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There is an increasing interest in the neural effects of psychoactive drugs, in particular
tryptamine psychedelics, which has been incremented by the proposal that they have
potential therapeutic benefits, based on their molecular mimicry of serotonin. It is widely
believed that they act mainly through 5HT2A receptors but their effects on neural activation
of distinct brain systems are not fully understood. We performed a quantitative meta-
analysis of brain imaging studies to investigate the effects of substances within this class
(e.g., LSD, Psilocybin, DMT, Ayahuasca) in the brain from a molecular and functional point
of view. We investigated the question whether the changes in activation patterns and
connectivity map into regions with larger 5HT1A/5HT2A receptor binding, as expected
from indolaemine hallucinogens (in spite of the often reported emphasis only on 5HT2AR).
We did indeed find that regions with changed connectivity and/or activation patterns match
regions with high density of 5HT2A receptors, namely visual BA19, visual fusiform regions in
BA37, dorsal anterior and posterior cingulate cortex, medial prefrontal cortex, and regions
involved in theory of mind such as the surpramarginal gyrus, and temporal cortex (rich in
5HT1A receptors). However, we also found relevant patterns in other brain regions such as
dorsolateral prefrontal cortex. Moreover, many of the above-mentioned regions also have a
significant density of both 5HT1A/5HT2A receptors, and available PET studies on the effects
of psychedelics on receptor occupancy are still quite scarce, precluding a metanalytic
approach. Finally, we found a robust neuromodulatory effect in the right amygdala. In sum,
the available evidence points towards strong neuromodulatory effects of tryptamine
psychedelics in key brain regions involved in mental imagery, theory of mind and
affective regulation, pointing to potential therapeutic applications of this class of substances.
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INTRODUCTION

Pharmacologic challenges with tryptamine hallucinogen
substances have been used as models for psychosis. In recent
years, many studies have used substances to study the neuronal
correlates of altered states of consciousness (dos Santos et al.,
2016). A current research trend involves testing the effects of
hallucinogens as potential therapeutic alternatives for psychiatric
disorders (Kraehenmann, 2017; Lowe et al., 2021). Here we aimed
to perform a quantitative meta-analysis of neuroimaging studies
in this field. The current work summarizes the level of (in)
consistency between functional imaging outcomes from
connectivity and activation studies that might help to further
clarify the implication of previous reports and their importance
concerning the therapeutic potential of these drugs.

The relation between psychedelic experience and psychosis
remains intriguing (Cumming et al., 2021). Sensory
hallucinations and attentional deficits are common
manifestations in schizophrenia and other neuropsychiatric
disorders. The neural correlates of visual and auditory
alertness in these conditions have been a matter of study. The
approach of experimentally inducing states of psychosis was
proven to be very useful to understand the effects of distinct
substances in the brain in the so–called pharmacological fMRI
approach (Daumann et al., 2010). In particular, neuroimaging
studies have investigated the neural correlates of alertness based
on agonistic modulation of the human serotonin 2A receptor (5-
HT2AR, 5-hydroxytryptamine2A) (using dimethyltryptamine-
DMT) and N-methyl-D-aspartic acid (NMDA) antagonism
(using ketamine) for psychosis (Daumann et al., 2010).
Moreover, 5-HT2AR activation through LSD has been
implicated in the formation of visual hallucinations and
cognitive impairments (Schmidt et al., 2018). The psychedelic
experience produced by psilocybin (Psi) (a substance found in
“magic mushrooms”) is characterized by “unconstrained”
cognition and profound alterations in the perception of time,
space and selfhood (Mason et al., 2021). This substance is a
preferential serotonin (5-HT) 2A/1A receptor agonist
(Halberstadt and Geyer, 2011). Psilocybin, reduces the
processing of negative stimuli (Preller et al., 2017) which is
relevant concerning affective processing in the amygdala. This
emotion-processing structure is particularly prone to
serotonergic modulation. Psilocybin-induced decrease in
amygdala reactivity correlates with and reduces threat-induced
modulation of amygdala activation and/or connectivity
(Kraehenmann et al., 2015, Kraehenmann et al., 2016; Preller
et al., 2017; Barrett et al., 2020b).

Other hallucinogens inducing similar effects have been used to
study the rapid changes in brain dynamics and functional
connectivity (FC) in neuroimaging, regarding the quality of
conscious experience in the psychedelic state (Tagliazucchi
et al., 2014, Tagliazucchi et al., 2016; Luppi et al., 2021). These
substances include Lysergic acid diethylamide (LSD) that induces
profound changes across various mental domains, including
perception, self-awareness and emotional state (Mueller et al.,
2017; Luppi et al., 2021); or Ayahuasca, that is a beverage
traditionally used by Amazonian Amerindians composed by a

mixture of compounds that increase monoaminergic
transmission. Ayahuasca caused significant decreases in the
activity and connectivity of the default mode network (DMN)
(Palhano-Fontes et al., 2015) and increased excitability in
multimodal brain areas as the posterior association cortex, the
cingulate, and the Medial temporal lobe (MTL) (Riba et al., 2004,
Riba et al., 2006), that are pivotal in interoception and emotional
processing.

Psychedelic drugs such as LSD were used extensively in
psychiatry in the past and their therapeutic potential is
beginning to be re-examined today (Kaelen et al., 2016;
Kraehenmann, 2017). Accordingly, the use of these substances
may have important implications for the treatment of depression,
mood and anxiety disorders (Kraehenmann et al., 2015).
Additionally, the current literature also emphasizes the
importance of 5-HT2A/1A receptor subtypes in the control of
social functioning, and as prospective targets in the treatment of
sociocognitive impairments in psychiatric illnesses (Preller et al.,
2016). Here we provide a comprehensive review of studies in this
field. Our findings suggest important implications for the
understanding of the mechanism of action of hallucinogenic
drugs and provide further insight into the role of these
substances to improve mental health, pain or
neurodegenerative disorders.

METHODS

Search Strategy and Data Sources
We performed the literature search using the PubMed database in
Sep/2020. The search criteria were: LSD (Title/Abstract) OR
lysergic (Title/Abstract) OR psilocybin (Title/Abstract) OR
ayahuasca (Title/Abstract) OR dimethyltryptamine (Title/
Abstract) AND [fMRI (Title/Abstract) OR BOLD (Title/
Abstract) OR PET (Title/Abstract)]. Figure 1 (PRISMA)
summarizes the number of articles and duplicates that were
found. To identify functional brain imaging studies, our
inclusion criteria were: 1) the studies imaged the whole brain;
2) the results presented coordinate-based data in a standard space
and were not review papers; 3) the imaging method was fMRI or
PET; 4) subjects were healthy controls; 5) sample size N ≥ 8
(Eickhoff et al., 2016).

From the initial identification of 78 studies, the final study
included 16 fMRI studies and four PET studies (Table 1)
reporting brain imaging experiments related to those drugs.
We then used the foci of brain activations extracted from each
of the included studies for the ALE analysis.

Data Extraction
We exported foci data manually from each paper to a text file
containing all the coordinates of the results from the original
studies that passed the inclusion criteria. All coordinates were
converted to MNI standard space (using the Brett transform as
implemented in the tal2mni/mni2tal function of MATLAB
(R2020a, Mathworks, United States). It is important to note
that all MRI studies included placebo (control) groups and the
data reported are comparisons of drug vs placebo effects.
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Additionally, all the available PET studies (with different
tracers) are discussed in a narrative manner, given the insight
they provide on molecular mechanisms of action.

ALE Analysis
ALE meta-analysis was carried out as described previously
by (Turkeltaub et al., 2002). To assess the statistical
significance of the results we used a permutation test
(1,000 permutations) and set a threshold p value < 0.001
and a minimum cluster size of 200 mm3 (Eickhoff et al.,
2016). We used GingerALE (v3.0.2), the Java version of
ALE developed at the Research Imaging center and
available at http://brainmap.org/ale for data processing.
For visualization, the results were overlaid into a standard
MNI image template (Kochunov et al., 2002).

Since we found fMRI experiments with BOLD and
connectivity results, we performed an ALE including all fMRI
papers and two other separate analysis: 1) using the results from
the BOLD amplitude changes; 2) using the connectivity results
from the fMRI papers. The resulting ALE images were converted
to Z scores in order to simplify interpretation and show their
significance.

Activation maps related to each of the tasks were overlaid and
displayed using Mango software (http://ric.uthscsa.edu/mango/)
and the Talairach Daemon (http://talairach.org/) tool was used to
extract anatomical labels of results. All the input files used in our
analysis and output results are freely available upon request to the
corresponding author.

RESULTS

Published papers were screened for the methodological
information. A total of 78 papers were initially included
(Figure 1 summarizes the number of papers and number of
excluded at each stage as a flow PRISMA diagram; see
Table 1). All included studies have N > 8 subjects (range 10–38
participants; Median � 20, total of 323 participants for fMRI
studies and 57 for PET studies). These studies included BOLD,
Connectivity and PET studies. Table 1 reports the demographic
information of the selected datasets, the drugs in use, experimental
task and a descriptive summary of the individual results. Detailed
information about the design, doses, route of administration and
comparators are presented in Supplementary Table S1.

FIGURE 1 | PRISMA flow diagram for the meta-analysis. The summary of papers identified through databases search, screened for the inclusion/exclusion criteria
and included in the final analysis are reported in the standard PRISMA diagram.
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TABLE 1 | Summary of studies included in the review. The studies detail and individual results are reported.

MRI Studies N Age Drug Task Signal Result Magnet
(T)

Daumann J, 2008 14 26–42 DMT Covert orienting of attention
task/Button press

Bold Administration of Sketamine, yet not DMT,
yielded a stronger signal increase in cortical
regions involved in the modulation of inhibition
of return

1.5

Dauman J, 2010 14 26–42 DMT Visual and the auditory target
detection/button press

Bold DMTdecreased bold response for visual task,
particularly in extrastriate regions during
auditory in temporal regions. S-ketamine led to
increased cortical activation in the left insula
and precentral gyrus in the auditory modality

1.5

Kraehenmann R,
2014

25 21–27 Psi Emotion picture discrimination Bold Decrease in Amygdala reactivity —

Tagliazucchi E,
2014

15 23–41 Psi Resting Bold and
power

Increased cortical BOLD variance and total
spectral power

3

Kaelen M, 2016 12 21- LSD Resting state and music listen Connect Increased PHC–visual cortex functional
connectivity

3

Palhano-Fontes
FM, 2015

10 24–48 Aya Verbal fluency task and RS Connect Connectivity within the PCC/Precuneus
decreased. Modulation of the activity and the
connectivity of the DMN

1.5

Kraehenmann R,
2016

25 21–28 Psi Emotional (threat and neutral)
picture discrimination

Connect Reduces threat-induced modulation of
amygdala connectivity to primary visual cortex

3

Preller K, 2016 21 20–37 Psi Cyberball-social exclusion game Connect Neural response to social exclusion was
decreased in the dorsal anterior cingulate
cortex (dACC) and the middle frontal gyrus. Psi
reduced the perception of social pain

3

Mueller F, 2017 20 25–58 LSD Gender discrimination task Bold Significant effect of LSD on the left amygdala 3
Muller F, 2017 20 25–60 LSD Resting state Connect Increased thalamic resting-state connectivity 3
Peller A, 2017 22 20–34 LSD Music paradigm Bold Increased signal in the left SMA. LSD

increased the attribution of meaning to
previously meaningless music

3

Schmidt A, 2017 18 25–58 LSD Go-no go task Bold LSD administration impaired inhibitory
performance and reduced brain activation

3

Muller F, 2018 20 25–60 LSD Resting state Connect LSD administration significantly decreased
functional connectivity within visual,
sensorimotor and auditory networks and the
default mode network

3

Preller K, 2018 24 20–34 LSD Social interaction task Bold LSD reduced activity in brain areas important
for self-processing and social cognition

3

Preller K, 2019 25 20–34 LSD Resting state Connect LSD increased effective connectivity from the
thalamus to the posterior cingulate cortex

3

Smigielski L, 2019 38 40–60 Psi Resting state (RS), focused
attention (FA), and open
awareness (OA) meditation

Connect Long lasting alterations in
anterior–posterior DMN

3

PET studies N Age
Range

Drug PET scan — Results —

Vollenweider F
1997

10 26–43 Psi FDG — Cerebral metabolic rate of glucose (CMRglu)
increases in the frontomedial and frontolateral
cortex, anterior cingulate and temporomedial
cortex

—

Gouzoulis-
Mayfrank E 1999

32 27–47 Psi and
Methamphetamine

FDG — MDE and METH induced cortical
hypometabolism and cerebellar
hypermetabolism. In the MDE group, cortical
hypometabolism was more pronounced in
frontal regions, with the exception of the right
anterior cingulate

—

Vollenweider F
1999

7 25–30 Psi (11C) raclopride D2 -dopamine
receptors

— Psilocybin significantly decreased [11 C]
raclopride receptor binding potential (BP)
bilaterally in the caudate nucleus and putamen

—

Madsen M 2019 8 26–40 Psi 5-HT2AR agonist radioligand
(11C) Cimbi-36

— Intake of psilocybin leads to significantly 5-
HT2AR reduced occupancy in the human
brain

—
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A total of 323 subjects participated in this set of Psychoactive
studies that include LSD, Psilocybin, Ayahuasca and DMT. The
age range of the participants was 20–60 years. In total, there were
98 foci for the BOLD studies and 76 foci in the connectivity
studies that were included in the meta-analysis.

We performed quantitative ALE meta-analysis using fMRI
activation data both for BOLD and connectivity reports. The
individual meta-analysis of brain activation and connectivity
associated with psychoactive drugs revealed eleven clusters of
reliable activation and connectivity modulation across studies.
Table 2 identifies the coordinates of the peak voxel of each cluster
and the brain region label including statistical values. There, MNI
coordinates and the ALE values of the clusters are reported. We
found a set of areas that are affected by psychoactive drugs and
those areas are mainly located at frontal, parietal and limbic lobes.
In particular, Putamen and Anterior cingulate activations are
reported with highly significant alterations (p < 0.00001).

Regarding separate BOLD and connectivity results (Table 2),
the ALE analysis shows reliable alterations (mainly deactivations)
that strongly appear in the Amygdala, temporal gyrus and
fusiform gyrus (p < 0.0004; Zmin � 3.38) for the BOLD
studies when participants receive the psychoactive drugs
irrespectively of the task in hand and mainly at the right
hemisphere (Figure 2). On the other hand, connectivity
studies analysis revealed a distributed network of changed

connections in the left hemisphere when participants are
under the effect of psychoactive drugs. This network includes
particularly the cingulate cortex (Brodmann areas 31 and 32; p <
0.000013; Z � 4.22) and the inferior temporal gyrus (p < 0.00002;
Z � 4.10) in the occipital lobe. Figure 2 depicts the brain maps of
concordant clusters of significant alterations (p < 5E-4) during
psychoactive drug experiments.

Additionally, we performed a systematic review of the PET
studies in the field. Surprisingly, we only found four studies that
passed the inclusion criteria. These studies reported results for
distinct PET tracers namely (18F) DG and (11C) Cimbi-36, only
the latter being related to 5-HT2AR, a serotonin receptor for
which there is wide evidence for psychoactive drug effects. Other
studies have addressed the distribution of 5-HT2A receptors such
(18F) altanserin (11C) Cimbi-36 or (18F) setoperone but with no
direct link to the effects of hallucinogens. For example, the PET
study from Stenbæk et al., 2018 in 159 participants shows that
differences in 5-HT2AR availability are not related to variations
in trait Openness in healthy individuals, which is at odds with the
notion that putative stimulation of the 5-HT2AR with
compounds such as psilocybin may contribute to long-term
changes in trait Openness. This study, which was not formally
included because psilocybin or other hallucinogens were not
administered, shows that in any case there is no evidence in
favor of an association between 5-HT2AR and trait Openness,

TABLE 2 | Overlap in brain activation across studies, as assessed using a quantitative meta-analysis of BOLD and connectivity studies. Themajor activations are shown
with their corresponding Brodmann Area (BA), the ALE value of the peak activated voxel and MNI coordinates. Statistical values are also reported for each cluster.

fMRI
(BOLD
+ Connect.)

Cluster # x y Z ALE P Z Hemis Lobe Label BA

1 26 0 −14 0.0178 0.00000 4.62 R Sub-lobar Lentiform Nucleus Putamen
2 6 24 18 0.0135 0.00006 3.83 R Limbic Lobe Anterior Cingulate 33
3 −2 −46 30 0.0159 0.00001 4.32 L Limbic Lobe Cingulate Gyrus 31
4 54 32 20 0.0158 0.00001 4.29 R Frontal Lobe Middle Frontal Gyrus 46
5 48 −66 26 0.0147 0.00002 4.09 R Temporal Lobe Middle Temporal Gyrus 39
6 −6 44 −4 0.0147 0.00002 4.08 L Limbic Lobe Anterior Cingulate 32
7 −52 −46 36 0.0160 0.00001 4.32 L Parietal Lobe Supramarginal Gyrus 40
8 50 −68 −2 0.0138 0.00005 3.89 R Occipital Lobe Inferior Temporal Gyrus 37
9 48 46 6 0.0135 0.00006 3.84 R Frontal Lobe Middle Frontal Gyrus 10
10 −38 −68 −18 0.0134 0.00007 3.82 L Posterior Lobe Declive *
11 −42 40 24 0.0129 0.00010 3.72 L Frontal Lobe Superior Frontal Gyrus 9

BOLD

Cluster # X Y Z ALE P Z Hemis Lobe Label BA

1 48 −66 26 0.0147 3.6E-06 4.49 R Temporal Lobe Middle Temporal Gyrus 39
2 50 −68 −2 0.0138 1.0E-05 4.26 R Occipital Lobe Inferior Temporal Gyrus 37
3 26 −2 −16 0.0099 2.0E-04 3.54 R Limbic Lobe Parahippocampal Gyrus Amygdala
3 24 −4 −22 0.0090 3.6E-04 3.38 R Limbic Lobe Parahippocampal Gyrus Amygdala
4 −40 −80 −8 0.0110 9.6E-05 3.73 L Occipital Lobe Fusiform Gyrus 19

Connectivity

Cluster # X y Z ALE P Z Hemis Lobe Label BA

1 −38 −68 −18 0.0134 7.1E-06 4.34 L Posterior Lobe Declive *
2 10 -68 22 0.0128 1.2E-05 4.22 R Limbic Lobe Posterior Cingulate 31
3 0 48 −12 0.0132 8.4E-06 4.30 L Limbic Lobe Anterior Cingulate 32
4 −48 −74 2 0.0121 2.0E-05 4.10 L Occipital Lobe Inferior Temporal Gyrus *
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ruling out a simple link between this trait and 5-HT2AR effects of
psylocibin.

This concept that neural effects stem mainly from 5-HT2AR
has been challenged for indoleamine/tryptamine hallucinogens.
A large body of evidence demonstrates indeed that both 5-HT1A
and 5-HT2A receptors are responsible for the behavioral effects of
these hallucinogens (Halberstadt and Geyer, 2011). These authors
point out that, in general, different neurotransmitter systems
contribute to the effects of indoleamine/tryptamine
hallucinogens, which in the case of LSD involves also
dopamine receptors.

Contrary to the MRI studies that report effects of using several
distinct hallucinogenic drugs, the PET studies focused on the
effects of the Psilocybin. These molecular studies reveal distinct 5-
HT2AR receptor occupancy and density as a consequence of
Psilocybin intake (Madsen et al., 2021). There was a decrease in
receptor binding particularly in frontal regions. While this
confirms the action of Psilocybin at the level of these receptors
it does not preclude actions in other neurotransmitter systems.
Accordingly, Psilocybin significantly decreased [11 C]raclopride
receptor binding potential (BP) bilaterally in the caudate nucleus
and putamen (Vollenweider et al., 1999) showing that effects are
not at all exclusive to the 5-HT2AR system, but include the D2
dopamine receptor.

Concerning 18-FDG studies, Vollenweider et al. (1997)
suggested that Psilocybin induced “metabolic hyperfrontaly”,
as encountered in baseline states of psychosis. Using the same

radiotracer, Gouzoulis-Mayfrank et al. (1999) partially replicated
these findings by showing that psilocybin increased metabolism
in distinct right hemispheric frontotemporal cortical regions,
particularly in the anterior cingulate, in contrast with the
thalamus. More placebo controlled molecular imaging studies
are needed to understand the impact of tryptamine hallucinogens
in the brain. Nevertheless, molecular imaging atlas of different 5-
HT receptor systems (Beliveau et al., 2017) suggest that the
regions found in most fMRI studies share a sizable density of
both 5-HT1A and 5-HT2A receptors.

DISCUSSION

Psychological Effects
The profound experience induced by psychedelics like DMT,
Ayahuasca, LSD and Psilocybin is characterized by changes in
emotion, perception and cognition, visual imagery and
differences in the sense of self (Swanson, 2018; Barrett et al.,
2020b; Lowe et al., 2021; Luppi et al., 2021). Figure 3 summarizes
these effects.

Amygdala and Emotional Effects and
Anxiety
The most obvious finding of our analysis is the deactivation of the
amygdala during the psychedelic induced states, which might

FIGURE 2 | Brain activation maps for tryptamine psychedelics studies. An extended network shows up in the quantitative meta-analysis. Frontal decision related
areas and other visuo-temporal areas are affected by the drug. Particularly, right amygdala is implicated in the effects of the psychedelics drugs. These results are
significant at p < 0.0001.
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underlie the emotional effects of these substances. Altered
processing of facial expressions with negative valence and
modulation of the amygdala activity to these stimuli has been
found after the administration of serotonergic psychedelics on
healthy and clinical populations (Rocha et al., 2019). The
decreased reactivity of the amygdala to negative stimuli was
also associated with an increase of positive mood states during
the acute phase (Kraehenmann et al., 2015) and also long-term
(Barrett et al., 2020). These effects may be of clinical relevance in
disorders associated with difficulties in emotional processing such
as depression, anxiety and addiction. Previous studies evaluating
anxiety disorders have found consistent findings on the role of the
amygdala in the symptoms of fear and anxiety (Holzschneider
and Mulert, 2011). Meta-analytic evidence revealed consistent
hyperactivation of the amygdala in post-traumatic stress disorder,
social anxiety disorder and specific phobia, as well as during fear
conditioning in healthy subjects, suggesting a common excessive
engagement of fear circuitry (Etkin andWager, 2007). Our results
also show a greater deactivation in the right amygdala. Although
there are no conclusive findings on the lateralization of amygdala
in emotional processing (Kraehenmann et al., 2015), some studies
point to different activations. During the presentation of
emotional stimulus, right amygdala hyperactivation was
observed in patients with PTSD compared with trauma-
exposed non-PTSD individuals (Brohawn et al., 2010), as well
as in patients with obsessive-compulsive disorder compared with
healthy controls (Thorsen et al., 2018). In the latter, right

amygdala hyperactivation was more evident in unmedicated
patients. An increased influence from right amygdala to right
middle frontal gyrus and a decreased influence from right
precuneus to right amygdala was also associated to the trait
neuroticism, which is the tendency to experience negative
emotional states and negative self-referential information
processing (Pang et al., 2016). Further research should be
undertaken to elucidate the long-term impact of psychedelics
on amygdala responsiveness. Recent findings from healthy
populations indicated a reduced amygdala response to facial
stimuli 1-week post-psilocybin, returning to baseline after
1 month (Barrett et al., 2020). Nevertheless, an increased
reactivity was found in clinical populations 1 day after
psilocybin session (Roseman et al., 2018).

Salience Network and Pain, Psychiatric and
Neurological Disorders
Another important finding was the deactivation of brain areas
associated with the Salience Network (SN), such as the dorsal
anterior cingulate cortex. This network is involved in attributing
salience and selecting relevant interoceptive, autonomic and
emotional stimuli (Menon, 2015). Dysfunctions on salience-
processing are relevant in many psychiatric and neurological
disorders, such as schizophrenia, dementia, autism, mood and
anxiety disorders, drug addiction and pain (Menon, 2015;
Uddin, 2015). An aberrant salience attribution to internal
stimuli is proposed as a model for psychosis (Kapur, 2003),
and is also conceptualized as having an important role in the
symptoms of delusions and hallucinations in schizophrenia
(Palaniyappan and Liddle, 2012). These findings may help to
understand the early research on psychedelics as models for
psychosis. A salience network dysfunction hypothesis is also
considered in autism spectrum disorder, which suggests that
impaired attribution to sensory stimuli might be associated with
dysfunctional cognitive processes, such as social cognition
(Uddin, 2015).

Theory of Mind and Social Cognition
We also found relevant patterns in regions involved in theory of
mind such as supramarginal gyrus, medial prefrontal cortex,
precuneus and posterior cingulate cortex. LSD decreased the
efficiency of establishing joint attention in the PCC and the
temporal gyrus, an effect attributed to 5-HT2AR stimulation
(Preller et al., 2018). The authors suggested a decreased
differentiation between the self and the other during social
interactions. This altered sense of self characterized by a
decreased differentiation between self-representations and
other-representations is usually called “ego dissolution”
(Nour et al., 2016). In addition, psilocybin decreased the
feeling of social exclusion processing in the ACC (Preller
et al., 2016). These findings point to the modulation of social
cognition, which may be an important mechanism contributing
to the therapeutic potential of psychedelics (Preller and
Vollenweider, 2019). There is evidence for the role of the
supramarginal gyrus, highlighted in our analysis, in
overcoming emotional egocentricity bias in social judgements

FIGURE 3 | Behavioral domains affected by use of psychoactive
substances. Behavioral data was extracted from Mango plugin (Behavioral
Analysis Plugin v3.1) for the clusters obtained from the quantitative ALE
analysis (Z-score>2.39).
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(Silani et al., 2013), which suggests a possible role in empathy.
The overlap between some areas involved in theory of mind and
the default mode network (DMN) has led some authors to
suggest the role of the DMN in the social understanding of
others (Li et al., 2014), as well as the role of the PCC in
attributing mental states to others (Mars et al., 2012).
Tagliazucchi et al. (2016) reported that LSD-induced states
increased functional connectivity in bilateral temporo-parietal
junction, a key component of theory of mind, which was
correlated to subjective reports of ego dissolution. In line
with this, previous studies indicated the effects of tryptamine
psychedelics on dimensions related to healthy social functioning
such as increased emotional empathy and prosocial behaviour
(Dolder et al., 2016; Pokorny et al., 2017; Mason et al., 2019;
Uthaug et al., 2021), changes in personality traits agreeableness
(Netzband et al., 2020) and compassion (Apud Peláez, 2020), as
well as feelings of connection to others (Watts et al., 2017). A
recent study in mice reported that repeated administration of
low doses of LSD promoted social behaviour by potentiating 5-
HT2AR and AMPA receptor neurotransmission in the mPFC
via an increasing phosphorylation of the mTORC1 (de Gregorio
et al., 2021).

Mental Imagery
The activation of visual areas by psychedelics induced
substances, was another outcome of our quantitative meta-
analysis, namely visual areas BA19 and visual fusiform region
BA37. These areas are densely populated with 5-HT2A
receptors. Various studies indicated a key function for 5-
HT2ARs in visual processes and the pathogenesis of visual
hallucinations (Moreau et al., 2010; Seillier et al., 2017).
Classical hallucinogens are used as models for studying the
pathophysiology of different neuropsychiatric conditions with
positive psychotic symptoms, such as schizophrenia,
Parkinson’s and Alzheimer’s disease, which alter individual
visual and perceptual experiences. The activation of 5-
HT2ARs increases the excitability of the visual cortex in the
absence of external visual stimulation (Moreau et al., 2010). In
addition, the activation of 5-HT2ARs mediates the visual
hallucinations that are generated by serotonergic
hallucinogens, such as LSD or psilocybin (Nichols, 2004;
Vollenweider and Kometer, 2010). In line with this, the
hallucinogen-induced decrease in alpha oscillations might
allow spontaneous self-organized activity to gain perceptual
quality (Kometer et al., 2013). Recent studies demonstrated
that acute LSD administration to healthy subjects not only
produces elementary and complex visual (pseudo)
hallucinations and perceptual illusions (Carhart-Harris et al.,
2016b; Preller et al., 2017; Schmid et al., 2015; Schmidt et al.,
2018), but also impaired inhibitory processes (Schmid et al.,
2015) and cognitive organization (Carhart-Harris et al., 2016a).
Impairments in inhibition after psilocybin administration and
cognitive impairments after LSD administration were
attenuated by administration of the 5-HT2AR antagonist
ketanserin (Quednow et al., 2012; Preller et al., 2017).
However, this does not exclude the contribution of other
receptor subtypes such as 5-HT1AR (Halberstadt and Geyer,

2011). 5-HT2AR activation is indeed pivotal in inducing visual
hallucinations but other receptors also contribute to cognitive
impairments, and their abnormal activity can be associated with
cognitive deficits in neuropsychiatric disorders such as
schizophrenia and Alzheimer’s disease (Švob Štrac et al.
2016). Schmidt et al. (2018) proposes that psychedelics
disrupt information processing in inhibitory cortico-striato-
thalamocortical (CSTC) feedback loops that have been
implicated in sensory gating of internal and external
information to the cortex. This psychedelic-induced
disinhibition might lead to an inability to filter and inhibit
exteroceptive and interoceptive stimuli, resulting in high-level
processing overload and the formation of hallucinations.

In line with our results, De Araujo et al. (2012) investigated the
neuronal mechanisms underlying psychedelic-induced visual
mental imagery using functional magnetic resonance imaging
(fMRI). The authors found that ayahuasca increased activations
in mental imagery networks, including early visual areas (BA 17,
18, 19), parahippocampal gyrus, middle temporal cortex, and
frontal cortex (BA10). They also showed that ayahuasca-induced
changes in primary visual cortex (BA17) were preceding
activation patterns in higher-level areas, indicating that
ayahuasca-induced imagery is initiated in BA17, but activity is
spread to higher-level cortical areas involved with episodic
memory retrieval and the processing of contextual
associations, such as BA30 and BA37, which might feed
memory-related content. In addition to perceptual alterations
of simple and elementary visual features as color, brightness,
visual contrast (Klüver, 1942; Rummele and Gnirss, 1961;
Kometer et al., 2013; Kometer and Vollenweider, 2018) that
might be explained by increased excitation in V1 (Kometer
et al., 2013; Császár-Nagy et al., 2019), complex imagery and
hallucinations has been reported (Császár-Nagy et al., 2019; Díaz,
2010; dos Santos et al., 2016; Kraehenmann, 2017; Kometer et al.,
2013), with personal and profound significance, stemming from
autobiographical memory (Studerus et al., 2011) to current life
situations (Shanon, 2010) charged with emotional content. These
complex forms of hallucinogen-induced hallucination and
visions, also lead the recruitment of higher level regions in the
brain, given that psychedelic imagery is usually very structured,
thematic and personal (Kraehenmann, 2017). In accordance to
our main results, studies have reported visual hallucinations
caused by neuronal stimulation of PFC (Blanke et al., 2000),
temporal areas (Mégevand et al., 2014; Aminoff et al., 2016) and
increased functional connectivity between PFC and primary
visual cortex (Carhart-Harris et al., 2016b). Furthermore, the
review conducted by dos Santos et al. (2016), suggested that
hallucinogens increase introspection and positive mood by
modulating brain activity in the fronto-temporo-parieto-
occipital cortices. Neuromodulatory changes induced by
tryptamine psychedelics can give significant input to the study
of neuropsychiatric conditions where similar patterns of
activation or connectivity (Barrett et al., 2020b; Madsen et al.,
2021) are found and to the implementation of new
pharmacological or psychotherapeutic interventions taking
advantage of this link between visual imagery,
autobiographical memory and emotions (Barrett et al., 2020).
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The role of amygdala in this interplay is not of less importance.
The amygdala plays an important role in emotional visual
processing (Vuilleumier et al., 2004). Important networks
between amygdala and ventral visual pathways in primates are
reported (Freese and Amaral, 2005), as well as the role of the
amygdala in visual awareness (Duncan and Barrett, 2007). Furl
et al., 2013 suggested that the amygdala modulates visual
processing by feedback connections and that it may have a
contextual role during visual coding. Deactivation of the
amygdala during the psychedelic induced states has been
consistently found and along with the inhibition of DMN
opens a therapeutic potential for accessing and transforming
autobiographical memories, emotions and maladaptive
perceptions.

Default Mode Network
In addition to the mechanisms described above, changes in Default
Mode Network (DMN) connectivity may be another neural basis
involved in the psychologic and therapeutic effects attributed to
tryptamine psychedelics. DMN areas present lower levels of activity
when individuals are engaged in a task requiring externally oriented
attention and activate during passive rest states or internally
oriented mental processes, such as autobiographical memory,
mind wandering, self-reflective thought, and future thinking
(Buckner et al., 2008; Andrews-Hanna et al., 2010).

In our analysis, a decreased connectivity within PCC/Precuneus,
key components of the DMN, was observed. Regarding classic
hallucinogens, studies revealed that psilocybin, LSD, and
ayahuasca could decrease DMN functional integrity (Carhart-
Harris et al., 2012, Carhart-Harris et al., 2016c; Palhano-Fontes
et al., 2015; Luppi et al., 2021; Madsen et al., 2021; Mason et al.,
2021),. Barrett et al. (2020b), recently proposed that Psilocybin alters
default mode network integrity and fronto-parietal network
modularity by reducing Claustrum functional connectivity with
these circuits. This study showed that psilocybin reduced activity
of left and right claustrum during the acute effects of psilocybin,
leading to alterations in claustrum connectivity with brain networks
that support both sensory and high-level cognitive processes.
Specifically, the authors found decreased connectivity between
claustrum and the DMN during the effects of psilocybin,
decreased connectivity between left claustrum and fronto-parietal
task control circuits and increased connectivity between right
claustrum and the same fronto-parietal networks. In sum they
assigned to the claustrum (dense in 5-HT2A receptors ) a role in
the psilocybin-induced disruption in both the DMN and task-
positive networks. Accordingly, Madsen et al. (2021) found
negative correlations between the DMN integrity and the plasma
psilocin levels and subjective drug intensity. These results support
the proposed theory of action for psychedelics to decrease the control
of top-down structures and increase the excitability of areas involved
in sensory, emotional and cognitive appraisal processes. (Barrett
et al., 2020b; Mason et al., 2021). The expression and awareness of
normally repressed information would explain the novelty of the
experience and the new associations would facilitate the formation of
new insights (Domínguez-Clavé et al., 2016; McKenna and Riba,
2018). In line with this, Mason et al. (2021) reported psilocybin-
induced decreased within-network connectivity of the DMN and

increased functional connectivity between the DMN and the
Frontoparietal Network (FPN) and between the DMN and the
Salience Network (SN), which predicted higher scores in aspects
of creative thinking and long-term increases in novelty of generated
ideas. However, in contrast to these findings, there have also been
findings of increased DMN activity by hallucinogens (Carhart-
Harris et al., 2017; Kometer et al., 2015; Petri et al., 2014;
Tagliazucchi et al., 2014). Regarding the associated therapeutic
potential, DMN activity is increased in depression (Sheline et al.,
2009) acute and chronic pain (Alshelh et al., 2018), schizophrenia
(Garrity et al., 2007) and Parkinson’s disease (Van Eimeren et al.,
2009) Aberrant patterns of connectivity are also found in drug
addiction (Zhang and Volkow, 2019) and eating disorders (Stopyra
et al., 2019). It seems to be reduced in autism and in Alzheimer’s
disease (Broyd et al., 2009).

Linking Molecular Imaging and Functional
Magnetic Resonance Imaging Data
There were surprisingly few eligible pharmacoimaging studies
using PET. Two used FDG (Vollenweider et al., 1997; Gouzoulis-
Mayfrank et al., 1999) and together suggested frontal and
temporal hypermetabolism, which are consistent with fMRI
data. Another used the 5-HT2AR agonist radioligand (11C)
Cimbi-36, and showed that intake of psilocybin leads to
significantly 5-HT2AR reduced occupancy in the human
brain, confirming a role for this receptor subtype. However, a
specific link with this receptor system is probably an
overstatement, given the evidence that multiple receptors, in
particular the 5-HT1AR contribute to the behavioral effects of
indoleamine hallucinogens (Halberstadt and Geyer, 2011). The
neural effects of these hallucinogens seem to include regions rich
in both 5-HT1AR and 5-HT2AR. These probably interact with
other receptor systems such as DR2 (Vollenweider et al., 1999),
whose binding is decreased probably due to endogenous
dopamine release.

Therapeutic Potential
Taken together, our results support the plausibility of further
research on the therapeutic potential of tryptamine psychedelics
(Lowe et al., 2021). There is a growing number of clinical trials
describing promising data on safety and efficacy of psychedelics
and entactogens in several psychiatric disorders, such as
posttraumatic stress disorder (Mitchell et al., 2021), treatment-
resistant depression (Carhart-Harris et al., 2016a; Palhano-Fontes
et al., 2019), substance addictions (Johnson et al., 2014;
Bogenschutz et al., 2015); obsessive-compulsive disorder
(Moreno et al., 2006); anxiety associated with life-threatening
diseases (Gasser et al., 2014; Griffiths et al., 2016; Ross et al., 2016)
and social anxiety in autistic adults (Danforth et al., 2018). Those
preliminary findings suggest the reduction of depressant, anxiety
and addiction symptoms. Patients described feelings of
connection, transcendence, insights, self-awareness, alterations
in the perception of the self, emotional catharsis, changes in
values and life orientations, reconciliations with death, as well as
psychological distress (Gasser et al., 2015; Schmid et al., 2015;
Belser et al., 2017; Swift et al., 2017; Watts et al., 2017; Noorani
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et al., 2018; Barone et al., 2019; Lowe et al., 2021), encouraging
further studies. Recently, the role of psychedelics in changing
behaviours related to healthy lifestyles (Teixeira et al., 2021), as
well as a treatment for neurodegenerative disorders (Vann Jones
and O’Kelly, 2020) and for pain conditions (Castellanos et al.,
2020) has also been hypothesized. Despite the promising results,
further work is required to better understand the
neurobiological and psychological mechanisms of action and
the potential risks underlying the therapeutic action of
tryptamine psychedelics. Several questions regarding the
long-term impact of psychedelics remain unanswered at the
moment. Rigorous research (possibly integrating PET with
fMRI (Cumming et al., 2021)) is needed, taking into account
the best clinical practices.

LIMITATIONS

A limitation of our analysis is the inclusion of a few studies with
relatively small sample sizes, unequal gender distribution and a
minority of studies with no control group (this is the case for
three PET and two MRI studies). It is nevertheless important to
note that all studies included placebo control groups and the data
reported are comparisons of drugs vs placebo effects (see
Supplementary Table S1). Another caveat is the different
substances and doses used, knowing they act on a different
range of receptors. The limited number of regions included in
the definition of dynamical states in some studies, is also an aspect
that should be addressed in future studies.
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