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Chronic cocaine use has been shown to lead to neurotoxicity in rodents and humans,

being associated with high morbidity and mortality rates. However, recreational use,

which may lead to addictive behavior, is often neglected. This occurs, in part, due to

the belief that exposure to low doses of cocaine comes with no brain damage risk.

Cocaine addicts have shown glucose metabolism changes related to dopamine brain

activity and reduced volume of striatal gray matter. This work aims to evaluate the

morphological brain changes underlying metabolic and locomotor behavioral outcome,

in response to a single low dose of cocaine in a pre-clinical study. In this context, a

Balb-c mouse model has been chosen, and animals were injected with a single dose of

cocaine (0.5 mg/kg). Control animals were injected with saline. A behavioral test, positron

emission tomography (PET) imaging, and anatomopathological studies were conducted

with this low dose of cocaine, to study functional, metabolic, and morphological brain

changes, respectively. Animals exposed to this cocaine dose showed similar open field

activity and brain metabolic activity as compared with controls. However, histological

analysis showed alterations in the prefrontal cortex and hippocampus of mice exposed

to cocaine. For the first time, it has been demonstrated that a single low dose of cocaine,

which can cause no locomotor behavioral and brain metabolic changes, can induce

structural damage. These brain changes must always be considered regardless of the

dosage used. It is essential to alert the population even against the consumption of low

doses of cocaine.
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INTRODUCTION

Drug dependency is considered a physical and psychological
condition that induces chronic and recurrent diseases. The
continued use of psychoactive substances can cause functional
changes in the brain (Dias et al., 2008). Cocaine is one of the
most widely used drugs in the world. The European Drug Report
of 2020 showed that about 4.3 million people between 15 and 64
years old used cocaine in 2018, and 17.9 million had used it at
least once (European Drug Report, 2020). In 2016, the number of
young people who have already had any contact with illicit drugs
was 236,800 (European Drug Report, 2016). Its consumption
reaches about 0.4% of the world population, and most users
(70%) are concentrated in the American continent (Gootenberg,
2019).

It is well-established that cocaine is a psychostimulant
(Kalivas, 2007). This drug inhibits the reuptake of monoamine
neurotransmitters, including dopamine (DA) and noradrenaline
(NA). The DA increase occurs in the mesocorticolimbic system
(the brain reward system), which is responsible for the well-
being sensation and euphoria, thus playing a major role in the
addiction process (Planeta et al., 2013). DA auto-oxidation can
lead to oxidative stress and apoptosis (Dias et al., 2008; Planeta
et al., 2013). There is evidence that oxidative stress contributes
to cocaine neurotoxicity (Dietrich et al., 2005; Pereira et al.,
2015). Changes in brain circulation triggered by cocaine use led
to additional brain injury risk (Niu et al., 2019). Browndyke
et al. (2004) demonstrated that these blood flow abnormalities
might be related to cognitive impairments reported in cocaine-
dependent populations (Browndyke et al., 2004). Moreover,
cerebrovascular accidents rank amongst the most severe adverse
events from cocaine abuse (Sordo et al., 2014).

Pre-clinical neuroimaging studies aiming to model human
diseases and traits have been increasing in the last decade
(Volkow et al., 1997; Moreno-López et al., 2012; Caprioli
et al., 2013; Hanlon et al., 2013; Cannella et al., 2017; Nicolas
et al., 2017). In an animal model, individuals can be followed
up longitudinally over time, allowing the study of disease
progression, development of compensatory changes, and long-
term evaluation of the safety and efficacy of interventions
(Zaidi, 2014; Cannella et al., 2017; Nicolas et al., 2017). In
particular, pre-clinical positron emission tomography (PET)
plays a fundamental role, not only in the validation of animal
models of human brain disease but also in the quantitative
measurement of regional changes in brain activity. These regional
alterations in cerebral sub-regions are affected by diseases or
psychoactive agents such as drugs of abuse. There is also
evidence that repeated administration of a psychostimulant drug
in laboratory animals may cause a change of different parameters,
including cerebral glucose metabolism, in opposition to the one
caused by an acute administration (Hammer and Cooke, 1994;
Zocchi et al., 2001). The selectivity of glucosemetabolism changes
in the basal ganglia and prefrontal cortex (PFC) suggests that
regional metabolic changes, observed in cocaine users during
detoxification, are related to changes in the DA activity in
the brain (Volkow et al., 1997). Several studies used brain
imaging techniques to investigate the changes in brain activity

induced by drugs (Hammer et al., 1993; Gould et al., 2009;
Caprioli et al., 2013; Hanlon et al., 2013). Particularly, PET
studies using 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) have
demonstrated abnormal brain glucose metabolism connected to
cocaine addiction and withdrawal. The 18F-FDG is a widely
used radiotracer in PET due to its convenient half-life (110min)
and its well-established role in glycolytic metabolism (Alavi and
Reivich, 2002; Caprioli et al., 2013; Hanlon et al., 2013; Cannella
et al., 2017; Nicolas et al., 2017). Acute withdrawal in cocaine
addicts is associated with a glucose metabolic rate higher than
drug-naïve controls or cocaine abusers tested in late withdrawal
(Volkow et al., 1991). Other researchers discovered a negative
correlation between the severity of cocaine use and the glucose
metabolic rate (Moreno-López et al., 2012). Regarding pre-
clinical models, some authors evaluated the metabolic activity
changes after short (1 week) and long (4 weeks) periods of cocaine
abstinence in rats with a history of cocaine self-administration,
using the escalation model (Nicolas et al., 2017). They showed
that escalation of cocaine self-administration produced cerebral
changes that are quantitatively and qualitatively different from
those found after short access to cocaine self-administration;
i.e., the changes in basal brain metabolic activity depend on
the intensity of cocaine self-administration and the duration of
abstinence (Nicolas et al., 2017). Although there are a growing
number of neuroimaging studies in cocaine addiction settings,
there are no neuroimaging studies in the context of a single low
dose of cocaine. Additionally, data on the potential for brain
injury induced by the consumption of low doses of cocaine
remain scarce (Volkow et al., 1997; Heard et al., 2008).

The present work puts forward the hypothesis that even a
single low dose of cocaine can cause deleterious brain changes.
Therefore, this work aims to evaluate locomotor behavioral,
metabolic, and morphological brain data of mice exposed to a
single low dose of cocaine.

MATERIALS AND METHODS

Subjects and Housing Conditions
Male Balb-c mice, with a mean age of 6 weeks and an
average weight between 20 and 30 g, were used in this study.
The Multidisciplinary Research Laboratory of the University
of São Francisco, Bragança Paulista (Brazil), in collaboration
with both the Biophysics and Pharmacology and Experimental
Therapeutics Institutes of the Faculty of Medicine of University
of Coimbra (Portugal), developed the research. All experiments
were conducted following the European Union directives
(86/609/EEC) for the care of laboratory animals and the iCBR
Vivarium guidelines. The project is under the ORBEA 17/2015
and the DGAV authorization.

General Experimental Design
Our general experimental design is presented in Figure 1. A
total of 18 animals were used, being randomly divided into
two groups: mice non-exposed (n = 8) or mice exposed (n
= 10) to a single low dose of cocaine (Merck, Darmstadt,
Germany). The non-exposed animals represent the controls that
were injected intraperitoneally (i.p.) with saline (0.9% NaCl,
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FIGURE 1 | General experimental design. A total of 18 animals were used, randomly divided into two groups: mice non-exposed (n = 8) or mice exposed (n = 10) to

a single low dose of cocaine. Mice were submitted to a behavioral study. Five animals from each group were subsequently studied by PET imaging analysis. To

histological analysis, six randomized mice brain samples were collected.

0.5ml). The exposed group was injected (also i.p.) with cocaine
(0.5 mg/kg, 0.5ml). The dose was chosen based on the lowest
dose having demonstrated dopaminergic visible action on PET
imaging evaluation in human volunteers (Heard et al., 2008),
although promoting changes in brain neurochemistry (Volkow
et al., 1997).

Animals were submitted to a behavioral test followed by PET
imaging; and brains were collected. Initially, saline or cocaine
was administered to the animals, which subsequently underwent
a behavioral test for 60min. Afterwards, five randomized
mice from each group were injected (i.p.) with 18F-FDG. The
radiotracer had an uptake period of 50min post-injection.
Subsequently, animals were anesthetized (i.p. injection) [0.2ml
of a mixture of ketamine (1.5 mg/mg weight) + chlorpromazine
(0.05 mg/mg weight) (3:1):saline (1:1)] 10min prior to the
PET imaging acquisition (+/−30min). For routine histological
technique analysis, anesthesia (ketamine + chlorpromazine)
overdose was induced in three randomizedmice from each group
for brain sample collection.

Behavioral Study
The open field maze (OFM) test has been used to assess general
motor activity and anxiety (Gould et al., 2009; Kraeuter et al.,
2019). The animals were allowed a habituation period of 45min
to the behavioral test room before the OFM test procedure.
A soundproof test room was used. Moreover, the behavioral
test was performed under a white noise (80 dB) stimulus
to further attenuate sound interference (Henry et al., 2010).
Additionally, the light level inside the OFMwas maintained at 7–
8 lux. Following saline or cocaine administration, animals were
immediately placed in the middle [AS4] of the open field, and
motor activity was monitored through a video camera positioned
above the apparatus. The images were analyzed later with the
ANY Maze video tracking (Stoelting Co., Wood Dale, IL, USA)
by a researcher who was unaware to which experimental group
the animals belonged to. The animals were allowed tomove freely
in the OFM for 60min. The OFM evaluation was performed by
analyzing the following parameters: (a) total walked distance; (b)
mean speed; (c) maximum speed; (d) periphery distance; (e) time
spent in the periphery; (f) latency time to center; g) the number

of entrances in the center; (h) center distance; and (i) time spent
in the center.

Positron Emission Tomography Imaging
Study
A metabolic PET scan with 18F-FDG was performed, under
basal conditions in fasted animals (6–8 h), to study the cerebral
metabolic rate of glucose consumption. The small animal
PET scanner used herein was the easyPET.3D system. This
is a cost-effective benchtop PET system with a simple and
unique image acquisition method (Patent, Universidade de
Aveiro: WO2016147130), based on the rotation of two detector
modules with two degrees of freedom (https://www.ri-te.pt/).
This innovative scanning method, in which the detector modules
are always face to face, strongly reduces parallax errors, thus
simultaneously achieving a great level of detail and spatial
resolution. Detector arrays can have different geometries. Each
scan can be performed using different parameters to achieve
different sensitivity, level of desired detail/speed, or image-
specific regions of interest within the field of view (FOV), which
is also a unique feature of this technology. The easyPET.3D
model used in this study has two arrays of 162lutetium–yttrium
oxyorthosilicate (LYSO) crystals with a size of 2,230mm3 coupled
to corresponding arrays of silicon photomultipliers with a 1.3-
mm2 active area, covering an axial FOV of 3.4 cm (length) and a
maximum radial FOV of 4.8 cm (diameter).

According to the experimental design (Figure 1), awake mice
were i.p. injected with 18F-FDG (7.5 MBq/0.4ml 0.9% NaCl) and
placed in their home cages, after the behavioral test. For optimal
radiotracer distribution, mice were kept conscious during the
uptake period (60min). Fifty minutes post-radiotracer injection,
the animals were anesthetized (i.p.) [0.2ml of a mixture of
ketamine (1.5 mg/mg weight) + chlorpromazine (0.05 mg/mg
weight) (3:1):saline (1:1)]. The anesthetized animals were placed
on the bed of the easyPET.3D scanner, centered in the FOV. The
PET imaging acquisition started, taking place during 30min. A
heating apparatus (Heat Therapy Pump, Adroit Medical Systems,
Loudon, TN 37774, USA) is connected to the scanner’s bed to
keep the animals warm.

The data were reconstructed using a dedicated 3D
reconstruction method based on a GPU implementation of
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the List-Mode Maximum-Likelihood Expectation-Maximization
(LM-MLEM) algorithm, considering the original geometry of
the easyPET.3D scanner and a high number of possible lines
of response. The values of the PET image resulting from the
reconstruction are expressed as a linear colormap (percent,
%). Since cerebral metabolic rates of glucose consumption are
reflected by local radiotracer uptake, a qualitative analysis of
changes in brain metabolic activity of animals non-exposed or
exposed to a single low dose of cocaine was done. In order to
improve the image visualization, the hot metal scale was selected,
and a threshold was applied. The Digimouse 3D mouse atlas
(http://neuroimage.usc.edu) was applied for anatomical detail.
Moreover, the volumes of interest (VOIs) were drawn from the
same template co-registered with the PET data using AMIDE
software (http://amide.sourceforge.net/). Semi-quantitative
measurements of glucose metabolism were obtained using
the standardized uptake value (SUV), which is a normalized
target-to-background measure. SUV is defined as the regional
tissue activity concentration (kBq/ml) normalized for both the
decay correction of the injected activity (kBq) and weight of
the studied animal (g). Usually, a density equivalent to 1.0 g/ml
in tissue is assumed, ensuring that the units effectively cancel
and the resulting SUV number becomes dimensionless. In the
present study, the mean SUV was obtained, with the respective
mean standard error correlated with the VOI. Areas too small
to be identified using a microPET system were not included in
this analysis.

Histological Study
Macroscopy and microscopy analyses were done for the whole
brain and different brain areas. The analyzed specimens were
fixed in 10% neutral buffered formalin solution and processed for
routine paraffin embedding. Three 4-µm sections were obtained
from each block and stained with hematoxylin–eosin technique
(H&E) for optical microscopy. The PFC pyramidal neurons, as
well as the hippocampus (HC) and cerebellum (Cb) granular
neurons, were counted by computerized image processing (NIS
for Windows) (Martinez et al., 2011; Priolli et al., 2013). The
number of neuronal cells was obtained as an average of three
randomly selected fields of three sections from each animal.

Statistical Analysis
The analysis of the results was performed by adopting a p< 5% (p
< 0.05) to reject the null hypothesis, using the following statistical
tools: sample size; descriptive statistics; measures of central
tendency; normality test; comparison test (t-test); and two-
way repeated-measures ANOVA followed by Sidak’s multiple
comparison tests (OFM study). The statistical Package Bioestat
version 5.0 for Windows (Brazilian Science and Technology
Ministry) was used.

RESULTS

Behavioral Analysis
Exploratory and locomotor activities of mice injected with a low
dose of cocaine in an open field apparatus were evaluated. The
OFM analysis showed no differences in the behavior of neither

group of mice (non-exposed or exposed to cocaine). All analyzed
parameters (including the total, peripheral, and central distance
traveled; mean and maximum speed; time spent in the periphery
and in the center; and time latency to enter in the center) were
not statistically different between groups (p > 0.05) (Figure 2).

Positron Emission Tomography Imaging
Analysis
Figure 3 illustrates the metabolic activity in mice non-exposed
(saline injection) compared with mice exposed to cocaine.
Representative 18F-FDG PET images were selected for each
group (Figure 3). According to the intensity of the colormap
selected (hot metal), the presence or absence of abnormal
radiotracer accumulation was analyzed. The size and intensity
of the uptake region, especially when the accumulation was
focal, was also associated. The evaluation of the PET data (SUV)
showed no significant differences between the groups (non-
exposed vs. exposed) for any of the analyzed brain structures,
which are typically affected by cocaine (Figure 4). Additionally,
PET analysis of the entire brain showed no statistically significant
alterations between groups (Figure 4).

Histological Analysis
Histological analysis of PFC, HC, and Cb were also performed
in mice non-exposed and exposed to cocaine (Figure 5). No
histological differences between groups were found for the Cb.
On the contrary, morphological lesions were found in the
PFC of mice exposed to cocaine, ranging from mild gliosis up
to ischemic tissue necrosis. Additionally, histological analysis
showed morphological deterioration and low neural count in
PFC and HC in all animals exposed to cocaine. It is also
noteworthy that the HC granular layer of the group exposed
to a single low dose of cocaine was clearly distinct from that
of controls.

DISCUSSION

Acute exposure to cocaine in humans includes euphoria, high
self-confidence, motor arousal, restlessness, increased sensory
perceptions, mood changes, irritability, impulsivity, anxiety, fear,
paranoia, and avoidance (Silva et al., 2008). These symptoms are
dependent upon the extension of cocaine impact to affected brain
areas (Gallucci Neto et al., 2005). Although there is a robust body
of literature regarding acute high doses of cocaine, as well as
cocaine addiction scenarios, an integrated analysis of behavioral,
metabolic, and structural brain changes associated with an acute
low dose of cocaine is lacking.

Herein, the locomotor and exploratory behaviors associated
with a low dose of cocaine using an OFM test were firstly
analyzed. The presented behavioral data suggest that this cocaine
dose (0.5 mg/kg) did not change either the locomotor or
exploratory behaviors. It is well-known that this psychostimulant
increase dose dependently the locomotor activity in different
mice and rat strains (3–56 mg/kg) (Thomsen and Caine, 2011).
For example, cocaine doses ranging from 1 to 20 mg/kg (Barr
et al., 2020; Romero-Fernandez et al., 2020) have been shown to
elicit psychomotor activating effects. da Silveira et al. (2018) also
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FIGURE 2 | Open field behavior study. Mice non-exposed (saline injection, n = 8) and mice exposed (cocaine injection, n = 10) had similar behavioral parameters

(two-way repeated-measures ANOVA followed by Sidak’s multiple comparison tests): (A) total distance (m); (B) mean speed (m/s); (C) maximum speed (m/s); (D)

periphery distance (m); (E) periphery time (s); (F) latency to enter the center (s); (G) entries in center; (H) distance in center (m); and (I) time in center (s). Data represent

mean ± standard error of the mean.

showed that 10 mg/kg of cocaine (but not lower doses including
2.5 and 5 mg/kg) increased the distance traveled by male Swiss
mice in the open field (da Silveira et al., 2018). Moreover, it was
further shown that the threshold dose of cocaine that significantly
stimulated forward locomotion of rats in an open field arena
was 10 mg/kg (Baumann et al., 2013). In the present study, 0.5
mg/kg was used (which is 20 times lower); therefore, it should
not cause any locomotor or exploratory effect (the behavioral
parameters evaluated in the open field arena). Thus, the absence
of locomotor behavioral changes seen herein was expected. There
is less information regarding the behavioral effects of cocaine in
Balb-c mice, which is the strain used herein. It has been shown
that 20 and 40 mg/kg of cocaine acutely induced locomotor
activity in an open field arena for this mouse strain (Kosten et al.,
2014; Murthy et al., 2014). However, the emotional and cognitive
behaviors associated with cocaine for this mouse strain remain to
be characterized. This should be done in future investigations.

The 18F-FDG PET imaging study performed herein showed
no significant differences between controls and mice exposed to a
single low dose of cocaine. This could be explained by the very
low cocaine dose used. The experimental design could also be
responsible for the absence of alteration in the PET analysis. In
fact, PET-FDG images were acquired 1 h 50min post-cocaine
injection. It is noteworthy that it has been demonstrated that
after i.p. injection of either 10 or 25 mg/kg of cocaine to mice,

cocaine disappeared from the plasma and brain with a half-life
of 16min (Benuck et al., 1987). Therefore, the lack of metabolic
changes that are seen here may reflect cocaine pharmacokinetics.
In fact, this PET analysis may have been performed at a time
point where there were only vestigial plasmatic cocaine levels.
There are only a few studies looking at acute pharmacological
effects of cocaine on rodent brain glucose metabolism. An acute
intravenous administration of cocaine (0.75 mg/kg) decreased
metabolic glucose rates in discrete brain areas (cortical and basal
ganglia regions) of C57Bl/6 and DBA/2 awake mice (Zocchi et al.,
2001). Nonetheless, the distribution pattern of these changes
is different between the two strains. Briefly, in the referred
study, rodents were sequentially intravenously injected with
cocaine and with 2-[14C]deoxyglucose. Animals were sacrificed
40min after the administration of the tracer, and brains were
collected for glucose consumption assessment. These results are
aligned with the findings in primates, also obtained using the
quantitative 2-[14C]deoxyglucose method (Lyons et al., 1996). In
fact, intravenous infusion of 1mg/kg of cocaine acutely decreased
glucose consumption in discrete brain structures including the
interconnected limbic regions, such as ventral prefrontal cortex
and ventral striatal complex in awake Cynomolgus monkeys.
More recently, a PET-[18F]-FDG approach showed that cocaine
(1 mg/kg) acutely increased metabolism in the prefrontal cortex,
but not in the striatum of Rhesus monkeys in the cocaine-naïve
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FIGURE 3 | PET imaging study. Changes in metabolic activity in animals non-exposed (controls) and exposed to a single dose of cocaine (0.5 mg/kg). The

atlas-derived volumes of interest (VOIs) of the main areas commonly affected by cocaine are shown superimposed on transverse, coronal, and sagittal image slices of

mice brain from both representative 18F-FDG PET studies and CT derived from Digimouse 3D atlas. VOIs: prefrontal cortex (PFC, blue), striatum (St, red),

hippocampus (HC, green), thalamus (TH, yellow), and amygdala (AMY, pink).
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FIGURE 4 | Bar graph of the statistical analysis of standardized uptake value (SUV) in animals non-exposed and exposed to a single low dose of cocaine. (A) SUV

analysis of the following brain regions: striatum (ST), olfactory bulb (OB), prefrontal cortex (PFC), hippocampus (HC), amygdala (AMY), cerebellum (Cb), and

hypothalamus (HT). (B) Metabolic all-brain analysis. Note the absence of metabolic changes. Data represent mean ± standard error of the mean.

state (Henry et al., 2010). These authors co-injected cocaine and
[18F]-FDG and performed a static PET scan starting 40min post-
injection (image acquisition during 30min). These apparently
discrepant results may, however, highlight that cocaine acutely
recruits cortical and subcortical regions and changes their
metabolism in different species. Nonetheless, other studies are
needed to see whether these metabolic alterations are long-
lasting (e.g., 24, 48, 72 h, or 1 week later). Additionally, cocaine-
induced activation was shown to be far less robust following
withdrawal in a cocaine self-administration setting (Henry et al.,
2010). This suggests that a history of cocaine use may impact
the acute metabolic effects of cocaine. Finally, this absence of
metabolic changes seems consistent with the lack of locomotor
behavioral changes. In this context, the authors are already
planning to perform PET scan analysis immediately after cocaine
i.p. injection to examine its immediate pharmacological effects on
glucose consumption.

Notably, cocaine induced histological alterations in PFC and
HC, which are suggestive of mild gliosis up to ischemic tissue
necrosis (Figure 5). Both PFC and HC have a crucial role in
drug addiction processes, throughout the regulation of limbic
reward regions and their involvement in higher-order executive
and cognitive functions (e.g., self-control, salience attribution,
and awareness; Goldstein and Volkow, 2011). The histological
changes seen in this study raise concerns regarding episodic
consumption of low doses of cocaine. Glutamate is the main
excitatory neurotransmitter both in PFC and HC. A growing
body of evidence suggests that cocaine indirectly influences
glutamate transmission (Schmidt and Pierce, 2010). Therefore,
one cannot rule out the role of glutamate in the cocaine-
induced histological alterations reported here. Regarding the
hippocampus, CA1 region is structured depthwise in defined
layers: oriens, pyramidale, radiatum, and lacunosum-moleculare.
The cell bodies of horizontal trilaminar cells and inhibitory

basket cells are located in the oriens. Pyramidale layer contains
the cell bodies of the pyramidal neurons, which are the main
excitatory neurons of the hippocampus. This layer also contains
the cell bodies of many interneurons, including axo-axonic cells,
bistratified cells, and radial trilaminar cells. Radiatum layer
contains commissural and septal fibers and Schaffer collateral
fibers, which are projected to CA1. Laconosum is a thin layer
and is often grouped with molecular stratum into a single
layer named lacunosum-moleculare layer. Moreover, it contains
Schaffer collateral fibers and perforant path fibers coming from
the superficial layers of the entorhinal cortex. Dentate gyrus is
part of the HC trisynaptic circuit and is thought to contribute
to the formation of new episodic memories. This region
promotes spontaneous exploration of novel environments,
synaptic plasticity, rapid acquisition of spatial memory, and other
functions (Saab et al., 2009; Lee et al., 2016). The CA1 and DG
are the most sensitive regions to hypoxia, and their examination
is mandatory to investigate possible acute neuronal necrosis and
gliosis (Liu et al., 2004).

In fact, glial alterations were visible in the present study.
The nuclei of glial cells are also recognizable in HE: the nuclei
of astrocytes and oligodendrocytes are round, with the first
being larger and more loose. The nuclei of the microglia are
elongated, comma-shaped, and dense. When there is damage
to the nervous tissue, the microglial cells lose their extensions
and assume a rounded shape, constituting macrophages with
phagocytic capacity. Histological analysis suggests that microglia
in the cocaine group have fine foamy cytoplasm since they
phagocytize lipids derived from degenerated nervous tissue. In
exposed cocaine mice, histology showed gemistocytic astrocytes,
characterized by abundant and pink cytoplasm and eccentric
nuclei. A clear halo around oligodendrocyte nuclei can also be
observed (Figure 5), suggesting the entry of water into the cells
due to hypoxia.
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FIGURE 5 | Microphotographs of PFC, HC and Cb. Cb (A–D) of saline (A,B), and cocaine (C,D) animals. ML, molecular layer; G, granular layers; WM, white matter.

Cocaine did not trigger any histopathological changes. HC (E–J) of saline (E–G), and cocaine (H–J) groups. CA1 region (F,I) dentate gyrus (G,J). SO, oriens layer; SP,

pyramidal layer; SR, radiatum layer; SLM, lacunosum-moleculare layer; OML, outer molecular layer; IML, inner molecular layer; G, granule cell layer. Animals exposed
to cocaine show hippocampal histopathological changes in the pyramidal cell layer and granule cell layer in the CA1 region and dentate gyrus, respectively, with
neuronal loss (G,H). PFC (K–R) of saline (K–M) and cocaine (N–R) groups. Animals depthwise to cocaine present histological changes, including ischemic necrosis

(P,Q). Observe (arrow) the clear halo around oligodendrocyte nuclei (O,R). These features demonstrate irreversible hypoxic lesions and the presence of

granule-adipose cells (O,P). HandE: (A,C,E,H,K,N,Q), 40×; (F,G,I,J,L,M,P,R), 100×; (B,D,O), 400×. (S) The difference between cell numbers in PFC (p = 0.008)

and HC (t-test, n = 6, p = 0.05). Data represent mean ± standard deviation of the mean. PFC, prefrontal cortex; HC, hippocampus; Cb, cerebellum. *Significant.

Although there are few experimental studies about the Cb
relationship to addictive drug behavior, evidence suggests that
cerebellar activation may be involved in functions such as
cognition, prediction, learning, and memory, being associated
with compulsive and perseverative behaviors (Carbo-Gas et al.,

2014; López-Pedrajas et al., 2015; Moreno-Rius and Miquel,
2017). The alterations in Cb resulting from chronic cocaine use
have been correlated with its relationship and the maintenance
of drug memory. However, despite the evidence of higher
cerebellar activation in studies with cocaine, this mechanism
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is still unclear (Jiménez-Rivera et al., 2000; Nicastri, 2001;
Carbo-Gas et al., 2014; López-Pedrajas et al., 2015; Vazquez-
Sanroman et al., 2015). Cb neurons and glia are arranged
in layers. The molecular layer is located at the surface and
contains the dendrites of Purkinje neurons, axons of granule
cells (parallel fibers), fibers of Bergmann glia, basket cells, and
stellate cells. The granular cell layer contains granule cells, Golgi
cells, Lugaro cells, and unipolar brush cells (Hashimoto and
Hibi, 2012). In general, Cb has a characteristic dopaminergic
distribution. Dopaminergic fibers, projecting from the ventral
tegmental area to the cerebellar cortex, terminate mainly in the
granular layer and additionally in the Purkinje cell layer, but not
at all in the molecular layer (Ikai et al., 1992). This morphological
characteristic can explain the absence of evident histological
changes in animals exposed to cocaine. It may be consistent with
findings suggesting a relationship between high doses of cocaine
and gray matter volume reduction in the Cb (López-Pedrajas
et al., 2015). One should stress that the histological alterations
did not translate into locomotor and metabolic changes. This
suggests that structural changes should be more profound
and more widely spread across the brain to trigger functional
brain changes. Nevertheless, the animal model presents some
limitations, such as the inability to evaluate sociocultural and
genetic factors, and personality and psychological traits, which
are relevant issues to determine drug addiction development
in humans (El Rawas et al., 2020). Future studies need to
assess if these structural changes persist (e.g., 24, 48, 72 h, or 1
week later).

Overall, it is shown, for the first time, that a single low
dose of cocaine, which did not change locomotor behavior
and brain metabolism, has the potential to induce structural
neurological damage. There is no safe dose for cocaine exposure.
Brain structural changes must be considered regardless of the
used dosage. It is essential to alert the population against any
consumption, not underestimating acute and recreational dosage
since the use, even in a low single dose, can generate structural
tissue damage.
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