35]. This is an 
important factor to consider when deciding on cobot design ergonomy, as different hu-
man emotional attitudes to the robot may influence collaboration efficiency in different 
situations (such as rescue operations). Onnasch and Roessler [35] provide a compelling 
taxonomy of different aspects of cobot design and their impact on human behavior in 
different interaction contexts. 

The presence of cobot gaze is especially interesting, as it has been included on some 
cobots. For example, the company Rethink Robotics included gaze as a feature in their 
Baxter and Sawyer cobots to putatively increase cobot acceptability [36] (Kessler, 2017). 
This is because eye gaze is a critical element for human social life, as it communicates 
intentions [28], allowing the interaction partner to act accordingly on these intentions. Eye 
gaze predictively guides human hand actions [37] and is attracted to object affordances 
[38,39]. Gaze is also crucial for reading other agents’ intentions [10]. Despite how im-
portant gaze is for collaboration between humans, to our knowledge, the question of how 
the presence of the cobot gaze impacts human movement parameters has not yet been 
investigated. In this way, whether the human brain relies on gaze in perceiving actions 
and intentions of non-human agents and whether this similarly informs human actions as 
other humans’ gaze does, remains to be determined.  

5. VR in Testing Cognitive and Social Aspects of Collaboration 
Richards [40] proposes that the best way of achieving a higher level of collaboration 

between a human and robot is for the robot to mimic (to some extent or another) the be-
haviors of its human counterparts. In maintaining interaction efficiency, we need to un-
derstand the boundaries between human–robot capabilities, beliefs, intent and control. 
More specifically, we need to know how designers need to consider cognitive and social 
processes (e.g., trust, acceptability and attribution of blame) in an HRC for designing bet-
ter cobots and collaboration conditions. 

Trust is one of the requisites for building a successful human–robot collaboration 
[41]. It is the attitude that an agent will help achieve an individual’s goals in a situation 
characterized by uncertainty and vulnerability [42]. Trust also represents a calculative ori-
entation toward risk [43]; by trusting, we assume a potential gain, while by distrusting, 
we are avoiding a possible loss [44]. Research on trusting robots shows that the relation-
ship between trust and joint physical coordination is critical when human workers inter-
act with robots in a collaborative task [45]. In HRC contexts, “affective” trust better pre-
dicts the willingness to use a robot by human workers, and both types of trust—cognitive 
(e.g., reliability and predictability of the robot and robot attributes) and affective (e.g., 
proximity and personality)—are ensured by the statements of apology and competence 
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that the robots manifest [46]. The technology (cobot) acceptance by humans in a collabo-
rative workplace is a predictive factor of the success of the human–robot interaction [7]. 
The real-time trust that results from the study of Desai et al. [47] confirms traditional post-
run survey approaches for human–robot trust can be masked by primacy–recency bias 
and demonstrate that early drops in reliability negatively impact real-time trust differ-
ently than middle or late drops. In agreement with the same authors, robot trust feedback 
can improve autonomy control allocation during low reliability without altering real-time 
trust levels. It should be noted that feedback interface designs using semantic symbols 
lead to more abrupt real-time trust changes than non-semantic symbols. The research of 
Oyekan et al. [28] suggests that greater autonomy for the robot will result in greater at-
tribution of blame in work tasks. In general, the order of amount of blame was humans, 
robots, and environmental factors. If the scenario described the robot as nonautonomous, 
the participants attributed almost as little blame to them as to the environmental factors; 
in contrast, if the scenario described the robot as autonomous, the participants attributed 
almost as much blame to them as to the human. 

The studies that aim to analyze the cognitive and social processes in technology 
demonstrated the importance of these topics to the correct implementation and actual us-
age of the same. For that reason, it is fundamental to understand which factors could in-
crease the trust, acceptability, etc., of users in HRC. The use of VR allows for the manipu-
lation of robot characteristics that might affect cognitive and social processes (c.f. 
Weistroffer et al. [22] ). Moreover, it allows combining behavioral and subjective measures 
of cognitive, emotional and social human factors with their physiological markers to yield 
a full picture of human factors in HRC [22,48,49]. Table 3 summarizes identified issues in 
VR experiments on HRC and proposed remedies. 

Table 3. Summary of identified issues in VR experiments on HRC and proposed remedies. 

Issues in HRC Studies and Proposed Remedies for VR Experiments 
Problem Suggested Remedy 

1. Testing using real robots is limited
to current designs only [22] 

2. Low statistical power/small sample
sizes  [22,50] 

3. Self-reports/physiological markers
alone are not sensitive enough for
assessing UX [50] 

4. Results on HRC difficult to general-
ize across populations 

5. Limited feeling of presence 

1. Use VR models of hypothetical cobot 
designs to manipulate more variables  

2. Increase samples (use statistical power 
calculators to determine sample size); 
increase within-subject repetitions 

3. Combine self-reports with 
psychophysiological markers (heart rate, 
pupillometry, etc.); use standardized tools 
for measuring trust/acceptability; use 
time-resolved measures of stress, as 
provided by physiological markers 

4. Test subject populations of diverse 
demographic characteristics (gender, age, 
experience with robots, etc.) 

5. Increase immersion by using higher 
fidelity of stimuli, sound and haptic 
information 

6. Combined Use of User Experience Questionnaires and Objective Measures in HRC 
VR simulations of HRC tasks can be very complex and require subjects to grab objects 

handed to them by the robot, hand an object to the robot, or simultaneously/jointly with 
a cobot to reach for a target object [22]. However, the validity of VR simulations for HRC 
relies on three intertwined concepts: immersion, presence, and embodiment. Immersion 
is modulated by the quality of the sensory information given by VR systems and the 



Electronics 2022, 11, 1726 8 of 15 
 

 

amount to which their interaction can support users’ sensorimotor contingencies (SCs) 
[51]. The better the immersion of a system, the higher the precision of the presentation of 
sensory stimuli (such as display resolution and field of view, sound and haptic infor-
mation) and the more SCs supported (such as head, hand, arm, or full-body tracking). 
Immersion, in turn, has an impact on the experience of being there, on presence. Despite 
the lack of a consensual definition, presence might be defined as the psychological state 
in which a person reacts to a VE as they would in the physical world [52]. Presence is 
regarded to be the primary process that makes VR operate. However, there is no direct 
link between immersion and a sensation of being present. There is, however, widespread 
agreement that presence is a multi-component concept [53]. The sensation of presence, 
according to Slater, is based on the place illusion (PI)—the illusion of being there—and 
the plausibility illusion (PSI)—the believability of what is going on [51]. PSI is heavily 
reliant on the implemented VEs.  

Hence, a VR system that ensures the necessary conditions for presence [54]—whereas 
PI is more directly related to the immersive features of a VR system with adequate im-
mersive properties, embodiment and plausible and believable scenarios—can elicit behav-
ioral and psychophysiological responses [55–57] consistent with real-world counterparts. 
Modern VR setups allow for relatively precise recordings of human-hand motion capture 
[58] with the feedback of the user’s hand enabling a more or less embodied experience. 
The possibility of the inclusion of virtual models of anthropomorphic hands mimicking a 
user’s own, as well as a variety of other end effectors (including different tools), allows 
for testing different levels of embodiment and their impact on collaborative situations, not 
limited to user’s own body, like in real-life testing. Similarly, users’ hand movements can 
indicate the levels of acceptability of motor cooperation with different cobot types. Natu-
ral hand velocity profiles for object-oriented movements are single-peak [59] and the pres-
ence of multiple peaks indicates a change in plan, such as that of adapting to cobot move-
ment (e.g., Flash and Henis [60]). Analysis of velocity profiles is routinely used in motor 
neuroscience for assessing hand trajectory programming. Hand trajectories—in combina-
tion with hand speed, movement duration and precision—can be a good, objective indi-
cator of human motor performance in collaborating with different types of cobots. 

In addition, users can be wearing a haptic glove providing tactile sensation, to in-
crease immersion and effectiveness. Human hand actions critically depend on the pres-
ence of haptic feedback [61]. In joint actions, forces applied to the object by each partner 
provide an important cue about their intentions, and the current state of the action and 
help coordination [62]. As pointed out by Bauer et al. [9], robot touch may also serve other 
communication purposes, important for establishing communication (such as a hand-
shake); therefore, including it in VR scenes with cobots seems to be an important issue to 
be solved. While the use of haptic technologies significantly improves the embodiment of 
virtual scenes [58], haptics is not currently widespread due to the limited number of com-
mercially naturalistic haptic interfaces.  

Finally, the VR setting allows the recording of biological signals. These can be skin 
conductance (e.g., Weistroffer et al. [22]), heart rate (Etzi et al.; Weistroffer et al. [22,50]) 
and muscle activity, using respective sensors. The inclusion of these sensors allows for 
obtaining the objective metrics of user stress, independent of their self-reports (e.g., Etzi 
et al. [50]). Physiological responses recorded online, such as skin conductance level and 
heart rate variability, can be used to further detect stress levels, such as the activation of 
the fight or flight mechanism [63] in dangerous situations, e.g., when the virtual cobot hits 
the subject. This, together with participants’ self-reports, provides a more in-depth per-
spective of cobot acceptability than questionnaires alone. For example, a situation where 
participants’ positive self-reports are combined with physiological markers indicating 
stress would surface a more complex emotional state that could then be further disentan-
gled [50].  

Combining different psychophysiological and behavioral signals can be exploited by 
using machine learning tools to analyze them. This approach can help pinpoint subtle 
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effects that user experience (UX) questionnaires would not be sensitive enough to meas-
ure. For example, it is possible to use a questionnaire to ask users about their level of 
stress/comfort with alternative cobots scenarios, after they have completed a series of 
tasks. However, the results of those questionnaires would not answer more important and 
interesting questions, such as: When did stress kick in? When were users most stressed? 
Were users stressed on the same task for each scenario or did some cause more/less stress? 
The retrospective nature of questionnaires means that the results that can be collected 
through them are too coarse-grained to accurately address more precise questions [64]. A 
portfolio of psychophysiological measures affords us the possibility of using more con-
crete measurements of the state of the human body to accompany post-fact question-
naires. This is particularly relevant in situations that could potentially involve risk and 
safety issues. Weistroffer et al. [22] demonstrated the feasibility of combining user ques-
tionnaires with physiological measures during human collaboration with virtual cobots 
of different levels of anthropomorphism and human-like vs. non-human-like effector ve-
locity profiles. Their research showed that, while anthropomorphic robots gathered more 
user attention on their appearance, physiological signals did not reflect this effect. More 
recently, Etzi et al. [50] demonstrated that, while subjects physiological responses in a col-
laborative task did not indicate discomfort with changing robot velocity, their subjective 
self-reports did. Taking this integrative feedback approach and correlating psychophysi-
ological measures with subjective questionnaires would provide us with a fuller and 
richer picture of what an ideal cobot scenario would be for a human, than that we would 
obtain from only the task performance data and subjective post-experience responses. 
Moreover, it allows avoiding subject responses to questionnaires to be driven mainly by 
their guessing of experimental demands, i.e., the demand characteristics of the VR sce-
nario (c.f., McCambridge et al. [65]). 

It is important to note that these above-mentioned studies integrating self-reports 
with physiological measures, employed subject samples smaller than in typical psycho-
physiological studies using similar methods. That is, Weistroffer et al. [22] used a sample 
of 13 subjects while Etzi et al. [50] had a sample size of 10. Using sample sizes this small 
has been repeatedly discussed in the relevant literature as one of the main reasons for low 
statistical power and difficulty in replicating findings (e.g., Button et al. [66]). For this rea-
son, the failure to find physiological markers of stress when self-reports indicate it might 
result from low statistical power. Future studies using physiological markers should 
therefore employ higher sample sizes, e.g., determined by a-priori power analysis to war-
rant generalizability of their findings. 

7. Telepresence and Teleoperation Scenarios 
The use of VR provides an unprecedented opportunity to test cobots in hypothetical 

telepresence/teleoperation scenarios. Examples of use cases of teleoperation include fac-
tories, atomic power plants, assembly operations in space or the sea, and search and res-
cue operations [67,68]. Simulating remote presence based on HRIHRI is especially useful 
if the operating environment is hazardous and, therefore, placing a human operator at the 
site is not safe.  

These scenarios may require shifting the user’s point of view from their first-person 
perspective to a third-person perspective, or birds’ eye view, which is common for tele-
operation. It is important to consider how this shifting of perspective might affect the per-
formance of, and/or cognitive load on, the human operator. Several authors have pin-
pointed the issues with embodiment in teleoperation when the operator directly controls 
the robot [69,70]. However, it remains to be determined how perspective and embodiment 
factors influence situations where the operator interacts with an otherwise autonomous 
robot. 

Critically for teleoperation scenarios, VR allows using simulated delays and noise 
corruption and the responsive visual feedback being delayed or noisy in a way that emu-
lates real-world teleoperation-related noise and streaming issues. 
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8. The Use of Augmented Reality 
While virtual reality is based on creating an immersive digital environment, aug-

mented reality (AR) provides an additional overlay enhancing the real world [71]. This 
usually has a form of an animated overlay over the visual scene, providing the user with 
additional information such as visual cues to the task, instrument parameters, etc. Such 
overlay can, for example, provide the operator with cues helping to establish joint atten-
tion (e.g., Marques et al. [11]). Such use of AR for cobot technology has been demonstrated 
in several studies. For example, Liu and Wang [72] explored the potential of AR as a 
worker support system in manufacturing tasks. They designed a system for assembly 
training and monitoring using AR. Above each assembly part and tool, a 3D text was dis-
played, providing assembly instructions to assemble objects in a specified sequence, to-
gether with a robot. A somewhat-similar concept was provided by Hietanen et al. [73], 
showing that AR overlays can be used to enhance user interaction with the production 
system, albeit with some limitations, demonstrating that currently available head-
mounted displays might not be suitable for use in industry lines. On the more cognitive 
side of HRC, Palmirini et al. [74] developed an AR interface positively affecting human 
trust in cobots, as measured by psychometric methods. Michalos et al. [75] proposed in 
their study that, to improve operator’s safety and acceptance in hybrid assembly environ-
ments, a tool using the immersion capabilities of AR technology must be applied. 

Although the use of AR allows for enhancing HRC through the addition of virtual 
interfaces, cues, etc., its efficacy first needs to be tested. Such testing of AR interface can 
be easier to do in VR, where the virtual interfaces can be emulated in a range of scenarios 
as described above, and thereby would be tried against several options. This, in turn, re-
sults in an agile development of solutions that are not limited to a specific laboratory/ex-
perimental context.  

9. Considering Operator Gender and Age in Cobot Testing 
The use of VR has potential beyond the variety of simulated scenarios. The relatively 

flexible setting up and easy-to-use equipment allow testing a variety of subjects, including 
those from outside the pool of current cobot operators. This flexibility provides several 
opportunities in assessing how personal characteristics interact with different character-
istics of cobots, yet research on personal attributes moderating human collaboration with 
robots is lacking, which seems an important gap to be filled. 

One conceivable factor is the gender of the operator. Although evidence for a sub-
stantial influence of gender on motor actions and especially collaborative manual behav-
ior is scarce, men and women differ in their upper arm and hand biomechanics, which 
translates to some visuomotor skills critical for collaboration, such as visuomotor coordi-
nation while using the upper arm [12,13]. As noted before, collaborative robots may have 
different anthropomorphic features. Yet, previous studies have shown that males were 
sensitive to the differences between robotic and anthropomorphic movements, while 
women largely ignored those differences [76,77]. For this reason, gender seems to poten-
tially affect the measured motor efficiency of collaborating with cobots. We expect gender 
to further impact acceptability, stress and trust in at least some collaboration scenarios.  

Similar to gender, age might play an important role in cobot acceptability, due to 
factors such as experience with technology, visuomotor abilities, etc. Cobot acceptability 
seems especially important in the context of assistive robots aimed at the older population, 
as this group of users seems to value the physical attractiveness and social likeability of 
robots more than their younger counterparts [78]. Furthermore, analysis of gaze behavior 
has shown that, while younger people pay attention to several body parts, older adults 
focus significantly more on the robot face [78]. In this way, it is possible that the use of eye 
gaze might increase the cobots’ perceived friendliness and, likewise, the acceptance in a 
specific age or gender group. With the increasing presence of robots in areas that range 
from industrial plants to care homes, it becomes crucial to develop and fine–tune how 
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human–robot collaboration takes place. To accommodate well for the personal character-
istics of the individuals involved in this collaboration can be key not only to the collabo-
ration effectiveness and efficiency but also to the quality of the interaction and experience 
between humans and robots. 

10. Conclusions and Future Directions 
Based on the current literature we can delineate several opportunities that the use of 

XR provides in advancing cobot research, development and deployment. We believe that, 
in the domain of development, the use of simulations and digital twins results in more 
agile development cycles for cobot solutions and flexibility in tested cobot designs. Such 
development would benefit from a general framework, highlighting important variables 
to consider in developing such simulations. In this paper, we propose what could be the 
backdrop for such a framework. We summarize critical variables in HRC VR experiments 
in Table 2 and provide a list of common issues and their proposed remedies in Table 3. 

First of all, simulating diverse cobot designs, including hypothetical ones, allows for 
assessing cobot characteristics on operator efficiency and comfort without the restrictions 
posed by testing operators at the workplace with actual robots. Simulating diverse scenes 
and environments allows for assessing workplace and collaboration features, but fore-
most allows for safely testing dangerous scenarios, leveraging on immersive VR. 

Testing operator performance can itself be performed using different measures, such 
as hand and eye motion tracking and physiological signals to yield objective and con-
trolled performance measures. These measures can be combined with more traditional 
data, such as user self-reports and questionnaires, to construct a full picture of actual hu-
man interactions with collaborative robots. Future work should consider bigger sample 
sizes than those used to date, especially when measuring physiological signals. 

Augmented reality has been used to enhance user performance and training in col-
laborating with cobots. The additional interface offered by AR can cue the user, e.g., about 
action sequences they are supposed to perform, but many more applications of the tech-
nology are conceivable in both training and generally improving human performance. 
The use of AR is very likely to increase as more cobots are deployed and, as such, research 
in this direction seems to have large potential. 

Flexibility in designing scenes offered by VR can be also used to emulate remote op-
eration, by introducing noise and delays typical for teleoperation scenarios. This gives an 
opportunity to expose/train operators in situations beyond cooperating with a robot in the 
same physical space. To date, studies on HRC and telepresence seem somewhat missing 
and we believe this direction has the potential to be explored further. 

The use of XR opens up a whole array of possibilities to safely and quickly test cobot 
designs and collaboration scenarios without putting humans at the risk of harm. Modern 
XR technologies allow the integration of a wide variety of sensory modalities to create 
aware and immersive scenes. This way, testing cobots can be taken beyond the physical 
constraints of currently available cobot models and real-world settings. Furthermore, the 
development process can become more efficient by considering human reactions (i.e., psy-
chological and physiological), leading to a more human-centered, holistic and efficient 
approach in human–robot collaboration. 
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