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A B S T R A C T

The estimation of sex is a central step to establish the biological profile of an anonymous skeletal
individual. Imaging techniques, including bone densitometry, have been used to evaluate sex in remains
incompletely skeletonized. In this paper, we present a technique for sex estimation using the total area
(TA) of the proximal femur, a two-dimensional areal measurement determined through densitometry. TA
was acquired from a training sample (112 females; 112 males) from the Coimbra Identified Skeletal
Collection (University of Coimbra, Portugal). Logistic regression (LR), linear discriminant analysis (LDA),
reduce error pruning trees (REPTree), and classification and regression trees (CART) were employed in
order to obtain models that could predict sex in unidentified skeletal remains. Under cross-validation, the
proposed models correctly estimated sex in 90.2–92.0% of cases (bias ranging from 1.8% to 4.5%). The
models were evaluated in an independent test sample (30 females; 30 males) from the 21st Century
Identified Skeletal Collection (University of Coimbra, Portugal), with a sex allocation accuracy ranging
from 90.0% to 91.7% (bias from 3.3% to 10.0%). Overall, data mining classifiers, especially the REPTree,
performed better than the traditional classifiers (LR and LDA), maximizing overall accuracy and
minimizing bias. This study emphasizes the significant value of bone densitometry to estimate sex in
cadaveric remains in diverse states of preservation and completeness, even human remains with soft
tissues.

© 2017 Elsevier B.V. All rights reserved.

9 1. Introduction

10 The assessment of biological sex constitutesQ3 a focal research
11 demand in the forensic examination of human skeletal remains,
12 with additional parameters of the biological profile (e.g., stature or
13 age) typically estimated as sex-specific [1,2]. Superlative
14 approaches for the sexual estimation of unknown skeletal
15 individuals usually depend on the recovery and analysis of well-
16 preserved pelvic bones [1–3]. Likewise, the cranium and long
17 bones have been employed to accurately assess sex in human
18 skeletal remains [3–6]. The femur is the longest and, as a rule, the
19 strongest skeletal element, being commonly recovered in both
20 forensic and archeological contexts [5]. As such, it is not surprising

21that, alongside the cranium and pelvis, the femur has received
22most of the attention in studies of sexual dimorphism, with several
23dimensions of the femur employed for the prediction of sex in
24skeletal remains [4,6–10]. Q4
25In forensic settings, sex estimation is usually performed in fully
26skeletonized bodies with the support of standard osteometric
27techniques, but periodically forensic identification of unknown
28individuals requires the study of incomplete, partially fleshed or
29charred remains [11,12]. Medical imaging techniques can be used
30to observe remains not completely skeletonized in which skeletal
31preparation (e.g., maceration) is impractical, or even unreasonable
32from a social or cultural standpoint. Accordingly, imaging
33techniques, such as computer tomography or projectional radiog-
34raphy, have been extensively used to address the estimation of sex
35in cranial and postcranial bones [12–18], including the femur
36[11,19,20].
37Dual X-ray absorptiometry (DXA), or bone densitometry, is an
38application of low energy projectional radiography, generally
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39 recognized as the gold-standard technique to evaluate bone
40 mineral density (BMD) and diagnose osteoporosis [21,22]. Given
41 that DXA is a two-dimensional scan, real bone density cannot be
42 determined; instead, bone mineral content (BMC, in grams) in a
43 given projected area (in cm2) is measured. Areal BMD is thus
44 determined by dividing the BMC by area. DXA has been
45 infrequently applied in the forensic sciences, although it can be
46 exploited to estimate sex, age at death and ancestry [10,23–26].
47 Some advantages of DXA application in the forensic sciences are
48 summarized by Wheatley [23].
49 The main purpose of this study is to generate and test models for
50 the prediction of sex based on the total area of the proximal femur, a
51 two-dimensional areal measurement performed with DXA. Also, the
52 performance of classical classifiers, such as logistic regression and
53 Fisher’s linear discriminant analysis, which have been extensively
54 used for classification of problems where the dependent variable is
55 dichotomous, is compared with that of classification and regression
56 trees and reduce error pruning trees, which are non-parametric
57 decision tree learning techniques.

58 2. Materials and methods

59 The samples used in this study were obtained from two
60 Portuguese Identified Skeletal Collections [27,28]. A training set
61 from the Coimbra Identified Skeletal Collection (CISC, University of
62 Coimbra, Portugal), comprising 224 individuals (112 females and
63 112 males), was used to fit the models for sex estimation.
64 Individual ages at death ranged from 20 to 96 years. Dates of death
65 spanned from 1910 to 1936. A second sample, from the 21st
66 Century Identified Skeletal Collection (ISC/XXI, University of
67 Coimbra, Portugal), included 60 individuals (30 females and
68 30 males) and was employed to test the predictive value of the
69 models generated in the CISC sample: this is the testing, or holdout,
70 sample. All individuals died between 1995 and 2001. Age at death
71 ranged from 33 to 97 years old. Only individuals with at least one
72 femur showing no macroscopical signs of post-depositional
73 change and lacking significant pathological modifications were
74 included in the samples.
75 In the domain of densitometry, the proximal femur has been
76 partitioned into distinctive regions of interest. The total area (TA,
77 cm2) of the proximal femur (also known in the medical literature
78 as total area of the hip) is the sum of three individual areas:
79 femoral neck, trochanteric region, and intertrochanteric/proximal

80diaphysis regions (Fig.1) [21,22]. A femur from each individual (as a
81rule, the bone from the left side) was scanned with a Hologic QDR-
824500A densitometer (Hologic, Inc., Bedford, MA) at the Nuclear
83Medicine Unit (Coimbra Hospital and University Centre, Portugal)
84and the computer produced the above designated semi-automated
85regions of interest (if required the technologist made minor
86adjustments) and the area (cm2) for each region is calculated.
87Subsequently TA was automatically determined by the densitom-
88eter’s software (Fig. 2). Femora were placed in anteroposterior
89position; with the femoral neck parallel to the plane of the scanner;
90in a low-density cardboard container with 10 cm depth of dry rice
91acting as a surrogate for soft tissue (soft tissues and bone marrow
92slightly influence the reading of bone mineral content but not TA).
93Fifty femora were scanned in two different days to check
94repeatability of the DXA measurements. The magnitude of the
95intraobserver error was assessed with the relative technical error

Fig. 1. The total area (cm2) of the proximal femur (gray color).

Fig. 2. Results summary for a DXA scanning (CISC, female, 80 years old). In this example, TA is 43.24 which is the sum of three different areas: neck, trochanteric and
intertrochanteric.

2 F. Curate et al. / Forensic Science International xxx (2016) xxx–xxx

G Model

FSI 8784 1–7

Please cite this article in press as: F. Curate, et al., Sex estimation with the total area of the proximal femur: A densitometric approach, Forensic
Sci. Int. (2017), http://dx.doi.org/10.1016/j.forsciint.2017.02.035

http://dx.doi.org/10.1016/j.forsciint.2017.02.035


96 of measurement (rTEM) [29] and it was very low (rTEM = 0.42),
97 suggesting that the positioning of the femur was performed
98 appropriately. Physiological length of the femur was obtained
99 following Martin [30].

100 Descriptive statistics are presented as group means, standard
101 deviation (SD) and 95% confidence intervals (95% CI) for the mean.
102 Normality of the data was assessed through skewness and
103 kurtosis, and homoscedasticity with a Levene’s test [31]. A t-test
104 (independent samples) was used to evaluate the null
105 hypothesis that TA mean in males and females was equal. To
106 assess sexual dimorphism, the ensuing indicator was employed
107 [32]:

SD ¼ xm � xf
xm

� 100;

108109 where xm and xf are the mean TA values for males and females,
110 respectively.
111 The models for the mathematical prediction of sex were
112 generated through linear discriminant analysis (LDA), logistic
113 regression (LR), classification and regression trees (CART), and
114 reduce error pruning trees (REPTree). LDA is the oldest classifier
115 still in use and is founded upon the notion of identifying a linear
116 combination of predictor variables that optimally separates
117 mutually exclusive groups. Discriminant analysis then creates a
118 discriminant function that parsimoniously epitomizes the differ-
119 ences between groups and classifies new individuals with
120 unknown group membership [33]. Logistic regression is a
121 non-parametric statistical modeling approach that can be used
122 to describe the relationship of one or more independent variables
123 to a dichotomous dependent variable [34]. Classification and
124 regression trees are binary recursive classifiers that generate
125 hierarchical decision trees by partitioning data among classes of
126 the criterion at a given node, resulting from an “if/then”Q5 rule
127 directed to a set of predictors [35,36]. Reduce error pruning trees is
128 the simplest method in decision tree pruning and is founded on the
129 principle of computing the information gain with entropy and
130 minimizing the error that ensues from variance [36,37]. For general
131 reviews of LDA, LR, CART and REPTree see, for example, Maroco
132 et al. [33], Hosmer et al. [34], Wu et al. [35], and Gupta et al. [36]. In
133 order to avoid overfitting and to insure that the results are
134 generalizable to an independent data set, a 10-fold cross-validation
135 approach was followed to train the classifiers.
136 The performance of the provisional and cross-validated models
137 – as well as the discriminative power of the models in the testing
138 dataset – was evaluated through overall accuracy (a measure of
139 agreement between the documented and the predicted sex),
140 sensitivity (the proportion of males that were correctly recog-
141 nized), specificity (the proportion of females that were properly
142 predicted), Cohen’s Kappa (also a measure of total agreement but
143 adjusting for those that occur by chance alone) and Area Under the
144 Receiver Operating Characteristic Curve (AUC).
145 All analyses were performed with R programming language
146 [38,39] and Waikato Environment for Knowledge Analysis [40].

1473. Results

148Descriptive statistics for the Coimbra Identified Skeletal
149Collection and the 21st Century Identified Skeletal Collection
150samples are summarized in Table 1. The total area of the proximal
151femur is statistically different between sexes both in the training
152(t: �20.907; df = 222; p < 0.001) and the testing samples (t:
153�11.666; df = 58; p < 0.001). Kernel density plots show the
154distribution of TA values per sex (Figs. 3 and 4). TA is 23.0% and
15521.0% larger in males in the CISC and ISC/XXI samples, respectively.
156The total area of the proximal femur is moderately to strongly
157correlated with femoral physiological length in both samples and
158sexes (CISC: Pearson’s TA*FPLfemales: 0.578; p < 0.001/Pearson’s
159TA*FPLmales: 0.559; p < 0.001 | ISC/XXI: Pearson’s TA*FPLfemales:
1600.725; p < 0.001/Pearson’s TA*FPLmales: 0.537; p < 0.001) but it is
161not correlated with age at death (CISC: Pearson’s TA*agefemales:
1620.170; p = 0.073/Pearson’s TA*agemales: 0.116; p = 0.222 | ISC/XXI:
163Pearson’s TA*agefemales: �0.195; p = 0.303/Pearson’s TA*agemales:
1640.253; p = 0.177).
165The logistic regression model is summarized in Table 2. It is
166defined by the ensuing equation (females classified with negative
167values, males classified with positive values):

Sex ¼ 0:800 � TA � 30:498

168The sex was correctly predicted in 92.0% of all individuals
169(sensitivity: 91.1%; specificity: 92.9%), with a significant discrimi-
170nant capability in both the provisional and cross-validation
171models. In the holdout sample (ISC/XXI), sex was accurately
172estimated in 91.7% of the cases. The model appropriately identified
17396.7% of females and 86.7% of males (Table 3).
174Box’s M was used to test the equality of the variance–covariance
175matrices (Box’s M: 2.467; p = 0.117). Linear discriminant analysis
176produced a single discriminant function with a cutoff point equal
177to zero (scores above zero classified as males and below zero as
178females):

Sex ¼ 0:279 � TA � 10:738

179In both the provisional and cross-validation models, sex was
180correctly estimated in 90.6% of individuals (sensitivity: 88.4%;
181specificity: 92.9%). In the testing sample, sex was correctly
182assessed in 91.7% of the individuals (sensitivity: 86.7%; specificity:
18396.7%; Table 3).
184The CART decision tree is utterly simple and straightforward,
185and provided a sectioning point of 37.31, in which TA < 37.31 =
186FEMALE, and TA � 37.31 = MALE. The decision rule correctly
187classified 93.3% of all individuals in the provisional model, with
188a sensitivity of 95.5% and a specificity of 91.1%. In the cross-
189validated model, overall accuracy was 90.2% (sensitivity: 92.0%;
190specificity: 88.4%). In the testing sample, overall accuracy reached
19190.0%, with 93.3% males and 86.7% females correctly assigned
192(Table 3).
193The reduced error pruning tree classifier provided a sectioning
194point of 37.77, in which TA < 37.77 = FEMALE, and TA � 37.77 =
195MALE. Overall accuracy was 92.9% (with the same sensitivity and

Table 1
Descriptive statistics for TA (cm2) in both sexes; Coimbra Identified Skeletal Collection (CISC), 21st Century Identified Skeletal Collection (ISC/XXI) and pooled samples.

, <

Mean SD 95% CI N Mean SD 95% CI N Sectioning point

CISC 33.53 3.31 32.91–34.15 112 43.56 3.85 42.84–44.28 112 38.55
ISC/XXI 32.83 3.20 31.63–34.02 30 42.47 3.20 41.28–43.67 30 37.64
Pooled 33.38 3.30 32.83–33.93 142 43.33 3.74 42.70–43.95 142 38.35

SD: standard deviation; 95% CI: 95% confidence interval.
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196 specificity) in the provisional model, and 90.6% (sensitivity:
197 92.0%; specificity: 89.3%) in the cross-validated model. In the ISC/
198 XXI holdout sample, 91.1% of all individuals were correctly
199 classified, with 90.0% females and 93.3% males properly allocated
200 (Table 3).

201 4. Discussion

202 Sexual dimorphism in the human skeleton has been classically
203 investigated in the pelvis, cranium and long bones. In cases of
204 commingled, scattered, fractional and/or fragmented human
205 skeletal remains, the pelvis is not always available for forensic
206 analysis. As such, other dimorphic skeletal elements – including
207 the femur [2,4,6] – are widely used in sex determination. Research
208 in forensic anthropology typically involves the analysis of
209 cadaveric remains in different states of preservation and com-
210 pleteness, including human remains with or without soft tissues.
211 Imaging approaches for the assessment of features related with the
212 biological profile should be preferred in cases when skeletal
213 preparation is socially offensive or simply not viable [6,11,12,41]. In
214 such cases, DXA is a suitable technique to estimate sex [10,23,24],

215and purportedly age at death and ancestry [10,24–26]—even in the
216case of recovery of a single femur.
217The observed sexual dimorphism of the total area of the
218proximal femur in both the training (CISC) and testing samples
219(ISC/XXI), as assessed through DXA, was in agreement with the
220results established in epidemiological studies [42,43]. TA exhibits
221a slight variation with ancestry; notwithstanding, differences
222between sexes are large (circa 10 cm2) and consistent within any
223population (>20% variation between sexes) [42]. Sexual differences
224in bone size are established early in life, possibly even in utero, but
225are more noticeable after puberty [44,45]. For example, periosteal
226growth, which expands bone diameter, accelerates during puberty
227in males; while earlier completion of longitudinal growth and
228inhibition of periosteal apposition produces smaller bones in
229females [45,46]. Bone growth and size is influenced by genetic and
230hormonal factors, mechanical loading and nutrition, among
231others, and it is probable that the ensuing effect on bone size
232may be sex-specific [46–49]. The structural phenotype of the
233proximal femur, in particular, shows high heritability [48,50], also
234conforming to Wolff’s law and Harold Frost’s mechanostat model
235[51,52]. The moderate to strong association of TA with femoral
236physiological length suggests that sex dimorphism in the

Fig. 3. Kernel density distribution of TA (cm2) by sex (CISC sample).

Table 2
Logistic regression model fitting for the training sample (CISC).

Variable b SE Wald Sig. Exp (b) 95% CI for Exp (b)

Training sample (CISC) TA 0.800 0.118 45.662 <0.001 2.225 1.764–2.805
Constant �30.497 4.488 46.185 <0.001 0.000

TA: total area (cm2); b: the coefficient for the constant in the null model; SE: standard error; Wald: Wald chi-square test; Exp (b): exponentiation of the b coefficient.
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237 expression of TA has a size effect component. BMD declines during
238 aging in all populations, particularly in females [25], but bone area
239 tends to remain constant or increase marginally with age in adults
240 [42]. Even in the latter case, area increases much less than the
241 degree of sexual dimorphism. In the observed samples, TA was not
242 associated with age at death.
243 Sex assessment with the total area of the proximal femur in
244 human skeletal remains shows high overall accuracy in the

245cross-validated models (always exceeding 90%), with an effective
246performance, independently of the classifier used to create the
247classification models. The allocation accuracy in a holdout sample
248not used to develop the models was also very high, suggesting that
249the results are generalizable to independent datasets. Notwith-
250standing, classification bias (the difference between properly
251classified females and males) with the traditional classifiers (LR
252and LDA, with 13.3% of misclassified females and only 3.3%

Table 3
Classification accuracy with the different classifiers.

Overall accuracy (%) Sensitivity (%) Specificity (%) Kappa AUC

LR
Training set 92.0 91.1 92.9 0.839 0.977
Cross-validation 92.0 91.1 92.9 0.839 0.975
Testing set 91.7 86.7 96.7 0.833 0.979
LDA
Training set 90.6 88.4 92.9 0.813 0.977
Cross-validation 90.6 88.4 92.9 0.813 0.977
Testing set 91.7 86.7 96.7 0.833 0.979
CART
Training set 93.3 95.5 91.1 0.866 0.933
Cross-validation 90.2 92.0 88.4 0.804 0.909
Testing set 90.0 93.3 86.7 0.800 0.900
REPTree
Training set 92.9 92.9 92.9 0.857 0.929
Cross-validation 90.6 92.0 89.3 0.813 0.918
Testing set 91.7 93.3 90.0 0.833 0.917

LR: logistic regression; LDA: linear discriminant analysis; CART: classification and regression trees; REPTree: reduce error pruning trees; AUC: area under the receiver
operating characteristic curve.

Fig. 4. Kernel density distribution of TA (cm2) by sex (ISC/XXI sample).
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253 misclassified males) and the CART algorithm (6.7% misclassified
254 females and 13.3% misclassified males) was problematic in the
255 testing sample.
256 Sex specific accuracy is probably related with secular change in
257 bone dimensions [53,54], usually inducing a higher proportion of
258 misclassified females when a model fitted in a chronologically
259 older sample is used to estimate sex. The training sample (CISC) is,
260 on average, composed by individuals that were born much earlier
261 than individuals in the testing sample (ISC/XXI) – with other
262 relevant differences between samples, including socioeconomic
263 status and mortality pattern – but the magnitude of sexual
264 dimorphism in the total area of the proximal femur is very similar
265 in both samples. This is also relevant for the assessment of this
266 method in samples of non-Portuguese origin. Besides the problem
267 of secular change, the selection of the statistical model also seems
268 critical to lower error rate and bias [33,55]. In fact, the decision rule
269 provided by the REPTree classifier maximized the overall accuracy
270 while improving bias: misclassification difference between sexes
271 in the holdout sample was lower than the recommended 5%
272 threshold [12].
273 Classical statistical techniques, such as LR and LDA, have been
274 widely used to assess sex in forensic contexts [1,6–
275 15,18,19,32,56,57], but the promising performance of data mining
276 methods, with classifiers like support vector machines, random
277 forests or classification trees, has led to a recent research appeal in
278 their application to classification problems in forensic anthropol-
279 ogy [6,53,55,58–60]. Results are conflicting about classification
280 accuracy of data mining classifiers as compared to traditional
281 methods [e.g.,Refs. 53,58] with the classifiers’ performance
282 affected by the different arrangements of predictors, data
283 assumptions, parameters’ tuning and sample sizes [33]. In general,
284 our results show that both traditional and decision tree
285 learning techniques perform very well under cross-validation
286 but, except for the REPTree algorithm, the models display
287 unbalanced classification efficiency in the testing sample.
288 Overall correct classification in this study is comparable to
289 other seemingly highly accurate methods, including techniques
290 using the pelvic region [8,61,62], the cranium [58,63], and different
291 long bones [1,8,9,11,23,59]. The high overall accuracy and low bias
292 obtained in the testing sample with the REPTree model is
293 particularly relevant, since for many published models only
294 resubstitution and cross-validation accuracy rates are reported
295 [32]. Overfitting is often a consequence in the first case, while
296 cross-validation usually estimates well only the likely prediction
297 error [64]. As such, a more valuable approach to assess the
298 generalization error of a classificatory model is to use an
299 independent dataset.

300 5. Conclusions

301 The new models for the estimation of sex based on the total area
302 of the proximal femur, a measurement performed with DXA,
303 display great accuracy both in cross-validation and in an
304 independent sample. The model based in a fast decision tree
305 learning algorithm (REPTree) reduces bias in the holdout sample to
306 appropriate levels. The proposed models should endure additional
307 validation in independent skeletal remains (particularly of
308 non-Portuguese origin) to substantiate their reliability in forensic
309 and/or bioarcheological contexts.
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