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An accurate single-valued double many-body expansion (DMBE) potential energy surface is reported for the
ground electronic state of HSO based on novel MR CISD ab initio energies suitably corrected for the complete
one-electron basis set/complete CI limit. To improve the accuracy of the fit, we have suggeshextiya
distributed polynomial approach which implies using individual multinomial developments at the various
stationary points. For simplicity, only the three most relevant such points have been considered: two minima
(HSO, HOS) and the saddle point connecting them.

1. Introduction minimum energy paths for the addition of H to SO to form
HSO and HOS. In the present work, we report novel full val-
ence complete active space (FVCAS) and multireference con-
éiguration interaction (MRCI) calculations covering over 500
geometries, including the minima, transition states, antSO
1geometries. Moreover, we have subsequently corrected the
calculated ab initio energies by means of the double many-
body expansion-scaled external correlation (DMBE-SEC)
method® to account for the complete basis set/complete ClI
limits. The resulting DMBE-SEC energies have then been
used to calibrate a potential energy surface based on the
DMBES3%-33 formalism (see also ref 34). This potential energy
§urface shows the correct long-range behavior at all dissociation
channels and provides a realistic representation at all interatomic
separations, especially those covered by the calculated ab initio
energies.

The paper is organized as follows. Section 2 describes the
ab initio calculations carried out in the present work. In section
3, we deal with the representation of the DMBE potential energy
surface. Specifically, section 3.1 focuses on the two-body energy

The chemistry of atmospheric sulfur is of great interest due
to its importance in environmental issues. In particular, a
considerable number of experimental studies have been reporte
for the OfP) + H,S systent 8 Goumri et al’ studied the
geometrical features and energetics for the minima and 1
transition states of this system at the MARULL/6-31G(d) and
Gaussian-2 (G-2) levels of theory. They have also calculated
canonical transition state theory rate coefficients for the various
channels arising from the €K) + H,S reaction and compared
with experiment. For a complete analysis of the experimental
results, a classical and/or quantum dynamics study would
therefore be desirable. For this purpose, one requires to construc
a global potential energy surface for the®$ system. As a
first step in this construction, potential energy surfaces surfaces
must be provided for the various fragments. Among them is
HSO, which is an important molecule per se in atmospheric
chemistry. In particular, it may be involved in a so-called
catalytic cyclé~1° for destruction of ozone in the troposphere,

namely terms, while section 3.2 concentrates on the three-body energy
HS + O, — HSO+ O, (1) terms. The main topographical features of the DMBE potential
energy surface are discussed in section 4. Some concluding
HSO+ O,— HS+ 20, 2) remarks are in section 5.

There have been numerous experimental and theoretical®" Ab Initio Calculations

studies of the HSO and HOS isométs?8 Ab initio calcula- The ab initio calculations have been carried out at the MRCI
tions for the HSO and HOS radicals were first reported by level with a FVCAS®37 as the reference wave function. For
Sannigrahi et aP® who predicted HOS to be more stable than the basis set, we have selected the aug-cc-pvtz (AVTZ) of
HSO. Several ab initio calculatiohshave been reported Dunning2840with the calculations being carried out using the
afterward which corroborated such a prediction, although the MOLPRO* package. A total of 500 grid points have been
magnitude of the energy difference between the minima chosen to map the potential energy surface over the region
associated with these species was found to decrease withdefined by 2.61< r/ay < 8.76, 1.91< R/ay < 6.73, and 0=
improvement in the quality of the calculations. In fact, it was y/deg=< 180. The Jacobi coordinatesR, andy are defined in
pointed out by Xantheas and Dunnffighat failure to account  Figure 1: r is the SO distanceR is the vector associated with
for dynamical correlation and the inadequacy of the basis setsthe atom-diatom separation connecting the H atom to the
were the main reasons why earlier calculations led to poor geometrical center of SO, ands defined by coy = rR/|rR|.
geometries and failed to correctly predict the relative stability We have also studied at the same level of theory the complicated
of HSO and HOS. It seems well-establish@dw that HSO is potential energy curves for SO, SH, and OH (78 points in all).
more stable than HOS. However, most ab initio calculations so The ab initio energies determined in this way were subsequently
far reported have been devoted to studying the minima and thecorrected by using the DMBE-SEC metfétb account for the
transition state for the isomerization process. An exception is excitations beyond singles and doubles and, more importantly,
the work by Xantheas and Dunnifgwho have computed the  for the incompleteness of the one-electron basis set.
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Figure 1. Coordinate system used in the present work. @a ol
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In the DMBE-SEC method, the total interaction energy of < 5[
the triatomic is written &8 20 ¢
V(R)ZVFVCAS(R)+VDMBESEC,(R) (3) -2'50‘1I213l§‘5‘6171‘99 0‘112‘3:1;‘6;)89 0123456789

R/a, R/a, R/a,

where
Figure 2. EHFACE2U potential energy curves: (a) OH{X), (b)

i 2 3 SH(XI), and (c) SO(RE"). The circles indicate the ab initio points
Veveas(R) = gV(AE)a,FVCAs(RAB) + Ve rveas(Rag:RecRac) and the lines the EHFACE2U values.

4)

assuming the form
_ 2
VDMBE*SEC(R) - gv(A%,DMBEfsEC,(RAB) +

-]
1- —A——B— 10
\/(As%C,DMBEfsEC(RA&RBCRAC) (5) eXF( AnP np2 (10)

and the summations extend to all diatomic fragments. In turn, In eq 10,A, and B, are auxiliary functions defined by
the three-body energy term of the SEC series expansion assumes

1n(R) =

the form A,=ayn ™ (11)
V(A%I%,DMBE—SEc(RAB) = [V(Azlg,,FVCAS—CISD(RAB) B, = Boexp(=f1n) (12)
V2 rveasRae)IFR  (6) whereay, bo, a1, andg; are universal dimensionless parameters
3 for all isotropic interaction®31 o, = 16.366060; = 0.70172,
Ve omse-sedRag RacRac) = by = 17.19338, and3; = 0.09574. Moreover, the scaling
[V(A%C,FVCA&QSD(RABaRBCaRAc) - parametep is defined as
V&c rvcas(Ras RecRa)l Fide (7) p=35112%R, (13)

WhereFfé is a parameter being chosen to reproduce the bondwhere Ry = z(miglz + [My2¥?) is the LeRoy* distance for
dissociation energy of the corresponding AB diatomic. Because gnset of the undampeR™ series expansion ani2[is the

of the lack of similar spectroscopic information on the well-  expectation value of the squared radius for the outermost
depth of the triatomic, the corresponding three-body factor glectrons of atom X (similarly for atom Y). Finally, the

Fiac has been taken as the average of the two-todgctors. exponentially decaying part of the EHF-type energy term is
Such a procedure, originally test€dn ground-state HE) led represented by the general form

in the present case to the valueg, = 0.6850,F%), = 0.7713,

F@, = 0.7826, andcE) , = 0.7463. D 3

VeneR =~ —(1+ 3 ar) exp(yr) (14)

3. DMBE Potential Energy Surface for HSO

3.1. Two-Body Energy Terms. The diatomic potential where
energy curves have been modeled using the extended Hartree
Fock approximation correlation energy method for diatomics, ¥ = yol1 + y,tanhf,r)] (15)
including the united atom limit (EHFACE2UY, with the
available parameters being determined by fitting experimental wherer = R — R. is the displacement coordinate from the
and ab initio data. They assume the general férth equilibrium diatomic geometnD, a (i = 1 — 3), andy; (i =

0 — 2) are adjustable parameters to be obtained as described

V(R) = Veue + Vee (®) eIsew%ere’*.L42 J P

For the ground-state hydroxyl radical OH{X), we have used
a potential energy curve previously reported by one of us and
Voronin*® which has been calibrated using Rydbekjein—
Rees (RKR)-type data. Figure 2a shows that the potential energy

where EHF refers to the extended Hartré®ck type energy
and dc is the dynamical correlation energy. As usual, the latter
is modeled semiempirically B%

C, function so obtained also reproduces our calculated ab initio
VelR==% z(R— (9)  energies. | |
n=63.10 R For the sulfur hydride ground state, SH{X), there is no

RKR experimental data, and hence, we have used our own ab
with the damping functions for the dispersion coefficients initio points and the experimental dissociation enétgy the
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TABLE 1: Long-Range Coefficients for the Diatomic s M = s ©
Fragments in au éi i 3 3
Ro Ce Cs Cio < .
SOXEE") 7.3119 53.09 1206.5 30982.5 s ¢
SHXI) 7.9652 34.49 896.5 26332.1 we 4 @
OH(X21T) 6.2949 11.47 195.0 4342.3 % sl
g .l
TABLE 2: Parameters of the Two-Body Hartree—Fock = j /K
Energy in au I
SOX3E") SH(XIT) OH(X2IT) = r ®
Re 2.7988 2.5334 1.8344 @: 6
D 0.479589 0.308372 0.275865 S4r
a 2.2594 1.8997 2.2904 T o o -~
a 1.2128 0.7234 1.0466 00 2 5 6 s w120 2 4 6 8510120 2 4 6 5 10 12
az 1.0265 0.2562 0.5147 Ron/ag Rgp/ag Rgo/ap
Yo 1.7823 1.4139 1.7110
Y1 3.6305 6.3459 1.9222 Figure 3. Dispersion coefficients for the atondiatom asymptotic
Y2 0.0458 0.0146 0.0747 channels of HSO as a function of the corresponding intramolecular
] ] ] distance. TheCs coefficients are displayed in panels a forGH, b
TABLE 3: Numerical Values, in au, of the Parameters in for O—SH and c for H-SO. Panels df show the correspondinGs
Eq 19 coefficients and i those ofCyo.
S—OH Ce(R Ce(R Cio(R _ . :
= 468 ) Z(O) 1023 correlation and the electrostatic energies, we have chosen the
Dy 3428 1044.0 34824.0 general form proposed by one of authttsamely
a —0.0150 —0.0751 —0.0987 3 ; _
i, —0.2371 —0.2452 —0.2481 D o= zzfi(R)Cﬂ)(Rﬁi)xn(fi)n " (16)
as 0.0860 0.1014 0.1073 I n
b, 0.1532 0.1696 0.1799
ba 0.0068 0.0122 0.0137 wherei labels the +JK channel associated with the center of
mass separation, R is the 3-K bond distance, and cas =
O—SH Cs(R) Ce(R) ClR) TiR/[FiR; for the notation, see Figure 1 of ref 32. In turn,
EM l‘;-ig 53‘;-923 76 :'3-902 CR,0) are electrostatic coefficients whem = 4 or 5,
M . . . - .
a 20,1269 2 0.1603 0.1842 represe_ntmg the dlpo’requadrupole(gnd quadrupetguadrupole
ay —0.1776 —0.1712 —0.1677 interactions. Fon = 6, 8, and 10C’(R,0;)’s represent atom
as 0.0863 0.0879 0.0903 diatom dispersion coefficients given by
b, 0.1741 0.1830 0.1919
bs 0.0188 0.0203 0.0216 Cg) — ZCEPL(COSOi) (17)
H—-SO Cs(R) Cs(R) Ci(R)
Ru 5.29 5.41 5.49 whereP_(cos 0;) denotes the L-th term of the Legendre poly-
a 07627 0.7699 0.7739 nomial expansion an€; is the associated expansion coeffi-
a 0.1331 0.1238 01177 cient. Additionally, the functiony,(ri) in eq 16 is the corre-
as 0.0009 0.0006 0.0012 sponding diatomic damping function given by eq 10. More-
by 0.0784 0.1018 0.1219 over, fi(R) is a switching function chosen from the require-
bs 1.0x 107 0.0009 0.0006 ment that it must bet-1 for R = R® andr; — « and 0 for

o ) R — . Following previous work? we have employed the
fitting procedure. Figure 2b shows that the model potential form

accurately reproduces the ab initio energies while showing good

ability for extrapolation to the regions not covered by the fitted 1

data.)/The squuFr) oxide ground-stgate SGEX) potentialyenergy fi= 5{ 1= tanhE(rs — 5 — SN}

curve has been calibrated by fitting our FVCAS-SEC energies

and the experimental RKR points of Singh et’ah conjunction wheres = R — R’ (corresponding expressions apply &rs;,

with the recent heat of formation determined by Clerbaux et fi, andfy), and# is a constant chosen to ensure the proper

al#8 Except for the last inner ab initio points, Figure 2¢ shows asymptotic behavior; as befotéwe have chosen the valug

that the data is represented quite reliably. However, at very short= 3 such as to satisfy the proper asymptotic limits. Furthermore,

distances, the ab initio points may not be as accurate, while thethe parametef has been taken as the average of the exponents

EHFACE2U model leads by construction to the proper united- of the OH and SH range decaying factors in the three-body

atom limit of the collapsed diatomid(— 0). The numerical term: § = 0.5&51. Regarding the damping functiong(r),

values of all diatomic parameters are gathered in Table 1 andwe still adopt eq 10 but replacR by the center-of-mass

Table 2. separation for the relevant aterdiatom channel. Additionally,
3.2. Three-Body Energy Terms. Following the usual the value ofp has been assumed as the average value of the

proceduré’33 (see also ref 34), we split the three-body energy corresponding OH and SH diatomic scaling parameters. Finally,

into several contributions. Specifically, one has the extended r; has been approximat&dy ri = (R + Ry)/2.

Hartree-Fock and dynamical correlation parts, with the elec-  3.2.1. Three-Body Dynamical Correlation Energpllowing

trostatic component of the EHF part also considered indepen- previous work!® only the spherically averaged componerits (

dently. In the following subsections, we provide a description = 0) of the atom-diatom dispersion coefficients have been

of each component. To represent the three-body dynamicalconsidered, with the involved internuclear dependences being

(18)
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Figure 6. Reference geometries used in the present work for the three-
body EHF part of the potential energy surface: (a) HOS, (b) HSO,
Figure 4. Variation of the OH (a) and SH (b) dipole moments with and (c) transition state for reaction HS© HOS. The solid lines

internuclear distance. Circles indicate MRISD points, while the lines ~ epresent the equilibrium geometries of the corresponding stationary
indicate the results predicted from eq 22. points, while the dotted lines show the reference geometries which have

been actually employed.

3.0
25 TABLE 4: Numerical Values, in au, for OH and SH Dipole
20 Moments in Eq 22
N“O 15 OH SH
o
X 10 Rwu 2.20 1.8
Q?«’ 0.5 Dwm 0.658585 0.314426
0.0 & —0.29843 0.189345
0.5 a —0.174482 —0.165016
do b a 0.0762564 0.0174276
2.5 b, 0.0204867 0.0134371
20 L (b) bs 0.1171210 0.000001
% 15} TABLE 5: Numerical Values, in au, for OH and SH
2 0l Quadrupole Moments in Eq 23
]
@o 0.5 | OH SH
0.0 | Rw 3.0 3.7
ol Ms 5500 21 000
0 1 2 3 4 5 6 7 8 9 Dwm 1.127 0.65607488
R/a, ay —0.314458 0.01782770
a —0.254650 —0.1186250
Figure 5. Variation of the OH (a) and SH (b) quadrupole moments a 0.2301120 0.54471800
with internuclear distance. Circles indicate the M&ISD points, while by —0.373896 —0.0758723
the lines show the results predicted from eq 23. b, 0.5226040 0.70193800
bs 0.1344000 0.14595400
estimated as reported elsewhété,e., by using the dipolar Qo 0.49 1.05

isotropic polarizabilities (calculated in this work at the MRCI . )
level of theory), combined with a generalized Slatiirkwood 3.2.2. Three-Body Electrostatic Enerd§ince the H atom

approximatiorf! The atom-diatom dispersion coefficients were 2 spherical symmetry, we have to consider only the interac-
then fitted to the form tions of the oxygen and sulfur quadrupoles with the SH and

OH dipole and quadrupolar moments. Thus, a total of four
electrostatic interactions have been taken into account. As stated

3 3
Cr R =C® 4+ CX°+ D, (1+ Zairi) exp(— z bir') above, eq 16 has been employed to write the electrostatic energy,
= =t and in this caseC,(R;,60i)’s are electrostatic coefficients. If the
(19) Buckingham convention is us&8such coefficients assume the
orm

wherer = R — Ry is the displacement relative to the position
of the maximum antb, = a;. The parameters that resulted from 3
the fits are reported in Table 3, and the internuclear dependences CyeidRag.0) = zuABQCADQ(aavewd)ab) (20)
of the dispersion coefficients are shown in Figure 3.

As pointed out elsewheré€,eq 16 causes an overestimation _3
of the dynamical correlation energy at the atodiatom Cs.edRag:0) = ;Qne QcAgq(0a Ot (21)
dissociation channel. To correct such a behavior, we have
multiplied the two-body dynamical correlation energy for the where the indexes AB and C stand for OH (SH) and S (or
i-th pair byfi(R) and, correspondingly, for the channg¢land 0), respectively. The functional forms @éig and Agg were
k. This ensurée¥ that the only two-body contribution at theh those employed in previous wdkbased on the so-called
channel is that of JK. classical optimized quadrupéfemodel, according to which the
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TABLE 6: Numerical Values of the Coefficients of Polynomial A in the Three-Body Extended Hartree—Fock Energy in au

=0.85 ¥4 =0.58 Y5 =0.49

RA’ef 3.30 R =356 RO =1.73
Choo= —0.152971042 Chor = —0.0106451758 C b= 0.02841603
oo = 0.410335814 o= —0.0186074137 Cops = 0.0243697848
chyo= —0.0318850512 iy, = 0.0773253466 i, =0.352135922
c{,*13 0.196064485 .= —0.0801457935 Coyo= 0.328257694
oy = —0.841754198 )y, = 0.241822527 Chys=0.135119134
Coyo= —0.23207117 oy = —0.495856539 oy, = —0.101029651
Couo=0.10834947 oy = 0.0439618526 Chso=0.0777769216
iy = —0.160730172 ¢y, = —0.145518002 cfoz 0.708973954
cihs= 0.221896139 cis, = 0.0335980733 ciyo= —0.368934267
cA —0.0399540713 ¢, = 0.54277435 13 = —0.0953548204
c120 0.250767376 ¢, = —0.0443403774 cﬁzz: 0.423678731
3= —0.200739683 i3, = —0.148990628 cls= 0.00673609579
c@m 0.231212503 ooy = —0.571911856 o= 0.615185605
s = —0.00488797525 o= —0.612887845 ;= 0.44185333
¢y, = —0.255883112 oy = —0.0467274605 oy, = 0.62569975
oy = 0.265091203 o= —0.947014418 oy = 0.414265497
iy, = 0.0481590732 @10_ 0.441634224 b, = —0.560754057
c@zo 0.279140359 o= 0.368292954 o1 = 0.0417331533
Cho= —0.0497157716 ctyo=0.0184014022

TABLE 7: Numerical Values of the Coefficients of Polynomial B in the Three-Body Extended Hartree—Fock Energy in au

72 =092 y2 =058 y2 =053
RB ref __ =280 RB ref __ =268 RB ref __ =425
c000 0.34268533 c& 1= —0.156266035 c&,= —0.294456751
c003 —0.104628235 Copa = —0.0395350302 Cops = —0.0258194682
c010 —0.283879354 Co = 0.0249695419 coo= —0.399127497
c013 0.160709558 o= —0.0491731653 Cono= —0.873890432
c021 0.00383147459 Copp = —0.152090755 Cops = —0.0320679312
c030— 0.755325919 5, = 0.408332247 5, = 0.0708306864
c040 0.127078787 o= —0.0975231701 Coso= —0.114607354

c100 —0.289964039 cpy = —0.230472236 Crpp = 0.0972749497
cm3 —0.110590724 ¢, = —0.0994307523 &, = —0.550630406
c111 —0.243992429 ¢y, = 0.0311063194 ch,=—0.198198673

c120 0.555584386 iy = —0.370295745 Chy, = 0.0569126419
¢, = 0.360760901 ¢, =0.170133025 c®,= —0.157920036
Chho= —0.756021158 copy = —0.0522933035 cor,= —0.0476056622
Cons = —0.097395365 oo = 0.645931587 5y, = 0.280831417
¢, = —0.20040811 ¢, =0.353531971 c5, = 0.0319832695
chyo= —0.0734865405 c5 = —0.60602039 c5 .= 0.020614987
c?m: 0.0251193461 c5 o= —0.051336385 5, = 0.119990554
c320— 0.0147474065 Cano= —0.0116238618 Copy = 0.205238381
Cayo= 0.0734593641 c5ho= 0.0775702596

atomic quadrupole adiabatically adjusts its angular orientation wherer = R — Ry now in the displacement relative to the
to that of the diatomic molecule to give the lowest interaction maximum inQ(r). The input data for the permanent electric
energy. moments has been obtained from ab initio MRCI calcula-
The analytical expression for the OH and SH dipoles have tions carried out in the present work. The numerical values of
been obtained by fitting our own ab initio results to the f&tm  the parameters for the dipole and quadrupole moments using
the above equations are given in Tables 4 and 5, while the
graphical representation of the dipole and quadrupole as a
#(R)=Dy(1+ alr) exp( br) (22) function of the diatomic bond distance is depicted in Figures 4
£
and 5.
wherer = R— Ry is the displacement relative to the maximum ~ 3-2.3. Three-Body Extended HartreBock Energy.By
in u(R) andby = ay. In turn, the analytical expression for the ~Subtracting, for a given triatomic geometry, the sum of the two-

intramolecular dependence of the quadrupoles has been choseRody energy terms from the corresponding DMBE-SEC interac-
to be that previously employed by one of the authors and tion energies (defined with respect to the infinitely separated

Rodrigue8® ground-state atoms), one obtains the total three-body energy.
Then, by subtracting the three-body electrostatic and dynamical

Mg correlation contributions from the total three-body energy
Q(R) =Dy + aIr) exp( br) +Q,t+ Xg(R)— calculated above, one gets the remaining three-body extended

i= Hartree-Fock energy contribution. This is represented by using
(23) the form
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TABLE 8: Numerical Values of the Coefficients of PolynomialC in the Three-Body Extended Hartree—Fock Energy in au

y$=0.76 yS=0.61 y$ =050
RO =335 RS™ = 3.00 RS =3.04
S0 = —0.0368229496 Sy = —0.129003395 Sy = 0.20818244
Coo3 = —0.215560967 Coos = 0.0327436241 Coos = —0.00277579984
Co10= —0.344210958 511 = 0.31920124 51, = 0.676245148
513 = —0.0588732027 514 = 0.0626825399 Cooo= —1.01984483
C5,y = —1.06002701 C5,, = —0.285430471 C5,s= —0.0121593163
C5a0=0.0989442215 CS,y = 0.0487608753 C5,, = —0.0346353473
540 = 0.442210508 ¢, = 0.0155389963 C5s0 = 0.0192298535
5o = —0.178793571 5o, = —0.647450641 ¢Sy, = —0.545972629
cSp3= 0.0671127689 5y, = 0.0147832243 5 o= —0.192412049
5, = 0.511735943 ), = —0.0906728726 513 = —0.0121194958
c5,0= —0.283103789 c,, = —0.0710891685 5, = —0.0971627429
S5 =0.167061534 c %, = —0.135636288 c5,0= —0.150887754
C5o0= —0.0535259653 Sy = —0.699043015 Csop = —0.0428548027
545 = 0.0128170641 c5,o= —0.680231297 c5,, = 0.188599247
cS,,= —0.0217923261 5,0 = 0.507919222 c5,, = —0.0884283396
S0 = —0.0990154673 C5p0= 0.392368471 5y, = —0.614484326
C5p = 0.0507822473 C50= 0.5668414 511 = 0.121341497
Cyp0= —0.117210525 Cyoo = —0.445262241 Caor = 0.0612374732
Cg10= —0.107519532 cSyo = 0.0639223458
N N Ng o 3 TABLlE 9: Stratified Root-mean-square Deviations (in kcal
VS ZB (Z'Z)’ Z’ci*j(kQ'lQZQg) {1- mol~1) of the DMBE Potential Energy Surface
K=AB,C =0 =0 k= 1= E/(kcal mol?) N rms
tanhp(R — R} (24) 5 20 0.654
10 53 0.723
whereNa = Ng = Nc = 5, the prime means that the sum is 20 66 0.692
restricted ta + j + k < 5, and the symmetry coordinates are 28 gg 8;22
defined as 50 107 0.866
60 129 0.853
1 1 1 70 198 0.841
2 A/ 2 2 80 230 0.849
Q 3 i 3 - R, — R 90 261 0.910
_ _ pKref 100 309 0.987
Q=10 \/ﬁ _\[5 Ry Rﬁ » (25) 110 348 0.997
Qs \/5 \/1 \/1 R, — R 120 369 1.040
£ _ /= _ /2 130 397 1.051
6 6 6 140 404 1.053
150 410 1.064
The complete set of parameters (186 in all) isché 3 yi, and 160 418 1.060
3 R*, for each polynomial4\, B, or C) in eq 24, having been 170 430 1.058
obtained from a fit of the complete potential energy surface to %gg igg 1'8;2
our DMBE-SEC energies. Three polynomials of the same type 300 461 1.069
and size A, B, or C in eq 24) have been employed, one at 400 466 1.553
each of the following stationary points: HSO, HOS, and HSO 500 4717 2.793

— HOS isomerization transition state (in that order). Thus, the  a1hg vajues in italic imply that the points above the energy quoted
origin of the displacement coordinates is for each polynomial in the first column have not been included in the fit.
taken to be close to the geometry of the corresponding sta-

tionary point. Figure 6 shows the reference geometries (brokenap initio energies. As seen from Table 9, the final potential

lines) employed for the three polynomials in comparison with energy surface is able to fit 461 points (with energies up to

the geometries of HSO, HOS, and isomerization saddle point 300 kcal mot?) with an accuracy of ca. 1 kcal mdl Also

predicted by the DMBE potential energy surface (solid line). seen from Table 9 is the fact that the nonfitted points are well

To obtainR*", we have first assumed their values to be the reproduced by the DMBE potential energy surface of the present

equilibrium geometries and, subsequently, optimized them work; the rmsd is 2.8 kcal mot for all points below 500 kcall

through a trial-and-error procedure by carrying out linear least- mol~1.

squares fits. The; values have also been optimized in a similar

way. The points included in the fits have been chosen with the 4 Features of the Potential Energy Surface

condition that the total energy does not exceed 300 kcal ol

with respect to the HSO minimum. This procedure reduced the The DMBE potential energy surface predicts the most stable

number of fitted points to 461. The numerical values of the minimum to be that associated with the HSO conformer. In fact,

parameters obtained from such a procedure are listed in Tablesas seen from Table 10, HSO is 0.9 kcal midbwer in energy

6—8. than HOS. This result conforms with the most accurate
Table 9 shows the stratified root-mean-squared deviations theoretical predictions of Goumri et dlwho have predicted

(rmsd) of the final fit with respect to the fitted and nonfitted from their G-2 calculations an energy difference of 2.1 kcal
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TABLE 10: Stationary Points of the DMBE Potential Energy Surface?

J. Phys. Chem.

A, Vol. 105, No. 24, 2008929

Ror/ag RsWag Rso/ao E/kcal mol? w1 w2 w3

HSO 4.4857 2.6190 2.8569 6.0 998 1054 2181

(4.3697) (2.6248) (2.8233) (1026¥ (1164y (2271¥

(4.2502Y (2.5511Y (2.9102} (1013y (1063} (2570

HOS 1.8233 4.0819 3.0983 0.9 839 1080 3783
2.18

S---HO 1.8360 5.2513 7.0873 —-3.3 118 215 3739

SH---O 5.4670 2.5142 7.9812 —1.4 80 104 2802

TS1 2.5679 2.7084 3.1668 48.7 1711i 744 2354
47.6¢

TS2 4.0509 6.0086 2.8296 27 392i 291 1047
1.8

TS3 7.1363 2.5335 6.3778 1.1 97i 151 2725

TS4 1.8379 5.4132 6.5254 33 139i 231 3758

aHarmonic frequencies are in c) and the experimental values are in parentheses when avafdative to the absolute minimum of HSO,
—0.29615726:. © Experimental values from ref 16 Experimental values from ref 12 Best theoretical estimate, ref /Relative to the energy of
S+ OH channel~0.1702@;. ¢ Relative to the energy of @ SH channel~0.1392E;. " Relative to the energy of H SO channel;-0.1990E;.
i Best theoretical estimate, ref. 2Relative to the minimum SH-O. ¥ Relative to the minimum S-HO.

6

5+

Figure 7. Contour plot fo a S atom moving around the equilibrium OH molecule. Contours stat08287E,, with successive contours at intervals
of —0.00&;.

Figure 8. Contour plot fo a O atom moving around the equilibrium SH molecule. Contours star0&&87Ey, with successive contours at intervals
of —0.00&,.

mol~1. We have also found two van der Waals minima, namely  In Table 10, we report also four saddle points of index one.
S:++HO and SH--O, which lie 3.3 and 1.4 kcal mol below The first, labeled TS1, connects the two isomers HSO and HOS
the corresponding dissociation channels{®H or SH+ O), and is located 46.7 kcal mdlabove the global minimum. Such
respectively. an estimate agrees within 0.9 kcal mblith the ab initio results



Downloaded by PORTUGAL CONSORTIA MASTER on June 29, 2009
Published on May 22, 2001 on http://pubs.acs.org | doi: 10.1021/jp0101460

5930 J. Phys. Chem. A, Vol. 105, No. 24, 2001 Martinez-Nuiez and Varandas

6

5

Figure 9. Contour plot fo a H atom moving around the equilibrium SO molecule. Contours stat08287E,, with successive contours at intervals
of —0.009E..
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Energy/E,,
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Rgy/ag 0
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Figure 10. Stretching contour plot for linear-SH—0. Contours start Rgp/ay
at —0.287y, with successive contours at intervals-60.00&:. The

dashed straight lines indicate the cuts associated with the curves showrfigure 11. Potential energy curves for-84—0 linear configurations
in Figure 11. at fixed SO distances of (a) 5.29, (b) 5.86, and (c) Bl Also shown

for comparison are the DMBE-SEC points of the present wof®) (
points included in the fit; 4) points not included in the fit. See also
Figure 10.

of Goumri et al’ and 0.1 kcal moi! with those of Xantheas
and Dunning”’ These authors suggested that such a large barrier

might explain why only the isomer HSO is observed experi- |, Figure 8, we show a contour plot for an O atom moving

mentally. The experimental geometry and frequencies of HSO 5rqund an equilibrium SH molecule. The notable features in
are also included in Table 10 for comparison. The saddle point ¢,ig plot are the HSO minimum and a saddle point of index
TS2 corresponds to a small barrier for the dissociation processyyq for linear geometries. In addition, there is a stationary point
HSO—H + SO and is located 1.5 kcal mdlabove the disso- ¢ high energies which appears as a minimum in the two-
ciation limit; a value very similar to this one has also been ob- yimensional (2D) space scanned in the plot. Indeed, it corre-

tained by Xantheas and Dunnitign their ab initio calculations  gponds in 3D to the isomerization transition state for the reaction
(1.8 kcal mot?). In addition, the saddle points TS3 and TS4 Hso— HOS.

have been found to connect the HSO or HOS isomers with the  The plot fo a H atom moving around an equilibrium SO

3.3 kcal mot* above the corresponding van der Waals minima. associated with both isomers become clearly visible, as well as
Figure 7 shows a contour plotrf@ S atom moving around  the isomerization transition state (TS1) connecting them. Not
an equilibrium OH molecule. The main feature in this Figure visible in the plot though is the transition state (TS2) for the
is the HOS minimum. Also visible is a saddle point of index H-—atom dissociation process HOS H + OS. Another
two which occurs for linear geometries. important feature from this plot arises as a saddle point of index
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= os0f HSO 'EE
-0.35 é’ -0.10 |
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-0.10
(b
@,.: -0.15 | OHas -0.20 -
-0.20 1 L 1 L 1
%6 025 L / 0 4 5 6 7 8 9
& 0.30 V Rem/a,
' Hos Figure 13. DMBE-SEC points for thé=~ (a) and?I1 (O) states as a
-0.35 function of the HS bond distance. Also shown is the prediction of our
DMBE potential energy surface.
-0.10
(c)
@: -0.15 12c. Clearly, the two isomers (HSO and HOS) are connected
B 020+ - by a saddle point of index 1 (TS1) located 46.6 kcal Thabove
5 o5 the HSO minimum.
é 030 - Finally, we comment on the fact that our ab initio calculations
R HOS predict a2=~/2I1 crossing along the path for H approaching

035 reaction coordinate collinearly OS. Such a crossing is dictated by symmetry
. - o ) arguments, and hence becomes an avoided crossing at less
Figure 12. Minimum energy path for the reactions involving the (a) . . L A
HSO isomer, (b) HOS, and (c) both. syr_nmetrlcal geometriesCy). Th|s_|s illustrated in Figure 13,

which shows our DMBE-SEC points for tR&~ and?I1 states

as a function of the HS bond distance. Also shown in this figure
d’s the prediction of our fitted DMBE single-valued potential
energy surface. We observe that the fit is good but displays by
built-in construction a smoothed maximum at regions where
the crossing should take place.

two at the center of the plot. Looking like a maximum
(apparently due to an avoided crossing), such a feature shoul
trully be a cusp originated from the crossing of the two lowest
electronic states.

Figure 10 shows a contour plot for linear-8—O0 stretching.
The main feature from this plot is the OHS van der Waals
minimum and a saddle point of index two connecting this min-
imum with the SH+-O one, also visible in the figure. Also indi- We have reported a global single-valued DMBE form for
cated by the dashed lines in this contour plot are cuts cor- the ground electronic state of HSO. This function has been
responding to the curves shown in Figure 11. These are depictedralibrated from novel MR CISD ab initio energies after being
mainly to show that the agreement with the ab initio data is corrected for the complete one-electron basis set/complete Cl
good, and hence’ our predicted attributes for the--8d limit. This has been done Using the DMBE-SEC method
hydrogen-bonded minimum should be reliable. In fact, as a testdescribed elsewhef€.To improve the accuracy of the fit, we
of our DMBE potential energy surface, and in order to verify have introduced am-body distributed polynomial approach,
the reliability of the hydrogen bonded structure ®8, we have which implies using an individual multinomial development at
calculated additional (nonfitted) ab initio points at a fixed SO the various stationary points. For simplicity, these have been
distance of 7.18. These points are displayed graphically in restricted to the three most relevant ones corresponding to two
Figure 11c as a function of the SH distance with special sym- minima (HSO, HOS) and the saddle point connecting them.
bols. Also shown in this Figure is the prediction of our DMBE )
potential surface. Clearly, the agreement between our fitted Acknowledgment. This work has been supported by the
surface and the calculated points is quite satisfactory, suggesting"undaéo para a Ciacia e Tecnologia, Portugal, under program
that the OH--S hydrogen-bond structure is reliably described. PRAXIS XXI.

Figure 12 shows the minimum energy paths for the reactions
H + SO— HS + O and H+SO — HO + S. Specifically,
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