

Pedro David Simões de Almeida

IMPROVING USABILITY AND FUNCTIONALITY IN A FAULT

INJECTION FRAMEWORK

Dissertation in the context of the Master in Informatics Engineering, specialization in
Software Engineering, advised by Professor Frederico Cerveira and and co-advised by
Prof. Henrique Madeira and presented to the Department of Informatics Engineering

of the Faculty of Sciences and Technology of the
University of Coimbra.

September of 2022

DEPARTMENT OF INFORMATICS ENGINEERING

Pedro David Simões de Almeida

Improving usability and
functionality in a fault injection

framework

Dissertation in the context of the Master in Informatics Engineering,
Specialization in Software Engineering, advised by Prof. Frederico Cerveira and

co-advised by Prof. Henrique Madeira and presented to the Department of
Informatics Engineering of the Faculty of Sciences and Technology of the

University of Coimbra.

September 2022

Acknowledgements

First and foremost I am extremely grateful to my parents and sister. Without
their tremendous understanding, encouragement and unconditional support in
the past few years, it would be impossible for me to complete my study. I would
like to express my gratitude to my advisor, Prof. Frederico Cerveira, and co-
advisor, Prof. Henrique Madeira, for their invaluable advice, continuous support
and providing knowledge and expertise during the project. I am equally grateful
to my colleagues and members in this project for their help, feedback sessions
and moral support.

The work carried out in this thesis was support by FCT within project ECSEL/001
8/2019 and the ECSEL Joint Undertaking (JU) under grant agreement no. 876852.
The JU receives support from the European Union’s Horizon 2020 research and
innovation programme and Austria, Czech Republic, Germany, Ireland, Italy,
Portugal, Spain, Sweden, Turkey.

v

Abstract

Computer systems are becoming increasingly complex and more prone to faults
and failures. Inevitably, failures will occur, and some of these failures can be
costly and dangerous. Techniques such as fault injection, either using fault mod-
els or failure models, aim to characterise and validate the dependability of a sys-
tem. Fault injection frameworks have come to be created, however many of them
focus on specific types of users, so it is not always easy for a less experienced user
to be able to test a system.

One of the objectives of this thesis is the improvement of the usability of ucX-
ception, a framework for performing fault injection in local, virtualized or cloud
systems, due to the limitations that it presents. In order to make ucXception more
accessible, easier and faster to install and configure, a containerisation technology
has been applied. The first phase of the report aims to describe the whole engi-
neering process leading to the realization of the improved version of ucXception,
which will be called ucXception 2.0, including a review of the state of the art, a
description of the system, i.e. a description of the architecture, technologies used,
changes from the previous version, followed by an analysis of the requirements
and an overview of the development as well as testing phases.

The final objective achieved was to assess whether fault injection using failure
models can accelerate the process of fault injection producing as accurate and
representative results. To fulfil this objective, experiments were conducted to
compare failure models and fault models with the aim of assessing whether fail-
ure models can be used as an alternative to fault models. In order to be able to
compare these two models, an existing fault injector tool was used and a new tool
was created to inject failures. Openstack, a cloud operating system, was used as
the target system for the experiences.

Keywords

Dependability, Fault injection, Fault injection tools, Fault models, Failure models,
Usability, Containerization

vii

Resumo

Os sistemas informáticos estão a tornar-se cada vez mais complexos e mais propen-
sos a falhas e avarias. Inevitavelmente, ocorrerão falhas, e algumas destas falhas
podem ser dispendiosas e perigosas. Técnicas como a injecção de falha, quer uti-
lizando modelos de falha ou modelos de avaria, visam caracterizar e validar a
confiabilidade de um sistema. Frameworks de injecção de falhas vieram a ser cri-
adas, no entanto muitas delas concentram-se em tipos específicos de utilizadores,
pelo que nem sempre é fácil para um utilizador menos experiente ser capaz de
testar um sistema.

Um dos objectivos desta tese é a melhoria da usabilidade da ucXception, uma
framework que realiza injecção de falhas em sistemas locais, virtualizados ou com-
putação em nuvem, devido às limitações que apresenta. A fim de tornar o ucX-
ception mais acessível, mais fácil e mais rápido de instalar e configurar, foi apli-
cada uma tecnologia de conteinerização. A primeira fase do relatório visa descr-
ever todo o processo de engenharia que leva à realização da versão melhorada do
ucXception, a ser chamada ucXception 2.0, incluindo uma revisão do estado da
arte, uma descrição do sistema, ou seja, uma descrição da arquitectura, tecnolo-
gias utilizadas, alterações em relação à versão anterior, seguida de uma análise
dos requisitos e uma visão geral das fases de desenvolvimento, bem como das
fases de teste.

O último objectivo alcançado foi avaliar se a injecção de falha utilizando modelos
de avaria pode acelerar o processo de injecção de falha produzindo resultados tão
precisos e representativos. Para cumprir este objectivo, foram realizadas exper-
iências para comparar modelos de avarias e modelos de falhas com o objectivo
de avaliar se os modelos de avarias podem ser utilizados como uma alternativa
aos modelos de falhas. De modo a conseguir comparar estes dois modelos foi
utilizada uma ferramenta que injecta falhas existente e foi criada uma nova fer-
ramenta para injectar avarias. O Openstack, um sistema operativo de nuvem, foi
utilizado como sistema alvo para as experiências.

Palavras-Chave

Confiabilidade, Injecção de falhas, Ferramentas de injecção de falhas, Modelos de
falhas, Modelos de avarias, Usabilidade, Conteinerização

ix

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Goals . 2
1.3 Document Structure . 3

2 Project Management 5
2.1 Semester planning . 5

2.1.1 First Semester . 5
2.1.2 Second Semester . 7

2.2 Process and Organization . 8
2.3 Risk Management . 10

3 State of the art 13
3.1 Usability . 13
3.2 Dependability . 14
3.3 Fault Injection . 16

3.3.1 Fault Types . 17
3.3.2 Techniques for Injection of Hardware Faults 19
3.3.3 Techniques for Injecting Software Faults 21
3.3.4 Fault Injection Tools . 23

3.4 Fault injection using failure models 25
3.5 ucXception . 26

3.5.1 ucXception architecture . 26
3.5.2 Fault injectors of ucXception 29

3.6 Technologies . 32
3.6.1 Frontend technologies . 32
3.6.2 Backend technologies . 34
3.6.3 Docker . 34

4 Requirements 37
4.1 User stories . 37
4.2 Mockups . 38
4.3 Functional requirements . 41
4.4 Non-functional requirements . 43

4.4.1 Security . 43
4.4.2 Usability . 44
4.4.3 Extensibility . 45
4.4.4 Modifiability . 45

xi

Chapter 0

5 ucXception 2.0 47
5.1 Architecture . 47

5.1.1 Original architecture . 47
5.1.2 ucXception 2.0 architecture 48
5.1.3 Choice of technology for each module 50
5.1.4 Entity relationship diagram 51

5.2 Project Structure . 52
5.2.1 Frontend module . 52
5.2.2 Backend module . 53

5.3 Modifications to the original ucXception 54
5.3.1 Campaign configuration file 54
5.3.2 Component configuration file 56

5.4 Containerization . 58
5.4.1 ucXception 2.0 containerization 58
5.4.2 Environment setup . 60
5.4.3 Extending ucXception 2.0 container 61

5.5 Functionalities . 62
5.5.1 Authentication . 62
5.5.2 Menu . 64
5.5.3 Create campaign . 65
5.5.4 Create execution . 66
5.5.5 Create host . 66
5.5.6 Create component . 67
5.5.7 View campaign statistics . 69
5.5.8 Build campaign charts . 69

6 Testing 71
6.1 Robustness testing . 71
6.2 Usability tests . 73

6.2.1 Test procedure . 74
6.2.2 Test results . 75
6.2.3 Test conclusions . 79

7 Towards accelerating fault injection using failure models 81
7.1 Methodology . 82

7.1.1 Setup . 82
7.1.2 Workload . 83
7.1.3 Injection process . 84
7.1.4 Failure detection . 84

7.2 Results . 85
7.3 Analysis & Limitations . 88

8 Conclusion 89

Appendix A User stories 99

Appendix B Mockups 105

Appendix C Article 125

xii

Acronyms

AC Acceptance Criteria.

ALU Arithmetic Logic Unit.

API Application Programming Interface.

ARM Acorn RISC Machine.

AST Abstract Syntax Tree.

CPU Central Processing Unit.

CSV Comma-Separated Values.

ER Entity Relationship.

FI Fault Injection.

FPGAs Field Programmable Gate Arrays.

FPU Float Point Unit.

HTML HyperText Markup Language.

HTTP Hyper Text Transfer Protocol.

HWIFI Hardware-implemented fault injection.

I/O Input/Output.

IP Internet Protocol.

ISA instruction set architecture.

PID Process Identifier.

PRDC IEEE Pacific Rim International Symposium on Dependable Computing.

REST Representational State Transfer.

SCIFI Scan Chain Implemented Fault Injection.

SQL Structured Query Language.

SSE Software and Systems Engineering.

xiii

Chapter 0

SSE Streaming SIMD Extensions.

SSH Secure Shell.

SW Software.

SWIFI Software-Implemented Fault Injection.

URL Uniform Resource Locator.

US User Story.

VM Virtual Machine.

XML Extensible Markup Language.

xiv

List of Figures

2.1 Plan for the first semester. 6
2.2 Actual timeline for the first semester. 6
2.3 Plan for the second semester. 8
2.4 Actual timeline for the second semester. 9

3.1 The fundamental chain of dependability threats. 15
3.2 Diagram of software faults types [23]. 19
3.3 ucXception architecture [11]. 27
3.4 Hardware fault injection flow [11]. 30
3.5 Fault injection flow for virtualized systems [11]. 30
3.6 Software fault injection flow [11]. 32
3.7 Docker architecture diagram [17]. 35

4.1 Login page mockup. 39
4.2 Menu page mockup. 40
4.3 Campaign configuration page mockup. 40
4.4 Campaign menu page mockup. 41

5.1 ucXception original architecture. 48
5.2 ucXception 2.0 architecture. 49
5.3 Conceptual diagram. 51
5.4 Login, register and password reset forms. 64
5.5 Menu page. 65
5.6 Create campaign page. 65
5.7 Create execution page. 66
5.8 Create host page. 67
5.9 Create component page. 68
5.10 Page to create a transformer that is not valid. 68
5.11 Campaign statistics page. 69
5.12 Campaign charts page. 70

6.1 First question. 77
6.2 Second question. 77
6.3 Third question. 77
6.4 Fourth question. 78
6.5 Fifth question. 78

7.1 Experimental Setup. 83
7.2 Failed operations per run for both models. 85
7.3 Failures per operation for both models. 86

xv

Chapter 0

7.4 Distance between failure model and oracle. 87
7.5 Distance between failure model and oracle. 87

B.1 Login page. 106
B.2 Registration page. 107
B.3 Password reset page. 108
B.4 Password reset confirmation page. 109
B.5 Menu page. 110
B.6 Campaign statistics page. 111
B.7 Campaign graphics page. 112
B.8 Campaign raw data page. 113
B.9 Campaign configuration page. 114
B.10 Campaign pre-probes configuration page. 115
B.11 Campaign post-probes configuration page. 116
B.12 Campaign parsers configuration page. 117
B.13 Campaign validators configuration page. 118
B.14 Campaign transformers configuration page. 119
B.15 Campaign configuration summary page. 120
B.16 Campaign summary configuration page. 121
B.17 Campaign pre-probes configuration summary page. 122
B.18 Campaign post-probes configuration summary page. 123
B.19 Campaign parsers configuration summary page. 124

xvi

List of Tables

2.1 Risks. 11

3.1 Fault Injection Tools. 24
3.2 Differences between fault models and failure models. 25
3.3 Pre-defined components. 28
3.4 Software faults operators [11]. 31
3.5 Comparison of frontend technologies. 33
3.6 Comparison of backend technologies. 35

4.1 User feedback. 39
4.2 Functional requirements of ucXception 2.0. 42

5.1 Implemented ucXception 2.0 requirements. 63

6.1 Experimental setup specification for robustness testing. 72
6.2 Example of cases where the API has failed. 72
6.3 List of problems encountered for each case. 73
6.4 Time taken for each task performed by the participants. 75
6.5 Number of clicks on each task performed by the participants. . . . 76

7.1 Experimental setup specification . 82

xvii

Chapter 1

Introduction

One of the big problems with the evolution of systems both at hardware and
software level is related to ensuring that the system does not fail and does not
provide a wrong service that can negatively affect those who use it. In order
to solve this problem one of many solutions is adopted , such as fault injection
techniques to catalyse the process of fault activation in a target system [57]. There
are a variety of fault injection techniques to help evaluate the dependability of a
system, from techniques to inject hardware faults to software faults [6].

Consequently, injecting a fault in a system requires a prior study of what faults
one wishes to emulate as many different faults, such as hardware, software or
operator faults, can affect a system, and each fault must be emulated in a specific
manner. To this end, concepts arise, such as: fault types, which define the type of
system fault (i.e. hardware or software faults) and are classified according to their
appearance and duration, and fault models that define an unusual behaviour for
which the system may not be prepared [44].

This thesis is integrated in the European project VALU3S 1 which evaluates the
state-of-the-art verification and validation (V&V) methods and tools for auto-
mated systems in the automotive industry, agriculture, railway, healthcare, aerospace
and industrial automation and robotics.

The thesis focuses on improving ucXception [11, 50], a framework that allows
the injection of hardware or software faults, through several tools, in a local or
remote system. The framework was developed by people from the Software and
Systems Engineering (SSE) group in order to be able to study the area of fault
injection. ucXception provides several components that allow data collection for
a more complete and simple analysis. The fault injection tools allow faults to be
injected either in Linux or virtualized systems and the possibility of adding new
tools is verified by the way the framework was developed.

Nowadays, fault injection using fault models is the most approached concept
when we want to evaluate systems, however fault injection using failure mod-
els is another possible technique for this purpose. Failure models, which aims to
directly emulate a system failure instead of introducing the fault that causes the

1VALU3S Page https://valu3s.eu/.

1

https://valu3s.eu/

Chapter 1

system to fail, has not yet been thoroughly discussed, but promises faster assess-
ment than fault models. When approaching fault injection using failure models
[28, 40] we must apply the same study procedure of fault models, that is, define
what is really intended to be studied and injected into a system. Failure models
aims at a faster assessment and as representative as fault injection.

1.1 Motivation

The ucXception framework offers several advantages, allowing hardware and
software fault injection in distributed systems and supporting fault injection in
virtualized systems, however it contains limitations. Two main reasons that led
to the execution of this thesis come from the problem pointed out to ucXception.
The first reason is because the tool has bad usability, does not have an user inter-
face, therefore is hard to use and the the second reason comes from limitations
in setting up the framework, which is more time-consuming and requires more
effort.

The lack of an evaluation of the representativeness of failure models and a com-
parison between fault injection using failure models and fault models is the moti-
vation behind the third objective. Comparing results between the two techniques,
fault and failure models, will allow to draw clearer conclusions about the use of
failure models. Aiming to investigate if failure models is a good approach to ac-
celerate campaigns in a representative way is the second motivation of this thesis.

The motivations pointed out led to the creation of essential objectives for the de-
velopment of this work, which will improve the weaknesses of the ucXception
framework and make it a more useful tool for different types of users who want
to test their systems, and will allow a comparison between two currently funda-
mental concepts, fault and failure models.

1.2 Goals

In total there are two main objectives to be accomplished and completed that stem
from the problems of the ucXception framework pointed out in Section 1.1 and
from a research component.

As one of the main motivations is the low usability and difficult configuration
of the framework, the first goal is to improve usability so that a wider audience
can use it even if they are not experts in the field and make the framework more
accessible, i.e. encapsulate the application in a single compartment and there-
fore make it quick and easy to configure in a system. This step initially involves
collecting requirements, design user interfaces, planning an architecture for the
new version of the framework, ucXception 2.0, studying technologies for devel-
opment and packaging as well as testing the framework for both implementation
bugs and usability.

2

Introduction

The second objective is to accelerate the fault injection process. For this purpose,
a new failure model tool will be developed, experiments will be conducted with
failure and fault models and the results will be analysed to draw a conclusion.
This step consists in evaluating if using failure models are as accurate and repre-
sentative as fault models, if the hypothesis is true it will lead to faster campaigns
and a tool should be implemented in the framework in order to cover more anal-
ysis methods for the users.

It is aimed will be to write an article on the new version of the framework de-
veloped, presenting its usefulness and advantages as well as explaining its archi-
tecture and finally presenting the research process carried out in respect of the
comparison between failure and fault models.

1.3 Document Structure

This preliminary report is divided in 8 chapters: Introduction, Project Manage-
ment, State of the art, Requirements, ucXception 2.0, Testing, Towards accelerat-
ing fault injection using failure models and Conclusion.

The first chapter identifies the context of this report, the motivation, the main
objectives and presents the structure of the document.

The second chapter presents the temporal planning of the work done, the process
and organisation during the development and finally the risks considered in this
project.

The third chapter (State of the Art) presents the study that was done to deepen
the knowledge of the themes of this dissertation. First a brief study is made re-
garding usability and its importance for a good functioning and user adherence.
Secondly, dependability is defined, an important topic when systems are to be
evaluated. Following, a technique to assess dependability, fault injection, is pre-
sented, addressing some of fault types that can be injected and their classifica-
tion and a clarification about fault models. Some fault injection techniques are
presented for both hardware and software and a list of tools that implemented
these techniques. Furthermore, the topic of fault injection using failure models
is presented explaining its purpose and adversities. The next section presents
the ucXception tool starting by identifying the reasons and objectives for which
it was created. Its architecture is explained and the fault injection flows of the
tools that constitute it. The last section addresses the technologies studied for the
development of the framework.

The fourth chapter presents all the techniques of requirements gathering and the
respective requirements gathered, such as user stories, mockups, functional and
non-functional requirements.

The fifth chapter start with an explanation of the original architecture and the
architecture planned for ucXception 2.0, then the technologies that were taken
into consideration for each module of the architecture and a detailed explanation
of the relational diagram built. Furthermore, it presents the project structure for

3

Chapter 1

both implemented modules, frontend and backend, the modifications made to
the original version of ucXception, the application of containerization technology
and finally a detailed approach to all the functionalities present in ucXception 2.0.

The sixth chapter (Testing) addresses the two types of tests performed to verify
and validate the new version of the framework both at the implementation and
usability levels.

The seventh chapter presents the methodology followed, such as setup, injection
process among others, an analysis of the experiment results and finally a brief
discussion of the limitations of the experiment conducted.

The last chapter summarizes the report and reveals the final ideas for the project
and future work.

4

Chapter 2

Project Management

This chapter focuses on the main aspects relevant to project management. It starts
by explaining the planning done for each semester and a brief discussion on the
deviation of the planned plan with the actual timeline. Then the process and
organisation followed during the development of the framework. At the end,
there is a presentation of the risks that were considered in the project.

2.1 Semester planning

The weekly meetings held served to check the progress in a more continuous
way, which allowed the work not to accumulate. The meetings essentially helped
to clarify some of the doubts that arose, both in terms of the state of the art, the
requirements and some development aspects.

In order to manage and control the schedule of activities required for each semester
a visual tool such as the Gantt chart was used. Furthermore, in order to have a
comparative term between the planning and the actual course of the semesters,
at the end of each semester, the deviation between the two was analysed in order
to understand what went more negatively, serving as learning for future projects.

2.1.1 First Semester

The first semester was used to study the state of the art, to understand the concept
of the framework, to do requirements gathering and to plan in detail the devel-
opment process that took place in the second semester. Initially a Gantt chart was
created (Figure 2.1) to plan the course of the first semester. A second chart (Fig-
ure 2.2) was made in order to show the actual timeline during the first semester.
The Gantt chart has 6 stages:

• Study the state of the art: Study thesis related area such as dependabil-
ity, fault injection using fault as well as failure models, technologies among
other topics;

5

Chapter 2

• Explore ucXception: Explore the ucXception framework in order to under-
stand its main functionalities;

• Write user stories: Write user stories in order to gather requirements;

• Design mockups: Design mockups for the graphical interface;

• Plan architecture: Plan an architecture to be developed in the second semester;

• Write intermediate report: Write the preliminary report in order to present
the work already done.

Study of the state of the art

Explore ucXception

Write user stories

Design mockups

Plan architecture

Write intermidiate report

Figure 2.1: Plan for the first semester.

Study of the state of the art

Explore ucXception

Write user stories

Design mockups

Plan architecture

Write intermidiate report

Figure 2.2: Actual timeline for the first semester.

6

Project Management

It is concluded from the analysis of the charts that there have been changes and
delays with regard to the plan designed at the beginning of the semester.

Firstly, the difference that stands out the most is the state of the art study stage
which lasted about 5 weeks, this is due to the fact that during the writing of the
preliminary report there were always topics that were important to mention, but
which had not yet been studied.

Exploring the framework was slightly delayed due to the delay in the state-of-
the-art study. The following stages were a bit off schedule, as the requirements
gathering through the user stories was progressing it was possible to anticipate
the other stages. The reasons why the mockup design and architecture planning
were delayed were due to several essential factors that came up during the meet-
ing reviews. Consequently, the writing of the report was slightly delayed.

2.1.2 Second Semester

The second semester was planned according to the objectives to be achieved and
a most likely chronology is considered, i.e. neither best case nor worst case (see
Figure 2.3). The Gantt chart has 5 stages:

• Implement and test of GUI of ucXception 2.0: Develop the graphical inter-
face;

• Containerize ucXception 2.0: Containerise the framework;

• Evaluate failure models for accelerate fault injection: Develop fault injec-
tion tool, carry out campaigns, analyse obtained results;

• Write research paper: Write a research work related to the new version
of the framework and to the experiments performed to compare fault and
failure models;

• Write final report: Write the final report in order to present the work done.

Initially, the plan starts with the development of the graphical interface and after
some progress, having the structure of the framework already built, start apply-
ing containerisation. The development and execution of fault injection through
failure model campaigns is planned to be done in parallel during the develop-
ment of the framework in order to optimise the time available. The two final
objectives are to write a paper related to the new version of the framework and
the conducted fault injection experiments using fault models as well as to write
the final report.

The actual timeline of the second semester had some deviations compared from
what was planned. Starting with the implementation of ucXception 2.0, it was
delayed due to the intermediate defense held on the 7th of February and because
after the defense it was decided to focus on the comments received regarding the
first phase. In addition, lack of experience with some technologies and adaptation

7

Chapter 2

Implement and test of GUI of ucXception 2.0

Containerize ucXception 2.0

Evaluate failure models for accelerate fault injection

Write research paper

Write final report

Figure 2.3: Plan for the second semester.

of the framework made it more delayed, so it was identified as a risk. The time
spent on average on each functional requirement is presented, highlighting more
the delay in the creation of components and in the part of analysing the results.

With the delay in implementation, containerisation was postponed but remained
on schedule for approximately two weeks. In the second semester planning the
validation of the framework was not addressed, however two types of tests were
performed which took about 3 weeks, with usability tests taking up more time.

Regarding the experiences, this was the biggest deviation from what was ex-
pected, due to the delay in the preparation of the experimental setup and the
time the experiences took to execute. Furthermore, there were experiences that
failed in which several results were lost and the experiences had to be re-run. As
a consequence of these delays the writing of the paper and the final report were
also postponed, although the time allotted for writing the paper was met and the
time taken to write the final report was longer than anticipated.

2.2 Process and Organization

In all software projects it is crucial to have a good organization especially when
we talk about development tasks that can cause delays in the project or even
cause lack of functionality in the early release project. Thus, the organisation of
tasks, the technologies adopted for the organisation of code or responsibilities
are elements to be taken into consideration before starting the development of
the project.

8

Project Management

Im
pl

em
en

t
uc

Xc
ep

ti
on

 2
.0

Re
gi

st
er

Lo
gi

n
Re

co
ve

r
pa

ss
w

or
d

Ch
an

ge
 p

as
sw

or
d

Co
nf

ig
ur

at
io

n
of

 t
he

 fa
ul

t
in

je
ct

io
n

to
ol

U
pl

oa
d

co
de

 a
nd

/o
r

co
m

m
an

ds
Cr

ea
te

 h
os

t
D

el
et

e
ho

st
Cr

ea
te

 e
xe

cu
ti

on
D

el
et

e
ex

ec
ut

io
n

Cr
ea

te
 c

om
po

ne
nt

Ex
ec

ut
e

ca
m

pa
ig

n
Li

st
 c

am
pa

ig
ns

Fi
lt

er
 c

am
pa

ig
ns

 (p
ag

in
at

io
n

an
d

fil
te

rs
)

D
is

pl
ay

 b
as

ic
 c

am
pa

ig
n

da
ta

V
ie

w
 s

ta
ti

st
ic

s
V

ie
w

 c
ha

rt
s

D
ow

nl
oa

d
ca

m
pa

ig
n

da
ta

Co
nt

ai
ne

ri
ze

 u
cX

ce
pt

io
n

2.
0

Co
nt

ai
ne

ri
ze

 B
ac

ke
nd

Co
nt

ai
ne

ri
ze

 F
ro

nt
en

d
Te

st
 u

cX
ce

pt
io

n
2.

0
Te

st
 u

cX
ce

pt
io

n
ro

bu
st

ne
ss

Te
st

 u
sa

bi
lit

y
Ev

al
ua

te
 fa

ilu
re

 m
od

el
s

fo
r

ac
ce

le
ra

te
 fa

ul
t

in
je

ct
io

n
Pr

ep
ar

e
ex

pe
ri

m
en

ta
l s

et
up

V
al

id
at

e
fa

ul
t

 m
od

el
 c

am
pa

ig
ns

Ru
n

fa
ul

t
m

od
el

 c
am

pa
ig

ns
Cr

ea
te

 a
nd

 v
al

id
at

e
to

ol
 fo

r
in

je
ct

in
g

fa
ilu

re
 m

od
el

s
V

al
id

at
e

fa
ilu

re
 m

od
el

 c
am

pa
ig

ns
Ru

n
fa

ilu
re

 m
od

el
 c

am
pa

ig
ns

Co
m

pa
re

 r
es

ul
ts

W
ri

te
 r

es
ea

rc
h

pa
pe

r
W

ri
te

 fi
na

l r
ep

or
t

Figure 2.4: Actual timeline for the second semester.

9

Chapter 2

Regarding the organisation of the tasks, a list was made based on the functional
requirements and the objectives of the thesis with the various functionalities to
implement. The list served essentially to track the tasks and to avoid leaving any
functionality unimplemented. Each task required development for both the back-
end and the frontend starting with developing the backend module. The process
involved for each task developing, testing and, if no errors were found, proceed-
ing to the next task. In order to verify and validate that the development was
meeting the requirements and the client’s expectations, weekly meetings were
held to demonstrate the project status and even to clarify aspects that were less
explicit.

Concerning the technologies, essentially two were used, Github and Docker HUB.
The use of Github, a platform for hosting source code and files with system ver-
sion control, allows the project to be kept in a central repository and control over
the completed tasks. The repository 1 has a default branch, master, which in the
case of this project contains the original code of the ucXception framework. A
branch allows to change parts of resources in the repository without affecting
other branches. In order to create the new version of the framework, a new branch
called dev was created. The branch dev contains two folders one for the develop-
ment done for the frontend module and one for the backend module. After the
conclusion of each task, a new version of the system was created in the dev branch,
obtaining a history of the versions in the repository.

The Docker HUB is a technology that allows sharing a specific repository of the
technology so that users have access to the new version of the framework faster
and more simplified. In addition, the use of this repository 2 eases the process of
testing with users regarding the configuration of the framework.

2.3 Risk Management

An approach to risk management involves the identification, analysis/assess-
ment, mitigation and monitoring of risks during the life of a project to minimise
the chances and severity of an event occurring. The identification of risks is the
process of determining and assessing potential threats to a project. Once the risks
have been identified, the objective of risk analysis is to identify the probability
of a risk event occurring and the potential outcome. The severity of each risk
is compared and ranked according to its prominence and consequences. In the
final step of the project management process, risk mitigation involves devising
and implementing methods and options to lower threats against the project’s ob-
jectives. Implementing risk mitigation strategies can help identify, monitor, and
assess risks and consequences inherent in the completion of a specific project. The
following will show the risks identified where they can be classified as:

• Probability of occurrence

1ucXception GitHub https://github.com/ucx-code/ucXception/.
2ucXception image https://hub.docker.com/r/pedroalmeida705/ucxception.

10

https://github.com/ucx-code/ucXception/
https://hub.docker.com/r/pedroalmeida705/ucxception

Project Management

– Low: The risk has a lower than 40% probability of occurring;

– Medium: The risk has a 40% to 70% probability of occurring;

– High: The risk has a higher than 70% probability of occurring;

• Impact for the realisation of the project

– Low: No significant deviations in terms of effort and time consump-
tion and no significant impact on scope;

– Medium: Effort and calendering should be readjusted within the allot-
ted time and scope will be met by reallocating resources;

– High: Immediate adjustments are needed with additional effort than
planned.

The following is a list with the identified risks and Table 2.1 with the analysis of
the risks in relation to the probability of occurrence and the impact it has on the
project. It also contains the respective mitigation plan and a column indicating
whether or not it happened.

• Risk1 - During the execution of experiments some error may occur (lack of
computational resources, programming error, etc...).

• Risk2 - During the adaptation of the tool to a new Python version and gen-
eralising various aspects can take more time than expected.

• Risk3 - Due to the lack of experience, the expected time for the execution of
each objective presented in the Gantt may have delays in the final project.

ID Probability Impact Mitigation Plan Occurred
Risk1 Medium High Analyse the problem, solve it

and re-run the campaigns.
Yes

Risk2 High High More detailed analysis of the
topic. In addition, the advisor,
being familiar with the frame-
work, can help with any com-
plex issues.

Yes

Risk3 Medium Medium Meetings with the advisor, in or-
der to validate the planning and
validate which requirements
may not be so important.

Yes

Table 2.1: Risks.

Regarding the first risk, during the execution of the experiments several errors oc-
curred in which it was necessary to apply the mitigation plan to solve the errors.
These errors caused a delay in the execution and analysis of the experiments, as it
was expected to obtain an accessible number of results, which was not possible.

11

Chapter 2

The second risk occurred essentially in the generalization of components and
campaigns, one of the most important tasks in the construction of the new version
of the framework that allows users to add their own elements in the framework.
For the campaigns the delay was slight, however each component was built dif-
ferently so the delay was longer. This risk was expected to occur, but by analysing
possible solutions with the supervisor it was mitigated.

The last risk also occurred but it had the least impact and least likelihood of occur-
ring in several objectives, so the mitigation plan worked perfectly. One example
was the final summary after creating a campaign and the components that were
left for future development.

12

Chapter 3

State of the art

This chapter explores all the topics that are associated with the scope of the ucX-
ception framework, thus creating a knowledge base that made it possible to un-
derstand all the context surrounding the theme of the project. The chapter is
divided into five sections, which are:

Section 3.1 presents a study regarding usability based on several attributes and
how to test the usability by validating it in the best possible way.

Section 3.2 explores the concept of dependability and the importance that this at-
tribute has for today’s systems. It begins with a brief introduction on the concepts
related to dependability and leads into the definition of dependability.

Section 3.3 addresses the topic of fault injection by presenting a definition, its pur-
pose, some important concepts for fault characterization and some fault injection
techniques, as well as several tools that implement them.

Section 3.4 addresses the topic of fault injection using failure models presenting
a general concept and comparing it with fault models.

Section 3.5 provides a brief introduction to the ucXception framework, what it is
for and what the goals are. The ucXception architecture is presented, addressing
its components, fault injectors delivered by the framework and the respective
injection flows.

3.1 Usability

In order to understand the subject of usability there are 3 questions that are most
commonly addressed: what is usability, why is usability important, and how
to improve usability [46]. To answer the first question, usability is defined as a
quality attribute that evaluates how easy is to use a user interface and whether
a product can be used by specific users to accomplish certain goals effectively,
efficiently and to their satisfaction [1]. There are five quality components that
define usability [46]:

13

Chapter 3

• Learnability: “How easy is it for users to accomplish basic tasks the first
time they encounter the design?”

• Efficiency: “Once users have learned the design, how quickly can they per-
form tasks?”

• Memorability: “When users return to the design after a period of not using
it, how easily can they reestablish proficiency?”

• Errors: “How many errors do users make, how severe are these errors, and
how easily can they recover from the errors?”

• Satisfaction: “How pleasant is it to use the design?”

The attributes presented are among the most important that should be taken into
consideration when addressing usability, however there are many other impor-
tant quality attributes, such as utility. Utility is defined as a product that pro-
vides the features a user needs. Usability and utility work together, as a product
may provide the user with what is needed but it is complex to perform the task
through the graphical interface or vice versa. The second question can then be
answered, usability is important as it is a matter of the user choosing the simplest
product to use and one that meets their requirements.

The third question is related to the assurance that the attributes are fulfilled. For
this, the method used is usability testing usually done on a stable version of the
product, which requires representative users. During a usability test, participants
typically attempt to complete tasks individually, letting them solve any problems
on their own while observers watch, listen, and take notes. Identifying usability
issues, collecting qualitative and quantitative data, and assessing participant sat-
isfaction are the main objectives [65]. The problems encountered lead to changes
in the application making the process of usability testing important before the
launch of the product to ensure that it is suitable for deployment.

Usability testing requires prior preparation, i.e. planning the tasks and the flow,
the metrics to be collected during testing and post-testing and choosing partici-
pants with product user characteristics that match the target audience to provide
the most accurate results possible [62]. Test plans can be designed once all the
necessary information has been gathered.

3.2 Dependability

When discussing dependability it is important to know basic concepts before-
hand, such as fault, error and failure and the impact that these threats have on a
system.

A service provided by a system, as a provider, is the behaviour as perceived by
another system receiving service. A correct service is a service when it performs
as intended, on the other hand, service failure, or failure, is an event that occurs

14

State of the art

Component B

Target System

Component A

Fault FailureError

Fault FailureError

Fault FailureError

Figure 3.1: The fundamental chain of dependability threats.

when it deviates from the expected behaviour. This occurrence stems from non-
compliance with the specifications of a service. When an incorrect system state
occurs, referred to as an error, the system deviates from the correct service state.
The error is hypothetically caused by a fault [5], as depicted in Figure 3.1.

Faults can be internal or external to the system and when they occur they can
trigger one or more latent errors which when activated can be detrimental to the
system. Latent error is defined as “errors that are present but not detected” [5].
An active error can create more errors, which in turn can affect the service, thus
generating a failure. The system failure will not occur until the error reaches the
boundaries of the provider’s system where the service delivery takes place.

Depending on the service these failures can cause problems ranging from secu-
rity threats to service unavailability and incorrect output being produced, stored
or transmitted to outside of the system. These problems lead us to define depend-
ability.

Avizienis et al. [5] present two definitions of dependability:

• Original definition: “dependability is the ability to deliver service that can
justifiably be trusted”;

• Alternate definition: “dependability of a system is the ability to avoid ser-
vice failures that are more frequent and more severe than is acceptable”.

The original definition needs a definition of trust. Dependency between systems
can be total or none. For instance, a system A that is totally dependent on a
system B, can be affected by a failure of system B. Whereas not being dependent
the probability of causing a failure is zero. This concept of dependency leads to
the concept of trust that needs to be accepted between these two systems.

The best way to understand dependability is to understand the attributes that it
encompasses. Avizienis et al. [5] presented the following attributes:

15

Chapter 3

• Availability: “readiness for correct service”;

• Reliability: “continuity of correct service”;

• Safety: “absence of catastrophic consequences on the user(s) and the envi-
ronment”;

• Integrity: “absence of improper system alterations”;

• Maintainability: “ability to undergo modifications and repairs”.

Consequently Avizienis et al. [5] identified a group of four means to reach de-
pendability:

• Fault prevention: Means to avoid occurrence of faults. We can prevent de-
velopment faults using development methodologies for software and hard-
ware;

• Fault tolerance: Means to prevent service failures when faults exist in the
system;

• Fault removal: Means to decrease severity and the number of faults dur-
ing development and during system use. During development phase of a
system consist in three steps: verification, diagnosis and correction. During
use of a system consist in corrective or preventive maintenance.

• Fault forecasting: Means to estimate the fault occurrence and activation by
performing an evaluation of the system behaviour. Considering qualitative
and quantitative evaluation.

In order to make sure that the system can be “trusted” a technique for evaluating
dependability in systems is presented in Section 3.3.

3.3 Fault Injection

Over several years, with the increasing complexity and demands on systems,
the tendency to detect hardware faults and software faults, or so called software
defects or bugs, and validate fault-handling mechanisms is becoming more and
more usual and necessary. A system that provides a service with failures more
frequent and more severe than acceptable cannot be trusted, thus its dependabil-
ity is poor [5].

In order to assess and verify the fault-handling mechanisms and evaluate de-
pendability measures a practical approach can be used, fault injection [6]. This
experimental technique deliberately introduces faults in a system [44]. Usually
faults can be hardware or software [6] and are injected in a real system, in a phys-
ical computer system, or in a system model that accurately reflects the behaviour
of the system components.

16

State of the art

It is relevant to have a notion of the importance of fault models when we talk
about fault injection. Fault models characterize the faults that a system will be
subject to during operation and must follow a key property: representativeness.
This property can be defined as “the ability of the faultload and of the work-
load to represent the real faults and inputs that the system will experience during
operation” [44]. It can be achieved by defining a realistic fault model following
three important aspects: the type of faults to inject (“What to inject”), fault lo-
cations, system component targeted by the injection (“Where to inject”) and the
injection timing (“When to inject”). We can have several models modelling faults
for the same purpose, however depending on the choices made in response to
these questions, some will be more realistic than others. This is specially true
for the failures models often used by fault injection, which tend to lack precision
when compared with most fault models used for fault injection. The topic of fault
injection using failure models will be further developed in Section 3.4

Fault injection involves concepts such as fault injection experiment and fault in-
jection campaign. The fault injection experiment represents the injection of a fault
and the observation of the system behaviour. A set of fault injection experiments
defines a fault injection campaign. In order to evaluate the results of fault in-
jection experiments, experiments without fault injection are used as a point of
comparison, so called golden runs [44].

There are several fault injection techniques that will be explained in more detail in
Section 3.3.2 and Section 3.3.3. Every technique can be classified by the following
properties:

• Controllability: Ability to control fault injection, both in time and space;

• Observability: Ability for observing and recording the consequences of a
fault injection;

• Repeatability: Capability of repeating a fault injection experiment and ob-
taining the same result;

• Reproducibility: Be able to replicate the results of a fault injection cam-
paign;

• Representativeness: The degree of accuracy that the fault injection experi-
ment actually represents, the real system and the injected faults.

3.3.1 Fault Types

Raul Barbosa et al. [6] presented two main fault types that can be injected: hard-
ware faults and software design and implementation faults. The most common
fault models for emulating hardware faults are stuck-at-one, stuck-at-zero or bit-
flip affecting computer’s components such as Central Processing Unit (CPU) reg-
isters, main memory or communication buses [57]. The most common fault mod-
els for emulating software faults are based in two principles: altering source code
by replicating programmer errors or error injection. Error injection attempts to

17

Chapter 3

emulate software faults by changing values of system state variables such as CPU
registers and data store or changing parameters of code functions.

Hardware fault types can be classified as:

• Intermittent: appears and disappears several times in a seemingly random
and unpredictable [5];

• Permanent: remain active until the system is repaired [5];

• Transient: temporary in nature as it appears and eventually goes away [5].
Transient faults are caused by environmental effects, such as cosmic rays,
usually referred to as soft errors [43].

Software fault can be classified into the following types:

Bohrbugs are faults that are easily isolated and which manifests reliably under
a well-defined, but possibly unknown, set of conditions. These faults are easy to
detect and reproduce because of their lack of complexity [23].

On the other hand, one can define Mandelbugs as the complementary antonym
of Bohrbugs. In other words, a complex type of bug that is difficult to fix because
of its complexity and unpredictability. Under apparently identical conditions,
sometimes failure occurs, while on other occasions no failure is experienced, not
reproducible [23].

Due to the subjectivity in distinguishing the complexity of the circumstances that
led to a failure between these two concepts, the classification can be more objec-
tive by presenting two cases that consider an application failure as a Mandelbug
[23]:

• If elements of the software system other than the application itself influence
the cause of a failure;

• If the complexity of error propagation results in a delay between the fault
activation and the behaviour perceptible by another system.

The two cases divide Mandelbugs into two sub-types. Regarding the first case, it
is mentioned as Heisenbug, a software bug that, after study/observation through
a tool or method, can disappear or manifest differently. The second case is re-
ferred as Aging-related bugs, occur in long-running systems due to error condi-
tions caused by the accumulation of problems such as memory leaks or round-
off errors in program variables, “resulting in an increased failure rate and/or
degraded performance” [23]. These two classes, Heisenbug and Aging-related
bugs, may or may not overlap with respect to a specific observation tool or method.

Figure 3.2 shows the relationship of software fault types in a diagram.

18

State of the art

MandelbugBohrbugs

Heisenbugs

Aging-related bugs

Figure 3.2: Diagram of software faults types [23].

3.3.2 Techniques for Injection of Hardware Faults

As mentioned in Section 3.3 fault injection can be executed in real systems or in a
model of a system. Fault injection in these types of systems has advantages and
limitations.

Injecting faults into real systems brings a more effective evaluation and verifi-
cation of dependability, its properties and fault tolerance mechanisms. On the
other hand, simulation-based and emulation-based fault injection recreate real-
istic faults more accurately than faults injected into real systems. However sim-
ulation and emulation models have their limitations, such as development cost,
reproducibility, and time-consuming, it may not be practicable to use a detailed
model with a large amount of activity.

Some properties such as controllability, observability, repeatability and repro-
ducibility are normally higher when injecting in simulation and emulation mod-
els than injecting in real systems [6, 44].

There are three commonly addressed fault injection techniques used in real sys-
tems [6]: Hardware-implemented fault injection (HWIFI), Software-Implemented
Fault Injection (SWIFI), and Radiation-based fault injection, and two techniques
for model systems, Simulation-based and Hardware emulation-based fault injec-
tion.

In the following subsections a general concept of each method is provided.

Hardware Implemented Fault Injection

In this subsection three techniques for fault injection are introduced: pin-level,
power supply disturbances, and test port-based.

Pin-level method inject faults via probes attached to the pins. It is limited to
stuck-at faults. Essentially this technique is used in automotive and industrial
embedded systems [6, 33, 70].

Power supply disturbance faults are injected by attaching active probes to the
power supply. This technique is not commonly used due to its low repeatability

19

Chapter 3

and tends to affect many bits, impossible to emulate faults where only one bit is
flipped, which can damage the injected device [25].

Test port-based uses built-in debugging and testing features from microproces-
sors to inject faults. This type of faults can be injected in all registers of the in-
struction set architecture (ISA). ISA is part of the abstract model of a computer
that defines how the CPU is controlled by the software. The time it takes to in-
ject the faults depends on the speed of the test port. The main advantage of this
method is that it is not necessary to make any changes to the hardware compo-
nents [25].

Software-Implemented Fault Injection of Hardware Faults

SWIFI of Hardware Faults is a technique that allows injecting hardware faults
through software. Several problems associated with physical fault injection tech-
niques (e.g., pin-level injection and heavy-ion radiation) were overcome by SWIFI,
such as repeatability, controllability and simplicity [44].

This method has advantages such as:

• It can be used to target applications and operating systems, which is diffi-
cult to do with hardware fault injection [59, 70];

• It does not require an specific hardware and cannot damage the target sys-
tem [59, 70];

• “It has high controllability over where and when faults are injected and high
observability of fault behavior and fault propagation” [59].

As well as disadvantages:

• Impossible to inject faults into locations that are inaccessible to software
[59, 70];

• “The software instrumentation may disturb the workload running on the
target system and even change the structure of original software” [59];

• It is very difficult to model permanent faults, because requires a more elab-
orate set of manipulations [6, 70].

There are two distinct ways to inject faults using this method: run-time and pre
run-time injection. In run-time injection, faults are injected while a workload
is being executed by the system. This approach implies a significant runtime
overhead. In pre run-time injection, faults are insert by manipulating the source
code and the binary image of the workload, before it is executed. Compared to
run-time injection, pre run-time incurs less runtime. However by taking longer
to prepare each fault injection experiment the total runtime of the fault injection
campaign is longer.

20

State of the art

The beginning of research in this area has led many authors to create their own
fault injection techniques supporting different fault models. For example, FIAT
[54], FERRARI [30], FINE [31], FTAPE [64] and Xception [10]. In Section 3.3.4 the
different models used by each tool are presented.

Radiation-Based Fault Injection

Various systems and electronic integrated circuits are sensitive to external distur-
bances like electromagnetic interference and particle radiation.

As explained in Section 3.3.1, this type of disturbance can cause errors that ap-
pear and eventually disappear, so called soft error. This technique provides a
validation method by exposing the system, sensitive regions within a circuit, to
ionising particles.

Raul Barbosa et al. [6] concluded that this technique “has very low, or non-
existent, repeatability” and it is very difficult to control the time and place of
the injection due to the lack of precision of controlling heavy-ion emission. In
this way, it is not possible to reproduce an experience.

Simulation-Based Fault Injection

Simulation-Based Fault Injection uses a software program to simulate hardware
faults on a model of a system, generally called fault simulator. Fault injection can
occur during run-time, injected during the simulation run or compile-time, and
are injected into the target hardware model.

The advantages of this technique are that there is no risk to damage the system,
it is less costly in terms of time and effort and has a higher controllability and
observability of the system behavior in presence of faults. However, it lacks ac-
curacy in the system model and fault model [33].

Hardware Emulation-Based Fault Injection

This technique has emerged in order to reduce the time that a fault injection ex-
periment takes compared to simulation-based fault injection. To achieve that,
hardware emulation-based fault injection is based on the use of Field Programmable
Gate Arrays (FPGAs), an integrated circuit designed to be programmed by the
customer or a designer after it is manufactured [6, 33].

3.3.3 Techniques for Injecting Software Faults

In addition to hardware fault injection, another important topic in the field of
fault injection study is software fault injection or software fault emulation.

Software faults are one of many causes of system outages. Given the enormous

21

Chapter 3

complexity of the current software, the software faults tend to increase [20, 48, 68],
so it is relevant to extend fault injection technologies to the injection of this type
of faults.

To date, effort has been invested to create techniques that can tolerate and handle
software faults. In order to validate these techniques, fault injection techniques,
which can accurately mimic the impact of real software faults, have been devel-
oped. It has been recognized that fault injection can be used to emulate the effects
of real software faults [12, 66], allowing the assessment of hidden bugs in a sys-
tem through accurate ways of emulating software faults.

Raul Barbosa et al. [6] presented two fundamental approaches to software fault
injection: fault injection and error injection. Fault injection imitates programmers’
errors by altering the code executed by the target system, while error injection
attempts to imitate the consequences of software failures by manipulating the
state of the target system.

Emulating Software Faults by Error Injection

Software-implemented fault injection for hardware faults drove studies based
on software fault injection approaches. Mainly SWIFI allowed to produce er-
rors by injecting hardware faults (Section 3.3.2). Later on SWIFI approaches were
adopted to emulate software faults by error injection [7].

Raul Barbosa et al. [6] refer two common techniques:

• Program state manipulation involving change of variables, pointers and
other data stored in main memory or CPU registers;

• Parameter corruption corresponding to the modification of parameters of
functions, procedures and system calls.

The main challenge is to find error sets that are representative of real software
faults in which each error is defined by: error type (what to inject), error loca-
tion (where to inject), injection time (when to inject) and how a representative
operational profile (workload) should be designed [12].

An experimental comparison was made between fault injection and error injec-
tion. The authors note that no research work compares the failure symptoms
obtained using source code faults and SWIFI injected errors. The investigation
focused on two aspects: “the cost in terms of setup and execution time for using
the techniques” and “the impact of the test case, fault type and error type on the
failure symptoms of the target system” [13].

The authors conclude that fault injection is more accurate than error injection and
test case had a large influence on the failure symptoms either for faults and errors
injection.

22

State of the art

Software Fault injection using representative fault models

This technique is based on the manipulation of source code, object code or ma-
chine code, i.e. original instructions are changed to other instructions. The aim of
this method is to emulate common errors in software development.

Random fault injection is used in many software testing approaches [28, 39]. They
replace the program data with random faulty data or introduce faults into ran-
dom locations and then run test cases to validate if the software correctly handles
the faults. Random fault injection, however, results in poor coverage and low
bug-detection accuracy.

To solve this issue, some methods [22, 69] use program information in order to
guide fault injection and generate efficient test cases.

Madeira et al. [37] presents a criteria for injecting code changes:

• What to inject: A set of program instructions are replaced by other instruc-
tions, based on common types of software faults found in real systems;

• Where to inject: As mentioned a fault is injected into the program code,
it can be in the source code or in its binary executable. The code location
is selected according to the type of fault. For instance, “a fault that affects
variable assignments can only be injected in a code location containing a
variable assignment” [44];

• When to inject: In order to reproduce the true nature of software faults,
they should be injected into the target code before they are executed. Some
papers presented by Natella et al. [44] inject code changes at runtime in
order to force the occurrence of failures at a desired or random time.

The major adversity of this technique is fault representativeness. Ideally it is
intended to emulate all the defects that a program may contain. However, if it
were possible to know all its defects, they would be easily corrected.

Durães et al. [18] observed that a large percentage of faults falls on well-defined
classes. Through a small set of emulation operators it was possible to emulate
precise software faults.

3.3.4 Fault Injection Tools

Since fault injection is a mature concept, several fault injection tools have been
developed over the years.

The information provided in Table 3.1 is based on previous reading of fourteen
articles. Most of the articles do not explicitly mention if they are open-source and
if they have a graphical interface, so besides reading them a deeper research was
done.

Table 3.1 presents some characteristics of fault injection tools:

23

Chapter 3

Tool name Year Fault model Open-S. GUI
MESSALINE
[3] 1990 Stuck bits using HWIFI at the pin-

level.
− −

FINE [31] 1993 Source-code mutations emulating
Software (SW) faults and stuck
bits and bit flip (permanent and
hardware faults).

− −

FERRARI [30] 1995 Bit-flips using SWIFI. − −
FIAT [54] 1995 Bit-flips through SWIFI. − ✓

FTAPE [64] 1995 Bit-flips and zero/set in CPU regis-
ters and memory and error codes in
disk Input/Output (I/O). Uses SWIFI
method.

− −

Xception [10] 1998 Stuck bits and bit-flip emulate
permanent and transient hardware
faults. SWIFI approach.

− ✓

NFTAPE [60] 2000 Bit-flips, communication errors and
I/O faults in distributed systems. Ap-
ply SWIFI method.

− ✓

GOOFI [2] 2001 Single or multiple transient bit-flip
faults using techniques such SWIFI
and Scan Chain Implemented Fault
Injection (SCIFI).

− ✓

G-SWFIT [38] 2002 Code mutation at the machine code-
level emulating software faults.

− −

GOOFI-2 [58] 2010 Emulate transient hardware faults us-
ing single or multiple bit-flip errors.
Test port-based technique used.

− −

EDFI [22] 2013 Code mutations performing
execution-driven fault injection.

− −

FAIL [53] 2015 Single or multiple bit-flips in CPU
registers and memory emulating tran-
sient or permanent faults. Sup-
port simulation-based fault injection
and a hybrid technique between test-
port–based Fault Injection (FI) and
SWIFI.

✓ −

LLFI [35] 2015 Single bit-flips in CPU registers.
A pre-runtime fault injection tool
(SWIFI).

✓ ✓

ProFIPy [14] 2020 Code mutations defined by the user
emulating software faults.

− −

Table 3.1: Fault Injection Tools.

24

State of the art

• Fault model: refers to the fault model and technique that the tool imple-
ments;

• Open-S. : open-source, tool is or not available for public use;

• GUI: graphical user interface, tool with or without graphical interface.

There are several differences between the tools presented and others that do not
appear in the table, such as fault models, the place where the fault is injected,
the fault trigger, when to inject, what is intended to be evaluated (fault tolerance,
fault recovery, etc.), among others.

3.4 Fault injection using failure models

Fault injection using fault models is often used to refer to failure models in var-
ious research works [28, 40, 41], however there are differences between both,
namely in the fault models (Section 3.3.1). There are not many research work ad-
dressing the topic of fault injection using failure models which implies a smaller
study compared to fault injection using fault models. The purpose of fault injec-
tion using fault models is to create a failure by making some sort of value corrup-
tion in the hardware or software of a system. On the other hand fault injection
using failure models can be considered as forcing the system to fail, introduc-
ing the failure. Failure models can allow faster evaluations due to its quick and
clear effects, whereas fault models can cause masked faults which do not lead to
a wrong state, they do not cause failures.

Failure model is usually defined based on previous experience and human knowl-
edge which may not take into account the real failures that occur in a system.
Thus, these models are unlikely to be representative. For example, by inject-
ing hardware faults using fault models the bit values of the CPU registers are
changed, on the other hand, failure models aims to create characteristics of fail-
ures that may occur: crashes, disk failures, network partitioning [28]. Through
software fault models modifies the source code of a program, mutations, whereas
failure models can corrupt attribute values, method parameters or wrong return
values [40]. Table 3.2 summarises the different types of models between fault and
failure.

Fault models Failure models

Hardware

Stuck bits [3, 10, 31] Crash [28]
Single bit flips [10, 30, 54] Disk failures [28]Multiple bit flips [2, 53, 58]

Network partitioning [28]I/O faults [60]

Software Code mutations [14, 22, 31, 38]
Corrupt attribute values [40]

Corrupt method parameters [40]
Return wrong values [40]

Table 3.2: Differences between fault models and failure models.

25

Chapter 3

failure models are most often used to evaluate distributed systems, cloud, or soft-
ware systems, as they can easily emulate high level failures, which is often the
main focus of works in these areas. In a system (computing nodes, communica-
tion interfaces, and networks), failure modes are used to model how faults affect
different subsystems. A failure mode, then, describes the consequence of subsys-
tem failures in a system. There are different failure modes including Byzantine
failures, generalized as agreement problem [41], timing failures, omission fail-
ures, crash failures, fail stop failures and fail-signal failures [5, 6].

3.5 ucXception

ucXception 1 [11, 50] is a framework that allows to perform fault injection on
a variety of target systems, from a local system to virtualized or cloud systems.
ucXception allows the evaluation of hardware and software fault tolerance mech-
anisms and the dependability of the systems, combining a suite of fault injection
tools capable of emulating hardware or software faults with different fault mod-
els (see Subsection 3.5.2).

It aims to reduce and simplify the effort in setting up a fault campaign for those
who are less experienced in the field. The framework provides pre-made com-
ponents and a base model that can be adapted according to requirements. It also
allows a variety of metrics to be obtained to enable a wider and detailed analysis
of the campaign.

Section 3.5.1 presents the main structure of the ucXception framework, mention-
ing the different components that constitute it. The subsection 3.5.2 discusses the
fault tools present in the framework.

3.5.1 ucXception architecture

ucXception consists of a set of configurable elements according to the experience
that the user wants to run. The use of this framework consists in designing a plan,
set of campaigns. A campaign is a set of runs of a given campaign configuration.
A run is the execution of the flow specified in the campaign. Runs can be executed
with fault injection and/or without fault injection (golden runs).

Figure 3.3 presents a high-level overview of the ucXception architecture present-
ing core elements that can be changed by the user, such as:

• Watchdog: In order to ensure that runs do not exceed the user-defined allot-
ment of time, a watchdog should be used to monitor and kill the workload
application if the execution time exceeds the user’s time limit;

• Probes: The probe is an application that is launched for the duration of the
run to monitor and store information about the system or application be-
ing evaluated. There are two types of probes: pre-probes and post-probes,

1ucXception GitHub https://github.com/ucx-code/ucXception/.

26

https://github.com/ucx-code/ucXception/

State of the art

depending on whether they are launched before or after the workload has
begun;

– Pre-Probes: Collect system-wide metrics;

– Post-Probes: Monitor specific processes.

• Fault injection tool: Injection tools implement a specific fault model (e.g., a
single bit-flip) emulating faults according to the model;

• Validators: The validators examine results obtained during runs and if the
acceptance criteria have been met. If the validator fails then the run will not
be saved to disk;

• Parsers: Parsers are used to convert the results of the run into a more valu-
able and compact format. These results are stored in the results Comma-
Separated Values (CSV) file;

• Transformers: As the parsers an output is produced from raw input, how-
ever the output from transformers are stored as individual files in the run’s
own result’s folder. Most commonly, transformers are used to convert raw
data output from probes into a more manageable format, such as converting
a binary data file from a resource monitoring probe into a CSV file.

save results save raw data

reads configuration from

User configurable

Plan description file

Campaign
configuration file

Campaign
configuration file

inherits

Base Campaign
template

Run

Probes Fault
Injection
Tools

HW SW

Parsers

Transformers Validators

Core

global
results CSV results

folder

Watchdog

Figure 3.3: ucXception architecture [11].

The framework already includes some pre-defined components [11], as shown in
Table 3.3.

As the framework allows faults to be injected either locally or in a distributed
system, when setting up the campaign it is important to define whether we want

27

Chapter 3

Component Type Component name

Pre-Probes Logs probe / IntelPCM probe / Ping probe / SAR probe /
TCPDump probe / Xentrace probe

Hardware Injector ARM pinject / Intel pinject deadline / Intel pinject fp /
Intel pinject v2

Software Injector Injector
Post-Probes Pidstat probe
Validator Ensure Injection

Parsers
HW FI parser / SW FI parser / Pcap -> TCP parser / Info

parser / MD5 output parser / Return code parser / Current
folder parser

Transformer
Pcap -> TCP 2 CSV transformer / Pidstat 2 CSV

transformer / SAR 2 CSV transformer / Ping 2 CSV
transformer / Save output transformer

Table 3.3: Pre-defined components.

the host to be remote or local. In order to define a remote host it’s necessary to
write the required information to perform login via Secure Shell (SSH) (Internet
Protocol (IP), username).

Base template

A campaign configuration file defines each flow of the experiment run, but gener-
ally behaves as described by the base template. The default flow of an experiment
run consists in the following ordered steps:

1. Launch pre-probes: Launch pre-probes. They start monitor their targets.

2. Launch workload: The workload start.

3. Launch post-probes: Launch post-probes. They normally require the Pro-
cess Identifier (PID) of the process.

4. Launch fault injection tool: Launch fault injection tool. Performs only one
injection per run to avoid influencing future injections. Despite the fault
injection tool being launched at this point, the fault may be injected later,
since the tool itself may have its own trigger mechanism. Normally the
type of fault injected is chosen randomly and can be changed.

5. Peak loop: The workload executes and at some point during its execution,
the fault injection will occur. Watchdog is launched to ensure that the work-
load finishes within the alloted time by the user.

6. Post finish: Consists in stopping the probes. It may include another opera-
tion if necessary.

7. Extract data: Stores the probe data in the run’s results folder.

28

State of the art

8. Launch transformers: Launch transformers that convert the stored data
into a different format. placing it back into the results folder.

9. Launch parsers: Launch parsers and produce the output stored in the main
results CSV.

10. Launch validators: Finally, launch validators to validate the correctness of
the results.

3.5.2 Fault injectors of ucXception

ucXception contains three fault injection tools that implement different fault mod-
els. Two different fault injection tools to emulate hardware faults, one tool fo-
cused on a linux-based target system and the other on virtualized systems, and
one tool for emulating software faults. In addition to the tools mentioned above
it is possible to insert new fault injection tools.

Hardware faults in Linux-based systems

The tool is intended to emulate soft errors (see Section 3.3.1) affecting CPU regis-
ters or other CPU components (buses, Arithmetic Logic Unit (ALU), Float Point
Unit (FPU), etc.) by implementing the single bit-flip fault model. The technique
used is SWIFI as it is purely software-based, it does not rely on any hardware
functionality and can be classified as a run-time approach as no modification to
the target program’s source is required.

A modern Linux kernel can run the tool as well as x86_64 and Acorn RISC Ma-
chine (ARM) architectures. The tool can be used in x86_64 systems as an injector
for rip, rsp, rbp, rax, rbx, rcx, rdx, cs, ss, ds, es, fs, gs, eflags, and r8 to r15 registers
and it also can be used to inject in FPU and Streaming SIMD Extensions (SSE)
registers. It can inject into sb, pc, lr, sp, ip, a1 to a4 and v1 to v8 registers if executed
on an ARM system.

The tool uses the ptrace functionality of Linux systems to be able to attach itself to
the target process. It allows to access the values of the process registers and exe-
cute the bit-flip. It includes logging functionality that stores the exact timestamp
of the time of injection and the register values before and after the fault injection.

The injection time can be defined in two ways: timeout and deadline. In timeout
mode the user specifies how many milliseconds the tool should wait before exe-
cuting the fault injection. In deadline mode the user specifies a UNIX timestamp,
including milliseconds, that defines the desired moment of injection.

Initially the tool starts sleeping for a value defined by the user. When the time-
out elapses the tool attaches itself to the process that intends to inject the fault.
It extracts values from the process registers and prints the values to a standard
output stream along with the current timestamp. Next it executes the bit-flip in
the process registers and continues the execution. Finally it prints the new values
from the registers. The flow can be seen in Figure 3.4.

29

Chapter 3

sleep attach to
process

get register
data struct.

print old
values do bitflip print new values &

tstamp
detach &
resume

Figure 3.4: Hardware fault injection flow [11].

Hardware faults in virtualized systems

An additional tool for injecting faults is provided. It allows emulating hardware
faults using the same fault model, single bit-flip in CPU registers and any of the
rip, rsp, rbp, rax, rbx, rcx, rdx and r8 to r15 registers, however for use in virtualized
systems. It can inject faults into any application operating inside a virtual ma-
chine. As long as nested virtualization is used, it can inject faults in hypervisor
(i.e., virtual machine running inside virtual machine).

To implement the tool, modifications have been made to the Xen hypervisor that
introduce a new hypercall and functions to control the fault injection process,
along with modifications to the scheduling subsystem.

The injection process involves changing the value of the register in a data struc-
ture used to store Virtual Machine (VM)’s CPU state and which is updated before
context switch. In this way, the injector makes use of the fact that the hypervisor
must know the last CPU state between context switches of the VMs in order to
inject faults. However, this means that the method is dependent on the frequency
at which the context switches occur. If it is to perform a fault injection that affects
only the hypervisor running on a VM, the tool provides a feature that can filter
the application that will be targeted by looking at the value in the rip register.

Hypervisor

Privileged Virtual Machine hypercall

Toolstack

perform bit-flip

Instrumented context
switching function

User space
application

VM-specific data
structure

temporal
trigger

Target VM
Target Bit and Register
Memory range (RIP)

Hypercall Function

Fault Injection
Parameters

Figure 3.5: Fault injection flow for virtualized systems [11].

Figure 3.5 shows the flow in a graphical form and runs as follows: an application
within the Privileged Virtual Machine (or the ucXception framework) provides
triggering functionality, which is not embedded in the fault injection tool, and
will call the toolstack at the right time. A hypercall is made from the toolstack

30

State of the art

to a function inside the hypervisor, along with the parameters required for fault
injection. The parameters are: the target VM (can focus in one specific VM if there
is more than one), the target register and bit (place of injection) and an optional
parameter defines the start and end of the memory range that the rip should be
pointing at. All information is written by the hypercall function, which it will be
read during context switching. As long as the VM that is receiving CPU time is
the same as the target VM and its rip is inside the given range, the conditions are
met and the bit-flip is performed before the VM starts its execution.

Software fault injection in C source-code

The third tool embedded in the framework applies code modifications (or muta-
tions) to the source code in order to inject software faults. Faults are injected into
programs written in the C programming language, following defined operators
listed in Table 3.4. These modifications tend to represent software developers’
mistakes [18].

Operators Description
MFC Missing function call
MIA Missing if construct around statements
MIEB Missing if construct plus statements plus else before statements
MIFS Missing if construct an surrounded statements

MLAC Missing and sub-expr. in logical expression used in branch condition
MLOC Missing or sub-expr. in logical expression used in branch condition
MLPA Missing localized part of the algorithm
MVAE Missing variable assignment with an expression
MVAV Missing variable assignment with a value
MVIV Missing variable initialization with a value
WAEP Wrong arithmetic expression in parameters of function call
WPFV Wrong variable used in parameter of function call
WVAV Wrong value assigned to a variable
WALR Wrong algorithm – code was misplaced
WLEC Wrong logical expression used as branch condition

EFC Extraneous function call
EIFS Extra if construct and surrounded statements

Table 3.4: Software faults operators [11].

The flow for software fault injection (see Figure 3.6) is divided in 2 phases: prepa-
ration phase and execution phase.

In preparation phase the software fault injector obtains the Abstract Syntax Tree
(AST) from the input source-code through lexical and syntactic analysis. It tra-
verses the AST to identify nodes where faults can be injected, according to the
operators and their constraints [50]. Every node identified is modified in the tree,
then converted to source code representation from which a patch file representing
the fault is generated and stored in the filesystem.

31

Chapter 3

file1.c file2.c file3.c

Call Fault Injection
Tool

.patch

.patch

.patch

.patch

Apply patches to
original source code

Compile application

Execute workload

Extract results

Application's source code (C language)

Preparation Phase Execution Phase

Figure 3.6: Software fault injection flow [11].

In execution phase each of the patch files generated will be applied once at a time
and the compiled code with the patch will be executed according to the user-
defined workload. At the end of running the workload for each patch applied
metrics are stored.

3.6 Technologies

This section presents the study conducted on some of the most relevant tech-
nologies for both frontend and backend development. Section 3.6.1 presents the
various technologies that were taken into consideration for frontend develop-
ment. Section 3.6.2 discusses technologies for developing a backend module.
Section 3.6.3 details the study conducted on the use of Docker containerisation
technology.

3.6.1 Frontend technologies

In order to develop a frontend component, it is necessary to make an analysis of
the various technologies currently available that allow the development of fron-
tend applications in order to validate which technology best suits the purpose.
From the various possibilities three tools were extracted, Angular.js, React.js and
Vue.js for presenting a great relevance in the frontend development community,
being used by well-known companies such as Google, Facebook, GitLab, among
others, [29, 32, 63]. Table 3.5 presents a brief summary of the three technologies.

32

State of the art

Angular

In 2016, Google created Angular to address the gap between increasing demands
for technology and traditional strategies that produced performance. It is a frame-
work based on TypeScript. Angular is the most mature of the studied frame-
works, having a complete package with many features. Angular’s learning curve
is steep, and new developers may be put off by its concepts. It is a good choice
for companies that have many developers and those that already use TypeScript
[15, 26, 32, 63].

React

React was created at Facebook to address code maintainability problems caused
by the app’s continual inclusion of new features and adopts the JavaScript lan-
guage. React can be considered as a mature technology and has a large number
of contributions from the community. It is lightweight because it does not contain
any inbuilt libraries, i.e. the programmers only import the necessary libraries and
this allows some simplicity and flexibility for new programmers [15, 26, 32, 63].

Vue

Vue is the newest technology compared to the previous ones and like React adopts
the JavaScript language. Vue runs on top of the Angular template and adopts Re-
act policies which makes it incredibly lightweight. Because it follows identical
approaches to the two aforementioned technologies it has been widely adopted
by the developer community. However, Vue’s simplicity and flexibility has draw-
backs, it allows poor code, making debugging and testing difficult [15, 67].

Angular React Vue
Written in TypeScript JavaScript JavaScript
Advantages - Complete library - Lightweight - Lightweight

- Highly testable - Frequently up-
dated - Tiny and fast

- Strong commu-
nity

- Good for begin-
ners

- Friendly to be-
ginners

Disadvantages - Steeper learning
curve

- Requires library
support

- Limited commu-
nity

- Low perfor-
mance

- Complexities of
learning JSX syn-
tax

- Language barri-
ers exist for plu-
gins and compo-
nents.

General com-
munity evalu-
ation

Medium-High High High

Table 3.5: Comparison of frontend technologies.

33

Chapter 3

3.6.2 Backend technologies

This section aims to show the various technologies available for developing a
backend module. As the ucXception framework is written in Python it was im-
portant to find a technology that could integrate with it. The most popular tech-
nologies are Django REST framework, Flask-RESTful and Falcon [4, 8]. Table 3.6
presents a brief summary of the three technologies.

Django REST framework

Django REST framework is the oldest, most mature and complete toolkit to create
a web Application Programming Interface (API). Developers can use the exten-
sive and good documentation to learn how to work with the framework. Further-
more, this framework is trusted by popular organizations like Red Hat, Mozilla,
and Heroku [4, 8, 16].

Flask-RESTful

Flask is newer when compared to Django. Developers use Flask Restful for cre-
ating an Representational State Transfer (REST) API quickly. With Flask, it takes
only a few lines of code to get started making an API. It offers multiple data
representations like Extensible Markup Language (XML), CSV, and HyperText
Markup Language (HTML). The Flask API is easy to learn, and the documenta-
tion is excellent [4, 8, 21].

Falcon

Falcon provides a framework for creating high-performance, reliable, and scal-
able application backends and microservices. Using Hyper Text Transfer Protocol
(HTTP) and REST architecture styles, Falcon creates a clean design. By providing
a debugger for development, the REST framework simplifies the development
process substantially [4, 8, 19].

3.6.3 Docker

Docker is an open platform for building, running, and managing containers on
servers and the cloud. The Docker platform allows to package and run applica-
tions in a loosely isolated environment called a container. Security and isolation
allow to run multiple containers simultaneously on the same machine. It is con-
venient to work on containers since they are lightweight, contain all the necessary
components, and can be easily shared with others.

In order to understand and use Docker it is essential to know basic objects such
as images and containers. The two objects can be defined as “an image is a read-
only template with instructions for creating a Docker container” and “a container

34

State of the art

Django REST Flask-RESTful Falcon

Advantages
- Extensive and
good documenta-
tion

- Very lightweight - Faster perfor-
mance

- Active commu-
nity support

- Decorator for
data formatting

- It comes with de-
bugger

Disadvantages
Lack of conven-
tions and steep
learning curve

May not perform
too well under
heavy load

Limited commu-
nity

Community
evaluation High High Medium

Table 3.6: Comparison of backend technologies.

is a runnable instance of an image” [17], i.e., an image defines a container, as well
as any configuration options provided when it is created or started. A Dockerfile
is used to define the steps required to create an image and run it.

Docker Hub is a service provided by Docker to find and share container images
with users. It works as an image repository and is one of the largest worldwide.
Being very practical for both the publisher and the consumer, this service is used
to publish the images created during the development of this task. Details of how
it was used can be seen in the Section 5.4.2.

Docker architecture

A Docker architecture uses a client-server model (Figure 3.7) which consists of
various components: Docker daemon, Docker clients, and the Docker Registry/Hub.

CLIENT

Docker daemon

Docker Host

Containers Images

Registry

Figure 3.7: Docker architecture diagram [17].

35

Chapter 3

The Docker Daemon manages Docker objects such as images, containers and vol-
umes (persists data generated by and used by Docker containers), and does the
heavy lifting of building, running, and deploying Docker containers. To manage
Docker services, a Daemon can communicate with other daemons.

The Docker Client allows users to interact with Docker. If the Docker Daemon
is running on a remote host, the Docker Client can connect to it remotely or re-
side on the same host. The Docker user can use commands on the Docker Client
terminal to communicate with one or more Docker Daemon through REST API
requests.

A Docker Registry stores Docker images. Docker registries are assumed to be
repositories of images that can be stored and downloaded. There are two types
of registries in the Docker: public Registry, include Docker Hub, and private Reg-
istry, normally used to share images within the enterprise.

36

Chapter 4

Requirements

One of the most important stages of the development process of a system is ex-
tracting requirements and the identification of user needs. Specifying correctly
what the system should do and satisfy the needs of the users is fundamental to
the success of the project. This process is the first step to be taken to improve the
framework’s usability.

Thus, the chapter presents the tools used for gathering requirements, starting
with user stories (Section 4.1), then a complementary requirements gathering
technique such as mockups (Section 4.2), define functional requirements (Sec-
tion 4.3) and non-functional requirements (Section 4.4).

4.1 User stories

One of the aims of this work is to improve the framework’s usability so that not
only experienced users but also less experienced ones can use it without too much
difficulty. It was decided to describe the functionalities of the framework accord-
ing to the user’s perspective. Through user stories it was possible to keep the
focus on the users.

User Story (US) is a lightweight method for quickly capturing the “who”, “what”
and “why” of a product requirement. A software product must meet Acceptance
Criteria (AC) in order to be accepted by a user. Thus, each user story is structured
as follows:

US: As a <type of user> I want to <goal/objective> so that <benefit/result>

AC: Given that <type of user> when <a specific action is performed> then <ex-
pect some result>

User stories are organised into four modules: authentication, menu, campaign
setup and campaign menu. Due to the large number of user stories, only a few
user stories that are considered the core of each module are presented. The re-
maining user stories are exposed in the Appendix A.

37

Chapter 4

1. Login into framework

• US-2: As a user I want to login into my account so that I can access my
campaigns and system functionalities.

• Acceptance Criteria: Given that I am a user when I write my creden-
tials and click to submit then the system will verify my credentials and
according to its response will allow me or not to login.

2. List campaigns

• US-5: As a user I want to be able to view my campaign history so that
I can review past campaigns and their results.

• Acceptance Criteria: Given that I am a user when I click to view history
then the system will display all my campaigns.

3. Choose fault injection tool

• US-10: As a user I want to choose which type of fault injection tool
(e.g., SW, HW, Virtualized) to use so that I can focus in a specific fault
type.

• Acceptance Criteria: Given that I am a user when I choose the fault
injection tool then the system will change tool corresponding to the
button pressed.

4. Display data

• US-26: As a user I want to analyse the results in an easily understand-
able format so that it is simpler and more straightforward to analyse.

• Acceptance Criteria: Given that I am a user when I select a finish or
ongoing campaign then the system will provide a consolidated report
of results.

4.2 Mockups

A mockup is a representation of a product in action, a graphic element, and is
often used for demonstration. It creates a clear description of what we want to
create, helps visualize an end goal and allows to represent the functionality of
a product in a visual way. The mockups were built based on the extracted user
stories as shown in the Appendix B. In order to validate the mockups, two ex-
perienced users in the field of fault injection (one teacher and one PhD student
that have used or are using fault injection and ucXception) gave their feedback.
Through user feedback it was possible to improve aspects that were less clear or
that were missing, thus the mockups presented are the final version. Table 4.1
presents the positive, negative and improvement aspects that were mentioned by
the users.

A brief explanation is given about what can be observed in each mockup cor-
responding to the user stories presented above. Regarding the US-2, Figure 4.1

38

Requirements

Positive
Statistics and chart pages are a very good approach for analysis;
Download raw data;
Use of breadcrumbs.

Negative
Unclear where to define workload parameters;
Some misleading terms;
It is only possible to upload files.

Improvements Lack of some fields associated to components;
Information popup explaining each component of the fault injec-
tion tool;
Radio box is better than a dropdown for only two options;
Being able to define a path to a file.

Table 4.1: User feedback.

shows the login page where users can enter the platform providing their user-
name and password.

Login

https://www.ucXception/login

ucXception

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua.

Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt
mollit anim id est laborum.

Login

Email address

email@example.com

Password

Password

Remember me

Sign in

New in ucXception? Sign up

Forgot password?

Figure 4.1: Login page mockup.

The US-5 presented, which is depicted in Figure 4.2, shows a list of campaigns
that belong to a logged in user. It displays some of the basic campaign informa-
tion and allows to delete and cancel a campaign, as well as to filter the campaigns.

The US-10 shown is associated with Figure 4.3, which exhibits the first campaign
configuration page. The user can configure the campaign according to the re-
quirements by setting up a campaign based on the chosen campaign type, upload
the code/executable and configure the target host.

With reference to the US-26, Figure 4.4 shows basic statistics of a user selected
campaign, such as the percentage of crashes, incorrect output, peak duration of
golden runs and fault injection runs, among others. The chart allows the statistics
to be tracked over the course of the runs.

39

Chapter 4

24/5/2021

menu

https://www.ucXception/menu

ucXception

Search campaign

Campaign 1

Campaign 2

Campaign 3

24/5/2021

15/12/2020

1/8/2019

Name of campaign 	 	 Number of runs	 	 Campaign start date 	 	 Type of fault injection	 	 Execution	 	 Execution time(sec)

Software

Software

Hardware

Finished

Ongoing

Paused

Campaign 0 11/7/2021 FinishedHardware

50/100

3/10

30/30

50/50

DateName Type

Campaign 4

Campaign 5

Campaign 6

Campaign 7

Campaign 8

6/17/2021

1/12/2019

25/12/2021

Software

Software

Hardware

Finished

Paused

Paused

17/6/2021 FinishedHardware

100/100

3/20

50/50

50/50

Campaign 9

1/1

1000/1000

16/2/2019

10/3/2021

Hardware

Hardware

Finished

Finished

...

...

...

...

...

...

...

...

...

...

450

1500

45

750

750

1500

300

750

15

15000

New campaign

1 2 3

Figure 4.2: Menu page mockup.

campaignsetup

https://www.ucXception/campaignsetup

ucXception

Code/Input

deechost

System target

Campaign Choose targets

Type of fault injection

Software Injection

Project name

Campaign 10

Number of Runs (Injection)

10

0

Golden Runs

All operatorsFault operators

Missing function call

Missing if construct around
statements

Wrong value assigned to a
variable

Next

Campaign / Pre-Probes / Post-Probes / Parsers / Validators / Transformers / Summary

Define targets

SSELAB_host

experimental_host

Figure 4.3: Campaign configuration page mockup.

40

Requirements

Campaign

https://www.ucXception/campaign/1/statistics

ucXception

Campaign 1
 24/5/2021 Hardware Paused

Resume

3/10

Cancel

Mean peak duration

0.000543

Percentage of crashes

Min peak duration

0.024126

Max peak duration

0.056352

80%

75%

Percentage of incorrect output

Percentage of correct output

15%

Percentage of watchdog crashes

30%

Probability

Nº of runs

Mean peak duration

13.74777

Min peak duration

13.83577

Max peak duration

14.14282

Runs with injection

Golden Runs

Statistics Graphics Raw Data

Figure 4.4: Campaign menu page mockup.

4.3 Functional requirements

Based on the user stories defined in Section 4.1, it was possible to outline all the
requirements that the new framework should have in order to be considered a ba-
sic version of the product sufficient to appeal to consumers. For each requirement
an evaluation was made according to its priority following the Moscow method,
i.e. each requirement can present one of the following four types of priority:

• Must Have (M) - Defined as top priority, the requirements marked are nec-
essary to complete the project successfully.

• Should Have (S) - Defined as medium priority, the requirements are essen-
tial for the completion of the project, but are not strictly necessary.

• Could Have (C) - Defined as low priority, when left out of a project, these
requirements have less impact, but are still nice to have.

• Won’t Have (W) - Defined as lowest priority, requirements are determined
not to be a priority for the project timeline.

Table 4.2 presents the list of requirements for each module. Note that the imple-
mentation of the requirements implied modifications to the existing code of the
original ucXception as well as the development of new code, for example for the
graphical user interface.

41

Chapter 4

Module Requirement Priority User story

Authentication

Register (M) US-1
Login (M) US-2

Recover password (M) US-3
Change password (M) US-3

Logout (M) US-4

Menu

List campaigns (M) US-5
Filter campaigns (pagination and filters) (S) US-6

Order campaigns (C) US-7
Delete campaign (C) US-8
Cancel campaign (C) US-9

Campaign
setup

Choose the fault injection tool (M) US-10
Configuration of the fault injection tool (M) US-11

Configuration of the watchdog (C) US-12
Upload code and/or commands (M) US-13

Create target/host (M) US-14
Delete target/host (S) US-15
Create execution (M) US-16
Delete execution (M) US-17

Create component (M) US-[18-21]
Delete component (S) US-22

Campaign summary (C) US-23
Component summary (C) US-24

Execute campaign (M) US-25

Campaign
Menu

Display basic campaign data (S) US-26
View statistics (M) US-27
Build charts (M) US-28

View campaign raw data (C) US-29
Download campaign data (S) US-30

Pause campaign (C) US-31
Resume campaign (C) US-31

Table 4.2: Functional requirements of ucXception 2.0.

42

Requirements

4.4 Non-functional requirements

Non-functional requirements, also called quality attributes, are characteristics
that the system must have in addition to functionality. Quality attributes are
difficult to identify and describe moreover have a great impact on the system
architecture. They serve as constraints on the development of the system archi-
tecture. Quality attribute scenarios were used to describe quality attributes. The
following example explains the description of a quality attribute scenario.

• Source: Entity that generates the stimulus (a human being, a computer sys-
tem, or any other actuator);

• Stimulus: A stimulation situation requires a response when arriving at a
system;

• Artifacts: Artifacts that can be a part or parts of a system which are stimu-
lated;

• Environment: Certain conditions lead to stimulation. Depending on the
situation, the system may be under overload or under normal operation;

• Response: Responding to a stimulus results in a particular activity;

• Response measure: In order to test the requirement, the response must be
measured in some way when it occurs.

4.4.1 Security

Security is the ability of the system to protect data and resist unauthorised ac-
cess [51]. The framework must maintain confidentiality, integrity and prevent
outsiders from accessing other users’ data. Users will only have access to their
campaigns, i.e. the data associated to them.

Scenario 1 - Confidentiality

• Source: End user with access to the framework;

• Stimulus: Try to see other users’ campaigns;

• Artifacts: REST API and Database;

• Environment: Normal/Fully functional;

• Response: Blocks access to campaigns that do not belong to the logged in
user;

• Response measure: Probability of an attacker to discover the data.

43

Chapter 4

4.4.2 Usability

Usability assesses how easy user interfaces are to use and also refers to meth-
ods for improving ease-of-use during the design process. Enabling efficient use
of the platform and increasing the satisfaction and confidence that the user has
when performing actions are two of the many focal points for maintaining good
usability.

Scenario 2 - Increasing confidence and satisfaction

• Source: End user with access to platform;

• Stimulus: Create campaign;

• Artifacts: User interface;

• Environment: Run Time;

• Response: Positive or negative feedback. Change page content;

• Response measure: User interface response with latency of 0.1 seconds
maximum [24], type of feedback received, user satisfaction.

A user always wants a response from the web application to confirm his actions.
Through the study of Nielsen Norman [24] a response time in which the user feels
that the system is instantaneous and that no feedback is needed beyond showing
the result is 0.1 seconds.

Scenario 3 - Use system efficiently

• Source: End user;

• Stimulus: Wants to use system efficiently;

• Artifacts: User interface;

• Environment: Run time;

• Response: Distinct views with consistent operations (components like probes,
parsers, etc, are configured in the same way);

• Response measure: Task time, number of errors, amount of time spent.

Consistency between pages allows the user to make fewer mistakes and apply
the least amount of effort.

44

Requirements

4.4.3 Extensibility

Extensibility is a measure of the ability to extend a system and the level of effort
required to implement the extension [27]. Extensions can be performed through
the addition of new functionality or through the modification of existing func-
tionality. In this way, it is intended that it be possible to extend the number of
existing fault injection tools in the framework by inserting them through con-
tainerisation technology with minimal effort.

Scenario 4 - Extending the system with new features

• Source: User;

• Stimulus: Add new fault injection tool to the framework;

• Artifacts: System;

• Environment: Build Time;

• Response: The new tool is added and can be used;

• Response measure: Effort of the addition, added without compromising
the functioning of the framework.

4.4.4 Modifiability

The quality of being modifiable or capacity for modification is one of other as-
pects that is consider. The system must be able to tolerate changes, additions or
removals of components, such as endpoints related to the REST API.

Scenario 5 - Change functionality

• Source: Developer;

• Stimulus: Modify endpoint;

• Artifacts: REST API;

• Environment: Build Time;

• Response: Changed inputs or logic from the functionality;

• Response measure: Effort of the amendments, change without affecting the
functionality of the system.

45

Chapter 5

ucXception 2.0

This chapter presents ucXception 2.0, which is one of the main outcomes of this
thesis. ucXception 2.0 represents a significant improvement over the original ucX-
ception, namely, it adds a graphical user interface and enables a more practical,
simpler and quicker configuration process.

This chapter begins by exposing the architecture of the framework based on the
requirements collected (Section 5.1). Then the structure of the project is presented
focusing on the organisation of the development of the framework (Section 5.2).
This is followed by the modifications to the original framework (Section 5.3) and
the considerations for encapsulating it (Section 5.4). Finally, the various function-
alities developed are detailed (Section 5.5).

5.1 Architecture

This section describes the architecture of ucXception 2.0, comparing it to the orig-
inal architecture, and listing the aspects that were taken into account during its
planning. The purpose of this section is to show the decisions and reasons that
led to the architecture planning and the changes between the original architecture
and the ucXception 2.0 framework architecture. Moreover, the choice of technolo-
gies based on the needs shown in the architecture is presented and finally the
entity relationship diagram is explained.

5.1.1 Original architecture

The original architecture of the framework is represented in Figure 5.1. It con-
sists only of the Manager, which is the software that runs the campaigns to inject
faults, communicates with the hosts and writes the results in a Comma-Separated
Values (CSV) file. The user, in order to be able to use the Manager, must have pre-
vious knowledge about its structure and every new campaign must be created
manually by changing the source code. In the architecture shown in Figure 5.1,
it is presented how the Manager communication with a remote host is done. The

47

Chapter 5

communication is done by Secure Shell (SSH) in which the Manager sends infor-
mation related to the fault injection and receives information about the system
state. All extracted data related to campaign executions can be accessed by the
user, who then has to access the CSV file to perform its manual analysis.

Using the first version of ucXception was very difficult, complicated and required
increased effort. There are multiple disadvantages associated to this framework:

• Pre-installation of libraries and technologies to be able to use the frame-
work;

• Use of a CLI interface that is confusing and difficult to run campaigns for
unaccustomed users;

• Need to know minimally well the structure of the python language and
code. It involves a lot of effort to create new campaigns.

Write data to

[CSV]

Fault injection

information

[SSH]

System and
application
information

[SSH]

Manager

ucXception
[Software System]

Accesses

Remote Host
[Machine]

Probes

Fault injection

Hardware
Fault

Injection Tool
Application

Uses

User

Figure 5.1: ucXception original architecture.

A new architecture was planned in order to make the framework simpler, more
practical to use, reduce effort and based on the requirements raised previously.
The new architecture is presented in Section 5.1.2 which clarifies how the various
project elements will be organised and planned.

5.1.2 ucXception 2.0 architecture

ucXception 2.0 consists of two modules, the Frontend and the Backend, as shown
in Figure 5.2. The Frontend provides the users a graphical web interface in which
they will have access to the various functionalities of the framework, for instance,
create a campaign or filter campaigns.

48

ucXception 2.0

API Request

[JSON/HTTPS]

Send data

[Tuple of arguments]

Write data to

[CSV]

Writes to

[sqlite3]

Fault injection

information

[SSH]

System and
application
information

[SSH]

Manager

Reads from and writes to

[sqlite3]

Database

ucXception 2.0
[Software System]

Read campaign data from

[CSV]

Remote Host
[Machine]

Probes

Fault injection

Hardware
Fault

Injection Tool
Application

Backend
[Docker container]

Frontend
[Docker container]

Rest API

Uses

User

Figure 5.2: ucXception 2.0 architecture.

The Backend module consists of three software components: the Manager, a REST
API and a database. The Manager is the heart of the framework and is the soft-
ware component responsible for executing the fault injection campaign and stor-
ing its results. The Representational State Transfer (REST) Application Program-
ming Interface (API) is an application programming interface that conforms to
the constraints of the REST architecture style. The REST architecture simplifies
communication between computer systems on the web by providing standards
between them. The REST API exposes the functionalities of the Manager to the
Frontend module. The decision to create a API was based on the fact that a con-
troller for the Backend module was needed to manage and process the informa-
tion and platform access, for example to handle campaign listing requests from
a specific user or to handle access to the platform. The database stores user in-
formation, campaign configurations, components configurations, etc. Persisting
this information is strictly necessary to perform various functionalities and to be
able to maintain relationships between users and their data such that users have
access only to their information.

The controller, API, has access to the database, in which all data received by the
Frontend module will be stored and read. The Manager also has access to update
the campaign status to indicate whether the campaign is still running or if it has

49

Chapter 5

already ended. The Manager will update a row in the table that is only accessed
when a new entry is created by API, so there will be no conflict between two or
more entities trying to access the same table entry.

The Manager process is created by the controller and manages fault injection,
i.e. it creates campaigns and injects faults into the system. While in the origi-
nal framework we would have to run several instances of Manager manually for
each experiment campaign, the ucXception 2.0 API spawns a process by creating
a Process object and then calling it its start method. This way whenever a cam-
paign is required to run a new manager process will be created, allowing to have
multiple campaigns running at the same time. No differences arise in Manager
communication with a remote host between the initial architecture and the new
one.

The controller reads the fault injection results from the CSV files generated by the
Manager. The controller reads the corresponding file from a campaign and pro-
cesses the data by creating new data in order for the Frontend module to display
it graphically. Note that only the Manager writes the data collected after a fault
injection in CSV files, this is the method used by the framework for the simple
fact that it is faster and more organised. Only the name of CSV file associated
with the user will be saved in the database.

The two modules, Frontend and Backend, are separated into two different con-
tainers, so that the user can configure them on different machines. Applying
containerisation to the modules allows the modification and extensibility of the
framework to be faster and simpler. Containerization is explained in more detail
in Section 5.4.

5.1.3 Choice of technology for each module

Regarding the Frontend module, the features taken from the three technologies
presented in Section 3.6.1 allowed for an easier and simpler analysis. Angular
technology was put aside because it has a very steep learning curve despite the
many features it contains and the trainee needs to learn it. The most difficult
decision was between the React and Vue technologies as they were very identical.
The final decision was to use React, since it was a language that had already
been used several times by the trainee, knowing its limitations and characteristics
better.

Of the three technologies presented for the Backend module, Section 3.6.2, Django
despite being the most mature and most complete technology its learning curve
is steep and as the project requirements may change it is not advisable to use
this framework. Flask and Falcon are very similar in terms of performance and
simplicity. The decision was made to use the Flask technology because it is more
used and has more community support.

Regarding the choice of a technology for the development of the database, the
client required the use of a technology that packs the entire database into a single
file, SQLite [34, 52]. A decision of the client relies on fast and light engine, easy to

50

ucXception 2.0

back up and low complexity.

5.1.4 Entity relationship diagram

The concept of Entity Relationship (ER) diagrams is to represent how ”entities“
such as people, objects, or concepts are interconnected within a system [36]. The
ER diagram was used to design a relational database, as shown in Figure 5.3.

Figure 5.3: Conceptual diagram.

All the tables in the diagram have their own unique identifier, primary key. The
table user is constituted by the user’s personal data such as username, email,
password and a public id. The table reset_password is used mainly for verification
and validation of tokens generated when the user requests a password change.
The table stores the expiry date and the token. The user can only request one
token at a time, it is a one-to-one relationship.

The user can be associated to one or several campaigns and a campaign can be
associated to only one user, one-to-many relationship. Each entry in the campaign
table is composed of basic data such as a name, status, start as well as end date
and the type of campaign. It also composes more essential parameters such as
the path of the fault injection tool, the name of the CSV file and an identifier that
indicates which hosts will be used for the target system and the fault injector
target. Depending on the campaign it will be necessary to configure some of its
parameters and define the system that will be evaluated. There are two essential
tables for this purpose. The campaign_parameters table allows storing the user
input as a blob for each campaign parameter. The name must be the same as
the name of the corresponding campaign parameter. The file table allows storing
two types of data, either a file or a path to the file as a blob. The savedOnStorage
parameter indicates the type of value the user has chosen. The two tables have
a one-to-many relationship, a campaign can have several parameters and files
while these can only be associated with one campaign.

51

Chapter 5

A campaign must contain one or more executions and hosts while these are only
assigned to one campaign (one-to-many relationship). The table executions con-
sists of the name of the execution, the parameter that indicates whether to inject
faults, the number of runs to execute and the total number of runs executed at the
moment. The table hosts contains a type, local or remote, and if the type is remote
the domain and username parameters are used to define the remote host.

A campaign may have one or more components configured, but the component
is only associated with one campaign, constituting a one-to-many relationship.
The components table consists of a name given by the user and the name of the
chosen component. It contains a relation to the component_type table which indi-
cates the type of the component. Through a one-to-many relationship, an entry
in the component_type table can be associated with more than one component.
This is populated at API initialization by predefined values. A component to be
configured it is necessary to set values for some of its parameters, so the compo-
nents_parameters table stores these values as a blob. The name must be the same
as the name of the corresponding component parameter. The component still has
a connection to itself, one-to-one, because it may need another component to be
able to work. Some components require a host to be defined so the components
table contains a one-to-many relationship with the hosts table.

5.2 Project Structure

The organization and modular structure of complex and large projects is crucial
to be as extensible and readable as possible. In this way it will be possible to
modify code components that in a future enhancement or error correction of the
system will not cause substantial delays, for example when fixing bugs. This sec-
tion demonstrates how the organization was done in each module of the system,
Frontend and Backend.

5.2.1 Frontend module

Regarding the structure of the web application, it was taken into account the sepa-
ration of the various elements that form the various pages of the graphic interface.
In order to organize it as modular as possible, the project was divided into three
main folders: views, components and utils. Regarding the navigation between
pages and route distinction the application incorporates two files: route.js which
contains the defined paths for campaign creation, also essential for route distinc-
tion for the breadcrumb, and routePages.js which defines paths for authentication,
menu and analytic pages. The package.json shows the dependencies/libraries in-
stalled and the index.js represents the starting point for the project to run.

The views folder contains the application views, i.e., code related to the construc-
tion of the page view presented to the user. The components folder contains some
auxiliary components to the views, such as the header (top navbar), alerts, bread-
crumbs and footer (bottom bar). Finally, regarding the utils folder, it includes

52

ucXception 2.0

components such as modular creation of fill-in fields and files related to requests
via REST.

5.2.2 Backend module

Regarding the Backend it is divided into five main folders:

• api - Folder associated with the development of the REST API;

• fi-tools - Folder related to fault injection tools;

• framework - All Manager development is present in this folder;

• csv-files - All CSV files generated by Manager are saved in this folder;

• private-key - Folder containing all the keys to establish a connection via
SSH.

Most of the work was developing the API, however it was necessary to make
some improvements and adaptations to the framework so that it could be man-
aged by API. Firstly, the api includes a “main” file that allows the creation of
the REST application. The various endpoints necessary for the development of
the requirements were developed in blueprints allowing them to be modulated
and separated from the application’s main file. It also contains the database cre-
ation file and respective Structured Query Language (SQL) commands which en-
able reading and writing actions on the database. Besides includes the db type
file that corresponds to the database itself. The settings file defines configura-
tion variables needed to define global aspects of the application, for example, the
Uniform Resource Locator (URL) of the Frontend module, email server configu-
rations, among others. When initializing the API, the configuration variables take
the value of the environment variables that are set by the user in the .env file.

The fi-tools folder consists of several fault injection tools that already existed in
the original version of ucXception such as hardware fault injection, software in-
jection and virtualize hardware fault injection. The user can indicate the path to
his own tool or he can use the fault injection tools present in the framework.

Regarding the framework folder, it covers all the components explained in Sec-
tion 3.5.1, for example probes, parsers, among others. Whenever a user executes
a campaign a process is created by API in which it performs the main function of
the framework. This part of the framework suffered the most adaptations, as it
needed to create campaign and component objects and process several elements
associated to it using the information transmitted by the API.

Whenever a campaign has finished running, the CSV file generated by the Man-
ager is saved in the csv-files folder. In this way the API accesses this folder to read
the data when the user requests a data analysis. Finally the private-key folder al-
lows the user to put a personal key into the project so that the container generated
through containerisation can then use SSH communications with a remote host.
This procedure is explained in more detail in Section 5.4.1.

53

Chapter 5

5.3 Modifications to the original ucXception

One of the most important concerns regarding the framework is the way in which
its various components and campaigns would be translated both for the graphical
interface and for the API, i.e. to indicate that certain components and campaigns
are built in a specific way. To this end, for each existing component and campaign
in the framework, it is important that a JSON file with same name as the original
is created. Since one goal of the framework is to allow users to use their own
campaigns through it, the succeeding sections explain how these configuration
files were and can be built by future users and in Section 5.4 explains how it
can be added to the encapsulated framework. It is important to note that new
components must follow this approach otherwise they can not be used.

5.3.1 Campaign configuration file

Initially the user must define an association name, the name of the original cam-
paign file and the class name, as shown in Listing 5.1. These parameters are
important so that the framework can differentiate between campaigns and com-
ponents and also so that the Manager is able to instantiate them when building a
campaign. Note that if these three fields are not present in the file, the user will
not be able to use the campaign.

{
"campaign_name": "Sw fault experiment",
"campaign_file_name": "sw_faults_example.py",
"campaign_class_name": "SW_Faults_Example",

}
Listing 5.1: Initial campaign configuration file example

In the campaign configuration file the user can also use the configuration and pa-
rameters fields, as shown in Listing 5.2. The configuration field allows to indicate
campaign fields which require a path to a file, in which some required data must
be indicated, such as those listed below.

• name: Name of the parameter to be displayed in the graphical interface;

• regex: Regex used to accept a given file;

• require: Indicates whether it is a mandatory field to fill in.

The parameters field is a dictionary that constitutes the parameters of the cam-
paign. Each parameter within the dictionary is also a dictionary, which contains
the information required for the validation of the parameter and follows the fol-
lowing structure:

• type: String, integer, multiple (accepts multiple values from the values list),
single (accepts only one value from the values list);

54

ucXception 2.0

• default: Default value that the parameter takes;

• condition: Depending on the type of parameter it accepts the following
attributes:

– Type is string:

* minLength - Minimum string size;

* maxLength - Maximum string size;

– Type is integer:

* minValue - Minimum value;

* maxValue - Maximum value;

* step - Assist the graphical interface, if the user wishes to increase
or decrease the parameter value;

• values: Field required if type is multiple or single. List where each position
is a dictionary with a value and label (Listing 5.2);

• require: Indicates whether it is a mandatory field to be filled in.

{
"configuration": {

"app_path" : {
"name": "App path",
"regex" : "^[a-zA -Z0 -9_]+$",
"require": true,

}
},
"parameters": {

"watchdog_dur": {
"type": "integer",
"default": 30000,
"condition": {"minValue": 0, "maxValue": 100000,

"step": 1},
"require": true

},
"patch_files":{

"type": "multiple",
"require": true,
"values": [{ "value": "MFC", "label": "MFC" }, {

"value": "MIA", "label": "MIA" }]
}

}
}

Listing 5.2: Campaign configuration file example

Finally, a text excerpt can be defined to help explain the user more about the
respective campaign, Listing 5.3.

55

Chapter 5

{
"information_help": "Campaign used for Software fault

injection ."
}

Listing 5.3: Information campaign configuration file example

5.3.2 Component configuration file

The initial part of the configuration file of a component is similar to the config-
uration file of a campaign, found in Section 5.3.1. Essentially what changes is
the name of the key for each field. Note again that without these three fields the
component cannot be used.

During the development of a component’s configuration file the developer must
pay attention to the parameters required for its creation. In total, four parameters
are provided, constructor, target, parameters and components_allowed, in which the
use of these parameters depends on the component to component as shown in
the following list:

• Probes: construtor, target, parameters

• Parsers: construtor

• Validators: No parameters required

• Transformers: target e components_allowed

The case presented in Listing 5.4 depicts a probe component which indicates that
it only requires three parameters as presented in the previous list.

{
"component_name": "Probe Logs",
"component_file_name": "probe_logs.py",
"component_class_name": "Probe_Logs",
"constructor" : ["local_dir", "wanted"],
"target": {

"display": "Target",
"require": true

},
"parameters": {

"local_dir": {
"type": "string",
"default": "",
"condition": {"minLength": 0, "maxLength": 50},
"require": true

},
"wanted": {

"type": "multiple",

56

ucXception 2.0

"values": [{ "value": "xen", "label": "XEN" }, {
"value": "linux", "label": "Linux" }],

"require": true
}

},
"information_help": "A simple probe that extracts logs

from the target system during the Post finish
phase."

}

Listing 5.4: Probe component configuration file example

The parameters field is configured in the same way as explained in Section 5.3.1.
The constructor indicates how the component is instantiated and varies between
probes and parsers. Regarding probes, the constructor is used to indicate to the
framework the order in which the parameters of the parameters dictionary should
be ordered during the instantiation of the component. Regarding parsers, the con-
structor must be a string, as shown in Listing 5.5. The constructor string may con-
tain the name of one of the parameters from the parameters dictionary, in which
the framework replaces the parameter’s name and the value assigned by the user
when using the graphical interface.

{
"constructor" : "[self.app_output, expected_len, ’

expected_md5 ’]"
}

Listing 5.5: Parser constructor example

The target indicates that the component can have an associated host. The user can
provide a name for display in the graphical interface and can define whether or
not the target is mandatory for building the component.

Finally, the components_allowed field is used only for transformers. This field al-
lows to indicate which components the transformer accepts, Listing 5.6. compo-
nent_type should be a component type specified in Section 3.5.1.

{
"components_allowed" : {

"require": true,
"values": [

{
"component_type": "preprobes",
"filename": "probe_sar.py"
}

]
},

}

Listing 5.6: Components allowed example

57

Chapter 5

5.4 Containerization

One of the goals is to encapsulate the ucXception 2.0 framework which can then
be made available so that anyone can easily and quickly configure it in their sys-
tem, thus, this chapter aims to show the possible functionalities of the chosen
technology and how it will be useful for this goal.

The technology used is Docker, as it is currently the most used, having an active
community, good documentation as well as examples and is used throughout the
development lifecycle for fast, easy and portable application development. Shar-
ing the application and running applications on the same machine or on different
machines are features that Docker enables with simple and quick configuration.

5.4.1 ucXception 2.0 containerization

Initially two Dockerfiles were created one to create the image for the Frontend
module and another for the Backend module. First will be explained all the com-
mands in order to build an image and later will be presented and explained in
detail the respective Dockerfiles of each component.

Some of the commands used are as follows:

• FROM - Sets the base image for subsequent instructions;

• COPY - The command copies new files or directories from the current client
directory to a destination path of the container file system;

• RUN - The intruction will execute any commands;

• CMD - Only need one instruction, if Dockerfile contains more than one then
only the last instruction will take effect. Specifies which command to exe-
cute inside the container to be executed;

• WORKDIR - The command sets the working directory for any previously
referenced statements that follow it in the Dockerfile;

• ENV - The instruction defines environment variables through a key-value
pair or a file;

• ENTRYPOINT - Using this command user can configure a container that
runs as an executable;;

• EXPOSE - During runtime, Docker receives instructions to expose the spec-
ified network ports.

Frontend containerization

At this point after a brief introduction to the basic commands to create a Dockerfile
it is possible to make an analysis of the essential commands to create an image

58

ucXception 2.0

of the Frontend module, represented by Listing 5.7. The comments present in the
Dockerfile help clarify each command beyond the following explanation.

Initially the base image is defined, Alpine, this image was chosen because it is
very light and the Frontend module does not need to make great computational
efforts. Then the name of the working directory is defined and the essential mod-
ules for the execution of the app in React, the package files that contain all the
necessary dependencies for the project and also the entire project are copied to
this directory. The instruction in line 13 performs the installation of the depen-
dencies previously copied. Subsequently it is defined which port will be exposed
from the container. The last command executes the instructions given to run the
app.

1 # pull the official base image
2 FROM node:alpine
3 # set working directory
4 WORKDIR /app
5 # add ‘/app/node_modules /.bin ‘ to $PATH
6 ENV PATH /app/node_modules /.bin:$PATH
7 # install application dependencies
8 COPY package.json ./
9 COPY package -lock.json ./

10 RUN npm i
11 # add app project
12 COPY . ./
13 #expose port
14 EXPOSE 3000
15 # start app
16 CMD ["npm", "start"]

Listing 5.7: Dockerfile for the Frontend module

Backend containerization

In order to explain the Dockerfile of the Backend module, the Listing 5.8 is pre-
sented and as it was done in the Frontend module it will be explained in detail
how this file was built.

The base image was first defined following the basic logic to create a Dockerfile.
In this case Ubuntu was defined, because the framework was built based on this
image. Then, some usefull packages for the framework are installed, such as
python. The working directory is set and all the project content is copied. It is
then installed some necessary dependencies for python, through a file.

One of the adversities encountered during the realization of the framework con-
tainerization was to find a way to allow the container to establish connection SSH
with a remote host. Whenever a container connected for the first time to a remote
host it implied the user to generate a key, i.e., it would not be practical for a user
to enter the container’s console and type his credentials to generate a key that
would be allowed by the remote host.

59

Chapter 5

In order to overcome this problem, the user should generate a key that is allowed
on the remote host and then associate that key to the container’s system-wide
configuration file, as represented in line 13. The execution of that line will specify
an identity file where its authenticity will be read. Line 14 gives the file premis-
sions to be read. Subsequently it is defined which port will be exposed from the
container. Finally, it executes the instructions given to run the application.

1 # pull the official base image
2 FROM ubuntu :18.04
3 # update and install essencial packages
4 RUN apt -get update && \
5 apt -get install -y python3 .8 python3 -pip python3

.8-dev ssh rsync
6 # set working directory
7 WORKDIR /app
8 # copy project to working directory
9 COPY . /app

10 # install essencial packages for python from a file
11 RUN pip3 install -r requirements.txt
12 # define
13 RUN echo "IdentityFile␣/app/private_key/chave.pem" >>

/etc/ssh/ssh_config
14 RUN chmod 400 /app/private_key/chave.pem
15 #expose port
16 EXPOSE 5000
17 # start app
18 ENTRYPOINT ["python3"]
19 CMD ["call_api.py"]

Listing 5.8: Dockerfile for the Backend module

5.4.2 Environment setup

In order to publish the images to Docker Hub the following procedures were
followed according to the Listing 5.9 sequence. First the image must be built
using the Dockerfile file providing an image name and a version tag. Secondly
define a label that will serve as the name for the repository and finally push the
created image to the Docker Hub. Note that these 3 commands were used in both
Frontend and Backend modules.

1 docker build -t [image :[tag]] .
2 docker tag [image:[tag]] username/repository:tagname
3 docker push username/repository:tagname

Listing 5.9: Environment setup pushing

Regarding the setup configuration, the user just needs to use the pull command
to retrieve an image from the repository. The user has to do it from both images,
Frontend and Backend. After that, the images are ready to use. In order to create

60

ucXception 2.0

a container based on those images, the user simply needs to perform the run
command.

Along with the run command it is mandatory to use the flag -e with a key-
value pair, REACT_APP_API_URL or FRONT_END_URL and the url of the back-
end/frontend module. The flag –publish allows to set the address and port of the
respective module.At the end of the command the base image is defined. The
least important thing that is up to the user to decide is to set a name for the con-
tainer, the –name flag allows to accomplish that.

1 docker pull pedroalmeida705/ucxception:webapplication
2 docker run -e REACT_APP_API_URL=http ://[URL BACKEND

]:[PORT]
3 --name ucxception -api
4 --publish [IP ADDRESS]:[PORT]:5000 pedroalmeida705/

ucxception:webapplication
5
6 docker pull pedroalmeida705/ucxception:framework
7 docker run -e FRONT_END_URL=http ://[URL FRONTEND]:[

PORT]
8 --name ucxception -web
9 --publish [IP ADDRESS]:[PORT]:3000 pedroalmeida705/

ucxception:framework
Listing 5.10: Environment setup pulling

5.4.3 Extending ucXception 2.0 container

By studying Docker technology a way was found that allows to add new files
to the framework, such as probes, fault injection tools (injectors), parsers, etc., in
the containers or images through commands and not through the upload of those
files by the Frontend module.

There are two possibilities, either the user only wants to insert in the container or
also insert in the image. It is advisable to insert in the image since there may be
some problem with the container and if it is necessary to delete it afterwards the
user must do the procedures again to insert a file inside the docker.

First the user must insert the new file into the container. Through the first com-
mand shown in Listing 5.11 the user get as output detailed information, such as,
container id, name, base iamge, etc, of all available containers. Then, second com-
mand, copies a file from a local folder to a given container, referenced through its
id, to a given folder. Finally, if the user chooses to add the file to the image,
simply use the third command to get the name of the image and its tag then ex-
ecute the commit command which creates a new image through the changes in
the container.

1 docker ps
2 docker cp [SOURCE PATH] [CONTAINER ID]:[DESTIANTION

PATH]

61

Chapter 5

3
4 docker images
5 docker commit [CONTAINER ID] [IMAGE]:[TAG]

Listing 5.11: Commands to add files to the container and image

5.5 Functionalities

This section will describe the functionalities developed for ucXception 2.0. The
goal will be to present which functionalities each page of the web application con-
tains and some implementation aspects. Table 5.1 shows an overview of the fea-
tures that have been developed. The presentation will follow a logical order from
the moment of authentication in the application to the analysis of a campaign’s
data. Regarding the number of endpoints, lines of code and files developed on
the backend, there were 25 endpoints equivalent to 1500 lines of code and a total
of 18 files. While in the frontend, 11 pages equivalent to 4500 lines of code and a
total of 35 files were developed.

5.5.1 Authentication

The authentication module includes the functionalities related with registering a
new account, signing in and recovering/changing the password. Features like
having an administrative control of who is allowed to register or blocking reg-
istered users were not implemented as they were not considered as functional
requirements of the project during the planning phase. Figure 5.4 shows 4 differ-
ent page forms: login, create account, recover password and change password.

Starting with the create account form, the user needs to provide a username, an
email and a password. The information provided by the user is checked syntac-
tically by the API and, if it is correct, a field is created in the user table in the
database, taking into account that the password will be stored in hash. A public
id associated to the user is also generated. In any user action, the user is identified
by its public id (which differs from the primary key of the table).

After creating an account, the user can enter the application providing the email
and password. The respective endpoint to login checks if the data entered are
correct and if there is a user with the credentials provided. If there is a user, a
token will be generated with the public id, with a secret key and an expiry date
of thirty minutes. Through the token the API is able to deny or allow the use of
certain endpoints by checking if the user is registered.

As for password recovery, it was initially necessary to configure a service for se-
cure testing of emails sent from the development environment, Mailtrap. Through
the email provided by the user, the API generates a message with a link with a
reset token and then sends it asynchronously. The generated reset token serves
to verify the user and and also has an expiry date like the API access token. It is
stored in the reset_password table in order to be able to create a new verification

62

ucXception 2.0

Module Requirement Priority Completed

Authentication

Register (M) Yes
Login (M) Yes

Recover password (M) Yes
Change password (M) Yes

Logout (M) Yes

Menu

List campaigns (M) Yes
Filter campaigns (pagination and filters) (S) Yes

Order campaigns (C) No
Delete campaign (C) No
Cancel campaign (C) No

Campaign
setup

Choose the fault injection tool (M) Yes
Configuration of the fault injection tool (M) Yes

Configuration of the watchdog (C) No
Upload code and/or commands (M) Yes

Create target/host (M) Yes
Delete target/host (S) Yes
Create execution (M) Yes
Delete execution (M) Yes

Create component (M) Yes
Delete component (S) No

Campaign summary (C) No
Component summary (C) No

Execute campaign (M) Yes

Campaign
Menu

Display basic campaign data (S) Yes
View statistics (M) Yes
Build charts (M) Yes

View campaign raw data (C) No
Download campaign data (S) Yes

Pause campaign (C) No
Resume campaign (C) No

Table 5.1: Implemented ucXception 2.0 requirements.

and validation layer of the token to achieve greater security. If the user accesses
the link, the user is directed to a page with the form shown in the lower right
corner of the Figure 5.4. On that page he can enter a new password. When the
user makes the request to change the password the token associated with the link
and the passwords are checked. If everything is correct the password is hashed
to the database, otherwise the password is not changed.

It is worth pointing out that each page of the web application, after a correct or
incorrect action by the user, presents alerts that help or clarify the user. For each
form it was necessary to create the respective endpoint in the Backend and the
page in the Frontend. In total four pages were created, as shown in Figure 5.4,
and six endpoints, listed bellow, were developed.

• POST: /register - Create user account;

63

Chapter 5

Figure 5.4: Login, register and password reset forms.

• POST: /login - Login to framework, generate access token;

• POST: /verify_login_token - Verify if access token is valid, basically to allow
the pages to be displayed;

• POST: /reset - Create reset token and send email to user;

• POST: /verify_reset_token/<reset_token> - Verify if reset token is valid, essen-
tially to allow the page to be displayed;

• PUT: /reset/<reset_token> - Change password.

5.5.2 Menu

The first page presented to the user after login is the menu page where the users
can see basic information related to their campaigns, as illustrated in Figure 5.5.
The user can filter campaigns by campaign name, execution name and campaign
type name and change the number of campaigns to display at once. To accom-
plish this functionality only one endpoint is needed, /campaigns with method
GET.

To view the campaign results in more detail, the user can click on the the button
associated with each row of the table, i.e. each campaign execution. The button
will redirect to the statistics page, Section 5.5.7. By using the “New campaign”
button, the user is redirected to the campaign creation page, Section 5.5.3.

64

ucXception 2.0

Figure 5.5: Menu page.

5.5.3 Create campaign

All data relating to the campaigns is received through an API endpoint, /cam-
paigns/information with method GET, in which it returns only the information as-
sociated with the campaigns. As demonstrated in Figure 5.6, two different types
of fields are displayed in the campaign creation page, configuration and parame-
ters. The configuration fields are associated to the general setup of the campaign,
like name, path to the injector, files to upload, while the parameters are related to
the more specific configuration of each campaign. Depending on the campaign
selected, the parameters displayed change. To aid the inexperienced user to com-
prehend what is expected from each field, a help box which triggers a pop-up
containing an informative message is used.

Figure 5.6: Create campaign page.

An endpoint was developed in order to create the campaign, /campaigns with
method POST. This endpoint is one of the most complex as it needs to perform
several types of verification, syntax of the parameters, check if the type of the
parameter corresponds to what is accepted by the campaign and perform verifi-
cation of the files uploaded by the users. Through the information received by
the setup fields a new entry is created in the campaign table. For each parameter
that corresponds to the campaign, an entry is created in the campaign_parameter

65

Chapter 5

table. The user can either upload a ZIP file or define a file path that will be stored
in the file table.

5.5.4 Create execution

One of the most important configurations of a campaign are the executions. An
execution defines how many runs will be executed and if faults will be injected or
not. Thus, the user can create several executions with a varied number of runs. A
table in Figure 5.7 is displayed to the user which shows all the runs created and
allows the user to delete any undesired executions. The user cannot proceed with
the creation of the campaign without any configuration of an execution, which
will subsequently fail to run. In total three endpoints were implemented as can
be seen in the following list:

• POST: /campaigns/executions - Create execution by adding a new entry to the
execution table;

• /campaigns/executions/<campaign_id>

– GET - Return all the executions from a specific campaign;

– DELETE - Delete an execution from a specific campaign.

Figure 5.7: Create execution page.

5.5.5 Create host

A campaign needs to have a defined host either to run on or a target for the
fault injection tool. Therefore, the user needs to choose whether the target will
be used to run the campaign and/or will be to define the location of the fault
injection tool. The user can choose a local or remote target, if choose a remote
target then two fields are provided to fill in with the target details, like domain
and username, if choose local the application automatically sets the value to local.
The target configuration can be seen in the card to the right of Figure 5.8.

66

ucXception 2.0

Figure 5.8: Create host page.

The user can configure multiple targets as some of the targets can be used for
components, Section 5.5.6. The Figure 5.8 table shows a configured target and
if the user has made a mistake configuring a target or does not want to use that
target the user can delete it. Thus, to perform these features, there are three end-
points:

• POST: /campaigns/hosts - Create target by adding a new entry to the host
table;

• /campaigns/hosts/<campaign_id>

– GET - Return all the targets from a specific campaign;

– DELETE - Delete a target from a specific campaign.

5.5.6 Create component

For each component a page is rendered with information corresponding to it,
from pre-probes to transformers. Similarly to campaigns, all information related
to components is returned by the API. The page is divided into 3 sections, as
shown in the Figure 5.9. Each section and its essential endpoints will be ex-
plained, starting from user components to the configuration of a component.

The first section displays all the components that the user has already created.
In Figure 5.9 no component had been created yet, while in Figure 5.10 there are
already two components configured by the user. The endpoint, /components/user/
<campaign_id> with method GET, is designed to return the components table by a
particular campaign and a user.

The second section, which is the element positioned in the middle of the page,
presents the various components that exist for each component type. The names
of the various components are displayed using the /components/<component_type>
endpoint with method GET, where the type of component must be specified.
Through the radiobox the user can select a component to configure.

67

Chapter 5

Figure 5.9: Create component page.

The third section displays fields for the user to configure the component, which
is only displayed after the user selects the component. The endpoint /compo-
nents/<component_type> /<component_choice> with method GET is used to obtain
the information regarding these fields, in which it is necessary to specify the type
of the component and the component chosen by the user.

However, there is an exception in the case of transformers, Figure 5.10, because
there are components that depend on other components, i.e., if the user does not
configure them previously, it will not be allowed to configure certain transform-
ers.

Figure 5.10: Page to create a transformer that is not valid.

The endpoint /components with method POST was developed to create the compo-
nents. The logic behind this endpoint is similar to the creation of campaigns, since
it is also necessary to check that all the parameters received are in accordance with
the chosen component. Initially a new entry is generated in the components table
and for each parameter a new entry will be created in the component_parameter
table.

68

ucXception 2.0

5.5.7 View campaign statistics

After the campaign has been executed the user can access the results analysis
page, Figure 5.11, from the menu. The statistics page presents an analysis of the
results obtained by the execution of the campaign, such as information on the du-
ration of the runs with and without fault injection and the various modes which
have caused the failure, like incorrect output, percentage of crashes, among oth-
ers. The chart allows the user to check the percentage of crashes in each run.

Figure 5.11: Campaign statistics page.

For this purpose an endpoint, /campaign/<campaign_id>/statistics with method GET,
was implemented to return the information already processed. Through the csv
file generated by the framework, the data processing is simple. It is basically cal-
culated the minimum, maximum and average duration for the executions that
fault injection occurs and does not occur, and the several failure modes are also
calculated based on simple percentage counts. In order to create each line repre-
sented in the chart, an array of values is obtained from the same endpoint. There
are two lines, one represents the percentage of the number of crashes of all types
and the other represents crashes only by watchdogs for each run. Another type
of analysis can be added.

The user can also download the results as a CSV file. This is implemented by an
endpoint, /campaign/<campaign_id>/download with method GET, which with the
campaign id it is possible to find out which file corresponds to the user. Note that
it is verified if the campaign belongs to the user through the access token.

5.5.8 Build campaign charts

ucXception 2.0 provides the possibility for the user to create charts, Figure 5.12.
It is currently possible to generate two types of charts, linechart and barchart,
for any combination of values that have been extracted from the campaign csv
file. It then leads to the first endpoint used, campaign/<campaign_id>/columns with
method GET, which returns all the columns names in the file.

69

Chapter 5

Figure 5.12: Campaign charts page.

The user can choose values for the x and y axes from the diverse number of pos-
sibilities. To change the chart, the user only has to choose a different value from
the available dropdown boxes without having to click a button. The values of
the chosen axes are returned via the endpoint /campaign/<campaign_id>/chart with
method POST which for each chosen axis returns an array with the values of each
row in the file.

70

Chapter 6

Testing

Software testing is one of the most important steps in software development, al-
lowing to validate and verify if the product meets the expected requirements.
During software development human errors can cause defects and failures so the
testing process ensure that the software is defect free [49, 55].

This section focuses on the testing processes performed to the ucXception 2.0
framework. The first phase allowed testing the Application Programming In-
terface (API) since it is the core component and more susceptible to errors and, in
the second phase, it was carried out usability tests, since the focus of the devel-
opment of a new version of ucXception was to improve its usability.

6.1 Robustness testing

The first phase of testing conducted is to test the API regarding its robustness.
Robustness means that the system deployed or under development is operat-
ing well in normal or ordinary conditions [9]. In order to test robustness, it was
used a tool from another master’s dissertation, EvoReFuzz - Evolutionary REST
Fuzzer. It is a black-box tool for robustness testing of REST services using an evo-
lutionary algorithm. EvoReFuzz takes advantage of the elements that make up a
genetic algorithm, such as parent selection, crossover, mutation, fitness function,
and elitism, to generate valid and invalid requests that will be sent to the system
under test in an intelligent way.

Before setting up to run the tests, the tool required creating an OpenAPI specifica-
tion. RESTful APIs are exposed with OpenAPI via a standard interface, allowing
humans and computers alike to discover and understand their capabilities with-
out having access to source code or documentation [61]. The OpenAPI specifi-
cation was built using a library for Python and Flask that allows to simplify this
process, called APIFlask1.

The configuration of the framework and the EvoReFuzz tool were in different
domains, allowing remote access to the application to be tested through a practi-

1APIFlask Documentation in https://apiflask.com/.

71

https://apiflask.com/

Chapter 6

cal case. The setup was relatively straightforward due to the application of con-
tainerization to the framework allowing this process to be practical and effortless.
It was only necessary to start the Backend module container and configure exter-
nal router ports, not docker related, to be accessible by other domains. Table 6.1
presents the environment of the experiments conducted.

Component Description
Operating system Windows 10 Pro 10.0.19043

CPU AMD Ryzen 5 3600 6-Core Processor @ 3.59 GHz
RAM 16 GB
Disk 500GB BLUERAY SSD

Disk read speed 3000 (MB/s)
Disk write speed 1400 (MB/s)

Table 6.1: Experimental setup specification for robustness testing.

The requests generated by the tool are based on the OpenAPI specification. So,
for example, in case the accepted value is a string the injection of a faulty request
will be a value with random characters, special characters or even Structured
Query Language (SQL) injection expressions in order to create a failure in the
system. The test executed about 1200 requests per operation, i. e., for the 23
endpoints tested, 27600 requests were generated, which took about one hour and
thirty minutes. Table 6.2 shows some of the requests generated by the EvoReFuzz
tool that caused the system to fail.

Endpoint Body

C1 POST /campaigns/executions

campaign_id: -19
n_target_runs: -40894399
name: “2LLuqBq0Kl”
type: false

C2 GET /campaigns/executions/-21
C3 DELETE /campaigns/executions/5

C4 POST /campaigns/hosts

campaign_id: 32
campaign_target: true
fault_injector_target:
true
type: “GWyw”

C5 GET /campaigns/hosts/1042
C6 DELETE /campaigns/hosts/-63
C7 GET /campaigns?page_size=-532& search-

bar=3eoxSl &page=1155275
C8 POST /reset email: oJV}:0]6[,"Rr}5/"}
C9 GET /campaign/3/download
C10 GET/components/HaAl9hRxzqzpAvR
C11 GET /components/YRjZL6Ca/qH3Z8pBz
C12 GET /components/yks0f55/aeL5C/3

Table 6.2: Example of cases where the API has failed.

72

Testing

The analysis was done manually and essentially looked for operations that ended
with a status code of 500. This event was noticed in cases C9 to C12 whenever the
API tried to access a position of a dictionary that did not exist and lacked any pro-
tection. The operations that gave status code 200/202 were also analyzed with the
purpose of verifying if there was a missing validation or verification, therefore,
it was possible to detect errors in cases C1, C3, C4 and C6. The remaining cases
were detected when examining other types of status codes, i.e. it was checked
if the response matched the base response of API. The problems detected were
also due to the lack of verification and validation. As shown in Table 6.3 the most
common type of errors found were the missing validation of path parameters
and body parameters as well as the missing verification of the existing elements
in the database. It was also possible to analyze some status codes that were not
adequate to the type of error that originated. Note that all the detected errors
ended up being corrected to not compromise the operation of the API.

Case Problem

C1/C4
Bad validation of positive numbers;
Missing verification if the campaign with the given id existed;
Missing verification if the campaign with the given id belonged to the
user.

C2/C5 Missing validation of the campaign id.

C3/C6
Bad validation of positive numbers; It always returned status code 200
regardless of whether the element existed in the database;
Use of body in delete method is not good practice.

C7 Wrong validation of positive numbers.
C8 Missing validation of the user email;
C9 Missing verification if the campaign with the given id existed;
C[10-12] Missing validation and verification of the path parameters;

Table 6.3: List of problems encountered for each case.

6.2 Usability tests

As improving the usability of the framework was one of the goals, it was essen-
tial to plan tests to validate it and get feedback from potential users. The goals
of usability testing are to identify problems, discover opportunities for improve-
ment and learn about target user behaviour and preferences [42]. A usability test
plan was prepared after robustness testing had ensured that the API was as bug-
free as possible. This test will also allow discovering possible bugs in the web
application.

A total of 5 participants was chosen, as sources such [45, 56] indicate that only
5 participants are needed to discover most problems and from that number the
researcher would start seeing the same problems over and over again, wasting
time. The chosen participants who were considered as potential users of the

73

Chapter 6

framework were software engineering as well as electrical and computer engi-
neering students, thus allowing the focus to be on the target user.

6.2.1 Test procedure

The tests were carried out remotely to avoid taking up too much of the partici-
pants’ time and to be more convenient for them. The remote tests provided the
opportunity to test Docker’s configuration for remote accesses, ending up with no
problems regarding its configuration and functioning. The tests took on average
about half an hour. Each test started with a description of the ucXcpetion frame-
work, its disadvantages and an explanation of the new version. Subsequently,
some concepts that participants may not be as familiar with were explained and
participants were further asked for their consent to have the process recorded for
later analysis. In the analysis phase the time taken by participants to perform the
tasks and the number of clicks made were measured. In order to analyse the time
of each task in more depth, a larger number of participants would be necessary,
but it was decided to do this analysis as a complement.

Each participant was asked to perform eighteen different tasks:

1. Register an account;

2. Login;

3. Create a campaign;

4. Create executions/runs;

5. Create remote and local targets/hosts;

6. Remove the remote host;

7. Explain the ucXception SW Parser component;

8. Configure components ucXception fi parser and App Returncode;

9. Configure the SAR 2 CSV transformer;

10. Execute the campaign;

11. Search for a specific campaign;

12. Indicate the status of a specific campaign;

13. Indicate the average and total duration on faulty runs of a campaign;

14. Indicate the probability of crashes in run number 7;

15. Indicate the duration of the run 15;

16. Download the results;

17. Go to menu;

74

Testing

18. Logout.

After all the tasks have been completed, the participants were asked to fill in a
questionnaire about the experience and usability of the framework. The partici-
pants after the test asked to continue using the application not only to see if they
could find any bug but also because they were interested.

6.2.2 Test results

Table 6.4 shows the time taken from each of the participants and Table 6.5 shows
the performance from each of the participants in the usability tests. For each
task an expected value for its accomplishment is presented, so comparing the
values obtained from each participant, most of the tasks performed presented
satisfactory results. The number of clicks expected are the required to perform
each task and the time presented is the best possible scenario, i.e. the time was
calculated by the researcher. If the times deviate too much from the expected
values, it can be assumed that the usability of some component has problems
because participants were not able to perform in a timely manner.

The cells in the yellow coloured tables, indicate that there was a slight deviation
from what was expected, however this is not directly related to the usability of
the components associated with the task, but rather due to errors made by the
participants or the fact that they took longer to perform the tasks because they
did not understand the task well.

Task Expected User 1 User 2 User 3 User 4 User 5
T1 23 24 21 25 22 13
T2 12 14 14 15 14 15
T3 30 32 29 39 37 38
T4 28 30 32 26 35 22
T5 28 36 32 34 32 23
T6 3 3 3 3 3 3
T7 30 60 196 181 37 29
T8 20 23 17 28 23 23
T9 10 26 12 28 6 7

T10 2 2 2 2 2 2
T11 8 8 8 16 7 7
T12 8 10 9 19 8 9
T13 20 16 23 27 40 25
T14 6 7 7 13 12 6
T15 30 110 75 93 60 60
T16 2 2 2 2 2 2
T17 3 5 3 5 5 3
T18 3 3 3 3 3 3

Table 6.4: Time taken for each task performed by the participants.

75

Chapter 6

Task Expected User 1 User 2 User 3 User 4 User 5
T1 6 6 6 6 6 6
T2 3 3 3 3 3 3
T3 8 9 8 9 8 9
T4 9 9 9 9 13 9
T5 10 10 10 10 10 10
T6 1 1 1 1 1 1
T7 5 13 21 19 5 5
T8 6 6 6 6 6 6
T9 3 3 3 7 3 3

T10 1 1 1 1 1 1
T11 2 2 2 2 2 2
T12 1 1 1 1 1 1
T13 3 3 3 3 3 3
T14 3 3 3 3 3 3
T15 5 12 7 12 6 7
T16 1 1 1 1 1 1
T17 1 2 1 2 2 1
T18 2 2 2 2 2 2

Table 6.5: Number of clicks on each task performed by the participants.

Other cells are coloured red, indicating a discrepancy with the expected values,
which may be related to usability problems. With regard to the cells in red there
are two tasks that stood out negatively, T7 and T15. Participants showed diffi-
culties completing task T7 due to not being able to understand which page they
were on, allowing to understand that the problem was because of poor bread-
crumb clearness. Regarding task T15, participants have difficulty understanding
which page and what inputs to provide in order to complete it. In task T9 some
participants as they had not yet understood the functionality of breadcrumbs had
difficulty completing this task as it had some similarities with task T7. Lastly, in
task T17 there were no difficulties, but the participants tended to click on the top
left of the page, corresponding to the logo of the framework, rather than going to
the symbol of a house to return to the menu.

Post-Questionnaire

Following are some of the most relevant questions from the online questionnaire
that participants were asked to complete in the usability tests. One of the ques-
tions asked to the participants was whether they had ever used any type of frame-
work that injected faults and the majority of responses were that never used one,
so this question was ignored because it was not possible to make a comparison
regarding the usability of the other frameworks.

An analysis of the graphs shows that the overall experience of the framework was
good, however in the Figure 6.3 there were two scores 3 where participants were
keen to explain. The participants criticised that the most recent campaigns should

76

Testing

Figure 6.1: First question.

Figure 6.2: Second question.

Figure 6.3: Third question.

77

Chapter 6

Figure 6.4: Fourth question.

Figure 6.5: Fifth question.

be displayed at the beginning of the campaigns menu, some units were missing
in the graphs and in the construction of the graph the available parameters were
not organised and did not have a concrete name which made it confusing.

Figure 6.3 and Figure 6.5 allows to verify two of the non-functional requirements
in Section 4.4.2 regarding the consistency of the organization of the various com-
ponents and the speed of response by the graphical interface. Figure 6.3 received
a good rating overall and Figure 6.5 received an excellent rating. The final two
questions of the questionnaire allowed participants to express positive aspects
and what had not worked well. The positive aspects highlighted by the partici-
pants are:

• Well organised and clean sequence of steps;

• A lot of information to configure and choose that is well organised;

• The use of graphics is professional and practical;

• Graphics were responsive and beautiful;

• Graphical interface appealing and simple to use;

• The campaign creation flow is very intuitive and gives a sense of progress;

• The amount of data made available by the tool to analyse the results;

• Very fast application performance with very little latency.

78

Testing

The negative aspects are listed below:

• Lack of help for less experienced users;

• A bug in the transformers’ components;

• Complicated to know which page the user is on by the breadcrumb dis-
played;

• The organisation of the data to be seen on the graph, as there is little de-
scriptive text about each input parameter;

• The data in the selects to build the graph should be arranged alphabetically;

• Clicking on the logo in the top corner should take the users to the home-
page;

• The graphs are missing units;

• On the home screen the most recent runs should appear first, i.e. in de-
scending date order.

6.2.3 Test conclusions

Overall, participants were able to perform the tasks efficiently, with some ex-
ceptions, e.g. task T7 and T15 where some features were not perceptible. The
organisation of the information both in the menu and on the graph creation page
should be improved as well as other simple details.

Despite the negative aspects mentioned, the participants were able to understand
the functionality and purpose of the framework, as shown in Figure 6.1 all par-
ticipants thought that this type of framework with graphical interface is useful
to simplify the effort applied by the users. The graphical interface managed to
fulfil its essential role in improving many of the weakest aspects of the previous
version, and simple usability aspects that ended up having an impact on user
performance should be improved.

79

Chapter 7

Towards accelerating fault injection
using failure models

Fault injection using fault models has been widely used for evaluating the de-
pendability of systems and to validate fault tolerance mechanisms. However,
despite being effective, it is a slow process because many faults do not have any
effect (i.e., do not cause any visible failure in the target system). Fault injection
using failure models may, hypothetically, be able of reproducing the same re-
sults, with similar levels of accuracy and representativeness, but at a fraction of
the time and cost. Although failure models have been used before, based on state
of the art, no study has verified whether the produced results are representative
nor that failure models bring a speed and cost improvement. Failure models can
reproduce both hardware failures, simulating crashes, disk failures, and software
failures, for instance, corrupting return values. This research can start a path of
possibilities related to accelerating fault injection through the application of fail-
ure models.

As the aim of this chapter it is intended to perform fault injection using fault and
failure models and compare the results obtained in order to verify and validate
the points mentioned above. ucXception 2.0 being a fault injection framework
and one of the focuses of the first objectives of this thesis is an advantage to use
it to execute campaigns and collect data through probes and parsers. The advan-
tages are: the fault injection framework is already developed, to which one has
access, it contains fault injection tools using fault models, its usability is better
than its previous version making the framework simpler to use and its extensi-
bility to integrate a new fault injection tool that uses a failure model and a new
parser.

For the experiments is used an experimental setup representing a cloud deploy-
ment, the Openstack, as the target system. OpenStack is a cloud operating system
in which everything is managed and provided through APIs with common au-
thentication mechanisms [47]. Openstack is divided into several services to allow
users to use the components according to their need, such as, compute, storage,
networking, orchestration, shared services, among others.

81

Chapter 7

7.1 Methodology

In this section will be presented in detail each step that led to a construction of
an experimental scenario that allowed collecting results for an analysis regarding
the use of two different fault injection models. It begins by presenting the setup
configured for the experiment (Section 7.1.1). In the following, the workload used
to test the system is exposed (Section 7.1.2). Subsequently, the models used in this
experiment are discussed and presented in detail (Section 7.1.3). The last section,
(Section 7.1.4), depicts how the output of the workload execution was processed.

7.1.1 Setup

In order to run the experiments a physical setup was configured. Its specifications
in terms of hardware and software are given in Table 7.1. The ucXception 2.0
was installed on the machine manually, thus without using any containerization
technology. The framework was configured on the machine without the support
of containerization, because the containerization step was not yet fully functional.

Component Description
Operating system Linux 4.14.89

Hypervisor Xen 4.11.1
CPU Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz

CPU(s) 4
Thread(s) per core 2

RAM 16 GB
Disk1 1T*7200 RPM
Disk2 10T*7200 RPM

Table 7.1: Experimental setup specification

Openstack contains a plethora of services that are optional. In our setup, the 3
most common Openstack services were configured. One service (Nova) supports
the creation of virtual machines and provides an API and tools for managing the
resources of the cloud. Another service (Neutron) provides "network as a service"
between interface devices managed by other Openstack services, such as Nova.
The hypervisor used in Neutron to host the virtual machines was KVM/Qemu
4.2.1. Finally, the third installed service (Cinder) is a block storage service and
is designed to present storage resources to end users that can be consumed by
Nova.

Figure 7.1 illustrates how the setup is configured and how fault collection and
injection is performed. Two pre-probes were configured to collect metrics regard-
ing the three configured services. For Nova, the Logs probe was used to extract
logs from the target system, in this case Openstack, and the Ping probe was con-
figured to perform pings on the three services to monitor the various systems.
ucXception 2.0 executes the workload and launch the probes for each service in-
stalled. While the workload is being executed, the framework manages the fault

82

Towards accelerating fault injection using failure models

Fault injectionWorkloadProbe

Nova CinderNeutron

TOOL-X

Probe
Probe

Figure 7.1: Experimental Setup.

injection process.

7.1.2 Workload

A workload automatically generates work tasks in a system. Its use is essential
when testing the behaviour of a system, whether through fault injection, stress
tests, among others. The workload used for the experiments was developed by a
PhD student with some necessary adjustments so that it would be easier to build
the parser that analyses the output generated by it.

The workload consists of several types of requests made to Openstack, which rep-
resent some of the most common operations that a system administrator might
perform, such as listing, creating and deleting flavors or instances. The workload
follows a sequential flow, starting by listing the flavors and instances of the mo-
ment, then it makes requests to create new elements and later it lists them again,
finally it deletes the elements that were created and finishes listing the flavors
and instances. The workload is simplistic and can be extended in the future to
perform other operations. The workload takes on average 130 seconds to finish.
In total performs 11 operations, although some are repeated more than once. The
operations are:

1. List all flavors (i.e., the resource configurations that can be used by the vir-
tual machines)

2. List all instances (i.e., virtual machines)

3. Create a new flavor with a certain configuration

4. Create a new instance using the previously defined flavor

5. Delete a flavor

6. Delete an instance

83

Chapter 7

7.1.3 Injection process

Regarding the injection process, it is defined what, where and when to inject
based on the setup and the goals of the study. The objective was to use fault
and failure models to emulate transient hardware faults affecting a process of
Openstack. Software and other kinds of faults were not considered.

Regarding the fault model, the single bit-flip fault model was used. This model
emulates soft errors affecting the CPU register file directly or other CPU com-
ponents (buses, ALU, FPU, etc.) indirectly. Both the bit and register are chose
randomly following an uniform distribution, once per run.

For the failure model, it injects crashes of a process, which is a common failure
mode obtained in fault injection experiments where a single bit-flip is injected in
a random CPU register. Other failure models can be evaluated, however initially
this mode was chosen because it is simple to implement and emulates a large
portion of failures.

A new tool was developed which randomly chooses and kills (by sending a
SIGKILL) a random process of nova-api, which is the service that receives the
operation requests and passes them on to the correct service to be handled. Due
to the extensibility of framework it was possible to add the new failure model
injection tool that was developed later to the framework.

One of the various Openstack-related services of the Nova VM was chosen to be
the target, as Nova is the central element of the setup. In the future it is planned
to conduct similar experiments in the other services of Nova and of the other
Openstack components. As the workload takes about 130 seconds to execute, the
injection time was set to the range between]10,100[seconds, chosen randomly.
The first 10 seconds correspond to the warmup and the last 30 seconds are the
cooldown, which allow the injected faults to manifest and cause failures. In total,
running a campaign of about 100 iterations takes about 34 hours, so 1000 runs
takes about 2 weeks.

7.1.4 Failure detection

The expected output from running the workload includes information about the
return code of each operation (which indicates whether the operation executed
successfully or not), the duration of its execution and, for some operations, the
output produced by the operation. These parameters allow a detailed analysis to
be made of the output during the experiments, with the aim of assessing whether
the result after fault injection remains as expected. For automatically performing
the data processing, a parser was developed and integrated into the ucXception
2.0. For each operation of the workload, the parser processes the workload output
and writes the following data to the Comma-Separated Values (CSV) file: Correct
or incorrect output and the respective output size, status code, total time taken to
perform the operation.

Another measure that must be considered, but that is not treated by the parser, is

84

Towards accelerating fault injection using failure models

the watchdog parameter that is set at the beginning of the campaign configura-
tion. As the execution of the workload takes about 130 seconds, a watchdog of 200
seconds was defined. This time is longer than the execution of the workload so
that the workload has time to finish by itself. If the workload takes longer, then
the watchdog terminates the process as to avoid waiting for a possibly hanged
process.

These metrics allow the results to be classified in two ways: 1) No Effect (the
workload executes seemingly without problem), and 2) Failed (at least one op-
eration returned a status code different from expected, thus signaling an unsuc-
cessful operation). Silent data corruption, despite important, was not included
because no occurrence was detected.

7.2 Results

A total of 2000 runs were executed, equally distributed between injection using
fault and failure models. Applying the classification scale resulted in 94% of No
Effect for the failure model and 98% for the fault model. Therefore there were
6% of failed runs when using the failure model and 2% with respect to the fault
model.

Figure 7.2 shows a comparison between the amount of operations that failed in
a single run for fault and failure models. It should be noted that the Y-axis is
zoomed in between 0 and 4.5%. An analysis of the results concludes that not
only failure models cause more failures, the generated failures also affected more
operations, on average.

1 2 3 5
Total failed operations

0

1

2

3

4

Pr
ob

ab
ilit

y
(%

)

Failure model
Fault model

Figure 7.2: Failed operations per run for both models.

Figure 7.3 shows the probability of an error occurring in each of the various oper-
ations of the workload. Once again the Y-axis is zoomed in. The graph shows that

85

Chapter 7

operation T7 has a higher failure probability when using failure models which
can be explained by being a more sensitive operation or by the moment of injec-
tion. For the failure model it can be noted that from T5 to T8 have practically
the same probability which also indicates that the failures are more concentrated
in those specific tasks. The two first and last operations did not experience any
failure likely due to the warmup and cooldown periods.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11
Task

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pr
ob

ab
ilit

y
(%

)

Failure model
Fault model

Figure 7.3: Failures per operation for both models.

To measure how the failure probability evolves when using failure models, Fig-
ure 7.4 plots the distance between the average failure probability obtained in each
run when using failure models against the final failure probability obtained using
fault models (i.e., 2%). For a more visual explanation the following formulas can
be observed.

FPf ailurej = 100 ∗
Totalerrorsj

j

FP =
Nruns

∑
j=1

FPf ailurej − 2%

It can be seen that the rise over the runs is very steep which indicates that the
probability of failure through the failure models over the runs manages to be
higher than the probability of failure at the final failure probability using fault
models.

Figure 7.5 shows the difference between failure probabilities across runs for each
model. While for the failure models one can observe the sharp rise mentioned
earlier, for the fault models it remains practically constant which indicates that
the number of runs that fail does not change significantly over the runs.

86

Towards accelerating fault injection using failure models

0 200 400 600 800 1000
Run

2

1

0

1

2

3

4

Pr
ob

ab
ilit

y
(%

)

Figure 7.4: Distance between failure model and oracle.

0 200 400 600 800 1000
Run

0

1

2

3

4

5

6

Pr
ob

ab
ilit

y
(%

)

Failure model
Fault model

Figure 7.5: Distance between failure model and oracle.

87

Chapter 7

7.3 Analysis & Limitations

The first analysis to emerge from the results is that the use of failure models pro-
duces more failures than the use of fault models, thus accelerating this type of
experimental campaign. As can be observed in Figure 7.5 for a low number of
runs the percentage of failure starts to be higher in the failure model, growing
continuously, while the fault model stabilises.

Another analysis is that the use of failure models also results in failures that differ
from those generated by injecting faults. In Figure 7.3, it can be seen that fail-
ure distributions do not conform to the same pattern across different operations.
For example, failure models caused failures that strongly affected operation T7
whereas fault models did not. Another example is in operation T4, which experi-
enced failures when using failure models but never when using fault models.

Despite the progress made in comparing fault and failure models, the present
study has several limitations that will be addressed in future work. First, this ex-
periment focuses on a specific setup, so the analysis cannot be extended to other
types of setups. The workload also imposes limited demands on the system’s
resources because it involves only a small but frequently used set of operations.
As part of future experiments, other workloads should be considered. Different
faultloads, such as different fault models, can also be considered. Lastly, the to-
tal number of experiments run is still relatively low, due not only to problems
encountered but also to lack of time.

88

Chapter 8

Conclusion

The ucXception framework allows to conduct fault injection campaigns easily,
with the goal of simplifying this procedure and providing data for analysis in an
organized way, however the poor usability of the framework becomes a prob-
lem when users with less experience in the area intend to use the framework.
Furthermore, ucXception is difficult to configure, as it requires more advanced
knowledge which users may not have.

To solve this problem, as first objective, ucXception 2.0 was developed, which in-
cludes a graphical user interface, thus simplifying the use of the framework. In
order to fulfil the first objective, requirements were initially raised through the
use of user stories, mockups, functional and non-functional requirements allow-
ing an analysis of the most important requirements. An architecture was planned
and an analysis of the technologies to be used was made. After the planning of
ucXception, the second phase of this objective involved the development of the
various functionalities raised. Two modules were developed, Frontend, repre-
sented by the implementation of the graphical interface presented to the users,
and the Backend, which was the brain, the central component, of the whole
framework. Furthermore, to make ucXception 2.0 accessible to multiple users
and to configure it easily and quickly on the users’ system, a containerisation
technology was applied, Docker, to allow further extensibility and modifiabil-
ity of the framework. The images created through Docker technology were later
published in a public repository, Docker Hub.

During development two problems were encountered which had a major impact
on the realisation of the new version of the framework. The first major difficulty
is related to being able to translate the various campaigns and components of
the framework to the graphical interface and backend in order to specify which
parameters are needed to build them. The second issue is related to the Docker
container being unable to access the target remote system. A solution has been
found for both problems, but it has caused scheduling to be delayed.

The framework was tested for robustness to ensure that the central component of
the framework would be as bug-free as possible, so it was possible to detect sev-
eral errors that affect the performance of the framework. Moreover, the usability
of the graphical interface was tested, thus being able to detect several problems.

89

Chapter 8

Despite the problems, the general opinion of the participants was mostly posi-
tive as the execution of the proposed tasks, which indicates that the application
fulfills its purpose.

For future work concerning the ucXception 2.0 framework, it is intended to im-
plement all the functional requirements that were not developed, to polish/im-
prove the code for future developers, to develop a queue for the execution of
campaigns so that the system is not overloaded and also to make the framework
save the results after each execution of a campaign. In addition, the most confus-
ing aspects of the framework’s usability pointed out in the usability tests should
be corrected.

Another stipulated objective was to develop a failure model that could accelerate
the process of fault injection into systems and be as representative as the fault
models, for this purpose experiments were performed with the two models and
later the results were compared and analysed. To do so, an experimental setup
was configured using three Openstack services, a workload was defined and a
parser was developed to collect statistics of the workload output, such as the
status code of the operations, the time elapsed and verification of the output of
each operation.

Previously, a study of the injection process was carried out, by which the type of
faults and failures to be injected was chosen. It was used an existing fault model
of the framework that allowed to inject single bit-flip faults. The failure model
created allowed to crash a randomly chosen process of the nova-api service, was
later added to the framework.

The results confirm that failure models can produce failures more frequently than
fault injection, however the resulting failures may differ from those that occur
when fault models are used. It is important to perform a similar fault injection
using both models in a more vast number of operations, setup and number of
runs in order to understand if the results are indeed representative. Further re-
search is needed before a strong conclusion can be taken regarding this matter,
which is planned as future work.

As planned, an article was written, as shown in Appendix C, which in a first
phase presents in detail the framework developed, as architecture, reference ex-
amples, and its benefits. The second part of the article presents the research com-
ponent carried out. It addresses the entire methodology of the applied process,
such as setup, workload, among others, and presents the results between the
failure and fault models and a respective analysis. Initially, only the writing of
the article was planned, however with the delay of the planning, an opportunity
was found to submitted to the IEEE Pacific Rim International Symposium on De-
pendable Computing (PRDC) conference. As the event has been postponed, we
are currently awaiting a response.

90

References

[1] ISO 9241-11. International organization of standardization. guidance on us-
ability. 1998., (Accessed May 20, 2022).

[2] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson. Goofi: generic object-
oriented fault injection tool. In 2001 International Conference on Dependable
Systems and Networks, pages 83–88, 2001.

[3] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie, E. Martins,
and D. Powell. Fault injection for dependability validation: a methodology
and some applications. IEEE Transactions on Software Engineering, 16(2):166–
182, 1990.

[4] Avi. 8 popular python frameworks to build api. https://geekflare.com/
python-frameworks-for-apis/, (Accessed November 30, 2021).

[5] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and
taxonomy of dependable and secure computing. IEEE Transactions on De-
pendable and Secure Computing, 1(1):11–33, 2004.

[6] Raul Barbosa, Johan Karlsson, Henrique Madeira, and Marco Vieira. Fault in-
jection, pages 263–281. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[7] J.H. Barton, E.W. Czeck, Z.Z. Segall, and D.P. Siewiorek. Fault injection ex-
periments using fiat. IEEE Transactions on Computers, 39(4):575–582, 1990.

[8] WINI BHALLA. How to build apis in python: 8 popular frameworks.
https://www.makeuseof.com/build-api-python-popular-frameworks/,
(Accessed November 30, 2021).

[9] Ricardo Camacho. Robustness testing: What is it & how to deliver reliable
software systems with test automation. https://www.parasoft.com/blog/
what-is-robustness-testing/, (Accessed August 17, 2022).

[10] J. Carreira, H. Madeira, and J.G. Silva. Xception: a technique for the experi-
mental evaluation of dependability in modern computers. IEEE Transactions
on Software Engineering, 24(2):125–136, 1998.

[11] Frederico Manuel Duarte Cerveira. Evaluating and improving cloud computing
dependability. PhD thesis, 00500:: Universidade de Coimbra, 2021.

[12] J. Christmansson and R. Chillarege. Generation of an error set that emulates
software faults based on field data. In Proceedings of Annual Symposium on
Fault Tolerant Computing, pages 304–313, 1996.

91

https://geekflare.com/python-frameworks-for-apis/
https://geekflare.com/python-frameworks-for-apis/
https://www.makeuseof.com/build-api-python-popular-frameworks/
https://www.parasoft.com/blog/what-is-robustness-testing/
https://www.parasoft.com/blog/what-is-robustness-testing/

Chapter 8

[13] J. Christmansson, M. Hiller, and M. Rimen. An experimental comparison
of fault and error injection. In Proceedings Ninth International Symposium on
Software Reliability Engineering (Cat. No.98TB100257), pages 369–378, 1998.

[14] Domenico Cotroneo, Luigi De Simone, Pietro Liguori, and Roberto Natella.
Profipy: Programmable software fault injection as-a-service. In 2020 50th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), pages 364–372, 2020.

[15] Shaumik Daityari. Angular vs react vs vue: Which framework to choose.
https://www.codeinwp.com/blog/angular-vs-vue-vs-react/, (Accessed
November 29, 2021).

[16] Django. The web framework for perfectionists with deadlines. https://
www.djangoproject.com/, (Accessed November 30, 2021).

[17] Docker. Docker overview. https://docs.docker.com/get-started/
overview/, (Accessed December 6, 2021).

[18] Joao A. Duraes and Henrique S. Madeira. Emulation of software faults: A
field data study and a practical approach. IEEE Transactions on Software En-
gineering, 32(11):849–867, 2006.

[19] Falcon. Falcon is a minimalist wsgi library. https://falcon.readthedocs.
io/en/stable/, (Accessed November 30, 2021).

[20] N.E. Fenton and N. Ohlsson. Quantitative analysis of faults and failures
in a complex software system. IEEE Transactions on Software Engineering,
26(8):797–814, 2000.

[21] Flask-RESTful. Flask-restful provides an extension to flask. https:
//flask-restful.readthedocs.io/en/latest/, (Accessed November 30,
2021).

[22] Cristiano Giuffrida, Anton Kuijsten, and Andrew S. Tanenbaum. Edfi: A de-
pendable fault injection tool for dependability benchmarking experiments.
In 2013 IEEE 19th Pacific Rim International Symposium on Dependable Comput-
ing, pages 31–40, 2013.

[23] Michael Grottke and Kishor S Trivedi. A classification of software faults.
Journal of Reliability Engineering Association of Japan, 27(7):425–438, 2005.

[24] Nielsen Norman Group. Response times: The 3 important limits. https://
www.nngroup.com/articles/response-times-3-important-limits/, (Ac-
cessed February 11, 2022).

[25] Mei-Chen Hsueh, T.K. Tsai, and R.K. Iyer. Fault injection techniques and
tools. Computer, 30(4):75–82, 1997.

[26] inVerita. Vue vs react vs angular: What frame-
work would you choose? https://medium.com/swlh/
vue-vs-react-vs-angular-what-framework-would-you-choose-5d77a3680b0d,
(Accessed November 29, 2021).

92

https://www.codeinwp.com/blog/angular-vs-vue-vs-react/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://falcon.readthedocs.io/en/stable/
https://falcon.readthedocs.io/en/stable/
https://flask-restful.readthedocs.io/en/latest/
https://flask-restful.readthedocs.io/en/latest/
https://www.nngroup.com/articles/response-times-3-important-limits/
https://www.nngroup.com/articles/response-times-3-important-limits/
https://medium.com/swlh/vue-vs-react-vs-angular-what-framework-would-you-choose-5d77a3680b0d
https://medium.com/swlh/vue-vs-react-vs-angular-what-framework-would-you-choose-5d77a3680b0d

References

[27] Niklas Johansson and Anton Löfgren. Designing for extensibility: An action
research study of maximizing extensibility by means of design principles.
B.S. thesis, University of Gothenburg, 2009.

[28] Pallavi Joshi, Haryadi Gunawi, and Koushik Sen. Prefail: a programmable
tool for multiple-failure injection. In OOPSLA ’11, volume 46, pages 171–188,
10 2011.

[29] Jumpgrowth. Title of citation. https://jumpgrowth.com/
top-10-web-development-frameworks/, (Accessed November 29, 2021).

[30] G.A. Kanawati, N.A. Kanawati, and J.A. Abraham. Ferrari: a flexible
software-based fault and error injection system. IEEE Transactions on Com-
puters, 44(2):248–260, 1995.

[31] W.-I. Kao, R.K. Iyer, and D. Tang. Fine: A fault injection and monitoring
environment for tracing the unix system behavior under faults. IEEE Trans-
actions on Software Engineering, 19(11):1105–1118, 1993.

[32] Dawid Karczewski. What are the best frontend frameworks to use in 2021?
https://www.ideamotive.co/blog/best-frontend-frameworks, (Accessed
November 29, 2021).

[33] Maha Kooli and Giorgio Di Natale. A survey on simulation-based fault in-
jection tools for complex systems. In 2014 9th IEEE International Conference
on Design Technology of Integrated Systems in Nanoscale Era (DTIS), pages 1–6,
2014.

[34] Jay A. Kreibich. Using SQLite. O’Reilly Media, Inc., 2010.

[35] Qining Lu, Mostafa Farahani, Jiesheng Wei, Anna Thomas, and Karthik Pat-
tabiraman. Llfi: An intermediate code-level fault injection tool for hardware
faults. In 2015 IEEE International Conference on Software Quality, Reliability and
Security, pages 11–16, 2015.

[36] Lucidchart. What is an entity relationship diagram (erd)? https://www.
lucidchart.com/pages/er-diagrams, (Accessed August 03, 2022).

[37] H. Madeira, D. Costa, and M. Vieira. On the emulation of software faults by
software fault injection. In Proceeding International Conference on Dependable
Systems and Networks. DSN 2000, pages 417–426, 2000.

[38] H. Madeira and J. DurÃ£es. Emulation of software faults by educated mu-
tations at machine-code level. In Proceedings 13th International Symposium on
Software Reliability Engineering, page 329, Los Alamitos, CA, USA, nov 2002.
IEEE Computer Society.

[39] Paul D. Marinescu and George Candea. Lfi: A practical and general library-
level fault injector. In 2009 IEEE/IFIP International Conference on Dependable
Systems Networks, pages 379–388, 2009.

93

https://jumpgrowth.com/top-10-web-development-frameworks/
https://jumpgrowth.com/top-10-web-development-frameworks/
https://www.ideamotive.co/blog/best-frontend-frameworks
https://www.lucidchart.com/pages/er-diagrams
https://www.lucidchart.com/pages/er-diagrams

Chapter 8

[40] E. Martins, C.M.F. Rubira, and N.G.M. Leme. Jaca: a reflective fault injection
tool based on patterns. In Proceedings International Conference on Dependable
Systems and Networks, pages 483–487, 2002.

[41] Rolando Martins, Rajeev Gandhi, Priya Narasimhan, Soila Pertet, António
Casimiro, Diego Kreutz, and Paulo Veríssimo. Experiences with fault-
injection in a byzantine fault-tolerant protocol. In Acm/ifip/usenix interna-
tional conference on distributed systems platforms and open distributed processing,
pages 41–61. Springer, 2013.

[42] Kate Moran. Usability testing 101. https://www.nngroup.com/articles/
usability-testing-101/, (Accessed August 19, 2022).

[43] S.S. Mukherjee, J. Emer, and S.K. Reinhardt. The soft error problem: an ar-
chitectural perspective. In 11th International Symposium on High-Performance
Computer Architecture, pages 243–247, 2005.

[44] Roberto Natella, Domenico Cotroneo, and Henrique S Madeira. Assessing
dependability with software fault injection: A survey. ACM Computing Sur-
veys (CSUR), 48(3):1–55, 2016.

[45] Jakob Nielsen. Why you only need to test with 5 users. https://www.
nngroup.com/articles/why-you-only-need-to-test-with-5-users/,
(Accessed August 19, 2022).

[46] Jakob Nielsen. Usability 101: Introduction to usability. https://www.
nngroup.com/articles/usability-101-introduction-to-usability/,
(Accessed May 20, 2022).

[47] OPENSTACK. Software. https://www.openstack.org/software/, (Ac-
cessed February 18, 2022).

[48] Thomas Ostrand and Elaine Weyuker. The distribution of faults in a large
industrial software system. ACM SIGSOFT Software Engineering Notes, 27:55–
64, 07 2002.

[49] Pradeep Parthiban. 7 reasons why software testing is important. https:
//www.indiumsoftware.com/blog/why-software-testing/, (Accessed Au-
gust 17, 2022).

[50] Gonçalo Pereira, Raul Barbosa, and Henrique Madeira. Practical emulation
of software defects in source code. In 2016 12th European Dependable Comput-
ing Conference (EDCC), pages 130–140, 2016.

[51] Matei Ripeanu. Software architecture in practice. https://people.ece.ubc.
ca/matei/EECE417/BASS/ch04lev1sec4.html, (Accessed February 17, 2022).

[52] Nicholas Samuel. What is sqlite? https://www.sqlite.org/index.html,
(Accessed December 1, 2021).

[53] Horst Schirmeier, Martin Hoffmann, Christian Dietrich, Michael Lenz,
Daniel Lohmann, and Olaf Spinczyk. Fail*: An open and versatile fault-
injection framework for the assessment of software-implemented hardware

94

https://www.nngroup.com/articles/usability-testing-101/
https://www.nngroup.com/articles/usability-testing-101/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.nngroup.com/articles/usability-101-introduction-to-usability/
https://www.nngroup.com/articles/usability-101-introduction-to-usability/
https://www.openstack.org/software/
https://www.indiumsoftware.com/blog/why-software-testing/
https://www.indiumsoftware.com/blog/why-software-testing/
https://people.ece.ubc.ca/matei/EECE417/BASS/ch04lev1sec4.html
https://people.ece.ubc.ca/matei/EECE417/BASS/ch04lev1sec4.html
https://www.sqlite.org/index.html

References

fault tolerance. In 2015 11th European Dependable Computing Conference
(EDCC), pages 245–255, 2015.

[54] Z. Segall, D. Vrsalovic, D. Siewiorek, D. Ysskin, J. Kownacki, J. Barton,
R. Dancey, A. Robinson, and T. Lin. Fiat - fault injection based auto-
mated testing environment. In Twenty-Fifth International Symposium on Fault-
Tolerant Computing, 1995, ’ Highlights from Twenty-Five Years’., pages 394–,
1995.

[55] Lakshay Sharma. Why is testing necessary? https://www.toolsqa.com/
software-testing/istqb/why-is-testing-necessary/, (Accessed August
17, 2022).

[56] Vadym Shliachkov. Sample size for usability study. part
1. about nielsen and probability. https://uxplanet.org/
sample-size-for-usability-study-part-1-about-nielsen-and-probability-efffecdbfa95,
(Accessed August 19, 2022).

[57] Nuno Silva, Ricardo Barbosa, João Carlos Cunha, and Marco Vieira. A view
on the past and future of fault injection. In 2013 43rd Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks (DSN), pages 1–2,
2013.

[58] Daniel Skarin, Raul Barbosa, and Johan Karlsson. Goofi-2: A tool for experi-
mental dependability assessment. In 2010 IEEE/IFIP International Conference
on Dependable Systems Networks (DSN), pages 557–562, 2010.

[59] Ningfang Song, Jiaomei Qin, Xiong Pan, and Yan Deng. Fault injection
methodology and tools. In Proceedings of 2011 International Conference on Elec-
tronics and Optoelectronics, volume 1, pages V1–47–V1–50, 2011.

[60] D.T. Stott, B. Floering, D. Burke, Z. Kalbarczpk, and R.K. Iyer. Nf-
tape: a framework for assessing dependability in distributed systems with
lightweight fault injectors. In Proceedings IEEE International Computer Perfor-
mance and Dependability Symposium. IPDS 2000, pages 91–100, 2000.

[61] Swagger. Openapi specification. https://swagger.io/specification/,
(Accessed August 17, 2022).

[62] TechSmith. Usability testing basics. http://webservices.itcs.umich.edu/
drupal/wwwsig/sites/webservices.itcs.umich.edu.drupal.wwwsig/
files/Usability-Testing-Basics.pdf, (Accessed May 20, 2022).

[63] Adarsh Tripathi. Best front end frameworks for web development
of 2021: The complete guide. https://medium.com/geekculture/
best-front-end-frameworks-for-web-development-of-2021-the-complete-guide-ec30098fd1d0,
(Accessed November 29, 2021).

[64] Timothy Tsai and RaviShankar Iyer. Ftape-a fault injection tool to measure
fault tolerance. In 10th Computing in Aerospace Conference, page 1041, 1995.

95

https://www.toolsqa.com/software-testing/istqb/why-is-testing-necessary/
https://www.toolsqa.com/software-testing/istqb/why-is-testing-necessary/
https://uxplanet.org/sample-size-for-usability-study-part-1-about-nielsen-and-probability-efffecdbfa95
https://uxplanet.org/sample-size-for-usability-study-part-1-about-nielsen-and-probability-efffecdbfa95
https://swagger.io/specification/
http://webservices.itcs.umich.edu/drupal/wwwsig/sites/webservices.itcs.umich.edu.drupal.wwwsig/files/Usability-Testing-Basics.pdf
http://webservices.itcs.umich.edu/drupal/wwwsig/sites/webservices.itcs.umich.edu.drupal.wwwsig/files/Usability-Testing-Basics.pdf
http://webservices.itcs.umich.edu/drupal/wwwsig/sites/webservices.itcs.umich.edu.drupal.wwwsig/files/Usability-Testing-Basics.pdf
https://medium.com/geekculture/best-front-end-frameworks-for-web-development-of-2021-the-complete-guide-ec30098fd1d0
https://medium.com/geekculture/best-front-end-frameworks-for-web-development-of-2021-the-complete-guide-ec30098fd1d0

Appendix

[65] usability.gov. Usability testing. https://www.usability.gov/
how-to-and-tools/methods/usability-testing.html, (Accessed May
20, 2022).

[66] E. Voas, F. Charron, G. McGraw, K. Miller, and M. Friedman. Predicting how
badly "good" software can behave. IEEE Software, 14(4):73–83, 1997.

[67] Vue.js. Comparison with other frameworks. https://vuejs.org/v2/guide/
comparison.html, (Accessed November 29, 2021).

[68] Hongyu Zhang. An investigation of the relationships between lines of code
and defects. In 2009 IEEE International Conference on Software Maintenance,
pages 274–283, 2009.

[69] Pingyu Zhang and Sebastian Elbaum. Amplifying tests to validate exception
handling code. In 2012 34th International Conference on Software Engineering
(ICSE), pages 595–605, 2012.

[70] Haissam Ziade, Rafic A Ayoubi, Raoul Velazco, et al. A survey on fault
injection techniques. Int. Arab J. Inf. Technol., 1(2):171–186, 2004.

96

https://www.usability.gov/how-to-and-tools/methods/usability-testing.html
https://www.usability.gov/how-to-and-tools/methods/usability-testing.html
https://vuejs.org/v2/guide/comparison.html
https://vuejs.org/v2/guide/comparison.html

Appendices

97

Appendix A

User stories

• Authentication module

– Register in framework

* US-1: As a user I want to have an account so that I can have my
experiences saved.

* Acceptance Criteria: Given that I am a user when I register in the
platform then the system will allow me to use the framework.

– Login into framework

* US-2: As a user I want to login into my account so that I can access
my campaigns and system functionalities.

* Acceptance Criteria: Given that I am a user when I write my creden-
tials and click to submit then the system will verify my credentials
and according to its response will allow me or not to login.

– Reset password

* US-3: As a user I want to reset password (e.g., possibly exposed,
forgotten password) so that I can maintain it secure or regain ac-
cess to the application.

* Acceptance Criteria: Given that I am a user when I select to reset
password then the system will allow me to write new password
and save it.

– Logout

* US-4: As a user I want to be able to logout from the application so
that I can change account or keep my account secure while I am
absent.

* Acceptance Criteria: Given that I am a user when I click to logout
then the system will clear all my authentication information and
change the page.

• Menu module

– List campaigns

99

Appendix A

* US-5: As a user I want to be able to view my campaign history so
that I can review past campaigns and their results.

* Acceptance Criteria: Given that I am a user when I click to view
history then the system will display all my campaigns.

– Search/filter for a campaign

* US-6: As a user I want to be able to search for a specific campaign
so that I can easily find it.

* Acceptance Criteria: Given that I am a user when I search for a
campaign then the system will give campaigns according to that
search.

– Order campaigns

* US-7: As a user I want to be able to order my campaigns by the
date or name so that I can save time searching for an old campaign.

* Acceptance Criteria: Given that I am a user when I click to order
my campaigns by the date or name then the system will display
the campaigns ordered.

– Delete campaign

* US-8: As a user I want to be able to delete a campaign so that I can
remove experiences that I do not need anymore.

* Acceptance Criteria: Given that I am a user when I click to remove
a campaign then the system will delete the campaign.

– Cancel campaign

* US-9: As a user I want to be able to cancel a campaign so that I do
not need to wait until the end.

* Acceptance Criteria: Given that I am a user when I click to cancel a
campaign then the system will stop permanently the campaign.

• Campaign setup module

– Choose fault injection tool

* US-10: As a user I want to choose which type of fault injection tool
(e.g., SW, HW, Virtualized) to use so that I can focus in a specific
fault type.

* Acceptance Criteria: Given that I am a user when I choose the fault
injection tool then the system will change tool corresponding to
the button pressed.

– Configure fault injection tool

* US-11: As a user I want to configure the parameters of fault in-
jection tool so that I can execute fault injection according to my
analysis.

* Acceptance Criteria: Given that I am a user when I configure the
fault injection tool then the system will launch the tool with that
specific configuration.

– Configure watchdog

100

User stories

* US-12: As a user I want to be able to choose between to calculate
automatically or to configure the time until the run stop so that the
run does not extend too much or does not stay block.

* Acceptance Criteria: Given that I am a user when I insert the value
or select the checkbox then the system will change the variable
according to given value or calculate it automatically.

– Upload program

* US-13: As a user I want to be able to upload source code or exe-
cutable so that I can evaluate the uploaded program.

* Acceptance Criteria: Given that I am a user when I upload the file
to the system and click to submit then the system will temporarily
save the file and change page.

– Create target/host

* US-14: As a user I want to be able to configure target system for
fault injection so that I can run experiences where it is more prac-
tical.

* Acceptance Criteria: Given that I am a user when I configure the
target host then the system will change is value and try to connect
when launch.

– Delete target/host

* US-15: As a user I want to be able to delete a configured target
system so that it is not used during the execution of a campaign.

* Acceptance Criteria: Given that I am a user when I click to delete
the target then the system will remove it from the campaign.

– Create execution

* US-16: As a user I want to be able to configure a campaign exe-
cution so that I can define how many times the campaign will be
executed.

* Acceptance Criteria: Given that I am a user when I configure the
campaign execution then the system will change is value and as-
sociate it with the campaign.

– Delete execution

* US-17: As a user I want to be able to delete a campaign execution
so that it is not used in the execution of the campaign.

* Acceptance Criteria: Given that I am a user when I click to delete
the execution then the system will remove it from the campaign.

– Choose probes

* US-18: As a user I want to choose the probes to be used so that I
can monitor the system when fault injection occurred.

* Acceptance Criteria: Given that I am a user when I select the probes
then the system will launch the probes during the fault injection.

– Choose transformers

101

Appendix A

* US-19: As a user I want to be able to transform data in a more
readable format so that I can understand the output from fault in-
jection.

* Acceptance Criteria: Given that I am a user when I select transform-
ers then the system will launch transformers after extracting data.

– Choose validators

* US-20: As a user I want to choose a validator to use so that I can
validate if the results are in an acceptance condition.

* Acceptance Criteria: Given that I am a user when I choose a valida-
tor or submit one then the system will launch the validator after
fault injection.

– Configure components

* US-21: As a user I want to configure the parameters of the com-
ponents (input variables, probes, tranformers, validators) used in
campaign so that I can define the fault injection campaign accord-
ing to my analysis.

* Acceptance Criteria: Given that I am a user when I insert the val-
ues in a form and click to submit then the system will change the
components configuration before they are launched.

– Delete component

* US-22: As a user I want to delete an undesirable component so
that it is not executed during the campaign.

* Acceptance Criteria: Given that I am a user when I click to delete
the component then the system will delete the component from
the campaign.

– Campaign Summary

* US-23: As a user I want to see a summary of the campaign so that
I can get an overview of the campaign.

* Acceptance Criteria: Given that I am a user when I finish configur-
ing the campaign then the system will display the campaign sum-
mary with all the configuration data.

– Component Summary

* US-24: As a user I want to see a summary of all the components
so that I can get an overview of the components.

* Acceptance Criteria: Given that I am a user when I finish configur-
ing the components then the system will display the components
summary with all the configuration data.

– Execute campaign

* US-25: As a user I want to execute the campaign after configuring
it so that I can get the results.

* Acceptance Criteria: Given that I am a user when I click to execute
then the system will run the campaign.

• Campaign menu module

102

User stories

– Display data

* US-26: As a user I want to analyse the results in an easily under-
standable format so that it is simpler and more straightforward to
analyse.

* Acceptance Criteria: Given that I am a user when I select a finish
or ongoing campaign then the system will provide a consolidated
report of results.

– View statistics

* US-27: As a user I want to see some statistics so that I have a more
detailed analysis of the campaign results.

* Acceptance Criteria: Given that I am a user when I choose to see the
statistics data then the system will process the extracted data and
display statistics relative to the runs and failure modes.

– Build charts

* US-28: As a user I want to be able to build my own charts so that
I can make an out of box analysis.

* Acceptance Criteria: Given that I am a user when I choose to create
graphs and provide the axis values then the system will process
the data and display the graph based on the axis values given.

– View campaign raw data

* US-29: As a user I want to be able to see the raw data extracted
from the campaign execution so that I can see the raw data without
download it.

* Acceptance Criteria: Given that I am a user when I choose to see the
raw data then the system will display the raw data as it is.

– Download data

* US-30: As a user I want to be able to download/save the extracted
and parsed data so that I can use it in reports or data analysis.

* Acceptance Criteria: Given that I am a user when I click on the
Downlaoad button then the system will start downloading a CSV
file.

– Pause/resume campaign

* US-31: As a user I want to be able to pause and resume a campaign
so that I can prioritize the campaigns according to circumstances
(e.g., target system is down for maintenance).

* Acceptance Criteria: Given that I am a user when I click to pause or
resume then the system will pause or resume the campaign.

103

Appendix B

Mockups

105

Appendix B

Login

https://www.ucXception/login

ucXception

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua.

Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt
mollit anim id est laborum.

Login

Email address

email@example.com

Password

Password

Remember me

Sign in

New in ucXception? Sign up

Forgot password?

Figure B.1: Login page.

106

Mockups

Signup

https://www.ucXception/signup

ucXception

E-mail@

Username

Signup

Password

Create

Re-Password

Already has an account? Login

Figure B.2: Registration page.

107

Appendix B

Reset

https://www.ucXception/passwordreset

ucXception

E-mail@

Password reset

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua.

Figure B.3: Password reset page.

108

Mockups

Reset

https://www.ucXception/passwordresetconfirmation

ucXception

Password reset confirmation

Password

Re-Password

Figure B.4: Password reset confirmation page.

109

Appendix B

24/5/2021

menu

https://www.ucXception/menu

ucXception

Search campaign

Campaign 1

Campaign 2

Campaign 3

24/5/2021

15/12/2020

1/8/2019

Name of campaign 	 	 Number of runs	 	 Campaign start date 	 	 Type of fault injection	 	 Execution	 	 Execution time(sec)

Software

Software

Hardware

Finished

Ongoing

Paused

Campaign 0 11/7/2021 FinishedHardware

50/100

3/10

30/30

50/50

DateName Type

Campaign 4

Campaign 5

Campaign 6

Campaign 7

Campaign 8

6/17/2021

1/12/2019

25/12/2021

Software

Software

Hardware

Finished

Paused

Paused

17/6/2021 FinishedHardware

100/100

3/20

50/50

50/50

Campaign 9

1/1

1000/1000

16/2/2019

10/3/2021

Hardware

Hardware

Finished

Finished

...

...

...

...

...

...

...

...

...

...

450

1500

45

750

750

1500

300

750

15

15000

New campaign

1 2 3

Figure B.5: Menu page.

110

Mockups

Campaign

https://www.ucXception/campaign/1/statistics

ucXception

Campaign 1
 24/5/2021 Hardware Paused

Resume

3/10

Cancel

Mean peak duration

0.000543

Percentage of crashes

Min peak duration

0.024126

Max peak duration

0.056352

80%

75%

Percentage of incorrect output

Percentage of correct output

15%

Percentage of watchdog crashes

30%

Probability

Nº of runs

Mean peak duration

13.74777

Min peak duration

13.83577

Max peak duration

14.14282

Runs with injection

Golden Runs

Statistics Graphics Raw Data

Figure B.6: Campaign statistics page.

111

Appendix B

Campaign

https://www.ucXception/campaign/1/graphics

ucXception

Campaign 1
 24/5/2021 Hardware Paused3/10

Parameters

App rcode

Register

Duration

Injection Time

Type of graphic

Bar Chart

Create

CancelResume

Choose rcodes

-11 0

Statistics Graphics Raw Data

Figure B.7: Campaign graphics page.

112

Mockups

Campaign

https://www.ucXception/campaign/1/rawdata

ucXception

Experience 1
 24/5/2021 Hardware Paused

-11

1

0

app_ rcode	 bit	 camp_name	 	 dataextract_dur	 	 datarxtract_start	 	 dataextract_stop	 	 datavalidate_dur	 	 datavalidate_start

2.86E-06

3.81E-06

6.91E-06

0.000325

0.000246

0.000152

163242.342

163897.786

170013.925

1.64E-06

1.64E-06

1.64E-06

1.64E-06

1.64E-06

1.64E-06

57

56

15

ai4eu_campaing

ai4eu_campaing

ai4eu_campaing

3/10

Resume Cancel

Statistics Graphics Raw Data

Figure B.8: Campaign raw data page.

113

Appendix B

campaignsetup

https://www.ucXception/campaignsetup

ucXception

Code/Input

deechost

System target

Campaign Choose targets

Type of fault injection

Software Injection

Project name

Campaign 10

Number of Runs (Injection)

10

0

Golden Runs

All operatorsFault operators

Missing function call

Missing if construct around
statements

Wrong value assigned to a
variable

Next

Campaign / Pre-Probes / Post-Probes / Parsers / Validators / Transformers / Summary

Define targets

SSELAB_host

experimental_host

Figure B.9: Campaign configuration page.

114

Mockups

campaignsetup

https://www.ucXception/campaignsetup

ucXception

Campaign

Next

deihost

root

System target

Username

Domain

Code/Input

Upload Code

Search File

Application Input

3000

Whatchdog duration (ms)

2000

Calculate Automatically

Campaign / Pre-Probes / Post-Probes / Parsers / Validators / Transformers / Summary

Define targetsChoose targets

Remote Host

Local Host

Create host

Upload scripts

Search File

Figure B.10: Campaign pre-probes configuration page.

115

Appendix B

PreProbes

https://www.ucXception/preprobe

ucXception

Probe SAR

Start Interval

1

Probe name

Second probe sar

System target

deechost

SSELAB_host

experimental_host

First probe sar

First probe perf

 Add probe

Probe SAR

Probe Perf

Campaign / Pre-Probes / Post-Probes / Parsers / Validators / Transformers / Summary

Next

Figure B.11: Campaign post-probes configuration page.

116

Mockups

PostPobre

https://www.ucXception/postpobre

ucXception

Probe Pidstat

Start Interval

1

All process children

False

deechost

System target

SSELAB_host

experimental_host

Process Name

Codeblocks

Probe name

Second pidstat

PidstatPidstat 1

Second pidstat

 Add probe

Campaign / Pre-Probes / Post-Probes / Parsers / Validators / Transformers / Summary

Next

Figure B.12: Campaign parsers configuration page.

117

Appendix B

Parsers

https://www.ucXception/parsers

ucXception

App Output MD5

Output Length

81245

MD5

01a86739f39ebb1e2802c84ec4ce7080

 Add parser

App Output MD5

Current Folder

App Output MD5

App Output MD5

Current Folder

App Return Code

Campaign / Pre-Probes / Post-Probes / Parsers / Validators / Transformers / Summary

Next

Figure B.13: Campaign validators configuration page.

118

Mockups

Validators

https://www.ucXception/validators

ucXception

Ensure Injection

No configuration needed

Ensure Injection

 Add validator

Ensure Injection

Next

Campaign / Pre-Probes / Post-Probes / Parsers / Validators / Transformers / Summary

Figure B.14: Campaign transformers configuration page.

119

Appendix B

Transformers

https://www.ucXception/transformers

ucXception

Pidstat to CSV

deechost

Probe(s)

Pidstat 1

Second pidstat

Pidstat to CSV

SAR to CSV

Save Output

 Add parser

Pidstat to CSV

SAR to CSV

Save Output

SAR to CSV

SAR to CSV

Campaign / Pre-Probes / Post-Probes / Parsers / Validators / Transformers / Summary

Next

Figure B.15: Campaign configuration summary page.

120

Mockups

Summary

https://www.ucXception/summary

ucXception

10

Number of Runs (Injection)

Campaign 10

Project name

Software Injection

Type of fault injection

Golden Runs

0

Fault operators

MIFS MIA MIEB MFC MLAC

Campaign Pre-Probes

Application Input

3000

Whatchdog duration (ms)

2000

System target

Parsers TransformersValidatorsPost-Probes

Execute

Campaign / Pre-Probes / Post-Probes / Parsers / Validators / Transformers / Summary

deechost SSELAB_host

Figure B.16: Campaign summary configuration page.

121

Appendix B

Summary

https://www.ucXception/summary

ucXception

Pre-Probes Parsers TransformersValidatorsPost-ProbesCampaign

First probe sar

First probe perf

Probe SAR Summary

Start Interval

1

System target

deechost SSELAB_host

Campaign / Pre-Probes / Post-Probes / Parsers / Validators / Transformers / Summary

Execute

Figure B.17: Campaign pre-probes configuration summary page.

122

Mockups

Summary

https://www.ucXception/summary

ucXception

Post-Probes Parsers TransformersValidatorsPre-ProbesCampaign

Pidstat Test1

Pidstat Example 2

Probe Pidstat Summary

Start Interval

1

Process Name

Codeblocks

All process children

False

System target

deechost SSELAB_host

Campaign / Pre-Probes / Post-Probes / Parsers / Validators / Transformers / Summary

Execute

Figure B.18: Campaign post-probes configuration summary page.

123

Appendix B

Summary

https://www.ucXception/summary

ucXception

Prasers TransformersValidatorsPre-ProbesCampaign

Probe Pidstat Summary

Output Length

81245

MD5

01a86739f39ebb1e2802c84ec4ce7080

Post-Probes

App Output MD5

Current Folder

App Output MD5

Campaign / Pre-Probes / Post-Probes / Parsers / Validators / Transformers / Summary

Execute

Figure B.19: Campaign parsers configuration summary page.

124

Appendix C

Article

125

TOOL-X: A framework for evaluating dependability
of software systems

(Regular Paper)

Abstract—Fault injection is a well-established technique in
the research community that consists of emulating faults using
representative fault models, in order to obtain dependability-
related data. Despite its potential, fault injection has been less
widely adopted outside of academia, due to the expertise required
to effectively conduct fault injection campaigns and to the lack
of tools that can be easily adapted to different target systems.
This paper presents TOOL-X, an easy-to-install, extendable, open
source framework for conducting and orchestrating the entire
lifecycle of fault injection campaigns without requiring expert
knowledge and using a graphical interface. TOOL-X supports
injection of software and hardware faults using realistic fault
models and can be applied to a variety of target systems,
including virtualized systems and complex cloud computing
deployments. This brings fault injection to modern environments
of cloud computing. In this paper, TOOL-X is used to conduct
a preliminary analysis on the usage of failure models as valid
alternatives to fault models, which may accelerate the injection
process without losing representativeness.

Index Terms—dependability, fault injection, software faults,
hardware faults, fault model, failure model, soft errors, tools

I. INTRODUCTION

The dependability of a system can be defined as “the
ability to deliver service that can justifiably be trusted” [1].
The concept encompasses several dependability attributes and
includes the notion of threats in the form of faults, errors and
failures. Faults can take various forms, but the community’s
focus revolves mostly around two types, which are hardware
and software faults, due to their significant probability of
affecting current software systems.

Hardware faults, particularly transient ones (i.e., soft errors),
are on the rise due to the increase in the number of hardware
components [2], [3], allied to the miniaturization of micropro-
cessors [4]–[7] and the usage of energy saving techniques [7]
(e.g., dynamic voltage and frequency scaling [8]). At the
same time, evermore complex software systems are prone to
residual software faults (i.e., bugs) that escape the software
testing phase [9]. Software fault rates have been shown to be
related with the total amount of source code lines, number
of changed lines, and complexity of the system [10], [11],
which are software features that have increased dramatically
in recent years, with the consequent rise in the number of
deployed bugs. Therefore, the evaluation of dependability and
its attributes is of utmost importance, not only to critical
systems but also to any software system.

To evaluate dependability, it is often necessary to perform
fault injection (FI), which is a well-established technique that
accelerates the process of fault activation in software systems

by deliberately emulating faults in a system. Through the usage
of fault injection, the generation of failure data is greatly
accelerated, producing in a few weeks the amount of data
that would otherwise have taken years. Despite fault injection
having been widely used for several decades, the reality is
that researchers and practitioners often develop their own fault
injection tools from scratch, since there is a limited number of
these tools in the public domain that are capable of being easily
applied to different types of systems, supporting multiple fault
models or possessing a low learning curve.

This paper presents the TOOL-X1 framework, which is
intended to provide quick setup of fault injection experiments,
while bringing support for fault injection in modern, state-of-
the-art computer systems, such as those that use virtualization
or belong to cloud computing deployments. TOOL-X caters
to both novice and experienced users in the field of fault
injection by including a simple and easy-to-use graphical
user interface where fault injection campaigns can be setup,
while at the same time allowing users to program complex
campaigns. Users have at their disposal a range of pre-made
components and templates that they can use in their campaigns
and are able to develop and integrate their own components
into the framework. Installation of TOOL-X has been made
simple thanks to the use of containerization technologies,
which enables its installation in just a few minutes using a
single command.

TOOL-X has been made open-source and the link to the
repository will be made available after acceptance. When
compared with existing fault injection tools, TOOL-X is one
of the few projects that natively supports fault injection in
virtualized and cloud computing systems, features a graphical
user interface and supports injection of both transient hardware
faults and software faults out-of-the-box.

Thanks to its ability to integrate new components and
tools, TOOL-X was used to investigate whether failure models
(i.e., actual failure/wrong outputs of components instead of
injection of faults) are a valid alternative to fault models
when performing fault injection. In other words, we researched
whether injecting failures (e.g., node crash, process crash,
process hang) yields results similar to those obtained using
representative fault models (e.g., single bit-flip in CPU regis-
ters) in less time. Our experiment focused on a popular cloud
computing setup based around Openstack and used a workload
composed by common operations that cloud administrators

1Due to double-blind, TOOL-X is used as a placeholder for the real name

1

perform. A new fault injection tool was developed to inject
failures, more precisely, process crashes, which was integrated
into TOOL-X. The results suggest that failure models can be
used to accelerate campaigns, however the resulting failures
appear to differ from those obtained when performing fault
injection using fault models, recommending some care with
the representativeness of experiments that use failures modes.

The contributions of this paper include:
1) An open-source framework for easily conducting fault

injection campaigns that supports different fault models
including models representative of transient hardware and
software faults;

2) A study on the viability of using failure models to
accelerate the fault injection process.

The structure of the paper is as follows. In Section II
we provide a detailed description of TOOL-X, including its
architecture, its components, the fault injectors, its frontend
and its installation process. Section III presents the preliminary
experimental evaluation of failure models as an alternative to
fault models, including a description of the setup, the results,
observations and limitations. Section IV provides a review
of the related work in the fields of fault injection tools and
Section V concludes the paper.

II. FRAMEWORK DESCRIPTION

The TOOL-X framework was developed with ease-of-use
and expandability in mind. It allows the novice user to
quickly run new fault injection campaigns using the graphical
interface, as well as the experienced user to design and
tailor a campaign with the minimum amount of effort and
knowledge on the details of the target system and on the fault
injection process. To achieve this, the TOOL-X framework
incorporates multiple out-of-the-box elements that implement
specific functionalities and that can be mixed and matched
according to the different needs.

TOOL-X is composed of two modules, Frontend and Back-
end, as shown in Figure 1. The Frontend module provides
a graphical web interface where the users have access to
the various functionalities of the framework. Through the
graphical interface the users can register and login, view
their campaigns, create new campaigns and perform a pre-
liminary data analysis. The Frontend module was developed
using React, as it contains libraries that implement various
functionalities.

The Backend module consists of two software components:
the Manager and a REST API. The Manager is the heart
of the framework and is the software component responsible
for executing the fault injection campaign and storing its
results. The Backend module spawns multiple instances of
the Manager process, one for each campaign being executed.
The REST API exposes the functionalities of the Manager to
the Frontend module. The Backend module also encompasses
one database, where the information about the users and their
campaigns is kept, as well as multiple CSV files that contain
the results of each campaign. The Backend module is self-
sufficient and can be used without the Frontend module. The

API Request

[JSON/HTTPS]

Send data

[Tuple of arguments]

Write data to

[CSV]

Writes to

[sqlite3]

Fault injection

information

[SSH]

System and
application
information

[SSH]

Manager

Reads from and writes to

[sqlite3]

Database

TOOL-X
[Software System]

Read campaign data from

[CSV]

Remote Host
[Machine]

Probes

Fault injection

Hardware
Fault

Injection Tool
Application

Backend
[Docker container]

Frontend
[Docker container]

Rest API

Uses

User

Fig. 1: Architecture of TOOL-X.

language adopted for the development of the Manager was
Python 3.8, due to its simplicity and due to the range of
libraries that are available. The technology used to develop the
REST API was Flask and the database was SQLite, since the
framework is aimed at smaller groups, for example research
groups, hence a simpler and lighter engine was chosen.

A. Frontend & Graphical User Interface

The Frontend module provides the graphical interface of the
framework, which includes web pages with various function-
alities that are organized into four sub-modules:

• Authentication - Sub-module related to user authentica-
tion, e.g., login, registration and password change;

• Menu - Sub-module related to the display of information,
such as campaign status;

• Campaign Menu - Sub-module related to the analysis of
the campaign results, including campaign statistics and
creation of graphs;

• Campaign setup - Sub-module related to the creation and
configuration of new campaigns.

The first sub-module (Authentication) includes the function-
alities of registering a new account, signing in and recover-
ing/changing the password. Figure 2 shows 4 different pages:
login, create account, recover password and change password.
Although authentication is not a common feature in a fault
injection framework, it enables multiple users to share the
framework seamlessly.

After login the user sees the menu page, shown in Figure 3,
where a list of the user’s campaigns and associated information
is presented. The user can search and filter campaigns by
campaign name, execution name and campaign type name and
change the number of campaigns to display at once.

2

Fig. 2: Authentication page.

Fig. 3: Menu page.

After a campaign has been executed, the user can view
a brief analysis of its results. The statistics page, shown in
Figure 4, contains a statistical analysis of the campaign results,
including information regarding run duration, failure percent-
age, incorrect content percentage, among others. Furthermore,
a line graph in the page shows the evolution of the crash and
incorrect data percentages as the number for runs increased,
thus indicating whether the results have converged or not.

Fig. 4: Statistics page.

The campaign creation page has two different types of
fields: configuration and parameters. The setup fields are asso-
ciated to the general configuration of the campaign, like name,
path to the injector, files to upload, while the parameters are
related to the more specific configuration of each campaign.
Depending on the selected campaign, the displayed parameters
change. To aid the novice user to comprehend what is expected
from each field, a help box which triggers a pop-up containing

an informative message is used.

Fig. 5: Create campaign page.

B. Manager

The Manager, which is the core of the Backend module and
which carries out the fault injection campaigns, is composed of
a set of pre-made elements that provide contained functionality
that can be connected together to solve the user’s needs.
According to the nomenclature adopted by TOOL-X, these
elements can be classified as:

• Campaign - A campaign consists in a set of runs
according to a specific configuration (which is stored in
a database). Different runs can have different parameters,
e.g., some runs may perform injection while others will
not (golden runs).

• Run - A run represents a single execution of the exper-
iment flow defined in the campaign configuration, using
the given run- and campaign-specific parameter values.

• Watchdog - A watchdog is used to monitor the execu-
tion time of a run and to ensure that it does not extend
over the user-defined alloted time. If the run is taking too
long and since it may even never end (e.g., the application
has entered an infinite loop), the watchdog will kill the
workload application and record the occurrence.

• Probe - A probe represents an application that will be
launched for the duration of the run and has the purpose
of monitoring and storing information relative to the
system or application being evaluated. Probes can be sub-
divided into pre- and post- probes, according to whether
they are launched before or after the workload has started.
Pre-probes usually collect system-wide metrics, whereas
post-probes monitor specific processes, hence the need
for post-probes to be launched after the workload.

• Fault injection tool - The fault injection tool
implements a specific fault model (e.g., software faults,
single bit-flip for emulating transient HW faults) and
allows the emulation of faults according to that model.

• Validators - The validators are small pieces of code,
usually Python functions, that inspect the results obtained
during a run and verify acceptance conditions. If a
validator fails (e.g., fault injection was not successful)
then the data for that run will not be written to disk.

3

• Parsers - A parser reads the results of the run (e.g.,
output of the fault injection tool, workload output) and
converts them into a more useful and compact format.
The various parsers write always to the results CSV file.

• Transformers - Transformers are similar to parsers,
since both receive raw input and convert it into a pro-
cessed output, but whereas parsers store their output in the
results CSV file, the output from transformers is stored
as individual files in the run’s own result’s folder. Trans-
formers are mostly used to convert the raw output of the
probes into a more manageable format, e.g., converting a
binary file originating from a resource monitoring probe
into a CSV file where each row represents a time step
and each column represents a monitored resource.

Since fault injection experiments can take place both in
single-machine setups and in distributed systems, TOOL-X
was designed to be able to transparently support both local and
remote execution. The taken approach consists in defining a
list of remote hosts, which includes the information required to
perform a login via SSH (namely the IP and username). When
required, every function in TOOL-X is capable of parsing the
information regarding the host in which they should execute.

To facilitate the design and creation of new campaigns by an
expert user, a base campaign template is provided. The flow of
each experiment run is defined by the campaign configuration
file, but usually obeys the flow that is provided by the base
template and consists in the following steps:

1) Launch pre-probes - The pre-probes are launched and
start to monitor their targets.

2) Launch workload - The workload is started. The user
must programmatically define this step, possibly using
the available utility functions.

3) Launch post-probes - The post-probes are launched.
Normally the post-probes require the PID (or similar
information) of the processes that they will monitor.

4) Launch fault injection tool - The fault injection tool
(faultload) is launched. Per run only one injection is
performed (unless explicitly modified in the code), in
order to avoid a previous injection influencing future
injections and thereby skewing the results. Although the
fault injection tool is launched at this point, the fault
may only be injected at a later moment, as the tool itself
can have its own triggering mechanism. Unless modified,
the values passed to the fault injection tool are randomly
chosen from pre-defined valid ranges that will determine
the actual type of fault injected in each run.

5) Peak loop - During this phase the workload executes, and
the fault injection will take place at some point during its
course. A watchdog process is launched with a configured
pre-determined amount of time, if the workload does not
finish within the alloted time, then the watchdog will
forcefully kill the workload and the fault injection tool
(if required). Otherwise this phase ends as soon as the
workload process terminates.

6) Post finish - Usually consists, at least, in stopping the

probes, but may include other user-defined operations that
should be executed right after the workload has ended.

7) Extract data - Extracts the data from the probes and stores
them in the run’s results folder.

8) Launch transformers - Launches the transformers that
will read the stored data and convert it to another format,
which will once again be stored in the run’s results folder.

9) Launch parsers - Launches the parsers that will produce
the output is stored in the main results CSV.

10) Launch validators - The last step consists in validating
the results as to ensure their correctness.

At the end of each successful run (i.e., when the validators
do not flag a correctness error in the results), the data is added
to a Pandas dataframe, which will be written to disk after
the current campaign has ended. If the framework is stopped
before the campaign has a chance to end, the data collected
up until that moment is nevertheless stored to disk.

C. Components

TOOL-X provides a range of pre-made components that
the user has at his own disposal. However, the expert user
can create his own component and add it to the framework.
Currently the following pre-probes are available:

• Logs probe - A simple probe that extracts logs from the
target system during the Post finish phase. It is ready to
extract logs specific to Linux, Xen and Openstack. The
user can easily configure it to support other types of logs.

• IntelPCM probe - Intel PCM (Processor Counter Moni-
tor) [12] provides a way of monitoring hardware counters
in recent Intel hardware. This probe can be used to
monitor the CPU, memory and power counters.

• Ping probe - A simple probe that performs pings at an
user-specified interval between a source and a target com-
puter. Can be used as a rudimentary way of monitoring
the state of various systems.

• SAR probe - SAR [13] is an utility that uses the vari-
ous interfaces provided by the Linux kernel to monitor
system-wide activity information, such as CPU, memory,
network, disk or power metrics. It takes a snapshot of all
the available metrics at an 1 second interval (the lowest
possible) and stores the results in a binary file.

• TCPDump probe - Monitors and stores all the network
traffic in a specific interface. Supports passing TCP-
Dump [14] rules to filter the packets that are captured.

• Xentrace probe - Xentrace [15] is an utility that monitors
the events that occur in a Xen virtualized system. The
results are stored in (usually large) binary files.

With regards to post-probes, only the following is currently
available:

• Pidstat probe - Somewhat similar to the SAR probe, since
it also captures similar metrics, but focuses on a specific
process (whereas SAR is system-wide). Can be used to
monitor the workload application.

In terms of parsers, the following are available:

4

• HW FI parser - Reads the output produced by the TOOL-
X’s HW fault injection tool, which emulates transient
hardware faults, and stores the register, the bit, the
injection time, the PID of the process that was affected
by the injection and the pre- and post- injection values
of every register.

• SW FI parser - Stores information relative to the injection
performed by the TOOL-X’s SW fault injection tool, such
as the applied operator or in which line the fault was
injected.

• Pcap -> TCP parser - Reads the data from a TCPDump
probe and calculates statistics, such as, total packets, total
packets by type (RST, FIN, ...), retries, and others.

• Info parser - Stores generic information about the run,
such as its start time, end time and duration.

• MD5 output parser - Obtains the output of the workload
application and computes its MD5 hash. Compares the
obtained MD5 hash against a fixed, expected hash and
records whether both hashes match and the size of the
produced application’s output. Useful to detect silent data
corruptions whenever the workload application produces
a deterministic output (i.e., always produces the same
output when it receives the same inputs).

• Return code parser - Stores the return code of the
workload process. Can signal a successful termination or
an abrupt termination (e.g., killed by the operating system
due to a segmentation fault).

• Current folder parser - Minimalistic parser that just stores
the path of the results folder of the current run.

Concerning transformers, the following are available:
• Pcap -> TCP 2 CSV transformer - Converts a PCAP

dump of network traffic into a CSV file with high-level
information about each packet, such as the TCP flags,
packet size, IPs and ports, or timestamps.

• Pidstat 2 CSV transformer - Converts the binary file
generated by the Pidstat probe into a CSV file.

• SAR 2 CSV transformer - Employs the sadf utility [13]
to convert the binary file produced by SAR probe into a
CSV file.

• Ping 2 CSV transformer - Converts the output of the Ping
probe into a more structured CSV file.

• Save output transformer - Saves the raw output (stdout
and stderr) from the workload application into files. Can
be used when a more detailed analysis to this output is
required, or for debugging.

There is one available validator, called Ensure Injection,
which checks whether one and only one injection (of the
TOOL-X HW fault injection tool) has occurred in a run by
comparing the pre- and post-injection values of all registers
and ensuring only one bit of one register has changed.

D. Fault Injectors

TOOL-X comes equipped with three fault injection tools
that implement different fault models. There are two different
fault injection tools for emulating hardware faults, which focus

on different types of systems, and a tool for emulating software
faults. Moreover, other fault injection tools can be integrated
into the framework.

1) Hardware faults in Linux-based systems: This tool
emulates soft errors that affect the CPU’s register file or
other components of the CPU (buses, ALU, FPU, etc.), by
implementing the single bit-flip fault model [16], [17]. Bit-
flips are restricted solely to general purpose CPU registers
and there is no support for directly performing bit-flips in the
memory. The decision of not including injections in memory
words was supported by the existence and popularity of very
effective ECC for memory and by the fact that part of the soft
errors affecting the memory can also accurately be represented
by injections in register files.

The tool can run in any modern Linux kernel and supports
the x86 64 and ARM architecture. It employs the ptrace
functionality available in practically every Linux installation
and which is also the engine behind the famous gdb debugging
tool, to attach itself to a running process, briefly suspend
its execution, obtain the data structures of the Linux kernel
that hold the process’ register values, perform the bit-flip
according to the passed parameters, and resume execution.
After the target process resumes execution, its register values
will include the bit-flip. Since the tool is software-only and
does not depend on any hardware extension or feature, we
are referring to SWIFI (Software-Implement Fault Injection).
Furthermore, since the injection can be performed without
requiring any modification to the target program’s source or
binary code, it can be classified as a run-time approach [18].

The tool also includes logging functionality that stores the
exact timestamp of the injection moment and the values of
every register prior and post the bit-flip. This information is
extremely useful not only to validate that injection is working
correctly, but also to enable detailed and complex analyses of
the results.

The moment of injection is always temporarily triggered,
but there is support for two ways of setting this trigger: timeout
and deadline. In timeout mode the user specifies how many
milliseconds the tool should after it is launched and before
it performs the bit-flip. Whereas in deadline mode, the user
specifies a UNIX timestamp (including milliseconds) which
defines the desired moment of injection and which the tool
will attempt to obey as closely as possible. Localization-
based triggering, i.e. triggering the fault whenever a certain
instruction is executed, is not currently supported, as this tool’s
approach is not the best candidate to support such a triggering
mechanism. The flow of the this fault injection tool is hence
as shown in Figure 6.

sleep attach to
process

get register
data struct.

print old
values do bitflip print new values &

tstamp
detach &
resume

Fig. 6: Flow of TOOL-X’s HW fault injection tool for Linux-
based systems.

2) Hardware faults in virtualized systems: A separate fault
injection tool capable of emulating hardware faults was created

5

specifically for use in virtualized systems. It is capable of
injecting faults in any application running inside a VM,
including a hypervisor as long as nested virtualization is used
(i.e., the hypervisor being targeted is executed inside a VM).

The fault model remains the traditional single bit-flip in
CPU registers and any of the rip, rsp, rbp, rax, rbx, rcx, rdx
and r8 to r15 x86-64 registers can be targeted.

The tool was implemented as a set of modifications to
the Xen hypervisor, which introduce a new hypercall and
respective toolstack functions to control the fault injection
process, as well as modifications to the scheduling subsystem
to enable injections of faults inside VMs.

The injection process consists in modifying the register
value stored in the data structure that holds a VM’s CPU state
and which is updated immediately prior to a context switch.
This structure is needed because every hypervisor must know
the latest state of the CPU between context switches of VMs.
We take advantage of this fact to inject faults, but this means
that the approach is dependent on the rate at which context
switches occur, which is a configurable parameter in Xen.
While higher context switching rates (i.e., smaller timeslices)
allow the fault injection tool to have a more precise moment
of injection, they can also bring considerable performance
overhead and intrusiveness to the system.

Furthermore, this tool is capable of filtering the application
that is targeted for injection by looking at the value in the rip
register (which points to the next instruction to be executed)
and only performing injection whenever the rip is inside a
user-defined range. This functionality can be specially useful
if one wishes to perform fault injection that affects solely the
hypervisor (or solely the non-hypervisor code) running in a
VM, as there is a well established division between the virtual
memory addresses assigned to the hypervisor, to the operating
system and to the userspace applications.

Figure 7 presents the expected usage scenario for this tool.

Hypervisor

Privileged Virtual Machine hypercall

Toolstack

perform bit-flip

Instrumented context
switching function

User space
application

VM-specific data
structure

temporal
trigger

Target VM
Target Bit and Register
Memory range (RIP)

Hypercall Function

Fault Injection
Parameters

Fig. 7: Flow of TOOL-X’s fault injection tool for virtualized
systems.

The flow starts from the privileged virtual machine (PVM),

also known as dom0 in Xen’s nomenclature, where the TOOL-
X framework provides the triggering functionality, which is not
embedded in the fault injection tool, and calls the toolstack at
the correct moment. The toolstack will perform a hypercall to
a function in the hypervisor, while passing the desired param-
eters for fault injection. These parameters include the target
VM (when a system has multiple VMs, the tool can focus on
just one of them), the target register and bit where injection
will take place, and the start and end of the memory range
that the rip should be pointing at if injection is to take place,
although this last parameter is optional. The hypercall function
will write this information to an internal structure, which will
be read during context switching, and if all conditions are met
(the VM that is receiving CPU time is the same as the target
VM and its rip is inside the expected range) the bit-flip is
performed here, right before the target VM starts executing.

3) Software fault injection in C source-code: Software
faults are an important threat to the dependability of computer
systems, including large scale and networked applications.
Moreover, it is widely accepted that all computer programs
contain software defects and, consequently, it is relevant to
intentionally introduce defects as a means to evaluate how
well a system is able to detect, isolate and recover from the
ensuing errors.

TOOL-X supports software fault injection at the source-
code level by applying program modifications that are rep-
resentative of mistakes made by software developers [19].
Table I lists the software fault types that the tool is able to in-
ject. The tool accepts programs written in the C programming
language, widely used to develop system software.

TABLE I: Software fault types.

Operators Description
MIFS Missing if construct plus statements
MIA Missing if construct around statements

MIEB Missing if construct plus statements
plus else before statements

MFC Missing function call
MLAC Missing and sub-expression in branch condition
MLOC Missing or sub-expression in branch condition
MVAE Missing variable assignment with an expression
MVAV Missing variable assignment with a value
MVIV Missing variable initialization with a value
WVAV Wrong value assigned to variable
MLPA Missing localized part of algorithm
WAEP Wrong arithmetic expression passed in function call
WPFV Wrong variable passed as parameter of function call

The faults listed in Table I are injected in programs written
in the C programming language and the injector itself is
written in Java, using the Eclipse CDT plugin, which is the
plugin that supports C/C++ programming in Eclipse. The fault
injector takes as input the source code and CDT performs
lexical and syntactic analysis to produce the corresponding
abstract syntax tree. The fault injector then searches the tree
to identify the nodes in which faults can be injected. For
each possible location/fault type pair, the tree is modified
accordingly and the resulting program is then converted back

6

into source code representation. Then, a call to the diff tool
generates a patch file for each fault that can be injected.

E. Containerization

One of the unique advantages of TOOL-X is its easy and
quick installation process, which is accomplished through the
use of Docker containerisation technology. Docker is an open
platform for building, running, and managing containers on
servers and the cloud.

Docker revolves around two basic concepts: images and
containers. An image is a read-only template with instructions
for creating a container, and a container is a runnable instance
of an image. To publicly share images, Docker provides a
repository, called Docker Hub. As such, TOOL-X consists of
two images (one for the Frontend module and another for the
Backend module) and we have made them publicly available
in Docker Hub.

Regarding the environment configuration, the framework
administrator can extract the image from the Docker HUB
repository. Then the administrator must execute a command
to generate a container of the respective image. The command
will be practically identical for the creation of the containers
for the two modules. Mainly, the administrator must define
an IP address, a port and must also specify two crucial
environment variables for the modules to work properly:

After pulling the images from Docker Hub, some parameters
unique to each host system must be configured. These are the
IP address and ports where TOOL-X will listen as well as two
crucial environment variables:

• REACT APP API URL - Holds the URL of the REST
API. Required so that the Frontend module can send
requests to the API.

• FRONT END URL - Contains the URL of the frontend
web page. The API needs to know the web page address,
because when an email is sent due to a password change
request, a link is also sent which redirects the user to a
specific page of the Frontend module.

As stated, the framework can execute operations, inject
faults and collect data from remote systems. However, in
order for this feature to be operational, a private/public keypair
should be shared across the containers and every remote host
that will be used for the campaigns. For the images published
in Docker Hub, a pre-defined keypair has been used.

If the expert users wish to define their own keypairs, they
can do so, but such implies manually creating the Docker
images. Fortunately, creating new images in Docker is simple
and depend on editing a Dockerfile, which is a file is used to
define the steps required to create an image. This Dockerfile
can be edited so that TOOL-X uses a different keypair, as well
as to add new components or campaigns.

III. EVALUATING FAILURE MODELS FOR CAMPAIGN
ACCELERATION

Fault injection using fault models has been widely used for
evaluating the dependability of systems and to validate fault
tolerance mechanisms. However, despite being effective, it is a

slow process because many faults do not have any effect (i.e.,
do not cause any visible failure in the target system). Fault
injection using failure models can, hypothetically, be able of
reproducing the same results, with similar levels of accuracy
and representativeness, but at a fraction of the time and cost.

Although failure models have been used before, to the
best of our knowledge, no study has verified whether the
produced results are representative nor that failure models
bring a speed and cost improvement. In this study, we will
perform fault injection using both fault and failure models
and compare the obtained results in order verify and validate
the aforementioned points.

For the experiments we will use the TOOL-X framework
and take advantage of its extensibility to integrate a new fault
injection tool that uses a failure model and a new parser. We
chose an experimental setup representing a cloud deployment
and opted to use Openstack, a cloud operating system, as
the target system for the experiments. Openstack is divided
into several services to allow users to use the components
according to their need, such as, compute, storage, networking,
orchestration, shared services, among others.

A. Setup

In order to run the experiments a physical setup was config-
ured. Its specifications in terms of hardware and software are
given in Table II. The TOOL-X was installed on the machine
manually, thus without using any containerization technology.

TABLE II: Experimental setup specification

Component Description
Operating system Linux 4.14.89

Hypervisor Xen 4.11.1
CPU Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz

CPU(s) 4
Thread(s) per core 2

RAM 16 GB
Disk1 1T*7200 RPM
Disk2 10T*7200 RPM

Openstack contains a plethora of services that are optional.
In our setup, the 3 most common Openstack services were
configured. One service (Nova) supports the creation of virtual
machines and provides an API and tools for managing the
resources of the cloud. Another service (Neutron) provides
”network as a service” between interface devices managed by
other Openstack services, such as Nova. The hypervisor used
in Neutron to host the virtual machines was KVM/Qemu 4.2.1.
Finally, the third installed service (Cinder) is a block storage
service and is designed to present storage resources to end
users that can be consumed by Nova.

Two pre-probes were configured to collect metrics regarding
the three configured services. For Nova, the Logs probe was
used to extract logs from the target system, in this case
Openstack, and the Ping probe was configured to perform
pings on the three services to monitor the various systems.

Figure 8 illustrates how the setup is configured and how
fault collection and injection is performed. TOOL-X executes
the workload and launch the probes for each service installed.

7

Fault injectionWorkloadProbe

Nova CinderNeutron

TOOL-X

Probe
Probe

Fig. 8: Experimental Setup.

While the workload is being executed, the TOOL-X manages
the fault injection process.

B. Workload

The workload consists of several types of requests made
to Openstack, which represent some of the most common
operations that a system administrator might perform, such
as listing, creating and deleting flavors or instances. The
workload follows a sequential flow which performs, in total,
11 operations, although some are repeated more than once.
The operations are:

1) List all flavors (i.e., the resource configurations that can
be used by the virtual machines)

2) List all instances (i.e., virtual machines)
3) Create a new flavor with a certain configuration
4) Create a new instance using the previously defined flavor
5) Delete a flavor
6) Delete an instance
The workload is simplistic and can be extended in the future

to perform other operations. In total, the workload takes on
average 130 seconds to finish.

C. Injection process

Regarding the injection process, we defined what, where and
when to inject based on our setup and the goals of our study.
The objective was to use fault and failure models to emulate
transient hardware faults affecting a process of Openstack.
Software and other kinds of faults were not considered.

Regarding the fault model, the single bit-flip fault model
was used. This model emulates soft errors affecting the CPU
register file directly or other CPU components (buses, ALU,
FPU, etc.) indirectly. Both the bit and register are chose
randomly following an uniform distribution, once per run.

For the failure model, we injected crashes of a process,
which is a common failure mode obtained in fault injection
experiments where a single bit-flip is injected in a random
CPU register. Other failure models can be evaluated, however
we chose to begin with this one because it is simple to
implement and emulates a large portion of failures.

A new tool was developed which randomly chooses and
kills (by sending a SIGKILL) a random process of nova-api,
which is the service that receives the operation requests and

passes them on to the correct service to be handled. Due to
the extensibility of TOOL-X it was possible to add the new
failure model injection tool that was developed later to the
framework.

One of the various Openstack-related services of the Nova
VM was chosen to be the target, as Nova is the central
element of the setup. In the future we plan to conduct similar
experiments in the other services of Nova and of the other
Openstack components. As the workload takes about 130
seconds to execute, the injection time was set to the range
between]10,100[seconds, chosen randomly. The first 10
seconds correspond to the warmup and the last 30 seconds
are the cooldown, which allow the injected faults to manifest
and cause failures.

D. Failure detection and classification

The expected output from running the workload includes
information about the return code of each operation (which in-
dicates whether the operation executed successfully or not), the
duration of its execution and, for some operations, the output
produced by the operation. These parameters allow a detailed
analysis to be made of the output during the experiments, with
the aim of assessing whether the result after fault injection
remains as expected. For automatically performing the data
processing, a parser was developed and integrated into TOOL-
X. For each operation of the workload, the parser processes
the workload output and writes the following data to the CSV
file: Correct or incorrect output and the respective output size,
status code, total time taken to perform the operation.

Another measure that must be considered, but that is not
treated by the parser, is the watchdog parameter that is set at
the beginning of the campaign configuration. As the execution
of the workload takes about 130 seconds, a watchdog of 200
seconds was defined. This time is longer than the execution of
the workload so that the workload has time to finish by itself.
If the workload takes longer, then the watchdog terminates the
process as to avoid waiting for a possibly hanged process.

These metrics allow the results to be classified in two
ways: 1) No Effect (the workload executes seemingly without
problem), and 2) Failed (at least one operation returned a status
code different from expected, thus signaling an unsuccessful
operation). Silent data corruption, despite important, was not
included because no occurrence was detected.

E. Results

A total of 1000 runs were executed, equally distributed
between injection using fault and failure models. Applying
the classification scale resulted in 98.2% of No Effect for the
failure model and 92.8% for the fault model. Therefore there
were 10.6% of failed runs when using the failure model and
3.4% with respect to the fault model.

Figure 9 shows a comparison between the amount of oper-
ations that failed in a single run for fault and failure models.
It should be noted that the Y-axis is zoomed in between 0
and 6%. An analysis of the results concludes that not only

8

1 2 3 5
Total failed operations

0

1

2

3

4

5

6

Pr
ob

ab
ilit

y

Failure model
Fault model

Fig. 9: Failed operations per run for both models.

failure models cause more failures, the generated failures also
affected more operations, on average.

Figure 10 shows the probability of an error occurring in each
of the various operations of the workload. Once again the Y-
axis is zoomed in. The graph shows that operation T7 has a
higher failure probability, when using both fault and failure
models,which can be explained by being a more sensitive
operation or by the moment of injection. The two first and
last operations did not experience any failure likely due to the
warmup and cooldown periods.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11
Task

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pr
ob

ab
ilit

y

Failure model
Fault model

Fig. 10: Failures per operation for both models.

To measure how the failure probability evolves when using
failure models, Figure 11 plots the distance between the
average failure probability obtained in each run when using
failure models against the final failure probability obtained
using fault models (i.e., 3.4%). It can be seen that the distance
begins to stabilize after around the 200th run, but tends to
slightly increase as the runs increase.

0 100 200 300 400 500
Run

2

0

2

4

6

8

10

12

Pr
ob

ab
ilit

y

Fig. 11: Distance between failure model and oracle.

F. Observations & Limitations

Despite the exploratory nature of this experimental evalu-
ation, some observations can already be made. Nevertheless
more experiments are needed to reach acceptable confidence.
One observation is that the usage of failure models produces
more failures than the usage of fault models, thus accelerating
this type of experimental campaigns. This is to be expected
after all, but carries implications to practice. Namely, if the
objective of a campaign is to quantify the failure modes and
their probabilities of a system, the usage of failure models
should be complemented with a correction factor, otherwise
the obtained probabilities will be higher than what they really
are. On the other hand, if the objective of a campaign is
solely to collect failure data or to validate a fault tolerance
mechanism, then failure models appear to be a valid and more
efficient choice.

Another observation is that the failures obtained when using
failure models appear to differ from the failures generated
by injecting faults. This can be seen in Figure 10, where
the distribution of failures across different operations appears
to not follow the same pattern. For example, failure models
caused failures that strongly affected operation T7 whereas
fault models did not. Another example is in operation T4,
which experienced failures when using failure models but
never when using fault models.

Although some progress has been made in the comparison
between fault and failure models, the present study suffers
from various limitations that will be addressed in future work.
First of all this experiment focuses only on a specific experi-
mental setup, thus the observations cannot be extrapolated to
other setups. Another limitation is related to the workload,
which exercises only a small, yet often used set of operations
and which does not produce an elevated load on the system’s
resources. Other workloads should be considered as part of
future experiments. Different faultloads, such as different fault
models, can also be considered. Finally, the obtained number
of experiment runs is still relatively low.

Even though limited, the results support carrying out further

9

experiments in this topic and show how the extensibility of
TOOL-X can be an advantage when researching topics that
fall out from the more traditional use cases associated with
fault injection.

IV. RELATED WORK

Given that fault injection is a mature technique with decades
of academic and commercial use, several fault injection tools
and frameworks have been described in the literature. When
compared to these, TOOL-X constitutes a more recent frame-
work that has support for multiple fault models and that can
inject in virtualized and cloud computing systems.

In this section, a brief description of other important fault
injection tools is provided following a chronological order.
MESSALINE [20] is a ‘general physical-fault injection tool’
composed by four modules: fault injection, target activation,
readout collection, and management. It supports a range of
fault models, which include stuck-at-0 and stuck-at-1.

FIAT (Fault Injection-based Automated Testing) [21] has a
structure composed by fault injection manager, which controls
the experiments, and a fault injection receptor, which receives
the results for posterior analysis, and includes the ability
to support distributed systems, monitoring the systems and
injecting faults through a software-implemented compile-time
approach, according to a fault model of single or multiple
memory bit-flips.

FERRARI [22] is a fault injection tool that injects faults
by modifying the process’ injection state through the ptrace
functionality, very similarly to the approach taken by one of
the fault injection tools of TOOL-X that has been described
in this paper. FERRARI is capable of injecting memory
corruption faults, or transient and permanent faults, supports
time and location triggers, and has five different fault models,
which are bit-flips, bit setting, bit resetting and byte setting.

FINE [23] (Fault Injection and moNitoring Environment)
supports injection of software faults and hardware-induced
software errors into UNIX kernels. It is composed by four
parts: the fault injector, the workload generator – which
generates a workload of systems calls, the controller, and the
software monitor – which tracks variables of the kernel and
its control flow and stores this information to disk.

Xception [24] employs a hybrid approach which com-
bines software-implemented fault injection with debugging
and performance-monitoring hardware extensions as to reduce
the overhead of the fault injection process and to monitor fault
activation and the target system. It supports fault models such
as bit-flips, stuck-at-0 or stuck-at-1, on main memory and the
processor, and is capable of performing triggering by time or
upon specific instructions.

NFTAPE [25] is a framework for fault injection that can
be used in various types of systems and supports multiple
fault models, including bit-flips in registers and memory, com-
munication errors and I/O faults, and multiple fault triggers,
including spatial, time-based and event-based.

Goofi-2 [26] is capable of using both hardware-implemented
and software-implemented techniques to emulate transient

hardware faults in CPU registers and memory using
single and multiple bit-flips. It supports three different
fault injection techniques: Nexus-based, exception-based and
instrumentation-based. All these techniques are in one way or
another dependent on features of the underlying hardware.

Gigan [27] is a software-implemented fault injection tool
capable of introducing faults in memory and CPU registers of
a virtualized system as single bit-flips that are triggered using
breakpoints.

LLFI [28] is a fault injection tool that operates at the
intermediate code level of LLVM in order to inject hardware
faults in a compile-time manner which supports specifying the
location of the fault. The propagation of the fault can be traced
through the application using instrumentation in the program.

Marcello Cinque and Antonio Pecchia introduced a fault
injection framework aimed at virtualized multi-core sys-
tems [29]. Their framework emulates hardware errors by
modifying the values of special registers that belong to the
Machine Check Architecture (MCA), in doing so they are able
to evaluate the error handling mechanisms of the system.

CloudVal [30] is a framework based on NFTAPE that was
developed to validate the reliability of virtualized environ-
ments. It supports emulation of soft errors and injection of
faults mimicking delayed I/O operations and maintenance
events. Its fault injector was implemented as a loadable kernel
module and features a spatial-triggering mechanism based on
breakpoints.

V. CONCLUSION

In this paper, we presented TOOL-X, an open-source
framework for orchestrating and conducting fault injection
campaigns. TOOL-X is easy to install and to use and can be
extended with new components and tools. It comes equipped
with a range of components for monitoring the system-under-
test and can emulate both software and transient hardware
faults. TOOL-X was designed to be used in both local
and distributed systems, particularly virtualized and cloud
computing systems. As such, TOOL-X is one of the few
projects supporting fault injection of different fault models
and focusing in cloud computing and virtualized systems that
has been made publicly available.

Using TOOL-X, an evaluation on the viability of using
failure models as alternatives to fault models when performing
fault injection was carried out. The results confirm that failure
models can produce failures more frequently than fault injec-
tion, however the resulting failures may differ from those that
occur when fault models are used. Further research is needed
before a strong conclusion can be taken regarding this matter,
which is planned as future work.

REFERENCES

[1] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Transactions
on Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, Jan
2004.

[2] A. Shehabi, S. Smith, D. Sartor, R. Brown, M. Herrlin, J. Koomey,
E. Masanet, N. Horner, I. Azevedo, and W. Lintner, “United states data
center energy usage report,” 2016.

10

[3] J. Koomey, “Growth in data center electricity use 2005 to 2010,” A
report by Analytical Press, completed at the request of The New York
Times, vol. 9, 2011.

[4] P. Hazucha and C. Svensson, “Impact of cmos technology scaling on
the atmospheric neutron soft error rate,” IEEE Transactions on Nuclear
Science, vol. 47, no. 6, pp. 2586–2594, Dec 2000.

[5] S. Borkar, “Design challenges of technology scaling,” IEEE Micro,
vol. 19, no. 4, pp. 23–29, July 1999.

[6] R. Baumann, “The impact of technology scaling on soft error rate
performance and limits to the efficacy of error correction,” in Digest.
International Electron Devices Meeting,, Dec 2002, pp. 329–332.

[7] V. Chandra and R. Aitken, “Impact of technology and voltage scaling
on the soft error susceptibility in nanoscale cmos,” in 2008 IEEE In-
ternational Symposium on Defect and Fault Tolerance of VLSI Systems,
Oct 2008, pp. 114–122.

[8] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi,
S. Dwarkadas, and M. L. Scott, “Energy-efficient processor design using
multiple clock domains with dynamic voltage and frequency scaling,”
in Proceedings Eighth International Symposium on High Performance
Computer Architecture, Feb 2002, pp. 29–40.

[9] R. Natella, D. Cotroneo, J. A. Duraes, and H. S. Madeira, “On fault
representativeness of software fault injection,” IEEE Transactions on
Software Engineering, vol. 39, no. 1, pp. 80–96, Jan 2013.

[10] A. E. Hassan, “Predicting faults using the complexity of code changes,”
in Proceedings of the 31st International Conference on Software Engi-
neering, ser. ICSE ’09. Washington, DC, USA: IEEE Computer Society,
2009, pp. 78–88.

[11] N. E. Fenton and N. Ohlsson, “Quantitative analysis of faults and
failures in a complex software system,” IEEE Transactions on Software
Engineering, vol. 26, no. 8, pp. 797–814, Aug 2000.

[12] I. Corporation, “Intel PCM,” https://github.com/opcm/pcm, 2019, ac-
cessed: 2019-02-01.

[13] S. Godard, “SYSSTAT,” http://sebastien.godard.pagesperso-orange.fr/,
2019, accessed: 2019-02-01.

[14] Tcpdump, “TCPDump,” https://www.tcpdump.org/, 2019, accessed:
2019-02-01.

[15] D. Faggioli, “Tracing with xentrace and xenalyze,” https://blog. xenpro-
ject. org/2012/09/27/tracing-with-xentrace-and-xenalyze, 2012.

[16] R. Johansson, On Single Event Phenomena in Microprocessors, 1993.
[17] G. L. Ries, G. S. Choi, and R. K. Iyer, “Device-level transient fault

modeling,” in Proceedings of IEEE 24th International Symposium on
Fault-Tolerant Computing, June 1994, pp. 86–94.

[18] R. Barbosa, J. Karlsson, H. Madeira, and M. Vieira, Fault Injection.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 263–281.

[19] J. A. Duraes and H. S. Madeira, “Emulation of software faults: A field
data study and a practical approach,” IEEE Transactions on Software
Engineering, vol. 32, no. 11, pp. 849–867, Nov 2006.

[20] J. Arlat, Y. Crouzet, and J. . Laprie, “Fault injection for dependability
validation of fault-tolerant computing systems,” in [1989] The Nine-
teenth International Symposium on Fault-Tolerant Computing. Digest of
Papers, June 1989, pp. 348–355.

[21] Z. Segall, D. Vrsalovic, D. Siewiorek, D. Ysskin, J. Kownacki, J. Barton,
R. Dancey, A. Robinson, and T. Lin, “Fiat - fault injection based auto-
mated testing environment,” in Twenty-Fifth International Symposium on
Fault-Tolerant Computing, 1995, ’ Highlights from Twenty-Five Years’.,
June 1995, pp. 394–.

[22] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham, “Ferrari: a flexible
software-based fault and error injection system,” IEEE Transactions on
Computers, vol. 44, no. 2, pp. 248–260, Feb 1995.

[23] W. . Kao, R. K. Iyer, and D. Tang, “Fine: A fault injection and
monitoring environment for tracing the unix system behavior under
faults,” IEEE Transactions on Software Engineering, vol. 19, no. 11,
pp. 1105–1118, Nov 1993.

[24] D. Costa, H. Madeira, J. Carreira, and J. G. Silva, Xception™: A
Software Implemented Fault Injection Tool. Boston, MA: Springer US,
2003, pp. 125–139.

[25] D. T. Stott, B. Floering, D. Burke, Z. Kalbarczpk, and R. K. Iyer,
“Nftape: a framework for assessing dependability in distributed systems
with lightweight fault injectors,” in Proceedings IEEE International
Computer Performance and Dependability Symposium. IPDS 2000,
2000, pp. 91–100.

[26] D. Skarin, R. Barbosa, and J. Karlsson, “Goofi-2: A tool for experimental
dependability assessment,” in 2010 IEEE/IFIP International Conference
on Dependable Systems Networks (DSN), June 2010, pp. 557–562.

[27] M. Le, A. Gallagher, and Y. Tamir, “Challenges and opportunities with
fault injection in virtualized systems,” in 1st Int. Workshop on Virtual-
ization Performance: Analysis, Characterization, and Tools. Citeseer,
2008.

[28] A. Thomas and K. Pattabiraman, “Llfi: An intermediate code level fault
injector for soft computing applications,” in Workshop on Silicon Errors
in Logic System Effects (SELSE), 2013.

[29] M. Cinque and A. Pecchia, “On the injection of hardware faults in
virtualized multicore systems,” Journal of Parallel and Distributed
Computing, vol. 106, pp. 50 – 61, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731517300849

[30] C. Pham, D. Chen, Z. Kalbarczyk, and R. K. Iyer, “Cloudval: A frame-
work for validation of virtualization environment in cloud infrastruc-
ture,” in 2011 IEEE/IFIP 41st International Conference on Dependable
Systems Networks (DSN), 2011, pp. 189–196.

11

	Introduction
	Motivation
	Goals
	Document Structure

	Project Management
	Semester planning
	First Semester
	Second Semester

	Process and Organization
	Risk Management

	State of the art
	Usability
	Dependability
	Fault Injection
	Fault Types
	Techniques for Injection of Hardware Faults
	Techniques for Injecting Software Faults
	Fault Injection Tools

	Fault injection using failure models
	ucXception
	ucXception architecture
	Fault injectors of ucXception

	Technologies
	Frontend technologies
	Backend technologies
	Docker

	Requirements
	User stories
	Mockups
	Functional requirements
	Non-functional requirements
	Security
	Usability
	Extensibility
	Modifiability

	ucXception 2.0
	Architecture
	Original architecture
	ucXception 2.0 architecture
	Choice of technology for each module
	Entity relationship diagram

	Project Structure
	Frontend module
	Backend module

	Modifications to the original ucXception
	Campaign configuration file
	Component configuration file

	Containerization
	ucXception 2.0 containerization
	Environment setup
	Extending ucXception 2.0 container

	Functionalities
	Authentication
	Menu
	Create campaign
	Create execution
	Create host
	Create component
	View campaign statistics
	Build campaign charts

	Testing
	Robustness testing
	Usability tests
	Test procedure
	Test results
	Test conclusions

	Towards accelerating fault injection using failure models
	Methodology
	Setup
	Workload
	Injection process
	Failure detection

	Results
	Analysis & Limitations

	Conclusion
	Appendix User stories
	Appendix Mockups
	Appendix Article

