
ORIGINAL RESEARCH
published: 05 February 2021

doi: 10.3389/fnhum.2020.578119

Frontiers in Human Neuroscience | www.frontiersin.org 1 February 2021 | Volume 14 | Article 578119

Edited by:

Mikhail Lebedev,

Duke University, United States

Reviewed by:

Jong-Hwan Lee,

Korea University, South Korea

Ethan Oblak,

RIKEN Center for Brain Science

(CBS), Japan

Jarrod A. Lewis-Peacock,

University of Texas at Austin,

United States

*Correspondence:

Bruno Direito

bruno.direito@uc.pt

Specialty section:

This article was submitted to

Brain-Computer Interfaces,

a section of the journal

Frontiers in Human Neuroscience

Received: 30 June 2020

Accepted: 28 December 2020

Published: 05 February 2021

Citation:

Direito B, Ramos M, Pereira J,

Sayal A, Sousa T and

Castelo-Branco M (2021) Directly

Exploring the Neural Correlates of

Feedback-Related Reward Saliency

and Valence During Real-Time

fMRI-Based Neurofeedback.

Front. Hum. Neurosci. 14:578119.

doi: 10.3389/fnhum.2020.578119

Directly Exploring the Neural
Correlates of Feedback-Related
Reward Saliency and Valence During
Real-Time fMRI-Based
Neurofeedback
Bruno Direito 1,2*, Manuel Ramos 1, João Pereira 1,2, Alexandre Sayal 1,2,3, Teresa Sousa 1,2

and Miguel Castelo-Branco 1,2,4

1Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal,
2 Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal, 3 Siemens Healthineers,

Lisbon, Portugal, 4 Faculty of Medicine, University of Coimbra, Coimbra, Portugal

Introduction: The potential therapeutic efficacy of real-time fMRI Neurofeedback has

received increasing attention in a variety of psychological and neurological disorders and

as a tool to probe cognition. Despite its growing popularity, the success rate varies

significantly, and the underlying neural mechanisms are still a matter of debate. The

question whether an individually tailored framework positively influences neurofeedback

success remains largely unexplored.

Methods: To address this question, participants were trained to modulate the activity

of a target brain region, the visual motion area hMT+/V5, based on the performance

of three imagery tasks with increasing complexity: imagery of a static dot, imagery of

a moving dot with two and with four opposite directions. Participants received auditory

feedback in the form of vocalizations with either negative, neutral or positive valence.

The modulation thresholds were defined for each participant according to the maximum

BOLD signal change of their target region during the localizer run.

Results: We found that 4 out of 10 participants were able to modulate brain

activity in this region-of-interest during neurofeedback training. This rate of success

(40%) is consistent with the neurofeedback literature. Whole-brain analysis revealed the

recruitment of specific cortical regions involved in cognitive control, reward monitoring,

and feedback processing during neurofeedback training. Individually tailored feedback

thresholds did not correlate with the success level. We found region-dependent

neuromodulation profiles associated with task complexity and feedback valence.

Discussion: Findings support the strategic role of task complexity and feedback valence

on the modulation of the network nodes involved in monitoring and feedback control, key

variables in neurofeedback frameworks optimization. Considering the elaborate design,
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the small sample size here tested (N = 10) impairs external validity in comparison to our

previous studies. Future work will address this limitation. Ultimately, our results contribute

to the discussion of individually tailored solutions, and justify further investigation

concerning volitional control over brain activity.

Keywords: neurofeedback, reward, real-time fMRI (rtfMRI), volitional modulation, adaptive threshold

INTRODUCTION

The combination of mental imagery with neuromodulation
techniques has received increasing interest in the field of
translational research in clinical neuroscience (Skottnik
and Linden, 2019). Neurofeedback is a neuromodulation
technique that entails the self-modulation of specific brain
regions or networks, through the “real-time” presentation of a
representation of the ongoing brain activity, i.e., the participants
are given information to enable mental imagery adaptive
strategies (Megumi et al., 2015; Sitaram et al., 2016; De Vico
Fallani and Bassett, 2019; Pamplona et al., 2020).

Despite the recent and extensive use of real-time functional
Magnetic Resonance Imaging (rt-fMRI) neurofeedback,
the underlying neural mechanisms subserving its cognitive
components and its clinical impact is still the subject of an
ongoing debate (Kadosh and Staunton, 2019; Paret et al., 2019).
Learning to control brain activity is often associated with the
identification of individually tailored mental strategies (Paret
et al., 2018). The theory of reinforcement learning and operant
conditioning has been discussed as model for neurofeedback
mechanisms (Paret et al., 2018; Shibata et al., 2019), as the
repetitive pairing of the target neural pattern and positive reward
potentiates regional plasticity (Richards et al., 2019).

In a recent meta-analysis, Emmert et al. (2016) studied the
various neural networks involved in neurofeedback. The authors
describe a complex structure, most likely reflecting different

cognitive processes, including reward processing and decision
making (Haber and Knutson, 2010). These processes comprise

the engagement of different networks, such as the central
executive network, activated in cognitively demanding tasks,
preparation and execution of mental strategies, and the saliency
network, associated with attentional control and monitoring
(Sridharan et al., 2008; Eckert et al., 2009).

Studies discriminating specific neural signatures associated
with neurofeedback training have highlighted several cortical
and subcortical structures, particularly key striatal subregions.
Stronger ventral striatum activation has been associated to
training success (Johnston et al., 2010). Recent evidence
suggests that a network of cognitive, non-task specific,
control regions, as well as regions implicated in reward
and feedback monitoring were consistently activated during
neurofeedback training (Skottnik et al., 2019). Volitional
modulation of specific brain regions was accompanied by
increased activation within the striatum, irrespective of
the task. Altogether, these findings suggest that the reward
network, particularly the striatum, plays a central role in
neurofeedback training.

Most rt-fMRI neurofeedback paradigms aim for the
decreasing or increasing of the activity within a specific
brain region or functional connectivity between regions
(Pereira et al., 2019; Pamplona et al., 2020). However, the
heterogeneity of the results, the inter-subject variability
of the efficacy and specificity of neurofeedback remains
an important caveat (Linhartová et al., 2019; Paret et al.,
2019). Strehl (2014) discussed the potential contribution
of additional cognitive processes and related networks to
boost the learning process associated with neurofeedback.
The author highlights the impact of learning by trial and
error and involved networks, cueing of behavior, feedback,
reinforcement, and knowledge of results as well as transfer
of volitional regulation skills. The acquisition of the self-
modulation skill in neurofeedback studies has recently been
addressed by Kadosh and Staunton (2019). Different elements,
such as choice of feedback type, habituation and attentional
variables, motivational aspects, and task engagement, appear
to be implicated in the success of neurofeedback experiments,
reported to be between 30 and 50% (Sokunbi et al., 2014;
Kadosh and Staunton, 2019). The relevance of pre-training
and experimental data in the definition of success has recently
been discussed in (Haugg et al., 2020). Individual tailoring of
the self-modulation framework may be key to the success of
neurofeedback training.

The inter-subject variability of neurofeedback success
and reported inability of some participants to achieve self-
modulation even after multiple sessions undermines the
efficiency of neurofeedback training and limits the translation
to clinical populations. While neurofeedback has shown
some promise, there are several caveats that need to be
addressed to minimize the number of “non-responders,”
optimize intervention efficacy and achieve its potential as a
neurorehabilitation technique.

The motivation for this study was (i) to test the success
rate of a novel interface based on explicit positive and
negative reward and (ii) to investigate the impact of such
an interface on the reward system. In this sense, the present
contribution explores the neural correlates of feedback in
rt-fMRI neurofeedback, regarding the reward and saliency
networks, and the putative association with individual variations
supporting the success of neurofeedback training. Moreover,
it aims to characterize the influence of feedback valence,
i.e., positive, neutral or negative auditory cues. An important
feature for neurofeedback learning is to establish similarities and
differences between neural patterns that process positive and
negative reinforcement signals. Learning requires processing and
interpretation of feedback as soon as it arrives (also described
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as feedback activity monitoring), and feedback evaluation
considering the context of the desired outcome, i.e., estimation
of a reward prediction error (Paret et al., 2018). In this
sense, the evaluation of the distributed network involved in
feedback interpretation is key. Accordingly, the notion of a
distributed reward encoding network, involved in dopamine-
based reinforcement learning, has been recently presented in
Dabney et al. (2019).

This study, the third using the same core paradigm (Banca
et al., 2015; Sousa et al., 2016), takes advantage of previous
work on the self-modulation of the middle temporal visual
area (hMT+/V5) complex activity level, a higher-order visual
area shown to be responsive to both perceived and imagined
visual information-based stimuli (Kaas et al., 2010). In our
previous work, Banca et al. (2015) found evidence that hMT+/V5
can be volitionally modulated by focused imagery and the
involvement of a specific cortico-cerebellar circuit. We have
recently expanded these findings and demonstrated the feasibility
of achieving more than two modulation levels in a single
brain region (Sousa et al., 2016), by suggesting the use of
three visual imagery tasks with different complexity. In Sousa
et al. (2016), participants performed a functional localizer task
designed to identify the region-of-interest (ROI) hMT+/V5
over the left and right regions involved in motion processing.
This ROI served as the subsequent signal source for NF
runs. Then, each subject performed four imagery runs with
three different imagery tasks: stationary dot, dot moving in
two directions, and dot moving in four directions. Real-
time auditory feedback was computed at each time point
based on the percentage of ROI mean signal change (PSC)
in relation to the last baseline (down-regulation task) period.
The feedback value was presented to the participant using
auditory instructions to minimize the possibility to influence
signals in hMT+/V5. The experimenter quantitatively forwarded
changes in PSC, at every 4 s, from level 0—no activation to
level 5—maximum activation. The results of the parametric
activation paradigm, based on the increasing complexity of the
imagery strategies, appear to further facilitate volitional control
of target region brain activity when compared with standard up-
regulation/down-regulation paradigms. These findings suggest
that the complexity of the perceived challenge of the task
positively influences the performance in neurofeedback, which
is in accordance with previous studies (Kadosh and Staunton,
2019).

In this complementary, follow-up on our previous work
on volitional neuromodulation of the hMT+/V5, we aimed
to further investigate the reward system mechanisms involved
in neurofeedback and the effect of feedback valence and
task complexity on the neural correlates of neurofeedback
training. We adopted an auditory feedback interface based
on individually selected vocalizations and adaptive maximum
modulation thresholds. We hypothesize that neurofeedback
training with explicit reward cues leads to the differential
activation profiles of cognitive control and feedback monitoring
areas, i.e., we expect stronger task difficulty- and feedback
valence-related neuroactivation in brain regions involved in
neurofeedback training.

MATERIALS AND METHODS

Sample
Ten healthy volunteers participated in this study (5 male), with
ages between 19 and 35 years old (mean age = 26, SD = 5.25).
One participant was left-handed. The inclusion criteria allowed
participants with more than 18 years old without history of
neurological or psychiatric disorders. Subjects were excluded in
the case of any MRI contraindication. The study was approved
by the Ethics Commission of the Faculty of Medicine of the
University of Coimbra and was conducted in accordance with the
Declaration of Helsinki.

Study Design
Each subject participated in a single neurofeedback session and
was asked to volitionally modulate activity of the target brain
region based on suggested visual imagery strategies (Figure 1).
Moreover, participants were instructed that they would receive
auditory feedback, based on pre-selected vocalizations, to assist
them in two of four imagery runs. The participants were
informed that the received vocalization would match the degree
of success of self-modulation, e.g., positive vocalization if brain
activation increased in up-regulation blocks. Furthermore, they
were informed of the temporal delay of the Blood-Oxygen-
Level-Dependent (BOLD) response and asked to minimize head
movement during functional runs.

Each session started with the selection of 3 vocalizations: the
most rewarding, most punishing, and a neutral, later used during
neurofeedback training as auditory feedback. The identification
of the vocalizations consisted of a two-stage questionnaire on a
subset of 20 vocalizations from the database presented in Cowen
et al. (2018). First, the subjects had to rate each vocalization
from 1, most punishing, to 5, most rewarding. In a second
questionnaire, participants were asked to only select one, in
case of multiple vocalizations with maximum, minimum and
median scores.

Subjects underwent an imaging session composed by T1-
weighted anatomical scan followed by five functional runs in
the order: hMT+/V5 localizer, neurofeedback training run, two
neurofeedback and a transfer run.

Stimuli were presented on an LCD screen (70 x 39.5 cm2,
resolution of 1,920 x 1,080 pixels, 60Hz refresh rate) that the
participants viewed through a mirror mounted above their eyes
at an effective distance of 156 cm. The visual stimuli were based
on a dot size of 0.5 x 0.5 cm2 (visual angle of the dot was 0.64 deg).

Scanning was performed using a 3T MRI scanner (Magnetom
Prisma, Siemens, Erlangen, Germany) equipped with a 20-
channel head coil, at the Portuguese Brain Imaging Network,
University of Coimbra, Portugal. Functional images of the
BOLD-contrast were acquired with a gradient echo T2∗-weighted
echo-planar-imaging (EPI) sequence. A sequence with repetition
time (TR) 2 s was used (TE 30ms, field-of-view 256 x 256
mm2, flip angle 90) with 33 slices and 4 x 4 x 3 mm3

voxel resolution. Anatomy was imaged with a 3D T1-weighted
scan [Magnetization Prepared Rapid Acquisition Gradient Echo
(MPRAGE) sequence, TE 3.42ms, TR 2,530ms, 176 slices, and
field-of-view 256 x 256 mm2].
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FIGURE 1 | Graphical representation of the timeline of the experiment.

Localizer Run
The functional localizer task was designed to delineate
hMT+/V5, the neurofeedback target ROI (Banca et al.,
2015; Sousa et al., 2016), and to define an individually-tailored
threshold for feedback presentation.

The localizer run consisted of three active regulation
conditions: two visual motion perception conditions, and
one visual imagery condition. The visual motion perception
conditions consisted of a moving white dot against a black
background, either oscillating along a vertical trajectory (two
opposite moving stimulus−2OMS) or vertical trajectory
combined with a horizontal trajectory (four opposite moving
stimulus−4OMS). The visual imagery condition consisted
on the imagination of a dot moving in a vertical trajectory
combined with a horizontal trajectory (four opposite motion
imagery−4OMI). Each active regulation condition was randomly
repeated four times, alternating with a stationary dot perception
stimulus used as baseline—SS (13 repetitions). Participants were

asked to look at a fixation cross in the center of the screen during
the run. The run had a total of 25 blocks of 16 s, i.e., the overall
duration of the functional localizer was 6min and 40 s.

Neurofeedback Target Delineation
The definition of the neurofeedback target was performed in
Turbo BrainVoyager 3.2 (TBV) (Brain Innovation, Maastricht,
The Netherlands). The contrast of interest featured the balanced
test 2OMS + 4OMS > baseline. A three-dimensional box
was manually selected over the cluster displaying the strongest
response in the statistical activation maps (defined according to
t-statistic > 5) around bilateral middle temporal visual area.

Definition of the Feedback Presentation Threshold
Individual feedback-selecting thresholds (for the selection of
auditory cue) were defined for each subject. Haugg et al. (2020)
identified a positive correlation between pretraining activity
levels and neurofeedback learning success. Our hypothesis is
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that task complexity and the difficulty level may represent an
important factor in achieving self-modulation. In this sense, we
aimed to determine individually tailored thresholds according
to own self-regulation capabilities (represented in the functional
localizer by the imagery condition). Our rationale was to define
a threshold τ that would facilitate achieving positive auditory
feedback during the most complex task [we hypothesize that
activation in the target region would be higher, as previously
established in Sousa et al. (2016)]. We calculated PSC for target
region activity time course during the functional localizer and
applied a 3-point time-window to smooth the time course and
minimize the impact of outliers. The threshold τ was estimated
as 50% of the maximum PSC value obtained during the 4OMI.

Imagery Runs and Feedback Presentation
After the definition of the functional neurofeedback target mask,
the participants performed four imagery runs, each composed by
275 volumes (lasting 9min and 10 s each), divided in 25 blocks of
22 s duration. The first and last imagery runs (control runs) were
performed without feedback.

Each run consisted of three conditions, two directions motion
imagery−2OMI—and four directions motion imagery−4OMI,
and a baseline, down-regulation condition, static imagery—SI.
Six repetitions of the two active conditions (2OMI and 4OMI)
were presented randomly (a total of 12 blocks). Each one of these
blocks was flanked by SI blocks (13 blocks). We have previously
established the static imagery task as a control, baseline task;
in Sousa et al. (2016) SI would correspond to the baseline level
in a parametric, 3-level, modulation effort. At the beginning of
each block, auditory instructions informed the participants of
the condition. Auditory feedback was presented in the second
and third imagery runs through an interface based on three
auditory cues consisting of vocalizations expressing positive,
neutral and negative feedback. The auditory cue was presented
at two specific timepoints within each block, 10 s and 18 s after
block onset, as a function of the PSC time course. During the
active, up-regulation, blocks, if the PSC was above the threshold
τ the positive vocalization was played; the negative threshold was
set to 0 (the rationale was to inform the participants that the
modulation was in the opposite direction); if PSC was between 0
and the τ , the neutral cue was played. During the baseline, down-
regulation, condition the goal was to lower the BOLD signal. To
inform the participants of deviations (instability of the signal,
either increase or decrease), we set the positive and negative
thresholds to τ and−τ , respectively.

Neuroimaging Data Analysis
Data Processing
Online data processing was based on Turbo-BrainVoyager
v3.2 (Brain Innovation, Maastricht, The Netherlands). First,
the functional mask for hMT+/V5 delineated based on the
functional localizer run was loaded. Data processing included
3D motion correction, i.e., all functional volumes are aligned in
space by rigid body transformation to the first recorded volume
of the session. Data from the ROI were extracted in real-time
and analyzed using custom MATLAB scripts to compute the

corresponding auditory cue. Feedback was presented based on
Psychtoolbox-3 routines (Brainard, 1997).

Offline processing was performed using BrainVoyager 21.2
(BV21.2) (Brain Innovation, Maastricht, Netherlands). Data
processing included slice scan time correction, 3D motion
correction and temporal filtering including linear trend removal
and temporal high pass filtering with General Linear Model
(GLM), and 2 Fourier Cycles. Functional data were co-registered
with structural data of each participant and normalized to
Talairach space. Finally, functional data were smoothed using an
8mm kernel (full width at half maximum, FWHM) to account
for between-subject variation in anatomical localization.

Statistical Analysis
In the first-level analysis of the functional runs, we defined a
GLM for each run. The design matrix included a constant term
and six realignment parameters as well as activity spike-related
predictors. These parameters were obtained during motion
correction and used to correct for movement-related artifacts not
eliminated during realignment.

To assess the success in each run, we analyzed the statistical
significance of the differences between up-regulation conditions
and baseline within the neurofeedback target region (defined
individually in bilateral occipito-temporo-parietal, hMT+/V5).
To this end, we computed the ROI-GLM (the ROI for this
analysis is the individual neurofeedback target) considering the
contrast 2OMS + 4OMS > baseline. The statistical significance
threshold was set to p= 0.05.

Second-level analysis of the functional data was performed to
better understand the mechanisms involved in neurofeedback at
the group level and to explore whole-brain patterns associated
with the neurofeedback training. We performed a single
factor, within-subject 3-level ANOVA analysis considering the
conditions (i) SI, (ii) 2OMI, and (iii) 4OMI as levels. The p-
values were adjusted based on the false discovery rate (FDR) to
correct for multiple testing. The resulting statistical F-map was
thresholded at q(FDR) = 0.05. The clusters extracted from this
analysis had a minimum of 10 voxels.

In addition, we characterized temporal patterns of activity in
the most relevant clusters. We focused particularly on clusters
located in brain regions part of the feedback-related reward and
saliency networks. The anterior insula and posterior cingulate
cortex have been previously implicated in interoceptive and
self-awareness processes associated with the salience network
(Emmert et al., 2016). We will also consider the NF reward
processing regions, such as the basal ganglia and anterior
cingulate cortex (Paret et al., 2019). To this end, we computed the
block-averaged response time-courses for each condition during
the neurofeedback runs. Activation time courses were extracted,
then averaged over the voxels in each ROI. For each run of
each participant, the time-series were converted into PSC from
average activity by dividing the signal measured at each time
point by the average signal during the baseline, SI condition
(i.e., positive values represent relative increases from the mean
signal intensity in the stationary condition). The block-related
responses for each condition were averaged across all participants
from 2 s before to 24 s after each block onset (to fully cover the
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22 s of each condition/block). We also characterized the temporal
activation patterns associated with feedback events, in this case
event-related responses for each feedback type (positive, neutral
and negative) were averaged across all averages from 4 s before to
16 s after the auditory cue.

Finally, we determined the relation between the adaptive
feedback threshold computed for each participant and the success
in the neurofeedback run. To this end, we calculated the
correlation coefficient.

RESULTS

Functional Localizer
The localizer run allowed the real-time definition of subject-
specific bilateral occipito-temporo-parietal ROIs selective for
hMT+/V5, considering the balanced contrast (4OMS+ 2OMS>

SS). Figure 2 presents the probabilistic map of the ROI selection
per participant, i.e., the color scale describes the probability of
each voxel being selected as a neurofeedback target region.

The average volume of the neurofeedback mask was 3,030 ±

416 mm3 (maximum of 4,040 and minimum of 2,474 mm3).
The clusters corresponding to the neurofeedback target were
delineated in bilateral occipito-temporo-parietal, in accordance
with previous studies (Sousa et al., 2016).

Pre-training data was used to characterize the subject’s ability
to modulate activity in the neurofeedback target region based
on a visual imagery task. Mean threshold τ across subjects
was 0.52± 0.16.

Neurofeedback Runs
Neural Correlates of the Neurofeedback Training
Figure 3 presents whole-brain group activation maps (N = 10)
for the neurofeedback runs. Table 1 summarizes the clusters of
voxels that were found with the ANOVA 3-level within-subject
factor analysis (representing the three conditions). The clusters
represent the brain regions involved in the participants’ effort
to modulate brain activity in the target region. The threshold
was set at q = 0.05, FDR corrected. Clusters associated with the
proposed neurofeedback task were found bilaterally in themiddle
frontal gyrus, lentiform nucleus, superior temporal gyrus, right
precuneus, right posterior cingulate cortex, left precentral gyrus,
and left caudate and nucleus accumbens.

Neurofeedback Target Modulation
We assessed whether subjects were able to regulate the activity
of hMT+/V5 during the neurofeedback runs. A repeated
measure ANOVA determined that neurofeedback target ROI
mean activity did not differ significantly between up-regulation
conditions (2 or 4 fold motion) conditions [F(2, 18) = 0.527,
p-value= 0.599].

We also analyzed the pattern across runs. Figure 4 shows
the modulation results for each run. The t-tests for the contrast
4OMI + 2OMI > SI suggest a trend for a slight decrease of
success (at group-level) throughout the experiment.

An individual analysis demonstrated that 4 participants
successfully modulated the target ROI during the neurofeedback

runs (we used a t-test 4OMI + 2OMI > SI to determine
modulation success, p-value < 0.05).

Figure 5 presents the block-related responses to each
condition averaged across the 4 participants that successfully
modulated the ROI, considering the NF target. The selection
of this subset of participants allows us to better understand
the modulation pattern for each condition when successfully
performing the task (with different difficulty levels). In this subset
of 4 participants, the response pattern for the motion imagery
conditions, i.e., 4OMI and 2OMI, presents an increase, reaches
a peak and then a slight decrease to a plateau. The peak for the
4OMI condition is higher than the one present for the condition
2OMI, as found in Sousa et al. (2016).

Relation Between Threshold and Neurofeedback

Success
Figure 6 shows that there is no systematic relation, or bias,
between the adaptive feedback threshold computed for each
participant and the success in the neurofeedback runs. The
threshold (y-axis) ranged from 0.34 to 0.74%. The t-statistic
(x-axis) from the balanced contrast 2OMI + 4OMI > SI
did not vary as a function of the threshold selected, i.e., the
ability to modulate brain activity in the target region was not
related with the selection of the threshold required to receive
positive and negative feedback. The Pearson correlation between
neurofeedback modulation ability (as measured by the contrast
of interest) and the individual threshold selected was 0.032
and 0.229 (non-significant, n.s.), first and second neurofeedback
run, respectively.

Block-Related Responses—The Neural Correlates of

Feedback
In order to characterize the regions involved in the processing of
feedback, we studied their average BOLD responses throughout
neurofeedback runs. To this end, we selected clusters located in
brain regions part of the feedback-related reward saliency and
valence networks. Figure 7 presents the block-related activation
patterns of these structures across all participants. This analysis
comprises all participants as we aim to explore how this novel
feedback approach was interpreted irrespective of the success.
We included both neurofeedback runs in this analysis. Baseline
was computed based on the signal from the static imagery
condition (down-regulation condition). Left and right striatum
(Figures 7A,B) (putamen) show an increase of activity during
the motion imagery conditions. Additionally, we note that the
response is greater for the 4OMI condition compared to 2OMI.
This pattern is also noticeable but less evident in areas connected
to left and right anterior insula (Figures 7C,D). The pCG and
the left middle temporal gyrus present a deactivation during the
motion imagery conditions (Figures 7E,F).

Interpreting the Valence of the Feedback—Positive

vs. Negative Events
In order to better understand the correspondence of feedback
valence and the BOLD pattern in the network activated during
the neurofeedback task, we calculated the event-related responses
for positive and negative feedback. First, to compute PSC we
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FIGURE 2 | Neurofeedback target probability map (color scale: % overlap).

FIGURE 3 | Self-regulation with neurofeedback (N = 10, considering both NF runs). Statistical maps for the ANOVA, 3-level within-subject analysis (FDR corrected q

< 0.05) increased activation in prefrontal control regions and regions involved in feedback processing. (A) Statistical map projected on a participant’s inflated cortex.

(B) Statistical map projected on an average of the individual anatomical data sets (radiological convention)—ventral striatum (Z = −5, Talairach coordinates). (C)

Statistical map projected on an average of the individual anatomical data sets (radiological convention)—dorsal striatum (Z = 3, Talairach coordinates).

considered the entire run average as baseline. Event-related
responses associated with the feedback events, i.e., positive
and negative vocalizations, were determined as the average
across all participants from 4 s (2 volumes) before to 16 s (8
volumes) after each event, i.e., onset of the presentation of
the vocalization.

Figure 8 presents a summary of the results. In general, the
ventral and dorsal striatum, and anterior insula tend to present
stronger activation patterns for positive feedback cues compared
to negative feedback. To complement this data, we also designed
GLM with feedback event-related regressors and analyzed the
resulting betas per ROI of interest. Figure 9 summarizes mean
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TABLE 1 | Brain areas with significant activation, considering the 3-factor ANOVA analysis (FDR corrected q < 0.05), during neurofeedback runs.

Talairach coordinates Size (mm3) Hemisphere Anatomy

(Brodmann area, BA)

z-score

X Y Z

60 −40 19 1,172 Right Superior temporal gyrus (22) 11.717645

24 −13 49 9,436 Right Precentral gyrus (6)/inferior frontal gyrus

(44)/anterior insula (13)

12.356137

18 −67 46 13,485 Right Precuneus (7) 14.198732

45 35 34 739 Right Dorsolateral prefrontal/middle frontal gyrus (9) 9.332857

15 −7 4 325 Right Thalamus/

striatum (putamen)

8.646475

3 −52 28 1,239 Right Posterior cingulate gyrus (23, 31) 9.179523

−24 −13 52 10,913 Left Precentral Gyrus (6) 19.054468

−3 14 −2 581 Left Striatum (caudate, nucleus accumbens) 9.211643

−18 −82 40 19,627 Left Precuneus (7), cuneus (19) 11.838016

−21 −4 13 1,553 Left Striatum (putamen) 9.363536

−15 −25 13 629 Left Thalamus 9.646857

−36 44 37 1,820 Left Dorsolateral prefrontal/middle frontal gyrus (9) 10.390186

−41 −1 −20 1,165 Left Temporopolar area/superior temporal gyrus (38) 9.877755

−48 5 19 901 Left Inferior frontal gyrus (44)/anterior insula (13) 9.468178

−48 −16 −17 1,527 Left Middle temporal gyrus (21) 10.016431

Provided coordinates are in Talairach space.

beta values for each ROI (which are directly related to PSC,
considering a percent-transform time course normalization).

DISCUSSION

In this experiment, we sought to investigate the neural correlates
of feedback-related reward saliency and valence during fMRI-
based neurofeedback training, when feedback explicitly carried
individually tailored reward signals.

In this study, we propose the introduction of a new feedback
interface that aims to optimize current approaches based on
recent findings on the neural correlates of neurofeedback
(Skottnik et al., 2019) and neurofeedback learning theories
(Strehl, 2014; Wood et al., 2014). In this sense, the motivation for
this study was (i) to test the success rate of a novel interface based
on explicit positive and negative reward and (ii) to investigate the
impact of such an interface on the reward system.

To this end, we based our paradigm on a previously validated
experiment, self-modulation of the hMT+/V5 (Banca et al., 2015;
Sousa et al., 2016), and adapted the feedback with individually
selected vocalizations for feedback presentation (with negative,
neutral, and positive interpretation). Additionally, we used
information from the localizer run to select the participant
specific threshold to determine the valence of the feedback.
In this way, we aimed to isolate the neural network involved
in neurofeedback-driven self-modulation and characterize the
responses to positive and negative reinforcement.

The localizer run allowed us to successfully identify bilateral
hMT+/V5, our target region, in all participants; the results were
in accordance with the findings presented in Sousa et al. (2016).

As in our previous work, we found evidence that self-
modulation of BOLD activity in hMT+/V5 can be achieved

using the same strategy across participants. Our results (40%
of participants were able to modulate activity during the
neurofeedback runs) are inferior to the ones previously reported
(75% in Banca et al., 2015; and 85% in Sousa et al., 2016).
Although the adjustments made in the study design and
feedback paradigm address our objective to investigate the
reward system relation to neurofeedback, it showed a decrease in
neurofeedback efficacy, i.e., less “learners” and some evidence for
deterioration throughout the session. The comparison between
the t-values associated with the contrast of interest between
the current and previous study (Sousa et al., 2016) shows
that, on average, participants performed worse here than in
our previous study. These results suggest that explicit reward
as presented (feedback schedule, auditory cues selected, etc.)
in this design, may worsen the ability to control volitional
modulation of the activity in the neurofeedback target region. A
recent study found a beneficial effect of combining reinforcement
and punishment, i.e., positive and negative feedback (Klöbl
et al., 2020). The authors emphasize the possible role of
error avoidance as a complementary mechanism to improve
neurofeedback-based learning. Our results do not confirm this
hypothesis and warrants further investigation concerning its role
in neurofeedback success.

Additionally, a sparser presentation of feedback and
interpretability of the auditory feedback cues may also contribute
to these results. In contrast to the current study, the setup in
Sousa et al. (2016) presented a simpler, numerical based auditory
feedback each 2 TRs.

Debriefing from the participants of this study identified
that vocalization-based feedback may be distracting, and that
feedback schedule may have contributed to the limited success
of the interface. Altogether, our results (imaging and reporting
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FIGURE 4 | t-tests for each run considering the contrast (4OMI + 2OMI) > SI within hMT+/V5 ROI. Black dots correspond to the t-statistic of each participant for the

contrast of interest. The white line corresponds to the mean value across participants, the light gray area represents the standard error of the mean (mean ± SEM),

and the dark gray regions correspond to the standard deviation (mean ± SD).

from the participants’ debriefing) may suggest an unsuccessful
compromise between informative and positive/negative
reinforcement cues. Wood et al. (2014) suggests a compromise
between feedback information regarding automatic processes
and information to engage cognitive activity operating under
conscious control, ultimately a more selective schedule of reward
and punishment.

The characterization of the block-related responses within the
neurofeedback target region of the successful modulators shows
that the visual motion imagery strategies used by the participants
evoked differential brain responses according to the number of
imagined motion variations, replicating previous findings Sousa
et al. (2016). The average time course per condition shows
that the participants were able to elicit different patterns for
the three conditions, e.g., activation for the 4OMI > 2OMI as
hypothesized. The suggested task (i.e., 2OMI vs. 4OMI) had a
differential impact on the activation patterns of different brain
regions while performing neurofeedback training. Our results
also suggest that feedback valence had a different impact on
specific brain nodes of the network commonly involved in
neurofeedback success.

Additionally, we found that threshold selection based on the
ability of each subject to imagine the moving dot during the
localizer run was not associated with the decrease of success in
neurofeedback runs.

Neural Correlates of Neurofeedback
The ANOVA 3-level within-subject analysis highlighted
a set of clusters associated with the performance of the
neurofeedback task including bilateral middle frontal gyrus,
lentiform nucleus, superior temporal gyrus, insula, precuneus,
right posterior cingulate cortex, left precentral gyrus, and left
nucleus accumbens. The presence of these structures is in
accordance with our previous findings and recent studies on
reinforcement and punishment in learning dynamics (Banca
et al., 2015; Klöbl et al., 2020).

The simultaneous involvement and balance between
several networks in neurofeedback tasks is one important
aspect to consider in training success. Different structures
highlighted here may have significant roles in this respect.
The role of the anterior insula and the basal ganglia in
neurofeedback has been previously reported in several studies
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FIGURE 5 | Block-related responses averaged across the participants that successfully modulated the ROI within the neurofeedback target.

FIGURE 6 | Relation between the computed adaptive threshold and the success in the neurofeedback runs. Y-axis represents the threshold (% PSC) selected for

each participant and the x-axis represents the t-statistic for the ROI-GLM contrast (within the neurofeedback target) (4OMI + 2OMI < SI). (A) Represents the first

neurofeedback run. (B) Represents the second neurofeedback run.

[see meta-analysis presented in Emmert et al. (2016)]. Anterior
insula activation, particularly within the right hemisphere,
has been associated with coordination and evaluation of
task performance (Eckert et al., 2009; Menon and Uddin,
2010). The authors also discuss the importance of the

insula and basal ganglia in motivational processing, a key
aspect of neurofeedback training. Ventral striatum is also
part of the reward network, as reward-related activity in
ventral striatum has been demonstrated in FitzGerald et al.
(2014).
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FIGURE 7 | Block-related responses averaged across all participants for different ROI involved in the neurofeedback task and identified based on ANOVA 3-level

within-subject factor analysis. Each plot presents the block-related curve for the conditions 2OMI and 4OMI for the following ROIs: (A) Left Striatum (Putamen); (B)

Right Striatum (Putamen); (C) Left Inferior Frontal Cortex (Brodmann Area, BA, 44)/Anterior Insula (BA13); (D) Right Inferior Frontal Cortex (BA44)/Right Anterior Insula

(BA13); (E) Left Middle Temporal Cortex (BA21); (F) Right Posterior Cingulate Cortex (BA23, BA31).
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FIGURE 8 | Feedback valence—(positive and negative) event-related responses averaged across all participants (n = 10) for different ROIs involved in the

neurofeedback task. Each plot presents the positive and negative feedback event-related curve for the following ROIs: (A) Left Striatum (Putamen); (B) Right Striatum

(Putamen); (C) Left Inferior Frontal Cortex (Brodmann Area, BA, 44)/Anterior Insula (BA13); (D) Right Inferior Frontal Cortex (BA44)/Right Anterior Insula (BA13); (E) Left

Middle Temporal Cortex (BA21); (F) Right Posterior Cingulate Cortex (BA23, BA31).
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FIGURE 9 | Mean beta values per ROI. The left columns for each ROI correspond to the mean bata value associated to the “positive reinforcement” events and the

right columns to the “negative reinforcement” events (the whiskers represent the SEM) for the following ROIs: (A) Left Striatum (Putamen); (B) Right Striatum

(Putamen); (C) Left Inferior Frontal Cortex (Brodmann Area, BA, 44)/Anterior Insula (BA13); (D) Right Inferior Frontal Cortex (BA44)/Right Anterior Insula (BA13); (E) Left

Middle Temporal Cortex (BA21); (F) Right Posterior Cingulate Cortex (BA23, BA31).
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The anterior cingulate cortex role in the regulation
network and involvement in error monitoring processes
have also been previously discussed (Sokunbi et al., 2014;
Paret et al., 2019). The activation of the middle Frontal
gyrus (dorsolateral prefrontal cortex) is often associated with
regulation processes involved in neurofeedback (Zotev et al.,
2013; Japee et al., 2015). These results are also consistent
with previous studies implicating these regions with error
monitoring (Carter et al., 1998; Menon et al., 2001).

Additionally, our analysis showed a deactivation of several

regions including the posterior cingulate cortex and middle

temporal gyrus. These regions, part of the default mode network

(DMN), have been previously reported to deactivate when
performing cognitively demanding tasks (Emmert et al., 2016).

Together, this set of regions form a network of
control/regulation and reward processing, is in line with
the conceptualization presented, for example in Paret et al.
(2019) and Skottnik et al. (2019).

Role of Context, Reward Processing, and
Feedback Valence
To better understand the role of different brain regions, we
explored the block-related average per condition of the BOLD
activity. Left and right striatum (putamen) ROIs present a
different pattern between conditions (2OMI vs. 4OMI). The
block-related response for the more complex (4 motion) imagery
strategy elicits a higher BOLD activity variation. This pattern
is also present in the right anterior insular cortex. The results
suggest that these regions are sensitive to the context (task
complexity) and/or expected reward. One reason for this
difference could be the relative context, provided by the specific
strategy, in part because of the effect of task difficulty in
the representation and encoding of feedback (Holroyd et al.,
2004; Padrón et al., 2016; Steel et al., 2019). The authors
concluded that the functional changes associated with reward
and punishment are associated with the context. In FitzGerald
et al. (2014), the authors also found that ventral striatum
activity during decision making is dynamically modulated
by context.

We also analyzed the event-related response associated with
the valence of the feedback, i.e., type of vocalization. Again, we
aimed at evaluating the encoding of valence in the brain ROIs
associated with neurofeedback self-modulation, particularly the
regions that are affected by the context/task complexity. We
found that reward and punishment (positive and negative
feedback) differentially impacted BOLD response in bilateral
putamen, insula, and left ventral striatum. These results are
in line with previous studies suggesting that neural areas
supporting learning present functional differences associated
with how feedback information is presented (Bischoff-Grethe
et al., 2009). Our results show that positive feedback drives
a stronger BOLD response, while negative feedback present a
weaker response in limbic areas. We also identified a stronger
response to positive vocalization in insula ROIs, i.e., insula
presented a stronger engagement when the reinforcement is
positive. While the activity of the insula has been previously

associated with negative stimuli such as pain (Xu et al., 2020),
our results suggest that insula activity patterns in neurofeedback
experiments may be driven by the emotional response to
(positive) reward explicit feedback. This is particularly relevant
in the context of this study because feedback and reward
are combined. Moreover, these results are in accordance with
reports highlighting anterior insula role in the modulation of
neural hubs that underlie several processes (Lubianiker et al.,
2019).

Recently, Klöbl et al. (2020) also studied insula activation
during regulation periods but did not report significant
differences between negative and positive reward events.
Differences between studies may result from activation of
different sub-regions of the insula. Altogether, these results
complement the discussion on the motivation for novel
interfaces and highlight the importance of reward-based
feedback. However, the lower level of success (comparing
the neuromodulation scores achieved in this study with
previous approaches) suggests an unbalance between
informative and positive/negative reinforcement cues.
Future work could explore the combination of both types
of feedback—e.g., informative during the conditions and
reinforcement at the end of each trial, probing reward-
related processes and cognitive control mechanisms.
Ultimately, we hypothesize that the fine tuning of this
combination may optimize neurofeedback success, although
we recognize that in our case this was not successful at the
group level.

Limitations
In this study we add three different manipulations to the
neurofeedback training: adaptive threshold (with the goal of
tailoring NF for each individual), task complexity (to replicate
previous findings and extend them to the context of the
goals of the current study), and feedback interpretation based
on positive, negative or neutral vocalizations. To disentangle
the role of each node in the network involved in e.g.,
feedback monitoring, task performance, control/attention is
not trivial and should be interpreted in the context of an
exploratory study (Paret et al., 2018). Moreover, a specific control
group receiving different feedback cues would be necessary
to validate the benefits of feedback based on positive or
negative reinforcement cues. In this sense, the relatively small
sample size is a major limitation in the interpretation of the
results. No sham group was included as the main goal was
to explore the specific, individual mechanisms associated with
feedback valence and task complexity. Nevertheless, as this
study represents a follow-up on our previous work, the analyses
were based on previous knowledge on the mental strategies,
neurofeedback target region (Banca et al., 2015; Sousa et al.,
2016), and on a subject-specific approach to explore the temporal
activation pattern. Even though the results only partially overlap
with our previous findings, as we clearly see a decrease
in neurofeedback training success, the activation patterns in
different reward- and control- network structures are in line with
previous studies.
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CONCLUSION

Our study contributes to the understanding of current neural
models of neurofeedback. The results here presented suggest
that task complexity/context and feedback valence have an
important role in the modulation of the networks nodes
involved in monitoring and control of feedback, highlighting
their importance in learning of voluntary neuromodulation.
Although the current paradigm was particularly valuable in
assessing positive and negative reward related responses, this
was achieved at the cost of relatively lower efficacy of NF than
the previous study of Sousa et al. (2016). On the one hand,
our results suggest that explicit reinforcement feedback may
play a crucial role (different patterns were found in several
brain structures involved in neurofeedback training). On the

other hand, results of self-modulation ability of the target region
and anecdotal reporting from the participants’ debriefing may
indicate an unsuccessful compromise between informative and
positive/negative reinforcement cues. Future analyses should
explore the role of these areas—e.g., study the relation between
top-down and bottom-up mechanisms during the feedback
events and neurofeedback success, establishing the functional
networks involved in feedback valence and task complexity. In
this sense, recent studies have explored the potential impact
of gaining control of specific components of brain networks
(Bassett and Khambhati, 2017; De Vico Fallani and Bassett, 2019;
Pamplona et al., 2020).

Ultimately, this information may allow the development of
individually tailored frameworks for neurofeedback, providing
the ground for definition of potential neural framework for
neurorehabilitation success.
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