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Functional magnetic resonance imaging (fMRI) data is typically collected with gradient-
echo echo-planar imaging (GE-EPI) sequences, which are particularly prone to the
susceptibility artifact as a result of B0 field inhomogeneity. The component derived
from in-plane spin dephasing induces pixel intensity variations and, more critically,
geometric distortions. Despite the physical mechanisms underlying the susceptibility
artifact being well established, a systematic investigation on the impact of the associated
geometric distortions, and the direct comparison of different approaches to tackle them,
on fMRI data analyses is missing. Here, we compared two different distortion correction
approaches, by acquiring additional: (1) EPI data with reversed phase encoding direction
(TOPUP), and (2) standard (and undistorted) GE data at two different echo times (GRE).
We first characterized the geometric distortions and the correction approaches based
on the estimated 1B0 field offset and voxel shift maps, and then conducted three types
of analyses on the distorted and corrected fMRI data: (1) registration into structural data,
(2) identification of resting-state networks (RSNs), and (3) mapping of task-related brain
regions of interest. GRE estimated the largest voxel shifts and more positively impacted
the quality of the analyses, in terms of the (significantly lower) cost function of the
registration, the (higher) spatial overlap between the RSNs and appropriate templates,
and the (significantly higher) sensitivity of the task-related mapping based on the Z-score
values of the associated activation maps, although also evident when considering
TOPUP. fMRI data should thus be corrected for geometric distortions, with the choice
of the approach having a modest, albeit positive, impact on the fMRI analyses.

Keywords: fMRI, susceptibility artifact, geometric distortions and correction, B0 field mapping, neuroimaging

INTRODUCTION

The quality of magnetic resonance imaging (MRI) data depends on numerous factors, one of
the most critical being the homogeneity of the static magnetic field B0 (Jezzard, 2012). B0
field inhomogeneity will induce the so-called susceptibility artifact, derived from in-plane spin
dephasing (inducing pixel intensity variations and geometric distortions) and through-plane spin
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dephasing (inducing pixel intensity variations as well, and
ultimately signal loss) (Ojemann et al., 1997). The latter is
typically compensated by z-shimming the MR scanner (Zhao
et al., 2005; Du et al., 2007). Regarding the effects of in-plane
spin dephasing, geometric distortions are far more concerning,
as they are marked by apparent shifts from one local position in
the image, and possibly the stretching or compression over to a
larger, or into a smaller area, respectively. Single-shot gradient-
echo echo-planar imaging (GE-EPI) sequences are the most
prone to geometric distortions, mainly due to the long time
interval between the acquisition of adjacent k-space points in the
phase-encoding direction, which permits a significant local phase
accumulation relative to that produced by the phase-encoding
gradients (Jezzard, 2012). Given their ability to acquire whole-
brain volumes in a few seconds (or even faster), functional
magnetic resonance imaging (fMRI) data has been collected using
GE-EPI sequences for decades, and thus geometric distortions are
inevitably present.

Several approaches have been proposed to reduce the time
between phase-encoding steps, the most widely used being
parallel imaging (PI) (Deshmane et al., 2012). PI techniques
reduce the number of k-space lines in the phase-encoding
direction that need to be acquired by the chosen acceleration
factor; this minimizes the artifact, but at the cost of a loss in
signal-to-noise ratio, and potential reconstruction instabilities
due to the sparser sampling of k-space. In the case of unsuccessful
distortion prevention, an imperfect registration of functional
images into structural images is commonly observed, the
latter typically unaffected by the field inhomogeneity. This
is particularly relevant for anatomically localizing functional
activations (particularly in deep brain regions), and whenever
group-level analyses are conducted which require the co-
registration into a common space (Hutton et al., 2002).

A plethora of methods have been proposed for geometric
distortion correction. These can be roughly divided into four
main categories: (1) the acquisition of several single-shot EPI
scans per slice, from which the point spread function (PSF) of
each voxel is mapped, allowing the estimation of the underlying
displacement field (Robson et al., 1997; Zeng and Constable,
2002; Zaitsev et al., 2004); (2) the non-linear registration of
distorted functional images into undistorted structural images,
constraining however the non-linear transformations to the
phase-encoding direction (Bhushan et al., 2015); (3) the
acquisition of additional standard (i.e., with a single phase-
encoding step per excitation), undistorted GE images at two
different echo-times (TE), and from the phase difference between
the two images, estimate the B0 field offset (Jezzard and Balaban,
1995; Matakos et al., 2014); and (4) the acquisition of additional
EPI images with reversed phase-encoding direction, and thus
with also reversed distortions, from which a displacement
field is estimated under the assumption that the undistorted
image is midway between the two distorted images (Andersson
et al., 2003; Hedouin et al., 2017). Mainly motivated by their
reasonable scanning times and computational efficiency, the
last two categories are by far the most commonly used for
geometric distortion correction (Holland et al., 2010; Jezzard,
2012; Graham et al., 2017). Importantly, only a few studies

have explicitly investigated the impact of these distortions
on fMRI data analyses, and correcting them through the
acquisition of additional GE images at different echo-times.
The first study showed that the statistical power of a group
analysis of subjects performing motor and auditory tasks is
improved upon distortion correction (Cusack et al., 2003). More
recently, it has also been shown that with the correction for
the distortions, functional connectivity of resting-state networks
(RSNs) comprising distorted brain areas can be measured more
robustly, and that the specificity of their fluctuations in terms
of reflecting neuronal activity, rather than noise, is improved
(Togo et al., 2017). This is critical when conducting studies
on the static and dynamic functional connectivity within- and
between-networks, on both healthy and clinical populations (Di
and Biswal, 2013; Preti et al., 2017; Allen et al., 2018; Du et al.,
2018); performing any subsequent analyses on RSNs devoid of
the associated well-known brain regions would compromise the
interpretation of the results.

Despite the physical mechanisms underlying the susceptibility
artifact being well established, a systematic investigation on
the impact of the associated geometric distortions, and the
direct comparison of different approaches to tackle them, on
fMRI data analyses is missing. For that purpose, we started
by collecting (f)MRI data at 3T from 20 healthy participants
performing a simple visual motion functional localizer and
a visual biological motion (BM) perception task. We then
applied two distortion correction approaches by estimating
the displacement field with two standard and undistorted GE
images acquired at different TEs (field mapping approach,
GRE) and with two EPI images with reversed phase-encoding
directions [anterior–posterior (AP) and posterior–anterior (PA)
approach, TOPUP; Andersson et al., 2003]. In order to
quantitatively assess the impact of the distortions and their
correction, we first characterized the geometric distortions and
the correction approaches based on the estimated B0 field
offset and voxel shift maps (VSMs), and then conducted three
types of analyses on the uncorrected and distortion-corrected
fMRI data: (1) estimation of the cost function from the
registration between the functional and the structural images;
(2) identification and characterization of group RSNs [because
RSNs have been shown to be also present in task-based studies
(Di et al., 2013; Cole et al., 2016)]; and (3) mapping of
the brain areas related to motion perception in general, and
in particular those involved in a visual BM perception task
(Chang et al., 2018).

MATERIALS AND METHODS

Participants
Twenty healthy participants (mean age: 28 ± 6 years; 11 males)
were recruited. All participants had normal or corrected-to-
normal vision, and no history of neurological disorders. The
study was approved by the Ethics Commission of the Faculty of
Medicine of the University of Coimbra, and was conducted in
accordance with the declaration of Helsinki. All subjects provided
written informed consent to participate in the study.
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Experimental Protocol
The imaging session was performed at the Portuguese Brain
Imaging Network (Coimbra, Portugal) and consisted of five
functional runs: first, a functional localizer of the human middle
temporal area (hMT+/V5, a low level visual area well-known to
respond to simple global motion patterns), followed by four runs
of BM perception.

The localizer run consisted of 12 blocks of 28 s; each block
started by a set of dots moving towards and away from a central
fixation cross at a constant speed (5 deg/s) for 18 s, followed
by a 10 s pattern of stationary dots. The hMT+/V5 was then
identified as the region that responded significantly higher to
moving dots than to static dot fields (Huk et al., 2002). Each of the
four BM perception runs consisted of 10 blocks of 38 s, with each
block comprising a human point-light walker facing rightward
presented in a sagittal view at 60 Hz. Each stimulation block was
followed by a 22 s baseline period, during which a fixation cross
was displayed. For all runs, participants were instructed to watch
passively but attentively.

MRI Data Acquisition
Imaging was performed on a 3T Siemens MAGNETOM
Prisma Fit MRI scanner (Siemens, Erlangen) using a 64-
channel RF receive coil. In order to minimize head motion
and scanner noise related discomfort, foam cushions and
earplugs were used, respectively. The functional images were
acquired using a 2D simultaneous multi-slice (SMS) GE-EPI
sequence (3× SMS and 2× in-plane GRAPPA acceleration),
with the following parameters: TR/TE = 1000/30.2 ms, voxel
size = 2.5 × 2.5 × 2.5 mm3, 51 axial slices (no gap and
whole-brain coverage), FOV = 195 × 195 mm2, FA = 68◦,
bandwidth = 2086 Hz/pixel, echo spacing (effective) = 0.57
(0.285) ms, 78 echoes per excitation pulse and phase encoding
in the AP direction. The start of each trial was synchronized with
the acquisition of the functional images. For each participant, 360
volumes were acquired during the localizer run, yielding 6 min
of duration; the remaining four functional runs (BM perception)
consisted of 600 volumes (10 min) each.

Before each functional run, additional data was collected for
geometric distortion correction. First, field map imaging was
performed with a double-echo spoiled GE sequence, with the
following parameters: TR = 400 ms, TE1/TE2 = 4.92/7.38 ms
(difference between TEs, 1TE, of 2.46 ms chosen for the field
strength of 3T to ensure that water and lipid spins are in phase),
voxel size = 2.5× 2.5× 2.5 mm3 and 51 axial slices (matching the
parameters of the functional images), FOV = 192 × 192 mm2,
FA = 60◦. From this sequence, two magnitude (one at each TE)
and one phase difference images were collected, from which
the displacement field was calculated (GRE approach). Then, 10
volumes using the same parameters of the functional images but
with reversed phase-encoding direction (PA) were collected, from
which the displacement field was estimated (TOPUP approach;
Andersson et al., 2003).

A T1-weighted, magnetization-prepared rapid acquisition
gradient-echo (MPRAGE) sequence was used to collect structural
data (1 mm isotropic, 192 slices, TR/TE = 2530/3.5 ms, 2×

in-plane GRAPPA acceleration), allowing for the subsequent
co-registration of the functional data.

Data Pre-processing
The main steps of the processing pipeline (described here and in
the next section) proposed in this work for correcting geometric
distortions and quantifying their impact on fMRI data analyses,
are depicted in Figure 1.

fMRI Data Cleanup
The first 10 s of data were discarded to allow the fMRI
signal to reach steady-state, and non-brain tissue was removed
using FSL tool BET (Smith, 2002). Subsequently, slice timing
and motion correction (average head motion across subjects
and runs: 0.37 ± 0.44 mm) were performed using FSL tool
MCFLIRT (Jenkinson et al., 2002), followed by geometric
distortion correction using the TOPUP and GRE approaches (see
below). Then, nuisance fluctuations were removed, a high-pass
temporal filtering with a cut-off period of 100 s was applied,
and spatial smoothing using a Gaussian kernel with full width at
half-maximum (FWHM) of 4 mm was performed. The nuisance
fluctuations (including physiological noise) were modeled by
linear regression using the following regressors (Abreu et al.,
2017): (1) quasi-periodic fluctuations related to cardiac and
respiratory cycles were modeled by a fourth order Fourier
series using RETROICOR (Glover et al., 2000); (2) aperiodic
fluctuations associated with changes in the heart rate as well as in
the depth and rate of respiration were modeled by convolution
with the respective impulse response functions [as described
in Chang et al. (2009)]; (3) the average BOLD fluctuations in
white matter (WM) and cerebrospinal fluid (CSF); (4) the six
motion parameters estimated by MCFLIRT; and (5) scan nulling
regressors (motion scrubbing) associated with volumes acquired
during periods of large head motion – motion spikes; these were
determined using the FSL utility fsl_motion_outliers, whereby
the DVARS metric proposed in Power et al. (2012) is first
computed, and then thresholded at the 75th percentile plus 1.5
times the inter-quartile range. fMRI data with all these processing
steps except for the geometric distortion correction was also
considered for comparison purposes.

Structural Data Processing
For each participant, WM and CSF masks were obtained from
the respective T1-weighted structural image by segmentation
into gray matter, WM and CSF using FSL tool FAST (Zhang
et al., 2001). The functional images were linearly co-registered
with the respective T1-weighted structural images using FSL
tool FLIRT, and subsequently with the Montreal Neurological
Institute (MNI) (Collins et al., 1994) template, using non-linear
transformations estimated with the FSL tool FNIRT (Jenkinson
and Smith, 2001; Jenkinson et al., 2002). Both WM and CSF
masks were transformed into the functional space through the
inverse of the previously estimated linear transformation and
using nearest neighbor interpolation; these were then eroded
using a 3 mm spherical kernel in order to minimize partial
volume effects (Jo et al., 2010). Additionally, the eroded CSF
mask was intersected with a mask of the large ventricles
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FIGURE 1 | Schematic diagram of the processing pipeline. The fMRI data of each functional run (collected with the AP phase encoding direction) is first submitted to
motion and slice timing correction. Then, geometric distortions are corrected using TOPUP (requires one AP and one PA functional image) or GRE (requires a
magnitude and a displacement field converted to radian/s) approaches. Subsequently, additional pre-processing steps are performed on the corrected and
uncorrected data, followed by the three different data analyses: (1) registration into structural data, (2) identification of resting-state networks, and (3) mapping of
task-related brain regions of interest.

from the MNI space, following the rationale described in
Chang and Glover (2009).

Geometric Distortion Correction
Regarding the TOPUP approach, the FSL tool TOPUP was
used (with the standard parameters provided), which requires
one AP and one PA functional image (Andersson et al., 2003).
The AP image was selected as the middle volume of each
functional run, which is also the reference volume for motion
correction; in this way, the estimated displacement field will
be alignment-wise valid for all volumes. With this and the last
volume of the PA acquisition, the displacement field used for
B0-unwarping is then estimated. As for the GRE approach, the
FSL utility fsl_prepare_fieldmap was first used to: (1) rescale
the phase difference map to values between −π and +π; (2)

unwrap the scaled phase difference map using the FSL tool
PRELUDE; (3) divide by 1TE to convert to units of radian/s;
and (4) smooth the resulting displacement field with FSL tool
FUGUE. The smoothed field and one of the magnitude images
(the latter for masking the brain) were then used as input in
the B0-unwarping step as part of the pre-processing pipeline of
the FSL tool FEAT, which also performs all the co-registrations
necessary of the functional and field map images into the
structural image. Despite the different steps, each approach
introduced a similar amount of spatial blurring to the distortion
corrected data, as the same number (three) of interpolations (i.e.,
transformations) were performed.

In order to characterize the displacement fields estimated by
the two approaches, these were first converted from radian/s
to Hz by dividing them by 2π, yielding the associated 1B0
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maps, which reflect the voxel-wise deviations from the true static
magnetic field B0. From these, the VSMs describing the amount
(in mm) by which each voxel should be shifted in the PE direction
to regain its true position was calculated according to Dymerska
et al. (2018):

VSM = sy ·
1B0

BWPE × R

where BWPE = 1
/ (

echo spacing × ny
)

is the bandwidth in the
PE direction, with ny = 78, and sy = 2.5 mm the number and
resolution, respectively, of voxels in this direction; and R = 2 the
in-plane acceleration factor.

The ability of TOPUP and GRE to approximate the PA and
AP images after applying the respective displacement fields was
assessed by comparing these images in terms of the normalized
mean squared error (nMSE) as proposed in In et al. (2017),
and the cross-correlation. Additionally, the corrected PA and
AP images were compared between the two approaches, also in
terms of the nMSE and cross-correlation, as to investigate the
consistency between TOPUP and GRE.

fMRI Data Analyses
All the following analyses were performed on pre-processed but
uncorrected fMRI data, and fully pre-processed fMRI data, the
latter including the correction for geometric distortions using the
TOPUP and the GRE approaches.

Boundary-Based Registration
As recommended in FSL tool FEAT, the co-registration of
functional and field map images into structural images was
performed using the boundary-based registration (BBR) method,
which considers WM-driven boundaries from the structural
image (Greve and Fischl, 2009). These boundaries are then
mapped to the functional volume using a 6 degrees-of-freedom
transformation, and the difference between the intensity of pairs
of voxels transversely located at 2 mm either side of points along
the WM boundaries is defined as the cost function.

The BBR cost function values were then used to quantify
the quality of the registration of the functional images
with and without geometric distortion correction, and across
correction approaches.

Identification of Resting-State Networks
The pre-processed fMRI data were submitted to a group-level
probabilistic spatial ICA (sICA) decomposition using the FSL
tool MELODIC (Beckmann and Smith, 2004), whereby the data
of each run for all participants is temporally concatenated prior
to the sICA step, as recommended in the MELODIC’s guide for
the identification of RSNs1. The optimal number of independent
components (ICs) was automatically estimated based on the
eigenspectrum of its covariance matrix (Beckmann and Smith,
2004), with an average of approximately 40 ICs across runs.

An automatic procedure for the identification of well-known
RSNs was then applied, in which the spatial maps of the ICs
(thresholded at Z = 3.0) were compared with those of the 10
RSN templates described in Smith et al. (2009), in terms of
spatial overlap computed as the Dice coefficient (Dice, 1945). For

1https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC

each template, the IC map yielding the highest Dice coefficient
was determined as the corresponding RSN. In the cases of non-
mutually exclusive assignments, the optimal assignment was
determined by randomizing the order of the RSN templates (a
maximum of 10000 possible combinations were considered, for
computational purposes), and then sequentially, and mutually
exclusively, assigning them to the IC maps based on their
Dice coefficient. The assignment with the highest average Dice
coefficient across all RSN templates was then deemed optimal,
yielding the final set of RSNs: three visual networks (RSN 1–3),
the default mode network (DMN), (RSN4), a cerebellum network
(RSN5), a motor network (RSN6), an auditory network (RSN7),
the salience network (RSN8), a right language network (RSN9),
and a left language network (RSN10).

The maximum average Dice coefficient values were used
to quantify the ability to accurately identify RSNs with and
without geometric distortion correction, and across correction
approaches. For the purpose of determining how affected
the RSNs were by geometric distortions, the minimum and
maximum voxel shifts within each RSN were extracted from
the participant-averaged VSMs (after transforming them into the
MNI space using nearest neighbor interpolation), for each run
separately (note that RSNs were obtained at the group level, and
thus are in the MNI space as well).

hMT+ and BM-Related Activity Mapping
For the purpose of mapping hMT+/V5 from the localizer run,
and the regions involved in the BM perception task from the
other four runs, a general linear model (GLM) framework was
used. For both the localizer and BM runs, a GLM comprising a
single regressor was built, based on unit boxcar functions with
ones during the blocks of stimulation periods, and zeros during
baseline periods. The regressor was convolved with a canonical,
double-gamma hemodynamic response function (HRF), and
then included in the GLM that was subsequently fitted to the
fMRI data using FSL tool FILM (Woolrich et al., 2001); voxels
exhibiting significant changes between stimulation and baseline
periods were identified by cluster thresholding (voxel Z > 2.5,
cluster p < 0.05). For the localizer run, group activation maps
were obtained considering only mixed effects; for the BM runs, a
fixed effects analysis was first performed to create subject-specific
average activation maps across the four runs, followed by a mixed
effects analysis generating the overall group BM activation maps
across subjects and runs. These analyses were conducted using
the FSL tool FLAME (Beckmann et al., 2003).

Similarly to the RSN analysis, the degree at which the group
activation maps were affected by geometric distortions was
determined by extracting the minimum and maximum voxel
shifts within each map from the participant-averaged VSMs
in the MNI space.

Statistical Analysis
The main effect of performing geometric distortion correction,
and the approach used for that purpose, on the difference
between PA and AP images was first evaluated by means of
a 1-way analysis of variance (ANOVA), considering the nMSE
and cross-correlation measures separately. Then, similar 1-way
ANOVA tests were also performed on each of the fMRI quality
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measures (the BBR cost function, the Dice coefficient of the RSNs,
and the average and maximum Z-score of the hMT+ and BM
group activation maps). For all ANOVAs, multiple comparisons
using 1-way ANOVA between the correction approaches (and
no correction) were performed with a post hoc statistical test
using the Tukey-Kramer correction. A level of significance of
p < 0.05 was considered.

RESULTS

Characterization of Geometric
Distortions and Correction Approaches
For illustrating the impact of geometric distortions on the
fMRI data, examples of the middle volume of the first BM
run from three participants are illustrated in Figure 2. Evident
compression of voxels at the temporal and frontal lobes,
particularly near the air-filled sinuses, can be observed for the
first two subjects; the third participant has no apparent geometric
distortions, which was uncommonly observed in this study.

The range of 1B0 and voxel shifts in the PE direction, averaged
across voxels and participants, are shown in Table 1. Negative
voxel shift values correspond to shifts in the anterior-to-posterior
direction, whereas positive values indicate shifts in the posterior-
to-anterior direction. The GRE approach yields a substantially
wider range of voxel shifts (and thus, of 1B0 values) relatively
to the TOPUP approach.

The average VSMs across subjects and runs, in the MNI space,
estimated with TOPUP and GRE can be found in Figure 3,
together with the respective histograms. Besides the already
mentioned difference between the ranges of voxel shifts for the
two approaches, it can also be observed that, in the orbitofrontal
and temporal regions, TOPUP and GRE diverge regarding the
direction of the shifts to be applied. However, the histograms
of voxel shifts are quite similar between approaches, despite the
rather striking difference in those regions.

Next, the difference between the PA and AP images without
and with correction using TOPUP and GRE was assessed.
The voxel-wise difference maps in the MNI space, averaged
across participants and runs, are illustrated in Figure 4A.
As expected, TOPUP yields the lowest difference between
PA and AP images, as its formulation explicitly determines
the displacement field by minimizing it (the map is overall
green, corresponding to a difference close to zero). Nonetheless,
GRE also approximates the two images, although exhibiting
visible differences in the orbitofrontal and temporal regions,
but still substantially smaller than the uncorrected case. For
investigating the consistency between TOPUP and GRE given
their different formulations, the voxel-wise difference maps
in the MNI space, averaged across subjects and runs, of
the corrected PA and AP images between methods, are
shown in Figure 4B. Besides the small differences within
the orbitofrontal and temporal regions, the two approaches
yield mostly similar PA and AP images (difference maps
are overall green).

The nMSE and cross-correlation values from the comparison
between PA and AP images (with respect to Figure 4A), averaged

across participants (and voxels, in the case of the nMSE), and
across runs, are depicted in Table 2. Consistently with what
observed in Figure 4A, the post hoc analysis revealed that
nMSE and cross-correlation statistically significantly decreased
and increased, respectively, with the correction for the geometric
distortions using both the TOPUP and GRE approaches. As
expected, a larger decrease/increase of nMSE/cross-correlation
was obtained with TOPUP.

The average nMSE and cross-correlation values, across
participants (and voxels, in the case of the nMSE), and across
runs, of the corrected PA and AP images between correction
approaches (with respect to Figure 4B), are presented in Table 3.
Low/high values of nMSE/cross-correlation were obtained
(<0.13 and >0.92, respectively), evidencing the consistency
between TOPUP and GRE at matching the PA and AP images
upon correction.

fMRI Data Analyses
Because geometric distortions hinder the accurate registration of
functional images into structural images, the BBR cost function
values were calculated. Examples of the middle volumes extracted
from uncorrected and distortion-corrected fMRI data of the first
BM run for the first participant in Figure 2, registered into its
structural image, are shown in Figure 5, together with the BBR
cost function values. The average across participants for each
run (localizer and four BM runs) is shown in Table 4, together
with the overall average across runs. For all runs, it is observed
a consistent decrease (more accurate registration) in the cost
function values when performing geometric distortion correction
with TOPUP relatively to no correction, and a further decrease
when correcting the distortions with GRE. A significant main
effect was observed (p = 0.0004), and the cost function values with
both TOPUP and GRE corrections were found to be statistically
significantly lower than those without correction according to the
post hoc test.

Next, we decomposed the fMRI data into ICs using spatial
ICA, and identified those associated with RSNs. The group
RSNs identified for the first BM run are illustrated in Figure 6,
together with the Dice coefficient between them and the
respective templates from Smith et al. (2009). It can be observed
that the Dice coefficient marginally increased for only six
RSNs when comparing the uncorrected with the TOPUP-
corrected fMRI data, and maintained or decreased for the
remaining four RSNs. This contrasts with the GRE approach,
with which a substantial increase in the Dice coefficient values
for all RSNs was obtained. The average across RSNs and
subjects are depicted in Table 5 for each functional run, as
well as the overall average across runs. For the other BM
runs, the previous pattern in Figure 6 is even more evident,
with TOPUP outperforming the uncorrected case in only
one functional run, whereas on average the Dice coefficient
values slightly decreased when comparing the uncorrected with
the TOPUP-corrected fMRI data. In contrast, correcting the
distortions with GRE yielded the highest Dice coefficient values.
The ANOVA revealed a notable trend on the main effect
of the correction approach, although not reaching statistical
significance (p = 0.1); nonetheless, the post hoc test showed

Frontiers in Neuroscience | www.frontiersin.org 6 March 2021 | Volume 15 | Article 642808

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-642808 March 4, 2021 Time: 15:27 # 7

Abreu and Duarte Geometric Distortions in fMRI Analyses

FIGURE 2 | Illustration of the geometric distortions associated with the susceptibility artifact in the fMRI data from three representative participants during the first run
of the biological motion perception task. For the first two participants (A,B), distortions highlighted by the yellow arrows can be observed, mostly representing the
compression of voxels in areas of tissue/air boundaries. These were highly attenuated after correction with either TOPUP or GRE correction approaches. Participant
(C) does not present clear distortions. The red traces define the contour of the GRE-corrected images, as this approach yielded the best results, and was then
considered here as reference for visualization purposes.
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TABLE 1 | Range (minimum and maximum) of 1B0 (in Hz) and voxel shift (in mm) in the phase-encoding direction, averaged across voxels and participants,
and across runs.

1B0 [Hz] ± std Voxel shift [mm] ± std

Min Max Min Max

TOPUP GRE TOPUP GRE TOPUP GRE TOPUP GRE

Localizer −77 ± 13 −163 ± 57 63 ± 17 280 ± 103 −4.3 ± 0.7 −9.1 ± 3.2 3.5 ± 1.0 15.6 ± 5.7

BM 1 −77 ± 12 −168 ± 55 61 ± 17 280 ± 111 −4.3 ± 0.7 −9.3 ± 3.0 3.4 ± 0.9 15.5 ± 6.2

BM 2 −76 ± 12 −174 ± 59 61 ± 17 283 ± 100 −4.3 ± 0.7 −9.7 ± 3.3 3.4 ± 1.0 15.7 ± 5.5

BM 3 −76 ± 13 −169 ± 61 63 ± 18 284 ± 114 −4.2 ± 0.7 −9.4 ± 3.4 3.5 ± 1.0 15.8 ± 6.3

BM4 −74 ± 12 −167 ± 60 58 ± 16 283 ± 120 −4.1 ± 0.7 −9.3 ± 3.4 3.2 ± 0.9 15.7 ± 6.7

Average −76 ± 12 −168 ± 57 61 ± 17 282 ± 107 −4.2 ± 0.7 −9.3 ± 3.2 3.4 ± 0.9 15.7 ± 5.9

Voxel shift [mm]

−3.4 +3.4

Voxel shift [mm]

−14.0 +14.0

ERGPUPOT

]mm[ tfihs lexoV]mm[ tfihs lexoV

FIGURE 3 | (Top) Voxel shift maps (VSMs), in the MNI space, averaged across participants and runs, for the (left) TOPUP and (right) GRE correction approaches. The
scale was set to be symmetric for easing the interpretation of the maps (where green colors always represent no shifts). (Bottom) Histograms of the associated VSMs.

that GRE yielded statistically significantly higher Dice coefficient
values than TOPUP.

The range of voxel shifts within each RSN, from the
participant-averaged VSMs in the MNI space, averaged across
runs, is shown in Table 6. Consistently with the voxel shift values
shown in Table 1, GRE estimated larger shifts overall, which
however exhibit a substantial variability across RSNs (also present
in the shifts estimated by TOPUP, but to a lesser degree).

Finally, we mapped hMT+/V5 from the localizer run, and
the brain regions involved in BM perception from the BM runs.
The group activation maps (across participants for the localizer
run, and participants and runs for the BM runs) are shown in
Figure 7. In both cases, the same active regions are highlighted

regardless of whether geometric distortions are corrected, or the
approach used for their correction. As expected, primary and
extrastriate visual areas were activated during the localizer run,
including the hMT/V5 area. Regions involved in BM perception
included: the posterior part of the superior temporal sulcus,
the inferior frontal gyrus, the superior parietal lobe, and sub-
cortically the insula and the thalamus; the cerebellum was also
activated. The average and maximum Z-score values of each
group activation map are depicted in Table 7. Consistent with the
previous visual inspection, marginal differences can be observed
regarding the average Z-score across the distortion correction
approaches, and the uncorrected case (p > 0.05). In contrast,
a clear trend was found (p = 0.06) regarding the differences in
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FIGURE 4 | (A) Voxel-wise difference maps between PA and AP images for the uncorrected case (left), and after correcting the data for the distortions using TOPUP
(top-right) and GRE (bottom-right). (B) Voxel-wise difference maps of the corrected PA images (left) and corrected AP images (right), between correction methods.

TABLE 2 | Differences between the PA and AP images without and with distortion correction using TOPUP and GRE, quantified in terms of nMSE and cross-correlation,
averaged across participants (and voxels, in the case of the nMSE), and across runs.

nMSE ± std Cross-correlation ± std

Uncorrected TOPUP GRE Uncorrected TOPUP GRE

Localizer 0.185 ± 0.019 0.073 ± 0.005 0.126 ± 0.022 0.851 ± 0.026 0.978 ± 0.004 0.925 ± 0.026

BM1 0.187 ± 0.016 0.073 ± 0.004 0.127 ± 0.021 0.847 ± 0.022 0.978 ± 0.004 0.924 ± 0.024

BM2 0.194 ± 0.020 0.074 ± 0.005 0.136 ± 0.027 0.836 ± 0.029 0.977 ± 0.004 0.914 ± 0.033

BM3 0.192 ± 0.018 0.074 ± 0.004 0.135 ± 0.022 0.839 ± 0.026 0.978 ± 0.004 0.915 ± 0.027

BM4 0.191 ± 0.018 0.074 ± 0.005 0.131 ± 0.023 0.842 ± 0.027 0.977 ± 0.005 0.917 ± 0.028

Average 0.190 ± 0.018 0.074 ± 0.005 0.131 ± 0.023 0.843 ± 0.026 0.978 ± 0.004 0.919 ± 0.028

TABLE 3 | Differences of the corrected PA and AP images between distortion correction approaches quantified in terms of the nMSE and cross-correlation, averaged
across participants (and voxels, in the case of the nMSE), and across runs.

nMSE ± std Cross-correlation ± std

PA AP PA AP

Localizer 0.117 ± 0.009 0.119 ± 0.014 0.937 ± 0.009 0.935 ± 0.016

BM1 0.117 ± 0.009 0.120 ± 0.012 0.938 ± 0.009 0.934 ± 0.012

BM2 0.119 ± 0.011 0.130 ± 0.022 0.936 ± 0.012 0.922 ± 0.029

BM3 0.121 ± 0.015 0.129 ± 0.025 0.932 ± 0.018 0.919 ± 0.038

BM4 0.116 ± 0.012 0.124 ± 0.015 0.939 ± 0.012 0.928 ± 0.019

Average 0.118 ± 0.011 0.125 ± 0.019 0.937 ± 0.013 0.927 ± 0.025

the maximum Z-score values, that followed the same pattern
of the BBR cost function values: a consistent increase from the
uncorrected to the TOPUP-corrected fMRI data, and a further
increase when performing the GRE correction. This trend was
confirmed by the post hoc test, with the GRE approach yielding
statistically significantly higher maximum Z-score values than the
uncorrected case. For both the localizer and BM runs, and for the
uncorrected and TOPUP- and GRE-corrected cases, the voxel of
maximum Z-score was located at V1.

Similarly to the RSN analysis, the minimum and maximum
voxel shifts within each activation map (for the localizer
and BM tasks), were extracted from the participant-
averaged VSMs in the MNI space. For the localizer run,
the minimum/maximum voxel shifts were −0.41/0.51 and
−0.38/2.77 mm for the TOPUP and GRE, respectively;
for the BM run, the minimum/maximum voxel shifts
were −0.63/0.95 and −2.31/5.01 mm for the TOPUP and
GRE, respectively. Consistently, GRE estimated the largest
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FIGURE 5 | Registration into the structural image of (top) uncorrected, (middle) TOPUP corrected, and (bottom) GRE corrected fMRI data of the first participant
illustrated in Figure 2. The red and green traces define the contours of the brain-extracted structural image and its segmented ventricles (I and II), respectively; these
can be considered as the ground truth. Besides the squashed voxels in areas of tissue/air boundaries (right yellow arrow), it is clear that the registration of
uncorrected data fails to capture the spatial distribution of the ventricles I and II (left yellow arrow); a critical region in ventricle I is zoomed in the yellow, purple and
blue boxes. The BBR cost function values are also shown.

TABLE 4 | Average cost function values (across subjects) of the boundary-based
registration of the middle volume of each run (localizer and four biological motion
runs) into the structural image, for the uncorrected, TOPUP corrected and
GRE-corrected fMRI data.

Correction method

Run Uncorrected TOPUP GRE

Localizer 0.457 ± 0.071 0.447 ± 0.069 0.444 ± 0.071

BM 1 0.460 ± 0.069 0.449 ± 0.068 0.445 ± 0.068

BM 2 0.465 ± 0.071 0.454 ± 0.071 0.451 ± 0.071

BM 3 0.463 ± 0.073 0.451 ± 0.070 0.448 ± 0.071

BM 4 0.467 ± 0.078 0.455 ± 0.077 0.452 ± 0.078

Average 0.462 ± 0.071 0.452 ± 0.069* 0.448 ± 0.070*

The overall average across runs is also shown. *Indicates statistically significantly
(p < 0.05) differences between the correction methods and the uncorrected case.

shifts, albeit substantially smaller than those obtained within
some of the RSNs.

DISCUSSION

In this study, we have characterized the geometric distortions
and the correction approaches based on the estimated 1B0 field

offset and voxel shift maps, and quantitatively assessed the impact
of geometric distortions on several fMRI data analyses. We
directly compared, in the same dataset, two different approaches
of distortion correction and their impact on data analyses,
including the registration of functional images into structural
images, the identification and characterization of RSNs, and
the mapping of regions of interest during tasks involving the
simple perception of motion, and the more complex visual
perception of biological motion.

Impact of Geometric Distortions on fMRI
Data Analyses
We started by quantifying the registration quality between the
functional and the structural images with the BBR cost function
values, and found that correcting geometric distortions with
both TOPUP and GRE approaches improved the registration,
both yielding significantly lower cost function values relatively
to registering uncorrected functional images, and with GRE
exhibiting the best performance. This observation was expected
because the registration quality has been the most explored
metric in the literature to assess the impact of geometric
distortions on both fMRI and diffusion tensor imaging (DTI)
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FIGURE 6 | Ten group RSNs identified on (left) uncorrected, (middle) TOPUP corrected, and (right) GRE-corrected fMRI data for the first run of the biological motion
perception task. The RSN templates (in red–yellow) from Smith et al. (2009) are superimposed with the spatial independent components (in blue–light blue) selected
for each RSN template, according to their Dice coefficient (also shown above each RSN).

data, and its correction approaches, with most studies pointing
toward more accurate registrations upon distortion correction
(Jezzard and Balaban, 1995; Hutton et al., 2002; Andersson et al.,
2003; Ardekani and Sinha, 2005; Holland et al., 2010; Bhushan
et al., 2015; Glodeck et al., 2016; Graham et al., 2017).

Interestingly, very few studies went beyond measuring
the registration quality and investigated the extent at which
geometric distortions impact fMRI data analyses, without

however comparing distortion correction approaches. Besides
the registration quality and the amount of voxel shifts across
the brain, the first study also focused on the statistical power
of conventional group-level analyses of fMRI data collected
during auditory and motor tasks (Cusack et al., 2003). While
for the auditory task the correction of geometric distortions
with a GRE-based approach increased the extent and the
overall Z-scores of the group activation map relatively to that
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TABLE 5 | Average Dice coefficient values (across subjects) quantifying the spatial
overlap between the RSN templates from Smith et al. (2009) and the selected
group independent components, for each run (localizer and four biological motion
runs), and also averaged across runs.

Correction method

Run Uncorrected TOPUP GRE

Localizer 0.520 ± 0.122 0.516 ± 0.134 0.522 ± 0.129

BM 1 0.509 ± 0.140 0.495 ± 0.145 0.510 ± 0.133

BM 2 0.523 ± 0.121 0.522 ± 0.107 0.524 ± 0.115

BM 3 0.499 ± 0.102 0.504 ± 0.097 0.534 ± 0.117

BM 4 0.501 ± 0.124 0.494 ± 0.124 0.505 ± 0.117

Average 0.510 ± 0.118 0.506 ± 0.118 0.519 ± 0.118†

† Indicates statistically significant differences (p < 0.05) between GRE and TOPUP
correction methods.

obtained without correction, voxels in the primary motor areas
were only active during the motor task upon correcting the
fMRI data for the distortions. For our two tasks (moving
dots for functionally localizing hMT+/V5 and visual BM
perception), the group activation maps obtained with and
without distortion correction, and across correction approaches,
were indistinguishable; nonetheless, the statistical power (based
on the maximum Z-score values) of the group-level analyses
increased with distortion correction, particularly using the GRE
approach with which a statistically significant increase was
obtained; no differences were found for the average or maximum
Z-score values when considering the single subject activation
maps. These changes in the Z-score values may be associated
with the more accurate registrations (i.e., lower BBR cost
function values) obtained with TOPUP, and especially GRE,
relatively to the uncorrected case, decreasing the presence of
unrealistic additional variability in the group-level analyses,
which in turn increases their statistical power. In contrast
with TOPUP, GRE estimated modest, but non-zero, voxel
shifts within the regions involved in these tasks, which may
additionally explain the small increase, albeit significant, in
the maximum Z-score values, which was not found when
considering TOPUP. The small voxel shifts estimated by both
approaches, especially TOPUP, suggest that these task-related
regions are not particularly prone to geometric distortions,
representing a limitation of this fMRI analysis. Importantly,
the voxels with maximum Z-score were located at V1 in
all analyses, suggesting that this measure is robust and
physiologically meaningful. The fact that only changes in the
Z-score values, rather than the extent of the activation, were
observed suggests that by correcting the geometric distortions,
only the sensitivity, rather than the specificity, was impacted. In
our case, this is an important result since the regions of interest
during both tasks were already highlighted when analyzing the
uncorrected fMRI data, and potentially extending them with
the correction of the distortions would result in an undesired
loss in specificity.

How RSNs are affected by geometric distortions has been
more recently investigated (Togo et al., 2017). Similarly to
our study, a sub-set of four RSNs comprising brain regions
more susceptible to distortions were identified with spatial ICA,

and their intra- and inter-network functional connectivity were
estimated. Specifically, the most substantial increase in intra-
network connectivity was observed for the DMN when correcting
the fMRI data for the distortions with a GRE-based approach.
Here, we broaden this analysis to the ten most commonly studied
RSNs in the literature, which included the DMN and other
RSNs that in principle would not be substantially impacted by
the distortions. We independently validated, and assessed the
quality of, their identification based on the overlap (quantified
by the Dice coefficient) with well-recognized RSN templates
(Smith et al., 2009). An overall increase in the overlap was
observed when correcting the distortions with the GRE approach,
irrespective of the RSN, which yielded significantly higher Dice
coefficient values than those obtained with the TOPUP approach.
The largest increase in overlap (difference higher than 0.05)
with distortion correction was observed for the RSNs 3 (visual),
4 (DMN), and 10 (left language). Consistently, the largest
absolute voxel shifts (>7.50 mm) estimated with GRE were also
found within these three networks, and additionally the RSN
5 (cerebellum), suggesting that the identification of the most
distorted networks, upon correction with larger voxel shifts,
improved more visibly, which thus supports the validity of
this metric for quantifying the impact of geometric distortions.
Importantly, besides the DMN, which is consistent with the
results from Togo et al. (2017), the left language network also
comprises regions typically affected by distortions, namely the
frontal and temporal lobes (Hutton et al., 2002), thus supporting
the relevance of correcting geometric distortions particularly
when focusing the analyses on such sensitive brain regions.
Although RSN templates cannot be regarded as ground truth for
RSNs, they have been extremely useful for identifying RSNs (here
and in several previous studies), and assessing changes in their
spatial maps with distortion correction.

Comparison of Different Geometric
Distortion Correction Approaches
From the comparison of the averaged VSMs estimated by
each correction approach, we found that they were distinct,
mainly in the temporal and orbitofrontal regions, where
TOPUP and GRE diverge regarding the direction of the shifts
to be applied (anterior-to-posterior and posterior-to-anterior,
respectively), and with GRE estimating larger shifts. Such smaller
shifts estimated by TOPUP may partially be explained by its
formulation that uses the actual functional PA and AP images
(rather than undistorted GE images as in GRE) which, in this
case, were acquired using 2× GRAPPA in-plane acceleration,
thus reducing the amount of distortions by shortening the
time between phase-encoding steps. Despite this rather striking
difference of the VSMs at these specific brain regions, the
associated histograms, however, were quite similar between
approaches. This is in line with the similarity of the corrected
PA and AP images, between correction approaches. This was
quantified in terms of the nMSE and cross-correlation, and we
found that, for all runs (and on average across runs), low/high
values of nMSE/cross-correlation were obtained (<0.13 and
>0.92, respectively), evidencing the consistency between the
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TABLE 6 | Range of voxel shifts, averaged across runs, within each RSN, from the participant-averaged VSMs in the MNI space estimated by TOPUP and GRE.

Min [mm] ± std Max [mm] ± std

TOPUP GRE TOPUP GRE

RSN1 (Visual) −1.43 ± 1.18 −2.82 ± 1.36 1.06 ± 0.27 5.28 ± 4.74

RSN2 (Visual) −1.53 ± 0.71 −3.31 ± 1.57 1.14 ± 0.19 7.41 ± 2.89

RSN3 (Visual) −1.67 ± 1.13 −4.58 ± 0.98 1.08 ± 0.21 8.95 ± 2.68

RSN4 (DMN) −1.92 ± 0.73 −3.17 ± 0.58 1.30 ± 0.03 9.03 ± 2.79

RSN5 (Cerebellum) −1.11 ± 0.78 −4.19 ± 0.25 0.76 ± 0.31 8.49 ± 3.10

RSN6 (Motor) −1.50 ± 0.57 −3.78 ± 1.47 0.96 ± 0.22 5.71 ± 4.32

RSN7 (Auditory) −1.29 ± 0.72 −3.61 ± 1.42 0.91 ± 0.31 4.63 ± 1.21

RSN8 (Salience) −2.18 ± 0.72 −2.94 ± 1.02 1.06 ± 0.18 6.59 ± 1.37

RSN9 (Right Language) −1.66 ± 0.94 −3.45 ± 1.40 1.03 ± 0.29 5.96 ± 2.23

RSN10 (Left Language) −2.13 ± 1.02 −2.50 ± 1.25 1.04 ± 0.25 7.61 ± 2.86

two approaches, and thus partially justifying the rather small
differences, albeit statistically significant in some cases, observed
in the fMRI data analyses. Importantly, we also assessed the
difference between PA and AP images after correcting them with
TOPUP and GRE, and without correction, and found that the
nMSE and cross-correlation values significantly decreased and
increased, respectively, with distortion correction regardless of
the approach, although more evident with TOPUP. Such result
supports the significant impact of distortion correction in some
of the fMRI data analyses, while showcasing the ability of GRE
to appropriately approximate the PA and AP images even if its
formulation is not explicitly designed at such as that of TOPUP is.

Next, we focused on quantifying the impact of geometric
distortions and their correction with TOPUP and GRE on
several fMRI data analyses. Only a number of studies have also
conducted such systematic comparison, but none focused on
fMRI data. From data collected at 7T, which is more sensitive to
B0 field inhomogeneity, measurements of the T1 constant and
brain perfusion were performed and their quality investigated
as a function of several distortion correction approaches (Hong
et al., 2015). Non-linear registration, field mapping (GRE)
and reversed phase-encoding (TOPUP) were tested; GRE and
TOPUP significantly improved the quantification of the measures
of interest, with TOPUP outperforming GRE. These results are
in agreement with a recent DTI simulation study (Graham et al.,
2017), whereby diffusion data were simulated with and without
geometric distortions, the latter defining the ground truth to be
recovered from the distorted data. Distortions were corrected
using the abovementioned approaches, and multiple metrics
extracted to quantify its impact, namely the voxel displacement
and intensity maps, and several diffusion measures. Consistently
with (Hong et al., 2015), non-linear registration yielded the
poorest results, and the TOPUP approach outperformed the GRE
approach. In agreement with these previous studies, our results
show that correcting the fMRI data for distortions positively
impacted its subsequent analyses. Despite the GRE approach,
rather than the TOPUP approach, yielded the best results in our
case, the latter was also found to improve the quality of most
analyses performed. This may also be associated with the range
of voxel shifts estimated from each approach, and the amount

of spatial smoothing applied. In fact, while the range of voxel
shifts estimated from TOPUP (−5 to 4 mm, approximately)
closely matched the spatial smoothing kernel of 4 mm used
here, those from GRE (−10 to 16 mm, approximately) clearly
surpassed it. Nonetheless, correcting distortions on regions where
larger voxel shifts need to be applied (and thus, where geometric
distortions are more severe) will be critical regardless of the
spatial smoothing step, especially when considering GRE which
estimated the largest voxel shifts.

Importantly, here TOPUP was applied to GE-EPI images
with reversed phase-encoding directions, rather than spin-echo
(SE)-EPI images, for which TOPUP was initially designed for.
The core difference between the two imaging sequences lies in
the application of an additional 180◦ refocusing pulse at TE/2
in SE-EPI, preventing through-plane dephasing (i.e., dephasing
orthogonal to the imaging plane) which would result in the signal
dropouts that are present in GE-EPI images (Embleton et al.,
2010; In et al., 2015). Therefore, these dropouts are independent
from the acquisition scheme of the k-space (and hence, the
imaging plane), rendering the formulation of TOPUP still valid
for estimating the displacement fields on GE-EPI images even
in the presence of dropouts. This has been hypothesized by
the original authors of TOPUP in Andersson et al. (2003), and
confirmed in multiple, and recent fMRI studies at 3T using data
collected during task performance (Shan et al., 2018) and rest
(Disner et al., 2018), and especially in studies at 7T (Emmerling
et al., 2016; Kashyap et al., 2018; Bréchet et al., 2019) where
distortions (and signal dropouts) are more severe. Nonetheless,
it has been suggested that SE-EPI-derived displacement field
maps applied to GE-EPI images render the most accurate
distortion correction, because the estimated fields would not
be affected by signal dropouts (Holland et al., 2010; Glasser
et al., 2016). However, this has never been explicitly tested, and
other factors should be considered, particularly the differences
in SE-EPI and GE-EPI image intensities and the less critical
longer scanning times for SE-EPI. In fact, acquiring GE-EPI
images with a reversed phase-encoding direction is extremely
fast (one TR per image), and because TOPUP approaches
have the ability to account for (less critical) pixel intensity
variations (which lacks in GRE-based approaches), their use
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FIGURE 7 | Group activation maps for the localizer (top) and the biological motion (bottom) runs, from uncorrected, TOPUP corrected and GRE-corrected fMRI data.

TABLE 7 | Average (z̄) and maximum (zmax) Z-score values of the group activation maps for the localizer and biological motion runs. The overall average across
runs is also shown.

Correction method (z̄|zmax)

Run Uncorrected TOPUP GRE

Localizer 3.99 ± 0.74 | 6.85 4.01 ± 0.75 | 7.11 4.02 ± 0.76 | 7.23

BM 4.19 ± 0.53 | 6.85 4.19 ± 0.54 | 6.94 4.20 ± 0.54 | 7.10

Average 4.09 ± 0.64 | 6.85 4.10 ± 0.65 | 7.03 4.11 ± 0.65 | 7.17*

*Indicates statistically significant (p < 0.05) differences between the maximum Z-score values obtained with GRE and those from the uncorrected case.

on GE-EPI images may be a potentially powerful correction
approach. Nonetheless, more complex approaches able to capture
the dynamic aspects of distortions can be considered. In fact,
conventional correction approaches typically assume that a single
estimated displacement field is valid for the whole scanning
session, or may estimate a displacement field per fMRI run,
as it was done here. Even in the latter case, considering that
one displacement field is representative of the distortions at
all brain volumes acquired in an fMRI run is intrinsically
assuming that no head motion has occurred between the
acquisition of the field map and the fMRI data, and neither
during the fMRI run, since head motion (specifically out-of-
plane rotations) is known to non-linearly interact with geometric
distortions (Hutton et al., 2002; Jezzard, 2012). This represents
a limitation of most distortion correction approaches, including
the ones used here, which has been circumvented by embedding
the acquisition of continuous field map data into the fMRI
acquisition (Roopchansingh et al., 2003; Weiskopf et al., 2005),

or by retrospectively computing volume-specific field maps from
a single field map and the head motion parameters of the
associated fMRI data (Yeo et al., 2008; Takeda and Kim, 2013).
Because of the increased scanning time of the former, and the
loss in computational efficiency and simplicity of the latter,
approaches explicitly tackling the interaction of head motion
with geometric distortions are still seldom used. Coupling these
considerations with the low head motion observed here, we
believe that such complex approaches may not change the results
and respective conclusions.

Minimizing a Priori Geometric Distortions
Besides avoiding head motion through appropriate head fixation
systems, the susceptibility artifact can be minimized using PI,
which reduces the number of phase-encoding steps. PI can
be applied in the image space or in k-space, the latter being
the one used in this study (specifically GRAPPA). By using
GRAPPA (although with a modest acceleration factor of 2),
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the susceptibility artifact in our data was expected to be less
prominent, and thus may partially justify the notable, but
not statistically significant, differences in some fMRI analyses.
A recent debate on whether in-plane and SMS accelerations
should be employed together has emerged. A first study
systematically investigated the sensitivity and false-positive
activation of analyses of fMRI data collected at 3T using different
SMS factors, and suggested that a conservative combination of
2× GRAPPA with 2× SMS accelerations yields fMRI data with
modest geometric distortions and without apparent slice leakage
(Todd et al., 2016); this is in line with the acquisition parameters
used in this study.

CONCLUSION

In this study, we have characterized the geometric distortions and
the correction approaches based on the estimated 1B0 field offset
and voxel shift maps, and quantified the impact of geometric
distortions and their correction by two approaches (TOPUP
and GRE) for the estimation of the underlying displacement
field, on the quality of conventional fMRI data analyses. We
showed that accounting for geometric distortions in fMRI data
is recommended for this specific application, with TOPUP and
GRE estimating distinct VSMs (mainly locally), and that the
choice of the approach had a modest, albeit positive, impact on all
fMRI analyses. In particular, GRE achieved statistically significant
improvement for the registration between the functional and
structural data, and the sensitivity of the mapping of task-
related regions of interest, while TOPUP only yielded significant
improvements for the registration analysis. Importantly, the
additional data necessary for GRE required a substantially longer
scanning time (∼3.5 min) than that for TOPUP (10 s, 1 volume
per TR), which may present a limitation. Future studies, with
larger datasets collected using different experimental protocols
and setups will be needed to reproduce the conclusions claimed

here, which were drawn from this first study directly comparing,
in the same dataset, two different geometric distortion correction
approaches on fMRI data analyses.
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