Dear author,

Please note that changes made in the online proofing system will be added to the article before publication but are not reflected in this PDF.

We also ask that this file not be used for submitting corrections.

Forensic Science [International](http://dx.doi.org/10.1016/j.forsciint.2017.02.035) xxx (2016) xxx–xxx

Forensic Science International

journal homepage: <www.elsevier.com/locate/forsciint>

Sex estimation with the total area of the proximal femur: A ² densitometric approach

³ � Francisco Curate^{a,b,c,*}, Anabela Albuquerque^d, Izilda Ferreira^d, Eugénia Cunha^{b,e}

⁴ a Research Centre for Anthropology and Health, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
⁵ Laboratory of Forensic Anthropology, Department of Life Sciences, University of Coimbra, Coimbra,

⁷ ^d The Coimbra Hospital and University Centre, Coimbra, Portugal
⁸ e Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal

A R T I C L E I N F O

Article history: Received 19 December 2016 Received in revised form 21 February 2017 Accepted 28 February 2017 Available online xxx

Keywords: Forensic anthropology population data Human identification Biological profile Sex diagnosis Bone densitometry

A B S T R A C T

The estimation of sex is a central step to establish the biological profile of an anonymous skeletal individual. Imaging techniques, including bone densitometry, have been used to evaluate sex in remains incompletely skeletonized. In this paper, we present a technique for sex estimation using the total area (TA) of the proximal femur, a two-dimensional areal measurement determined through densitometry. TA was acquired from a training sample (112 females; 112 males) from the Coimbra Identified Skeletal Collection (University of Coimbra, Portugal). Logistic regression (LR), linear discriminant analysis (LDA), reduce error pruning trees (REPTree), and classification and regression trees (CART) were employed in order to obtain models that could predict sex in unidentified skeletal remains. Under cross-validation, the proposed models correctly estimated sex in 90.2–92.0% of cases (bias ranging from 1.8% to 4.5%). The models were evaluated in an independent test sample (30 females; 30 males) from the 21st Century Identified Skeletal Collection (University of Coimbra, Portugal), with a sex allocation accuracy ranging from 90.0% to 91.7% (bias from 3.3% to 10.0%). Overall, data mining classifiers, especially the REPTree, performed better than the traditional classifiers (LR and LDA), maximizing overall accuracy and minimizing bias. This study emphasizes the significant value of bone densitometry to estimate sex in cadaveric remains in diverse states of preservation and completeness, even human remains with soft tissues.

© 2017 Elsevier B.V. All rights reserved.

⁹ 1. Introduction

 $10 \tQ3$ The assessment of biological sex constitutes a focal research 11 demand in the forensic evanination of burnar eligibility remains ¹¹ demand in the forensic examination of human skeletal remains,
¹² with additional parameters of the higherical profile (e.g. stature or ¹² with additional parameters of the biological profile (*e.g.*, stature or $\frac{13}{2}$ are $\frac{13}{2}$ superlative 13 age) typically estimated as sex-specific [1,2]. Superlative 14 approaches for the sound estimation of unknown skeletal ¹⁴ approaches for the sexual estimation of unknown skeletal 15 individuals usually denend on the recovery and analysis of well- 15 individuals usually depend on the recovery and analysis of well-
 16 recogned polyic bones 11 , 21 , likewise, the cranium and long ¹⁶ preserved pelvic bones $[1-3]$. Likewise, the cranium and long
¹⁷ bones have been employed to accurately assess sox in human ¹⁷ bones have been employed to accurately assess sex in human $\frac{18}{18}$ closeled to a straight in the longest and as a rule the ¹⁸ skeletal remains $[3-6]$. The femur is the longest and, as a rule, the long commonly recovered in both ¹⁹ strongest skeletal element, being commonly recovered in both $\frac{20}{\pi}$ for the strong strong and archeological contexts [5]. As such it is not surprising forensic and archeological contexts $[5]$. As such, it is not surprising

<http://dx.doi.org/10.1016/j.forsciint.2017.02.035> 0379-0738/© 2017 Elsevier B.V. All rights reserved. that, alongside the cranium and pelvis, the femur has received 21
meet of the stration in studies of sexual dimensions with sexual 22 most of the attention in studies of sexual dimorphism, with several 22
dimonsions of the formula angles of for the prodiction of sexual 23 dimensions of the femur employed for the prediction of sex in $\frac{23}{94.24}$ skeletal remains $[4,6-10]$. Q4 24

In forensic settings, sex estimation is usually performed in fully 25
platenized, bodies, with the support of standard osteometric 26 skeletonized bodies with the support of standard osteometric $\frac{26}{3}$ techniques, but periodically forensic identification of unknown 27
individuals negatives the study of incomplete pertially fleshed ex. 28 individuals requires the study of incomplete, partially fleshed or 28
charged remains [11.12]. Modical imaging techniques can be used charred remains [11,12]. Medical imaging techniques can be used 29
to observe remains not completely ekolotonized in which ckolotal 30 to observe remains not completely skeletonized in which skeletal 30
preparation (e.g. maceration) is impractical or even unreasonable 31 preparation (*e.g.*, maceration) is impractical, or even unreasonable 31
from a social or cultural standnoint. Accordingly imaging 32 from a social or cultural standpoint. Accordingly, imaging 32
techniques such as computer tomography or projectional radios techniques, such as computer tomography or projectional radiog- $\frac{33}{2}$
raphy have been extensively used to address the estimation of sex $\frac{34}{2}$ raphy, have been extensively used to address the estimation of sex 34
in crapial and posteranial bones [12-18] including the femur 35 in cranial and postcranial bones $[12-18]$, including the femur 35
 $[1119.20]$ $[11,19,20]$.

Dual Y Fau absorptiometry (DYA) or hope densite metry is an 37

Dual X-ray absorptiometry (DXA), or bone densitometry, is an 37
plication of low operay prejectional rediscrepty, concretive 38 application of low energy projectional radiography, generally

Q2 * Corresponding author. E-mail address: fcurate@uc.pt (F. Curate).

 39 recognized as the gold-standard technique to evaluate bone
 40 existent during $(D400)$ and discusses actores with $(D400)$ Given 40 mineral density (BMD) and diagnose osteoporosis $[21,22]$. Given 41 that \mathbb{N} A is a true dimensional seem and have density segment be 41 that DXA is a two-dimensional scan, real bone density cannot be $\frac{42}{100}$ determined instead bone mineral content (DMC in mann) in a 42 determined; instead, bone mineral content (BMC, in grams) in a
43 given projected area (in $cm²$) is moasured. Areal BMD is thus 43 given projected area (in cm²) is measured. Areal BMD is thus 44 determined by dividing the BMC by area. DXA has been
45 infrastrontly poplied in the foreneic sciences although it can be ⁴⁵ infrequently applied in the forensic sciences, although it can be exploited to estimate say age at death and appearty $\frac{10.22 \times 261}{10.22 \times 261}$ ⁴⁶ exploited to estimate sex, age at death and ancestry $[10,23-26]$. 47 Some advantages of DXA application in the forensic sciences are
 $\frac{48}{2}$ summarized by Mbostlay [33] $\frac{48}{49}$ summarized by Wheatley [23].

⁴⁹ The main purpose of this study is to generate and test models for $\frac{50}{2}$ the argument for the anglicition of sex head on the tatel area of the argument for μ ⁵⁰ the prediction of sex based on the total area of the proximal femur, a
 $\frac{51}{2}$ two dimensional areal measurement performed with DYA. Also the 51 two-dimensional areal measurement performed with DXA. Also, the performance of classical classifiers, such as logistic regression and 52 performance of classical classifiers, such as logistic regression and
 53 Eisher's linear discriminant analysis, which have been extensively 53 Fisher's linear discriminant analysis, which have been extensively
 54 used for classification of problems where the dependent variable is 54 used for classification of problems where the dependent variable is 55 displatements is compared with that of classification and regression 55 dichotomous, is compared with that of classification and regression ⁵⁶ trees and reduce error pruning trees, which are non-parametric decision tree logging to the investor decision tree learning techniques.

⁵⁸ 2. Materials and methods

 59 The samples used in this study were obtained from two 50 ⁶⁰ Portuguese Identified Skeletal Collections [27,28]. A training set $\frac{61}{2}$ from the Collection Islands Collection (CISC University of ⁶¹ from the Coimbra Identified Skeletal Collection (CISC, University of 62 Coimbra Dettural), comprising 224 individuals (112 females and 62 Coimbra, Portugal), comprising 224 individuals (112 females and 63 112 males), was used to fit the models for sex estimation 63 112 males), was used to fit the models for sex estimation.
 64 ladividual ages at doath ranged from 20 to 06 years. Dates of doath 64 Individual ages at death ranged from 20 to 96 years. Dates of death 65 65 spanned from 1910 to 1936. A second sample, from the 21st
 66 Septem: Identified Skalatel Callegian (ISC) W. University of ⁶⁶ Century Identified Skeletal Collection (ISC/XXI, University of $\frac{67}{100}$ Coimbre, Deptyred), included CO individuals (20 females and 67 Coimbra, Portugal), included 60 individuals (30 females and 68 68 30 males) and was employed to test the predictive value of the 69 69 models generated in the CISC sample: this is the testing, or holdout,
 70 cample, All individuals died between 1005 and 2001, Age at death 70 sample. All individuals died between 1995 and 2001. Age at death 71 ranged from 22 to 07 years old. Only individuals with at least one 71 ranged from 33 to 97 years old. Only individuals with at least one
 72 famur, showing no macroscopical signs of post depositional 72 femur showing no macroscopical signs of post-depositional 73 change and lacking significant pathological modifications were 73 change and lacking significant pathological modifications were
 74 included in the samples 74 included in the samples.
 75 In the domain of den

⁷⁵ In the domain of densitometry, the proximal femur has been
⁷⁶ partitioned into distinctive regions of interest. The total area (TA ⁷⁶ partitioned into distinctive regions of interest. The total area (TA, cm^2) of the proximal femig (also known in the medical literature 77 cm^2) of the proximal femur (also known in the medical literature 78 as total area of the hip) is the sum of three individual areas:
 79 fomoral poek treebanteric region and intertreebanteric provincial femoral neck, trochanteric region, and intertrochanteric/proximal

SAN WARRANT r. ĉ
e 一

Fig. 1. The total area $(cm²)$ of the proximal femur (gray color).

diaphysis regions (Fig. 1) [21,22]. A femur from each individual (as a rule, the bone from the left side) was scanned with a Hologic QDR-4500A densitometer (Hologic, Inc., Bedford, MA) at the Nuclear Medicine Unit (Coimbra Hospital and University Centre, Portugal) and the computer produced the above designated semi-automated regions of interest (if required the technologist made minor adjustments) and the area ($cm²$) for each region is calculated. 86 Subsequently TA was automatically determined by the densitometer's software (Fig. 2). Femora were placed in anteroposterior position; with the femoral neck parallel to the plane of the scanner; in a low-density cardboard container with 10 cm depth of dry rice acting as a surrogate for soft tissue (soft tissues and bone marrow slightly influence the reading of bone mineral content but not TA). Fifty femora were scanned in two different days to check repeatability of the DXA measurements. The magnitude of the $\frac{94}{12}$ intraobserver error was assessed with the relative technical error

Total BMD CV 1.0% WHO Classification: Osteoporosis Fracture Risk: High

Fig. 2. Results summary for a DXA scanning (CISC, female, 80 years old). In this example, TA is 43.24 which is the sum of three different areas: neck, trochanteric and intertrochanteric.

Please cite this article in press as: F. Curate, et al., Sex estimation with the total area of the proximal femur: A densitometric approach, Forensic Sci. Int. (2017), <http://dx.doi.org/10.1016/j.forsciint.2017.02.035>

DXA Results Summary:

Table 1

Descriptive statistics for TA (cm²) in both sexes; Coimbra Identified Skeletal Collection (CISC), 21st Century Identified Skeletal Collection (ISC/XXI) and pooled samples.

SD: standard deviation; 95% CI: 95% confidence interval.

96 of measurement (rTEM) [29] and it was very low (rTEM = 0.42),
97 survey that the negliging of the female use neithermod 97 suggesting that the positioning of the femur was performed
98 supprensiately physiological length of the femur was obtained appropriately. Physiological length of the femur was obtained ⁹⁹ following Martin [30].

100 Descriptive statistics are presented as group means, standard
101 deviation (SD) and 05% sonfidence intervals (05% CU for the mean 101 deviation (SD) and 95% confidence intervals (95% CI) for the mean.
102 Mermality of the data was assessed through elements and ¹⁰² Normality of the data was assessed through skewness and
¹⁰³ Lutteria and homographicity with a Layona's test [21] A t test 103 kurtosis, and homoscedasticity with a Levene's test [31]. A t-test 104 (independent camples), we used to evaluate the pull 104 (independent samples) was used to evaluate the null 105 hypothesis that TA mean in males and females was equal. To 105 hypothesis that TA mean in males and females was equal. To 106 assess sexual dimension the ensuing indicator was employed $\frac{106}{107}$ assess sexual dimorphism, the ensuing indicator was employed $[32]$:

$$
SD = \frac{\overline{x}_m - \overline{x}_f}{\overline{x}_m} \times 100,
$$

109 where \bar{x}_m and \bar{x}_f are the mean TA values for males and females,
110 respectively respectively.

111 The models for the mathematical prediction of sex were
112 σ concented through linear discriminant analysis (LDA) logistic ¹¹² generated through linear discriminant analysis (LDA), logistic $\frac{113}{2}$ generation (LD), classification and regression trees (CAPT), and 113 regression (LR), classification and regression trees (CART), and reduce error pruning trees (PERTree), LDA is the eldest election 114 reduce error pruning trees (REPTree). LDA is the oldest classifier 115 retill in use and is founded upon the potion of identifying a linear 115 still in use and is founded upon the notion of identifying a linear
 116 combination of prodictor unriples that optimally congrates 116 combination of predictor variables that optimally separates 117 mutually syclusive groups. Discriminant analysis than creates a 117 mutually exclusive groups. Discriminant analysis then creates a
 118 discriminant function that parsimoniously enitomizes the differ- 118 discriminant function that parsimoniously epitomizes the differ-
 119 apces, between groups and classifies now individuals with $\frac{119}{120}$ ences between groups and classifies new individuals with $\frac{120}{120}$ unknown group momborship $\frac{122}{120}$ Logistic regression is a 120 unknown group membership [33]. Logistic regression is a 121 non-parametric statistical modeling approach that can be used 121 non-parametric statistical modeling approach that can be used
 122 to describe the relationship of one or more independent variables 122 to describe the relationship of one or more independent variables
 123 to a disbetement dependent variable [24]. Classification and 123 to a dichotomous dependent variable [34]. Classification and regression trees are binary requiring classifiers that generate 124 regression trees are binary recursive classifiers that generate 125 biomarchical decision trees by partitioning data among classes of ¹²⁵ hierarchical decision trees by partitioning data among classes of
¹²⁶ **Q5** the criterion at a given node resulting from an "iffthen" rule ¹²⁶ **the criterion at a given node, resulting from an "if/then" rule**
¹²⁷ directed to a set of predictors [35,36]. Beduce error pruning trees is ¹²⁷ directed to a set of predictors $[35,36]$. Reduce error pruning trees is
¹²⁸ the simplest method in decision tree pruning and is founded on the ¹²⁸ the simplest method in decision tree pruning and is founded on the $\frac{129}{12}$ principle of computing the information gain with entropy and 129 principle of computing the information gain with entropy and 130 minimizing the error that ensues from variance [36.37]. For general ¹³⁰ minimizing the error that ensues from variance [36,37]. For general
¹³¹ maybe to the LIP CAPT and PEPTree see, for example Maroco 131 reviews of LDA, LR, CART and REPTree see, for example, Maroco 132 ret al. 1331 Hospital II 1341 Mu et al. 1351 and Cupta et al. 1361 In ¹³² et al. [33], Hosmer et al. [34], Wu et al. [35], and Gupta et al. [36]. In
¹³³ erder to avoid overfitting and to insure that the results are order to avoid overfitting and to insure that the results are 134 generalizable to an independent data set, a 10-fold cross-validation 135 approach was followed to train the classifiers.

136 The performance of the provisional and cross-validated models
137 as well as the discriminative power of the models in the testing 137 – as well as the discriminative power of the models in the testing
 138 distance was ovaluated through overall accuracy (a moasure of ¹³⁸ dataset – was evaluated through overall accuracy (a measure of $\frac{139}{25}$ accessment between the decumented and the predicted sex) 139 agreement between the documented and the predicted sex),
 140 consitivity (the prepartion of males that were correctly recog 140 sensitivity (the proportion of males that were correctly recog-
 141 nized) specificity (the proportion of females that were properly ¹⁴¹ nized), specificity (the proportion of females that were properly $\frac{142}{142}$ predicted). Cohen's Kappa (also a measure of total agreement but ¹⁴² predicted), Cohen's Kappa (also a measure of total agreement but 143 adjusting for those that occur by chance alone) and Area Under the ¹⁴³ adjusting for those that occur by chance alone) and Area Under the $\frac{144}{2}$ Receiver Operating Characteristic Curve (AUC) Receiver Operating Characteristic Curve (AUC).

145 **All analyses were performed with R programming language**
146 **All and Waikato Environment for Knowledge Analysis [40]** [38,39] and Waikato Environment for Knowledge Analysis [40].

147 3. Results **147**

Descriptive statistics for the Coimbra Identified Skeletal 148
Ilection and the 21st Century Identified Skeletal Collection 149 149

149 complex are summarized in Table 1. The total area of the provincial

150 samples are summarized in Table 1. The total area of the proximal 150
formula is statistically different between seves both in the training 151 femur is statistically different between sexes both in the training 151
(t) 20.907; $d_f = 222$; $p_f = 0.001$) and the testing samples (t; 152 (t: -20.907 ; df=222; p < 0.001) and the testing samples (t: 152 -11.666 ; df = 58; p < 0.001). Kernel density plots show the distribution of TA values per sex (Figs. 3 and 4). TA is 23.0% and 154
21.0% larger in males in the CISC and ISC/VVI samples, respectively. 155 21.0% larger in males in the CISC and ISC/XXI samples, respectively. 155
The tatal area of the provincil formula products in a strengty. 156 The total area of the proximal femur is moderately to strongly 156
correlated with femoral physiological length in both camples and 157 correlated with femoral physiological length in both samples and 157
savec (CISC: Degreen's TA*EDI
 158 sexes (CISC: Pearson's TA*FPL_{females}: 0.578; p < 0.001/Pearson's 158
TA*FPL_{males}: 0.559; p < 0.001 | ISC/XXI: Pearson's TA*FPL_{females}: 159
0.775; p < 0.001/Pearson's TA*FPL : 0.527; p < 0.001) but it is 1.60 ¹⁶⁰ 0.725; p < 0.001/Pearson's TA*FPLmales: 0.537; p < 0.001) but it is not correlated with age at death (CISC: Pearson's TA*age_{females}: ¹⁶¹
0.170: p = 0.073/Pearson's TA*age : 0.116: p = 0.222 | ISC/XXI. 162 ¹⁶² 0.170; p = 0.073/Pearson's TA*agemales: 0.116; p = 0.222 | ISC/XXI: Pearson's TA*age_{females}: -0.195 ; p=0.303/Pearson's TA*age_{males}: 163 0.253; $p = 0.177$). 164
The logistic regression model is summarized in Table 2, It is 165

The logistic regression model is summarized in Table 2. It is the lost of the local time in the summarized in Table 2. It is the local time field that the encyclopediate in the meaning of the local time in the meaning of t defined by the ensuing equation (females classified with negative 166
values males classified with positive values): values, males classified with positive values):

$$
Sex = 0.800 * TA - 30.498
$$

The sex was correctly predicted in 92.0% of all individuals 168
naitivity 01.1% enough situated and (sensitivity: 91.1%; specificity: 92.9%), with a significant discrimi-
nant-capability in both the provisional and cross validation nant capability in both the provisional and cross-validation 170
models In the holdout sample (ISC/YYI) sex was accurately models. In the holdout sample (ISC/XXI), sex was accurately 111
estimated in 01.7% of the cases. The model appropriately identified estimated in 91.7% of the cases. The model appropriately identified 172
06.7% of familes and 96.7% of males (Table 2) 96.7% of females and 86.7% of males (Table 3).

Box's M was used to test the equality of the variance–covariance 174
trises (Boy's M+2.457+ p=0.117) Lipear discriminant applyeis 175 matrices (Box's M: 2.467; p=0.117). Linear discriminant analysis 175
produced a single discriminant function with a qutoff point squal 176 produced a single discriminant function with a cutoff point equal 176
to zero (seems above zero glassified as males and below zero as 177 to zero (scores above zero classified as males and below zero as 177
 $fomalso$: females):

$Sex = 0.279 * TA - 10.738$

In both the provisional and cross-validation models, sex was 179
rectly estimated in 90.6% of individuals (sepsitivity: 88.4%; 180 correctly estimated in 90.6% of individuals (sensitivity: 88.4%; 180
specificity: 92.9%) In the testing sample sex was correctly 181 specificity: 92.9%). In the testing sample, sex was correctly 181
assessed in 91.7% of the individuals (sensitivity: 86.7%; specificity; 182 assessed in 91.7% of the individuals (sensitivity: 86.7%; specificity: $\frac{182}{183}$ 183
The CAPT decision tree is uttaily simple and straightforward 184

The CART decision tree is utterly simple and straightforward, 184
d provided a sectioning point of 27.21 in which T_A < 27.21 – and provided a sectioning point of 37.31, in which $TA < 37.31 =$ 185
EEMALE, and $TA > 27.31 = MALE$. The decision rule correctly, FEMALE, and $TA \geq 37.31 = MALE$. The decision rule correctly 186
classified 02.2% of all individuals in the provisional model with classified 93.3% of all individuals in the provisional model, with 187
a consitivity of 05.5% and a specificity of 01.1%. In the cross a sensitivity of 95.5% and a specificity of 91.1%. In the cross-
unlideted model, suggell assument use 00.2% (sensitivity 03.0%, 189 validated model, overall accuracy was 90.2% (sensitivity: 92.0% ; 189
specificity: 89.4%) In the testing sample, overall assumes reached specificity: 88.4%). In the testing sample, overall accuracy reached 190
00.0%, with 02.2% males, and 86.7% fomales correctly assigned 90.0%, with 93.3% males and 86.7% females correctly assigned $\frac{191}{192}$ ¹⁹² (Table 3).

The reduced error pruning tree classifier provided a sectioning 193
interference in which $TA = 2777$ \times FMALE and $TA \ge 2777$ 194 point of 37.77, in which TA < 37.77 = FEMALE, and TA \geq 37.77 = 194
MALE Overall accuracy was 93.9% (with the same sensitivity and 195 MALE. Overall accuracy was 92.9% (with the same sensitivity and

Fig. 3. Kernel density distribution of TA $\rm (cm^2)$ by sex (CISC sample).

¹⁹⁶ specificity) in the provisional model, and 90.6% (sensitivity:
¹⁹⁷ and 2% specificity: 80.2%) in the grees validated model. In the ISC ¹⁹⁷ 92.0%; specificity: 89.3%) in the cross-validated model. In the ISC/
 $\frac{198}{198}$ WH haldwe segments $\frac{0.11\%}{0.5}$ of all individuals were segmented ¹⁹⁸ XXI holdout sample, 91.1% of all individuals were correctly
 $\frac{199}{2}$ elassified with 00.0% famales and 02.2% males properly allocated ¹⁹⁹ classified, with 90.0% females and 93.3% males properly allocated $\frac{200}{(3.516 \times 2)}$ $(Table 3).$

²⁰¹ 4. Discussion

²⁰² Sexual dimorphism in the human skeleton has been classically
 203 investigated in the politic enginement long bangs. In assess of 203 investigated in the pelvis, cranium and long bones. In cases of 204 commingled, easttored, fractional, and/or, fractional buman 204 commingled, scattered, fractional and/or fragmented human 205 cludatal remains the polyie is not always available for forensic 205 skeletal remains, the pelvis is not always available for forensic 206 analysis as a set of the dimensional elements including 206 analysis. As such, other dimorphic skeletal elements – including 207 the formula 2.4×10^{-3} are widely used in sex determination. Because ²⁰⁷ the femur $[2,4,6]$ – are widely used in sex determination. Research $\frac{208}{\pi}$ in forensic, anthropology typically involves the analysis of 208 in forensic anthropology typically involves the analysis of 209 codoveric remains in different states of preservation and com- 209 cadaveric remains in different states of preservation and com-
 210 plateness including human remains with or without soft tissues ²¹⁰ pleteness, including human remains with or without soft tissues.
 211 lmaging anneaehos for the assessment of foatures related with the 211 Imaging approaches for the assessment of features related with the 212 higherical profile should be professed in gases when skeletal ²¹² biological profile should be preferred in cases when skeletal
²¹³ preparation is socially offensive or simply not viable [6.11.12.41]. In 213 preparation is socially offensive or simply not viable [6,11,12,41]. In 214 cuch cases DYA is a suitable technique to estimate sex [10.22.24]. such cases, DXA is a suitable technique to estimate sex [10,23,24], and purportedly age at death and ancestry $[10,24-26]$ -even in the 215
axes of recovery of a single formulation case of recovery of a single femur. 216
The channel caused dimensions of the tatal area of the 217

The observed sexual dimorphism of the total area of the 217
wimal formus in both the training (CISC) and testing samples 218 proximal femur in both the training (CISC) and testing samples 218
(ISC) 219 as assessed through DYA, was in agreement with the 219 (ISC/XXI), as assessed through DXA, was in agreement with the 219
results established in opidemial studies [42,42]. TA subjects 220 results established in epidemiological studies $[42,43]$. TA exhibits 220 a slight variation with ancestry; notwithstanding, differences 221
between exuse are large (since 10 cm²) and experient within env. 222 between sexes are large (circa 10 cm²) and consistent within any 222 population (>20% variation between sexes) [42]. Sexual differences 223
in hence sine are established early in life neesibly sure in wtem by 224 in bone size are established early in life, possibly even in utero, but 224
are more poticeable after puberty [44.45]. For example, periodical 225 are more noticeable after puberty $[44,45]$. For example, periosteal 225
grouth which expands have diameter accelerates during puberty 226 growth, which expands bone diameter, accelerates during puberty 226
in males: while explicit completion of longitudinal growth and 227 in males; while earlier completion of longitudinal growth and 227
inhibition of periodical appecition produces smaller bones in 228 inhibition of periosteal apposition produces smaller bones in $\frac{228}{229}$
fomales [45,46] Pape grouth and size is influenced by genetic and $\frac{229}{2}$ females [45,46]. Bone growth and size is influenced by genetic and 229
hormonal factors mechanical loading and nutrition among 230 hormonal factors, mechanical loading and nutrition, among 230
others and it is probable that the ensuing effect on hope sine 231 others, and it is probable that the ensuing effect on bone size $\frac{231}{232}$ may be sex-specific [46–49]. The structural phenotype of the 232
provimal femur in particular shows bigh heritability [48,50] also 233 proximal femur, in particular, shows high heritability [48,50], also 233
conforming to Wolff's law and Harold Erost's mechanostat model 234 conforming to Wolff's law and Harold Frost's mechanostat model 234
[51.52] The moderate to strong association of TA with femoral 235 [51,52]. The moderate to strong association of TA with femoral 235
physiological length, suggests, that, sex, dimorphism in the 236 ²³⁶ physiological length suggests that sex dimorphism in the

Table 2

Logistic regression model fitting for the training sample (CISC).

TA: total area (cm²); β : the coefficient for the constant in the null model; SE: standard error; Wald: Wald chi-square test; Exp (β): exponentiation of the β coefficient.

F. Curate et al. / Forensic Science International xxx (2016) xxx–xxx 5

Fig. 4. Kernel density distribution of TA (cm^2) by sex (ISC/XXI sample).

237 expression of TA has a size effect component. BMD declines during
238 aging in all populations particularly in females [25] but bone area ²³⁸ aging in all populations, particularly in females $[25]$, but bone area
²³⁹ tends to remain constant or increase marginally with age in adults 239 tends to remain constant or increase marginally with age in adults $\frac{239}{1421}$ Even in the latter case, area increases much less than the $\frac{240}{421}$ [42]. Even in the latter case, area increases much less than the $\frac{241}{4}$ degree of some dimension. In the observed samples Taure pot 241 degree of sexual dimorphism. In the observed samples, TA was not 242 242 associated with age at death.
 243 Sex association with the t

²⁴³ Sex assessment with the total area of the proximal femur in $\frac{244}{12}$ by proximal femur in the human skeletal remains shows high overall accuracy in the

Table 3

Classification accuracy with the different classifiers.

cross-validated models (always exceeding 90%), with an effective 245
performance, independently of the classifier used to create the 245 performance, independently of the classifier used to create the 246
classification models. The allocation accuracy in a holdout sample 247 classification models. The allocation accuracy in a holdout sample 247
not used to develop the models was also very high suggesting that 248 not used to develop the models was also very high, suggesting that 248
the results are generalizable to independent datasets. Notwith 249 the results are generalizable to independent datasets. Notwith- 249
standing classification bias (the difference between properly 250 standing, classification bias (the difference between properly 250
classified females and males) with the traditional classifiers (LR 251 classified females and males) with the traditional classifiers (LR 251
and JDA with 13.3% of misclassified females and only 3.3% 252 ²⁵² and LDA, with 13.3% of misclassified females and only 3.3%

LR: logistic regression; LDA: linear discriminant analysis; CART: classification and regression trees; REPTree: reduce error pruning trees; AUC: area under the receiver operating characteristic curve.

²⁵³ misclassified males) and the CART algorithm $(6.7\%$ misclassified
²⁵⁴ famales and 12.3% misclassified males) was problematic in the 254 females and 13.3% misclassified males) was problematic in the 255 255 testing sample.

²⁵⁶ Sex specific accuracy is probably related with secular change in 257 hand dimensions [52,54], usually inducing a bigber proportion of ²⁵⁷ bone dimensions [53,54], usually inducing a higher proportion of 258 micclassified famales when a model fitted in a chronologically ²⁵⁸ misclassified females when a model fitted in a chronologically
²⁵⁹ older sample is used to estimate sex. The training sample (CISC) is ²⁵⁹ older sample is used to estimate sex. The training sample (CISC) is,
 $\frac{260}{20}$ on average composed by individuals that were been much earlier. ²⁶⁰ on average, composed by individuals that were born much earlier
 $\frac{261}{\pi}$ than individuals in the testing sample (ISC/YYI) with other 261 than individuals in the testing sample (ISC/XXI) – with other 262 relevant differences between samples including socioeconomic $\frac{262}{100}$ relevant differences between samples, including socioeconomic
 $\frac{263}{1000}$ status and mortality pattern – but the magnitude of sexual 263 status and mortality pattern – but the magnitude of sexual 264 dimorphism in the total area of the proximal femur is very similar 264 dimorphism in the total area of the proximal femur is very similar
 265 in both samples. This is also relevant for the assessment of this 265 in both samples. This is also relevant for the assessment of this 266 method in samples of non-Portuguese origin Besides the problem 266 method in samples of non-Portuguese origin. Besides the problem 267 of secular change the selection of the statistical model also seems ²⁶⁷ of secular change, the selection of the statistical model also seems
²⁶⁸ critical to lower error rate and bias [23,55]. In fact, the decision rule ²⁶⁸ critical to lower error rate and bias [33,55]. In fact, the decision rule
269 consider hy the PEPTree classifier maximized the querell acquirant ²⁶⁹ provided by the REPTree classifier maximized the overall accuracy 270 and it is proposition bigger in the overall accuracy 270 ²⁷⁰ while improving bias: misclassification difference between sexes
²⁷¹ in the holdout sample was lower than the recommended F^{α} 271 in the holdout sample was lower than the recommended 5%
 272 throshold [12] $\frac{272}{273}$ threshold [12].

²⁷³ Classical statistical techniques, such as LR and LDA, have been
²⁷⁴ videly used to assess soy in forensis, contexts, ^{[16}] ²⁷⁴ widely used to assess sex in forensic contexts $[1,6 275$ 15,18,19,32,56,57], but the promising performance of data mining
 276 and the suith sharifland like summer vector are things and the 276 methods, with classifiers like support vector machines, random
 277 fancts an elastification trace has led to a resent research annot in 277 forests or classification trees, has led to a recent research appeal in 278 their application to classification problems in forencie anthropol ²⁷⁸ their application to classification problems in forensic anthropol-
²⁷⁹ agus 16.52.55.58.601. Pecults are conflicting about classification 279 ogy [6,53,55,58–60]. Results are conflicting about classification 280 accuracy of data mining classifications as compared to traditional 280 accuracy of data mining classifiers as compared to traditional 281 methods 10 80 82 82 89 uith the classifiers' performance 281 methods [e.g., Refs. 53,58] with the classifiers' performance
 282 affected by the different arrangements of predictors data ²⁸² affected by the different arrangements of predictors, data
²⁸³ assumptions parameters' tuning and sample sizes [33] In general ²⁸³ assumptions, parameters' tuning and sample sizes [33]. In general, $\frac{284}{100}$ curves the show that both traditional and decision tree 284 our results show that both traditional and decision tree
 285 learning techniques perform very well under cross-validation 285 learning techniques perform very well under cross-validation
 286 but except for the PEPTree algorithm, the models display ²⁸⁶ but, except for the REPTree algorithm, the models display
²⁸⁷ unbalanced classification efficiency in the testing sample 287 unbalanced classification efficiency in the testing sample.
 288 Overall correct classification in this study is compara

 288 Overall correct classification in this study is comparable to 289 other seemingly bigbly accurate methods including techniques ²⁸⁹ other seemingly highly accurate methods, including techniques
²⁹⁰ using the polyic region [8,61,62], the cranium [58,63], and different ²⁹⁰ using the pelvic region $[8,61,62]$, the cranium $[58,63]$, and different 291 long bones $[18, 0.11, 2.50]$. The bigh overall accuracy and low bias ²⁹¹ long bones [1,8,9,11,23,59]. The high overall accuracy and low bias
²⁹² obtained in the testing sample with the REPTree model is 292 obtained in the testing sample with the REPTree model is 293 particularly relevant since for many published models only 293 particularly relevant, since for many published models only 294 requbitivition and gross validation acquired varies are reported ²⁹⁴ resubstitution and cross-validation accuracy rates are reported
 295 1221 Quanfitting is often a sensequence in the first 222 while 295 [32]. Overfitting is often a consequence in the first case, while
 296 access which is usually extincted will also be likely and itina ²⁹⁶ cross-validation usually estimates well only the likely prediction
²⁹⁷ cause 1041, As such as were only the segment to assess the ²⁹⁷ error [64]. As such, a more valuable approach to assess the $\frac{298}{298}$ expecting agree of a classification model is to use an 298 generalization error of a classificatory model is to use an 299 independent dataset independent dataset.

³⁰⁰ 5. Conclusions

 301 The new models for the estimation of sex based on the total area
 302 of the provincil formula model performed with DYA 302 of the proximal femur, a measurement performed with DXA, 303 display great assumely both in great alleged and in an 303 display great accuracy both in cross-validation and in an 304 independent cample. The model based in a fact decision tree 304 independent sample. The model based in a fast decision tree
 305 learning algorithm (PEDTree) reduces hiss in the holdout sample to $\frac{305}{200}$ learning algorithm (REPTree) reduces bias in the holdout sample to $\frac{306}{200}$ appropriate lovels. The proposed models should endure additional $\frac{306}{207}$ appropriate levels. The proposed models should endure additional $\frac{307}{207}$ validation in independent skeletal remains (particularly of 307 validation in independent skeletal remains (particularly of 308 non-Portuguese origin) to substantiate their reliability in forensic $\frac{308}{200}$ non-Portuguese origin) to substantiate their reliability in forensic $\frac{309}{200}$ and/or bioarcheological contexts and/or bioarcheological contexts.

³¹⁰ Conflict of interest

-
- ³¹¹ The authors declare that they have no conflict of interest.

Acknowledgments 312

The authors are grateful to the Fundação para a Ciência e $\frac{8 \times 313}{314}$ Tecnologia (grant number $\#$ SFRH/BPD/74015/2010) and to the 314
315 anonymous referees.

References 316

- [1] M.K. Spradley, R.L. Jantz, Sex estimation in forensic anthropology: skull versus ³¹⁷ postcranial elements, J. Forensic Sci. ⁵⁶ (2011) ²⁸⁹–296, doi[:http://dx.doi.org/](http://dx.doi.org/10.1111/j.1556-4029.2010.01635.x) ³¹⁸ [10.1111/j.1556-4029.2010.01635.x](http://dx.doi.org/10.1111/j.1556-4029.2010.01635.x).
- [2] J. Bruzek, P. Murail, Methodology and reliability of sex diagnosis from the 319 skeleton, in: A. Schmitt, E. Cunha, J. Pinheiro (Eds.), Forensic Anthropology and
skeleton, in: A. Schmitt, E. Cunha, J. Pinheiro (Eds.), Forensic Anthropology and
320 Medicine: Complementary Sciences from Recovery to Cause of Death, Humana $\frac{320}{321}$ Press, New Jersey, 2006, pp. 225-242.
- [3] A.M. Christensen, N.V. Passalacqua, E.J. Bartelink, Forensic Anthropology: ³²² Current Methods and Practice, Academic Press, San Diego, CA, 2014.
- [4] T.D. Stewart, Essentials of Forensic Anthropology, Charles ^C Thomas, ³²³ Springfield, IL, 1979.
- [5] T.D. White, M.T. Black, P.A. Folkens, Human Osteology, Academic Press, San 324 Diego, CA, 2012.
- [6] K. Krishan, P.M. Chatterjee, T. Kanchan, S. Kaur, N. Baryah, R.K. Singh, A review 825 Sex estimation techniques during examination of skeletal remains in the sex estimation techniques during examination of skeletal remains in the forecast forecast of skeletal remains in the sex estimate of $\frac{326}{\text{m}}$ forensic anthropology casework, Forensic Sci. Int. 261 (2016) 165.e1–165.e8, 327
doi:[http://dx.doi.org/10.1016/j.forsciint.2016.02.007.](http://dx.doi.org/10.1016/j.forsciint.2016.02.007)
- [7] F. Curate, J. Coelho, D. Gonçalves, C. Coelho, M.T. Ferreira, D. Navega, E. Cunha, A method for sex estimation using the proximal femur, Forensic Sci. Int. 266
for sex estimation using the proximal femur, Forensic Sci. Int. 266
 329 ³²⁹ (2016) 579.e1–579.e7, doi:[http://dx.doi.org/10.1016/j.forsciint.2016.06.011.](http://dx.doi.org/10.1016/j.forsciint.2016.06.011)
- [8] J. Albanese, G. Eklics, A. Tuck, A metric method for sex determination using the ³³⁰ proximal femur and fragmentary hipbone, J. Forensic Sci. ⁵³ (2008) ³³¹ ¹²⁸³–1288, doi[:http://dx.doi.org/10.1111/j.1556-4029.2008.00855.x](http://dx.doi.org/10.1111/j.1556-4029.2008.00855.x).
- [9] V. Alunni-Perret, P. Staccini, G. Quatrehomme, Sex determination from the 332 v. Alumn-Ferret, F. Statem, G. Quatteriorme, Sex determination from the
distal part of the femur in a French contemporary population, Forensic Sci. Int. 333
175 (2000) 112, 117 doi: http://dv. doi.org/10.1016/i forecij ³³³ ¹⁷⁵ (2008) ¹¹³–117, doi:[http://dx.doi.org/10.1016/j.forsciint.2007.05.018.](http://dx.doi.org/10.1016/j.forsciint.2007.05.018)
- [10] R.A. Meeusen, A.M. Christensen, J.T. Hefner, The use of femoral neck axis length ³³⁴ to estimate sex and ancestry, J. Forensic Sci. ⁶⁰ (2015) ¹³⁰⁰–1304, doi:[http://](http://dx.doi.org/10.1111/1556-4029.12820) ³³⁵ dx.doi.org/10.1111/1556-4029.12820.
- [11] E.F. Kranioti, N. Vorniotakis, C. Galiatsou, Sex identification and software $\frac{336}{480}$ development using digital femoral head radiographs, Forensic Sci. Int. 189 $\frac{336}{42009}$ development using digital femoral head radiographs, Forensic Sci. Int. 189 $\frac{337}{42009}$ (2009) 113.e1-113.e7, doi:<http://dx.doi.org/10.1016/j.forsciint.2009.04.014>.
[12] R. DeSilva, A. Flavel, D. Franklin, Estimation of sex from the metric assessment
- [12] R. DeSilva, A. Flavel, D. Franklin, Estimation of sex from the metric assessment ³³⁸ of digital hand radiographs in ^a Western Australian population, Forensic Sci. ³³⁹ Int. ²⁴⁴ (2014) 314.e1–314.e7, doi[:http://dx.doi.org/10.1016/j.for-](http://dx.doi.org/10.1016/j.forsciint.2014.08.019) ³⁴⁰ [sciint.2014.08.019](http://dx.doi.org/10.1016/j.forsciint.2014.08.019).
- [13] P.J. Macaluso Jr., J. Lucena, Estimation of sex from sternal dimensions derived ³⁴¹ from chest plate radiographs in contemporary Spaniards, Int. J. Leg. Med. ³⁴¹
from chest plate radiographs in contemporary Spaniards, Int. J. Leg. Med. ³⁴² ³⁴² (2014) ³⁸⁹–395, doi[:http://dx.doi.org/10.1007/s00414-013-0910-z](http://dx.doi.org/10.1007/s00414-013-0910-z).
- [14] C. Robinson, R. Eisma, B. Morgan, A. Jeffery, E.A.M. Graham, S. Black, G.N. Rutty, ³⁴³ Anthropological measurement of lower limb and foot bones using multidetector computed tomography, J. Forensic Sci. 53 (2008) 1289–1295, doi:
 344
 345 http://dx.doi.org/10.1111/j.1556-4029.2008.00875.x
- [15] M. López-Alcaraz, P.M. Garamendi, I. Alemán, L.M. Botella, Image analysis of 1. Super-Finder of sex determination in a computed tomography sample, pubic bone for sex determination in a computed tomography sample, 347 Int. J. Leg. Med. 127 (2013) 1145–1155, doi:[http://dx.doi.org/10.1007/s00414-](http://dx.doi.org/10.1007/s00414-013-0900-1) 348
- [16] S.U. Ramadan, N. Türkmen, N.A. Dolgun, D. Gökharman, R.G. Menezes, M. $\frac{349}{1000}$ Kacar, Sex determination from measurements of the sternum and $\frac{349}{10000}$ from $\frac{349}{10000}$ fourth rib using multislice computed tomography of the chest, Forensic Sci. Int. $\frac{350}{351}$ ³⁵¹ ¹⁹⁷ (2010) ³–7, doi[:http://dx.doi.org/10.1016/j.forsciint.2009.12.049.](http://dx.doi.org/10.1016/j.forsciint.2009.12.049)
- [17] D. Ilgüy, M. Ilgüy, N. Ersan, S. Dölekoğlu, E. Fişekçioğlu, Measurements of the 352 b. ngay, w. aigay, w. zisan, b. bolckogia, b. 1336, b. 1336, b. externed magnum and mandible in relation to sex using CBCT, J. Forensic Sci. 353
53 (2014) 601–605 doi: http://dx. doi. pre/10.1111/1556-4029.12376 ³⁵³ ⁵⁹ (2014) ⁶⁰¹–605, doi:[http://dx.doi.org/10.1111/1556-4029.12376.](http://dx.doi.org/10.1111/1556-4029.12376)
- [18] C.R. Torwalt, R.D. Hoppa, A test of sex determination from measurements of ³⁵⁴ chest radiographs, J. Forensic Sci. ⁵⁰ (2005) ⁷⁸⁵–790.
- [19] A. Harma, H.M. Karakas, Determination of sex from the femur in Anatolian ³⁵⁵ Caucasians: ^a digital radiological study, J. Forensic Sci. ¹⁴ (2007) ¹⁹⁰–194, doi: 356 <http://dx.doi.org/10.1016/j.jcfm.2006.05.008>.
- [20] A. Mitra, A.P. Vida, R.N. Ali, M. Farzaneh, V.F. Maryam, Y. Vahid, Sexing based on measurements of the femoral head parameters on pelvic radiographs,
measurements of the femoral head parameters on pelvic radiographs,
J. Forensic Leg. Med. 23 (2014) 70–75, doi[:http://dx.doi.org/10.1016/j.](http://dx.doi.org/10.1016/j.jflm.2014.01.004) 359
iflm.2014.01
- [21] S.L. Bonnick, L.A. Lewis, Bone Densitometry for Technologists, Springer, New 360 York, 2013.
- [22] F. Curate, Osteoporosis and paleopathology: a review, J. Anthropol. Sci. 92 ³⁶¹ (2014) ¹¹⁹–146, doi[:http://dx.doi.org/10.4436/JASS.92003](http://dx.doi.org/10.4436/JASS.92003).
- [23] B.P. Wheatley, An evaluation of sex and body weight determination from the $\frac{362}{262}$ proximal femur using DXA technology and its potential for forensic $\frac{362}{262}$ anthropology, Forensic Sci. Int. 147 (2005) 141–145, doi[:http://dx.doi.org/](http://dx.doi.org/10.1016/j.forsciint.2004.09.076) 364
[10.1016/j.forsciint.2004.09.076](http://dx.doi.org/10.1016/j.forsciint.2004.09.076).
- [24] R. Fernández Castillo, M.C. López Ruiz, Assessment of age and sex by means of 16. Extra bone densition, M.C. Lopez Kuiz, Assessment of age and sex by means of DXA bone densition in forensic Sci. Int. 365 ³⁶⁶ ²⁰⁹ (2011) ⁵³–58, doi:<http://dx.doi.org/10.1016/j.forsciint.2010.12.008>.

- [25] F. Curate, A. Albuquerque, E.M. Cunha, Age at death estimation using bone 1231 1. Curace, A. Abduquerque, E.M. Curina, Age at death estimation dsing bond
densitometry: testing the Fernández Castillo and López Ruiz method in two
documented skeletal samples from Portugal, Forensic Sci. Int. 226 (2 ³⁶⁹ e1–296.e6, doi:<http://dx.doi.org/10.1016/j.forsciint.2012.12.002>.
- [26] A.M. Christensen, W.D. Leslie, S. Baim, Ancestral differences in femoral neck 370 axis length: possible implications for forensic anthropological analyses,
axis length: possible implications for forensic anthropological analyses,
Forensic Sci. Int. 236 (2014) 193.e1–193.e4, doi:http://dx.doi.org/10.
- [27] E. Cunha, S. Wasterlain, The Coimbra identified osteological collections, in: G. ³⁷³ Grupe, J. Peters (Eds.), Skeletal Series and Their Socio-Economic Context, ³⁷⁴ Verlag Marie Leidorf GmbH, Rahden/Westf, 2007, pp. ²³–33.
- [28] M.T. Ferreira, R. Vicente, D. Navega, D. Gonçalves, F. Curate, E. Cunha, ^A new ³⁷⁵ forensic collection housed at the University of Coimbra, Portugal: the 21st 376 century identified skeletal collection, Forensic Sci. Int. 245 (2014) $202.e1-202.e5$, doi:[http://dx.doi.org/10.1016/j.forsciint.2014.09.021.](http://dx.doi.org/10.1016/j.forsciint.2014.09.021)
- [29] S. Ulijaszek, D. Kerr, Anthropometric measurement error and the assessment ³⁷⁸ of nutritional status, Br. J. Nutr. ⁸² (1999) ¹⁶⁵–177.
- [30] R. Martin, Lehrbuch der Anthropologie in Systematischer Darstellung mit 379 Besonderer Berücksichtigung der anthropologischen Methoden für Studier-
380 Besonderer Berücksichtigung der anthropologischen Methoden für Studier-380 ende, Ärtze und Forschungsreisende, Kraniologie, Osteologie, vol. 2, Gustav Fischer, Jena, 1928.
- [31] R.B. Kline, Principles and Practice of Structural Equation Modeling, The 382 Guilford Press, New York, 2010.
- [32] I. Gama, D. Navega, E. Cunha, Sex estimation using the second cervical 383 vertebra: a morphometric analysis in a documented Portuguese skeletal
384 vertebra: a morphometric analysis in a documented Portuguese skeletal
384 ³⁸⁴ sample, Int. J. Leg. Med. ¹²⁹ (2015) ³⁶⁵–372, doi[:http://dx.doi.org/10.1007/](http://dx.doi.org/10.1007/s00414-014-1083-0) ³⁸⁵ [s00414-014-1083-0.](http://dx.doi.org/10.1007/s00414-014-1083-0)
- [33] J. Maroco, D. Silva, A. Rodrigues, M. Guerreiro, I. Santana, A. de Mendonça, Data 386 5386 mining methods in the prediction of Dementia: a real-data comparison of the prediction of the same space 387 accuracy, sensitivity and specificity of linear discriminant analysis, logistic
388 regression, neural networks, support vector machines, classification trees and
389 regression, figure and file and the support vector ³⁸⁹ random forests, BMC Res. Notes ⁴ (2011) 299, doi:[http://dx.doi.org/10.1186/](http://dx.doi.org/10.1186/1756-0500-4-299) ³⁹⁰ [1756-0500-4-299](http://dx.doi.org/10.1186/1756-0500-4-299).
- [34] D.W. Hosmer, S. Lemeshow, R.X. Sturdivant, Applied Logistic Regression, John ³⁹¹ Wiley & Sons, Inc, Hoboken, New Jersey, 2013.
- [35] X. Wu, V. Kumar, J.R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G.J. Mclachlan, A. 392 ISBN 0.1301 Ng, B. Liu, P.S. Yu, Z. Liu, P. David, J.H. Dan, Top 10 algorithms in data
393 minima Knowl Inf Syst 14 (2008) 1–37 doi: http://dx.doi.org/10.1007/c10115– 393 mining, Knowl. Inf. Syst. 14 (2008) 1–37, doi:[http://dx.doi.org/10.1007/s10115-](http://dx.doi.org/10.1007/s10115-007-0114-2)
394 [007-0114-2](http://dx.doi.org/10.1007/s10115-007-0114-2).
- [36] D.L. Gupta, A.K. Malviya, S. Singh, Performance analysis of classification tree
learning algorithms, Int. J. Comput. Appl. 55 (2012) 39–44.
Q7 [37] LR. Quiplan, Simplifying decision trees, Int. J. Hum, Comput. Stud.
- **U** [37] J.R. Quinlan, Simplifying decision trees, Int. J. Hum. Comput. Stud. 51 (1999) 497–510.
- [38] R Development Core Team, R. A language and environment for statistical 397 computing, R Foundation for Statistical Computing, Vienna, Austria, 2016.
398 computing, Vienna, Austria, 2016. [http://www.R-project.org/.](http://www.R-project.org/)
- [39] W. Chang, H. Wickham, ggvis. Interactive Grammar of Graphics. ^R Package ³⁹⁹ Version 0.4.2, (2016) . [http://CRAN.R-project.org/package=ggvis.](http://CRAN.R-project.org/package=ggvis)
- [40] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The 400 (40) W. Hall, L. Halls, G. Hollics, D. Hallmiger, F. Reuterham, H. Witten, The
WEKA data mining software: an update, SIGKDD Explor. Newsl. 11 (2009)
10–18.
[41] C. Carneiro, F. Curate, P. Borralho, E. Cunha, Radiograph
- [41] C. Carneiro, F. Curate, P. Borralho, E. Cunha, Radiographic fetal osteometry: ⁴⁰² approach on age estimation for the Portuguese population, Forensic Sci. Int. 403 231 (2013) 397.e1-397.e5, doi:[http://dx.doi.org/10.1016/j.forsciint.2013.05.](http://dx.doi.org/10.1016/j.forsciint.2013.05.039)
404 [039.](http://dx.doi.org/10.1016/j.forsciint.2013.05.039)
42 A.C. Looker, H.W. Wahner, W.L. Dunn, M.S. Calvo, T.B. Harris, S.P. Heyse,
- [42] A.C. Looker, H.W. Wahner, W.L. Dunn, M.S. Calvo, T.B. Harris, S.P. Heyse, ⁴⁰⁵ J.C.C. Johnston, R.L. Lindsay, Proximal femur bone mineral levels of US 406 adults, Osteoporos. Int. 5 (1995) 389-409, doi:[http://dx.doi.org/10.1007/](http://dx.doi.org/10.1007/BF01622262)
407 BE01622262
- [43] A.C. Looker, L. Borrud, J. Hughes, B. Fan, J. Shepherd, L.J. Melton III, Lumbar 408 (45) A.C. Looker, L. Borrud, J. Hughes, B. Fair, J. Shepherd, L.J. Menton in, Lumbar
spine and proximal femur bone mineral density, bone mineral content, and
409 409 bone area: United States, 2005–2008, Vital Health Stat. 11 (2012) 1–132
410 **bulgational Contor for Health Statistics** National Center for Health Statistics.
- [44] E. Seeman, From density to structure: growing up and growing old on the 411 surfaces of bone, J. Bone Miner. Res. 12 (1997) 509–521, doi:[http://dx.doi.org/](http://dx.doi.org/10.1359/jbmr.1997.12.4.509)
[10.1359/jbmr.1997.12.4.509.](http://dx.doi.org/10.1359/jbmr.1997.12.4.509)
- [45] E. Seeman, Structural basis of growth-related gain and age-related loss of bone ⁴¹³ strength, Rheumathology (Oxford) ⁴⁷ (2008) iv2–iv8, doi:[http://dx.doi.org/](http://dx.doi.org/10.1093/rheumatology/ken177) ⁴¹⁴ [10.1093/rheumatology/ken177.](http://dx.doi.org/10.1093/rheumatology/ken177)
- [46] J.W. Nieves, C. Formica, J. Ruffing, M. Zion, P. Garrett, R. Lindsay, F. Cosman, Males have larger skeletal size and bone mass than females, despite
comparable body size, J. Bone Miner. Res. 20 (2005) 529–535, doi.http://dx. 416
coi.org/10.1359/JBMR.041005.
[47] M.C.H. Van der Meulen, M.W. Ashford,
- Determinants of femoral geometry and structure during adolescent growth, J.
Determinants of femoral geometry and structure during adolescent growth, J.
Orthop. Res. 14 (1998) 22–29, doi:http://dx.doi.org/10.1002/jor.11001
- [48] J. Gregory, R. Aspden, Femoral geometry as ^a risk factor for osteoporotic hip ⁴²⁰ fracture in men and women, Med. Eng. Phys. ³⁰ (2008) ¹²⁷⁵–1286, doi:[http://](http://dx.doi.org/10.1016/j.medengphy.2008.09.002) ⁴²¹ dx.doi.org/10.1016/j.medengphy.2008.09.002.
- [49] V. Gilsanz, A. Kovanlikaya, G. Costin, T.F. Roe, J. Sayre, F. Kaufman, Differential effect of gender on the sizes of the bones in the axial and appendicular 422 skeletons, J. Clin. Endocrinol. Metab. 82 (1997) 1603–1607, doi[:http://dx.doi.](http://dx.doi.org/10.1210/jcem.82.5.3942) 424 [org/10.1210/jcem.82.5.3942](http://dx.doi.org/10.1210/jcem.82.5.3942).
- [50] D.L. Koller, G. Liu, M.J. Econs, S.L. Hui, P.A. Morin, G. Joslyn, L.A. Rodriguez, P.M. 125 Conneally, J.C. Christian, C.C. Johnston Jr., T. Foroud, M. Peacock, Genome
Conneally, J.C. Christian, C.C. Johnston Jr., T. Foroud, M. Peacock, Genome
Screen for quantitative trait loci, underlying normal variation in screen for quantitative trait loci underlying normal variation in femoral 426
structure LPone Miner Pes 16(2011) 025, 001 doi: http://dx.doi.org/10.1250/ 427 structure, J. Bone Miner. Res. 16 (2011) 985–991, doi[:http://dx.doi.org/10.1359/](http://dx.doi.org/10.1359/jbmr.2001.16.6.985) 427
[jbmr.2001.16.6.985.](http://dx.doi.org/10.1359/jbmr.2001.16.6.985)
[51] L.J. Melton III, T.J. Beck, S. Amin, S. Khosla, S.J. Achenbach, A.L. Oberg, B.L. Riggs,
- L.J. Metion in, i.j. beck, S. Annin, S. Knosid, S.J. Achembach, A.L. Oberg, B.L. Kiggs, 429
Contributions of bone density and structure to fracture risk assessment in men
and women, Osteoporos. Int. 16 (2005) 460–467, doi
- [52] H.M. Frost, Bone'^s mechanostat: ^a ²⁰⁰³ update, Anat. Rec. 275A (2003) ⁴³² ¹⁰⁸¹–1101, doi[:http://dx.doi.org/10.1002/ar.a.10119](http://dx.doi.org/10.1002/ar.a.10119).
- [53] D. Navega, R. Vicente, D.N. Vieira, A.H. Ross, E. Cunha, Sex estimation from the μ , Savega, R. Vietne, D.N. Viena, A.H. Ross, E. Culma, Sex estimation from the learning approach, Int. J. Leg. 433
Med 120 (2015) CF1, CF0, doi: between the learning approach, Int. J. Leg. 434 Med. 129 (2015) 651–659, doi:[http://dx.doi.org/10.1007/s00414-014-1070-5.](http://dx.doi.org/10.1007/s00414-014-1070-5)
[54] A.H. Ross, D.H. Ubelaker, E.H. Kimmerle, Implications of dimorphism,
- Fri. No., performance, the thermal matrices, the propulation variation, and secular change in estimating population affinity 435
in the Iberian Peninsula, Forensic Sci. Int. 206 (2011) 214.e1–214.e5, doi:[http://](http://dx.doi.org/10.1016/j.forsciint.2011.01.003) 436
d
- [55] D.G. Mcbride, M.J. Dietz, M.T. Vennemeyer, R.M. Dg, D. Mj, V. Mt, Bootstrap methods for sex determination from the Os Coxae using the ID3 Algorithm, 438
methods for sex determination from the Os Coxae using the ID3 Algorithm, 439
J. Forensic Sci. 46 (2001) 427–431.
- [56] R. DiBennardo, J.V. Taylor, Classification and misclassification in sexing the 440
black femur by discriminant function analysis, Am. J. Phys. Anthropol. 58
(1092) 145, 151, deithery (levels) regulation analysis, 1220500006 ⁴⁴¹ (1982) ¹⁴⁵–151, doi[:http://dx.doi.org/10.1002/ajpa.1330580206](http://dx.doi.org/10.1002/ajpa.1330580206).
- [57] A.B. Acharya, S. Prabhu, M.V. Muddapur, Odontometric sex assessment from ⁴⁴² logistic regression analysis, Int. J. Leg. Med. ¹²⁵ (2011) ¹⁹⁹–204, doi[:http://dx.](http://dx.doi.org/10.1007/s00414-010-0417-9) ⁴⁴³ [doi.org/10.1007/s00414-010-0417-9.](http://dx.doi.org/10.1007/s00414-010-0417-9)
- [58] F. Santos, P. Guyomarc'h, J. Bruzek, Statistical sex determination from 1. Salitos, 1. Sulgoniac II, 3. Braziski, Statistical Sex decernimiation from

craniometrics: comparison of linear discriminant analysis, logistic regression,

445

and support vector machines, Forensic Sci. Int. 245 (2014 <http://dx.doi.org/10.1016/j.forsciint.2014.10.010>.
[59] P. du Jardin, J. Ponsaille, V. Alunni-Perret, G. Quatrehomme, A comparison
- F. du Jardin, J. Ponsaille, V. Alumni-Perret, G. Quatrehomme, A comparison 447
between neural network and other metric methods to determine sex from the 447
determine sex from the sex from the sex from the 448 upper femur in a modern French population, Forensic Sci. Int. 192 (2009) 127. 448
e1. 127.06. doi: http://dy. doi. arg/10.1016/i foregiint. 2000.07.014. 449 ⁴⁴⁹ e1–127.e6, doi:[http://dx.doi.org/10.1016/j.forsciint.2009.07.014.](http://dx.doi.org/10.1016/j.forsciint.2009.07.014)
- [60] M. Mahfouz, A. Badawi, B. Merkl, E.E. Abdel, E. Pritchard, K. Kesler, M. Moore, R. $\frac{1}{2}$ Jantz, Patella sex determination by 3D statistical shape models and
pantz, L. Jantz, Patella sex determination by 3D statistical shape models and
poplicial shape models and $\frac{450}{451}$ nonlinear classifiers, Forensic Sci. Int. 173 (2007) 161–170, doi[:http://dx.doi.](http://dx.doi.org/10.1016/j.forsciint.2007.02.024) 452
[org/10.1016/j.forsciint.2007.02.024](http://dx.doi.org/10.1016/j.forsciint.2007.02.024).
- [61] J.Bruzek,Amethod for visualdeterminationof sex,usingthehumanhipbone,Am. J. ⁴⁵³ Phys. Anthropol. ¹¹⁷ (2002) ¹⁵⁷–168, doi:[http://dx.doi.org/10.1002/ajpa.10012.](http://dx.doi.org/10.1002/ajpa.10012)
- [62] A. Clavero, M. Salicrú, D. Turbón, Sex prediction from the femur and hip bone $\frac{454}{1000}$ a sample of CT images from a Spanish population, Int. J. Leg. Med. 129 $\frac{454}{1000}$ ⁴⁵⁵ (2015) ³⁷³–383, doi:<http://dx.doi.org/10.1007/s00414-014-1069-y>.
- [63] B.A. Williams, T.L. Rogers, Evaluating the accuracy and precision of cranial morphological traits for sex determination, J. Forensic Sci. 51 (2006) 729–735, 456 doi[:http://dx.doi.org/10.1111/j.1556-4029.2006.00177.x](http://dx.doi.org/10.1111/j.1556-4029.2006.00177.x). 457
- [64] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data 1. Hasue, K. Hoshirani, J. Friedman, The Elements of Statistical Learning. Data 458
Mining, Inference and Prediction, Springer, New York, 2009.