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We study the effect of the potential energy function on the global minimum structures of argon clusters
arising in the optimization performed by genetic algorithms (GAs). We propose a robust and efficient GA
which allows for the calculation of all of the putative global minima of ArN (N ) 3-78) clusters modeled
with four different potentials. Both energetic and structural properties of such minima are compared among
each other and with those previously obtained for the Lennard-Jones function. In addition, the possibility of
obtaining global minima of one potential through local optimization over the corresponding cluster geometry
given by other potentials was associated with some structural parameters. The influence of the contribution
from the three-body (Axilrod-Teller-Muto) triple-dipole potential (including or not a damping function to
describe its correct behavior at smaller interatomic distances) has also been analyzed.

1. Introduction

A crucial step in the theoretical study of atomic clusters is
obtaining the potential energy surface (PES) that establishes the
interactions among the atoms. Besides typifying the so-called
energetic landscapes, the PES contains all of the relevant infor-
mation about the system. Basically, the PES may be theoretical
or empirically based. In the first case, a set of electronic structure
calculations (e.g., ab initio or DFT) covering, at least, the most
relevant regions of the coordinate space must be performed,
while the second uses information obtained from experiment
(e.g., spectroscopic data) in a fitting procedure to a theoretically
stated function (which allows for an accurate extrapolation in
the configuration space where data is not available). The
practical use of ab initio PES implies the interpolation of the
calculated points using, for example, a cubic-spline function or
fitting them to an adequate function. A common feature of all
of these potential functions is their complexity (which increases
with dimensionality and accuracy), with many nonlinear terms
that become time-consuming during the computational evalu-
ation of the PES. Because of this, the most accurate potentials
are avoided in the global minimum search of atomic clusters,
and sums of simple pair potentials are usually applied.

In the last years, several theoretical works treating the dimer1–5

and trimer6 of argon appeared in the literature. In particular,
three3–5 of those works have calculated the Ar2 potential curve
by applying the CCSD(T) ab initio method with large correlated-
consistent basis sets (which include diffuse orbitals) supple-
mented by bond functions. In addition, Patkowski et al.3 have
extrapolated their results to the complete basis set limit to
improve the accuracy of the argon-argon potential. It is
interesting to notice that the dissociation energy of this new ab
initio Ar2 potential is in better agreement with experiment than
the benchmark semiempirical potential of Aziz;7 this, however,

reproduces better the vibrational quanta. In turn, the availability
of very accurate ab initio potentials for the rare gas dimers (e.g.,
Ar2) envisages the possibility of the future calculation of rare
gas cluster properties on a “pure” theoretical basis.

The aggregates of argon are usually considered as benchmarks
for applying cluster geometry optimization techniques. In this
context, Naumkin and Wales8 have used the accurate semiem-
pirical Ar2 potential of Aziz7 to calculate the global minima
for neutral ArN up to N ) 55 and verified that the structures
arising are the same as those for the Lennard-Jones (LJ) poten-
tial, except at N ) 21 where the stabilities of the two lowest LJ
minima are reversed; for N ) 21, the LJ global minimum
structure presents C2V symmetry, while the one obtained from
the Aziz potential belongs to the C1 point group. In turn, the
potential of argon clusters is usually built up as a sum of all of
the two-body interaction terms which are modeled by simple,
and sometimes inaccurate, functions (e.g., Lennard-Jones); the
inclusion in the cluster potential of three-body terms, such as
the triple-dipole (Axilrod-Teller-Muto) or even higher-order
ones (double-dipole-quadrupole, dipole-quadrupole-quadrupole,
and triple-quadrupole), has been done only occasionally. Since
the evaluation of accurate two-body potential functions is usually
time-demanding, their application to the study of clusters
severely restricts the total number of atoms forming the system.
Because of this, the simple Rydberg-London Ar2 potential
proposed by Cahill and Parsegian9 is very appealing for the study
of argon clusters. This model function reliably represents the
accurate potential of Aziz7 for Ar2, and it also yields accurate
second virial coefficients and heats of vaporization.9 Indeed,
the Rydberg-London (RL) potential for Ar2 is much more
accurate than the LJ one while not being much more compli-
cated. Then, one question arises: how different are the global
minima of argon clusters modeled by the RL and the LJ potential
functions? Moreover, one wonders whether the global minimum
structures of the RL model are more reliable than LJ ones to be
used as starting points in a local optimization procedure to obtain
the corresponding minima of more complex potential energy
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functions (e.g., the ab initio potential of Patkowski et al.3

mentioned above or potentials including three-body interactions).
In the present work, we have applied our recently proposed10

genetic algorithm (GA) to calculate the global minima of ArN

(N ) 3-78) clusters; following the work of Locatelli and
Schoen,11,12 the GA was also modified to successfully obtain
the global minima for some difficult cases in the studied range.
The argon clusters have been modeled by four different poten-
tials; two of them include only pair potentials (namely, the RL
function9 and the ab initio Ar2 potential of Patkowski et al.3),
while the other two include three-body (Axilrod-Teller-Muto)
terms in addition to the sum of all RL diatomic interactions.
Results obtained by the GA enable us to pursue three major
goals: (i) to investigate the energetic and structural differences
of global minima of argon clusters modeled by both the RL
and LJ functions and also by the more accurate ab initio potential
of Patkowski et al.;3 (ii) to study the effect of the three-body
interaction by adding to the sum of the RL two-body potentials
all of the long-range triple-dipole (Axilrod-Teller-Muto)
interactions, with and without a damping function that accounts
for the validity of this term at small interatomic distances; and
(iii) to verify if the structures obtained by the GA for clusters
modeled with the RL function can be successfully used as
starting geometries to obtain the corresponding global minima
of more complex functions (such as those involving three-body
interactions or the accurate Ar2 potential of Patkowski et al.3)
through local optimization.

The plan of the paper is as follows. In section 3, we outline
the computational procedure by presenting the potential energy
functions used to model the ArN clusters and describing the GA
applied in the optimization; in addition, we analyze some
difficult cases for the global optimization of argon clusters. A
detailed discussion of the results is given in section 3, while
the main conclusions are gathered in section 4.

2. Computational Procedure

2.1. Potential Energy Functions. The potential energy
function for the argon cluster may be approximated by

Vcluster ) ∑
i)1

N(N-1)/2

VAr-Ar(Ri)+∑
j)1

N′

VAr3
(Rj) (1)

where the first summation includes all two-body terms and the
second one refers to the three-body interactions; Rj is the vector
of the interatomic distances among the three atoms involved in
the j interaction term and N′ )(3

N). Most of the works on the
global optimization of rare gas clusters use the simple Lennard-
Jones (LJ) potential to model two-body interactions and do not
include three-body contributions. The latter is justified by the
fact that three-body terms contribute only with a few percent
to the total energy of the cluster. However, such contribution
is expected to increase as the number of atoms increases, and
hence, for sufficiently large clusters, one expects that it can even
change the topology of the global minimum structure. On other
side, the use of the LJ function may only be justified by its
simplicity and is perhaps the only way, nowadays, to perform
calculations for studying extremely large clusters. Nevertheless,
it has been shown8 that the global minima of argon clusters
described by LJ functions may present a different topology from
the one obtained with the benchmark Ar2 potential of Aziz,7

for example, for Ar21.
In this work, we have applied two types of pair potentials

for the global search procedure; one is based on state-of-the-
art ab initio calculations, while the other is simpler but not so

accurate. Thus, the first analytic function is an extension3 of
the form proposed by Korona et al.13

V(R)) (A+A′R+A′′ /R)exp(-RR+ �R2)+

∑
n)3

8

f2n(R, b)
C2n

R2n
(2)

where A, A′, A′′ , R, �, and b are adjustable parameters, C2n

denotes a dispersion coefficient, and the damping function of
Tang and Toennies,14 that is, f2n(R, b), is defined as

f2n(R, b)) 1- exp(-bR) ∑
k)0

2n
(bR)k

k!
(3)

This potential includes a repulsive exponential term and an
attractive truncated damped dispersion component. Note that
the additional A′ and A′′ parameters in eq 2, not present in the
original form of Korona et al.,13 provide more flexibility in the
highly repulsive region of the potential at small internuclear
distances. In addition, the introduction of the term containing
A′ is expected to improve the medium-range behavior of the
potential.15 The values of parameters A, A′, A′′ , R, �, and b
have been determined by Patkowski et al.3 in a nonlinear least-
squares fit to their Ar2 CCSD(T)/aug-cc-pV6Z [supplemented
by a (3s3p2d2f1g) set of midbond functions] ab initio points
after adequate16 extrapolation to the complete basis set limit
(see ref 3 for details). In turn, Patkowski et al.3 have used the
ab initio values of Hattig and Hess17 for C6, C8, and C10 in eq
3, while the higher-order (C12-C16) dispersion coefficients have
been extrapolated from the previous ones by applying the
formula of Thakkar;18 all numerical values are given in the
original paper.3

It has been pointed out by Patkowski et al.3 that their Ar2

potential is a refinement of the one of Slavicek et al.4 calculated
at the same level of theory. Indeed, they have extended the
CCSD(T) calculations to small internuclear distances, besides
extrapolating the results to the complete basis set limit (which
plays an important role in obtaining an accurate potential).3

The other two-body function applied in this work is the
simpler Rydberg-London (RL) Ar2 potential that has been
proposed by Cahill and Parsegian9

V(R)) a exp(-bR)(1- cR)- d

R6 + eR-6
(4)

where a, b, c, and e are fitting parameters, while d should be
fixed at the corresponding London-tail coefficient. Although
these parameters can be obtained from ab initio information,
Cahill and Parsegian have fitted eq 4 to the Aziz’s semiempirical
HFDID1 potential for Ar2; the reader is addressed to the paper
of Cahill and Parsegian9 for the numerical values of the para-
meters. The use of RL functions to model the two-body
interactions in the cluster saves a huge amount of computation
time (see below) while expecting to keep a sufficient accuracy
of the PES.

Figure 1 shows the Ar-Ar pair-potentials as proposed by
Patkowski et al.3 (designated as ab initio) and by Cahill and
Parsegian9 (designated as RL); for comparison, the correspond-
ing Lennard-Jones (LJ) curve is also represented. It is apparent
from Figure 1 that both ab initio and RL potentials are fairly in
agreement, although the former presents a slightly more attrac-
tive long-range tail. In contrast, the LJ potential is clearly too
attractive for internuclear distances above ∼8.5a0. As we will
see later in this paper, the long-range tail of the LJ potential

6080 J. Phys. Chem. A, Vol. 112, No. 27, 2008 Marques et al.
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has an influence on the structure and energetics of the global
minima of argon clusters.

Concerning the three-body interaction, we employ the well-
known Axilrod-Teller-Muto long-range potential19–21

VDDD(R1, R2, R3))
3CDDD(1+ 3 cos φ1 cos φ2 cos φ3)

R1
3R2

3R3
3

(5)

where R1, R2, and R3 are the internuclear distances defining the
triangle whose vertices are atoms 1, 2, and 3, and φi are the
corresponding internal angles; the value of CDDD has been
calculated as the average between its upper and lower bounds
provided by Standard and Certain,22 that is, CDDD ) 176Eha0

9.
However, eq 5 is valid only in the region where all three
interatomic distances are very large. At least two attempts23,24

have been made to extend the validity of eq 5 to smaller
interatomic distances by the introduction of damping functions.
The major differences between the damping function proposed
by Varandas23 and the one of Sachse et al.24 appear only at
very small distances that are not relevant for the present study.
Then, we have chosen the former to be used in this work.
Although higher-order contributions for the three-body interac-
tion should be included, it has been shown that they play a minor
role, for example, in the calculated bound states of Ar3;25 hence,
we study in this work only the effect of the Axilrod-Teller-Muto
potential (both with and without the damping function proposed
in ref 23).

In summary, we have employed in this work four different
potential functions to model argon clusters: the sum of pair
potentials where the two-body function is the one of Patkowski
et al.3 (hereafter designated by Pot I) or that proposed by Cahill
and Parsegian9 (Pot II); in the other two functions, the two-
body interactions are also described by eq 4, while the three-
body contribution is assumed to follow eq 5 only (Pot III) or

eq 5 damped for small internuclear distances as described above
(Pot IV). Table 1 presents the average computational times
required to calculate all of these potentials and their derivatives
for Ar78. In terms of the CPU time consumed for the calculation
of the potential, the following order is presented: Pot II < Pot
III < Pot I < Pot IV. In contrast, the order for the computation
of the derivatives is: (Pot II)′ < (Pot I)′ < (Pot III)′ < (Pot
IV)′. It is worth noting that the computation of Pot I is slightly
more expensive than that of Pot III, but the average CPU time
for the calculation of the corresponding derivatives follows the
reverse order. This may be attributed to the fact that Pot III
uses simple RL pair potentials (note the extremely short CPU
time of Pot II that uses only RL functions), while Pot I is a
sum of the more complicated functions given by eqs 2 and 3;
however, the two-body contribution for the CPU time is
overwhelmed by the calculation of three-body derivatives.
Finally, since the optimization procedure uses both the potential
and derivatives (see section 2.2), one expects the average CPU
time needed for the global minimum search to follow the
aforementioned order for the computation of derivatives.

2.2. Genetic Algorithm for Global Optimization. The
genetic algorithm (GA) used in the present work has been
recently proposed by us10 and has shown to perform well for
Morse clusters. The main steps carried out by the GA are
represented in the flowchart of Figure 2. Although it may be
seen as analogous to other GAs already published in the liter-
ature (ref 26 and references therein), our search procedure
presents some subtle differences. Basically, it is a generational
hybrid-type algorithm which we describe in the following.

The search procedure begins with the generation of 100
individuals (cluster structures) by randomly choosing the
corresponding 3N Cartesian coordinates of the N atoms forming
the cluster; the coordinates are allowed to have values between
0 and 8.5N1/3,27 but only internuclear distances larger than 5a0

are accepted because the potential becomes too repulsive when
two atoms approach close to each other. Then, as represented
in Figure 2, all of the 100 individuals of the population are
subjected to local optimization by applying the Broyden-
Fletcher-Goldfarb-Shanno-limited memory quasi-Newton (L-
BFGS) method28,29 (a maximum of 500 iterations are allowed
for each local optimization). After local optimization, the fitness
of each individual is evaluated using the appropriate potential
function. The GA adopts a fully generational approach, that is,
in each generation, the whole population is replaced by its
offspring. The new set of solutions is obtained after a sequence
of steps is performed. First, tournament selection (with a tourney
size of 5) chooses 100 parents, and afterward, the standard

Figure 1. Pair potentials for Ar2: potential function of eqs 2 and 3,
which has been fitted to ab initio data3 (solid line), the Rydberg-London
function9 (dashed line), and the Lennard-Jones potential (dotted line).
See the text.

TABLE 1: Average Computation Time Spent in the
Evaluation of the Potential and the Derivatives for the LJ
and the Four Functions Used in This Worka

average computation timeb

function potential derivatives

LJc 100 12960
Pot I 4060 21070
Pot II 330 13450
Pot III 3830 242050
Pot IV 43430 312520

a In all cases, the average time corresponds to a calculation on a
ATHLON 64 X2 3800+ 2.0 GHz by performing 1000 evaluations
of the potential function or derivatives of Ar78, whose coordinates
have been generated randomly. b The average computation times are
given in internal CPU units. c LJ stems for the summation of all
Lennard-Jones pair potentials of the Ar78 cluster.

Rare-Gas Cluster Optimization by Genetic Algorithms J. Phys. Chem. A, Vol. 112, No. 27, 2008 6081
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genetic operators are applied to the selected individuals. Cut
and splice crossover, proposed by Deaven and Ho,30 is applied
with a probability of 0.7 to the 50 pairs of selected structures.
Then, a mutation operator is used to guarantee a certain degree
of diversity in the population. In this study, we have applied
Sigma mutation with a probability of 0.1 to each one of the
atoms that compose the individuals resulting from crossover.
We further note that the application of this operator to an atom
consists in its displacement along the three Cartesian axes by a
random amount (whose values are sampled from a standard
normal distribution) proportional to σ; in this study, we have
selected σ ) 0.1 × (8.5N1/3). The descendants that result from
the application of the genetic operators are locally optimized
using the aforementioned procedure and, then, evaluated. We
emphasize at this stage that the hybrid GA was tailored to
maximize performance, which is achieved by ensuring high
locality features in the algorithm. We have shown that high
locality may be achieved through the application of a moderate
disruptive mutation operator followed by local optimization.10,31

This GA implements an improved elitist strategy. During the
optimization, it classifies individuals into four different classes
according to their momenta of inertia: {oblate, spherical, prolate,
asymmetric}. Then, whenever the process of creating a new
population is complete, the elite operator is applied to members
of each class, ensuring that the quality of the best individual
with a given rotational symmetry does not decrease along the
generations. This approach guarantees the preservation of the
best solutions found so far and implements a basic mechanism
for the preservation of diversity. The new population of 100
individuals substitutes the old one, and all of the process is
repeated up to the generation where the number of calls to the
evaluation function reaches 500000. The best individual obtained

within 30 runs of the described GA is assigned as the global
minimum structure of a given N-atom cluster.

2.3. Difficult Cases for Global Optimization. We address
here the problems one met in the global search of argon clusters
for some sizes (i.e., values of N) by applying the simple GA
described in the previous subsection. It is well-known from the
literature (ref 32 and references therein) that the global
optimization of atomic clusters (with Lennard-Jones or, espe-
cially, Morse potentials) becomes particularly hard for some
nuclearities; additional difficulties for global optimization arise
due to the general increase in the number of local minima with
N.33–35 The size-specific difficulties are essentially related to the
particular topography features of the potential energy surface
(PES). Whereas for most of the Lennard-Jones clusters the
topography of the PES is characterized by a single funnel
coming from the high-energy regime to the low-energy icosa-
hedral-based minima36 (which contains the global minimum),
the N ) 38 and 75-77 clusters (just to mention those in the
range studied here) present, as well, a much narrower funnel
leading to the global minimum.37,38 Thus, the probability of
reaching the basin of attraction of the global minimum is
extremely low in such cases, while the large energy barriers
between the two funnels prevent traditional searching methods
(e.g., simulated annealing) from being successful. Indeed, even
more powerful approaches like the “basin-hopping”39 or GAs30,40

have difficulties to find minima for those double-funnel clus-
ters.41

Since there is no table of putative global minima for the
potential functions applied in this work, we have used for
comparison those obtained by local minimization of the corre-
sponding LJ clusters. The putative global minimum for a given
argon cluster modeled by each potential function is not reached
in the GA optimization whenever the energy of the optimum
so obtained is higher than that arising from the local minimiza-
tion of the corresponding LJ structure. Specifically, besides
failing to find out the global minima of argon clusters in the
range of N ) 75-77 for all of the potentials (Pot I-Pot IV),
the GA described in section 2.2 was not successful for N ) 65
(with Pot I) and 78 (with Pot I, Pot III, and Pot IV). In contrast,
our GA was quite efficient in discovering the global minima of
all of the other clusters, including the N ) 38 one (although in
this case, the rate of success was only ∼10%).

In the past few years, a couple of approaches11,12,42 were
developed to deal with this double-funnel problem in a more
efficient way. The technique introduced by Hartke42 uses a
parameter which controls the diversity of structural types in the
population of the GA, preventing it from generating only
icosahedral structures. In turn, Locatelli and Schoen11,12 have
proposed a transformation in the potential energy surface, so
that the nonicosahedral global minima are much more likely to
be found. It consists of applying a two-phase local optimization,
comprising a minimization of the modified function followed
by the search of the corresponding minimum in the “true” PES.
The modified PES includes two penalty terms and can be
represented as follows

V cluster
mod )Vcluster +∑

k
{ µRk + �[max(0, R′k

2 -D2)]2} (6)

where the first term is the “true” PES and the penalty parameters
µ, �, and D have to take non-negative values; D is an
underestimate of the diameter of the cluster and Rk′ is a
modification of the internuclear distance Rk (between atoms i
and j)

Figure 2. Flowchart representing the main steps of the GA applied in
the present work. See the text.

6082 J. Phys. Chem. A, Vol. 112, No. 27, 2008 Marques et al.
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Rk′ ) [w1(xi - xj)
2 +w2(yi - yj)

2 +w3(zi - zj)
2]1/2 (7)

where (x, y, z) are Cartesian coordinates and the weights w1,
w2, and w3 may have different values between 0 and 1, so that
one shape may be favored in relation to another; for example,
by choosing different weights for the three Cartesian coordinates,
ellipsoidal shapes may be favored in relation to spherical ones.12

It is important to note in eq 6 that the second term (first in the
summation) should give stronger penalty to internuclear dis-
tances greater than Re (the equilibrium distance). This term has
a spherical compression effect on the cluster since it acts on all
pairs of atoms12 and contributes to reduce the number of minima
and transition states on the PES.43 In contrast, the last term in
eq 6 strongly penalizes internuclear distances greater than the
estimated diameter of the cluster (D) but has no influence on
pairs of atoms close to each other.11 This shape-type penalty
term is crucial for discovering the most difficult Lennard-Jones
clusters.11,12

On the basis of its success for LJ and Morse clusters,11,12,44,45

we expect that the two-phase optimization method11,12 described
above is able to increase the performance of our GA in
discovering the global minima of the “difficult” ArN clusters.
We note that the implementation of the two-phase optimization
procedure in our GA is straightforward (only the local optimiza-
tion step of the flowchart in Figure 2 needs to be modified),
being that the transformation of the PES (eqs 6 and 7) is applied
only to the two-body potentials; even in the cases of Pot III
and Pot IV, we expect this transformation to be efficient since
the magnitude of the three-body terms is very small in com-
parison with that of two-body ones. As a testing ground, we
have applied this new GA to search the global minimum for
Ar38. The rate of success increases from ∼10% (as mentioned
above) to 100% for all of the potentials. Moreover, the improved
version of the GA allows for discovering of the putative global
minima of all argon clusters that could not be reached by the
simple algorithm described in the previous subsection. For
completeness, we give in Table 2 the values of parameters of
eqs 6 and 7 used for the global optimization of each “difficult”
argon cluster. It should be noted that the parameters given in
Table 2 allowed us to find out the global minimum at least once
in 30 runs of the GA, but they have not been tuned to maximize
the success rate; this point may be addressed in a future work.

3. Results and Discussion

Both the evolutionary algorithm described in section 2.2 and
its improved version (section 2.3) have been applied to obtain
the putative global minima of ArN (N ) 3-78) clusters as
modeled by Pot I, Pot II, Pot III, and Pot IV presented in section
2.1. The energies of the global minima obtained for the four
potential functions are given in Table 3. Note that, for each N,
the largest difference in the energy of the global minima among
the four potential functions never exceeds 5mEh (∼2.7% of the
total energy). In general, this difference tends to increase with
N, and it is largest between Pot I and Pot III. Although not
shown in Table 3, the corresponding difference between the
global minima of Pot II and those obtained8 by using the Aziz
potential7 varies from ∼-0.5% for N ) 3 up to ∼0.9% for N
) 55; for N g 10, the global minima from the Aziz potential
become deeper than those of Pot II. These small differences
are not surprising if one has in mind that the RL potential was
fitted to the Aziz potential (see section 2.1). Also given in Table
3 is the symmetry point group of each minimum. Most of the
argon clusters in the range of 3 e N e 78 have global minima
structures belonging to the same symmetry point group, which

is independent of the potential used; one exception arises at N
) 78, for which Pot I, Pot III, and Pot IV lead to C1 structures
while Pot II presents a global minimum with Cs symmetry. Thus,
the specific features of these potentials appear to have little
influence on the topology of argon clusters up to Ar78. The
symmetry point groups are in agreement with those obtained
by Naumkin and Wales8 for argon clusters up to Ar55, which
have been modeled by the benchmark potential of Aziz.7

Excluding Ar21 (C1), Ar67 (C2), Ar69 (Cs), and Ar78 (C1 in case
of Pot I, Pot III, and Pot IV), the agreement is also apparent
between the present structures and those obtained with the
simple Lennard-Jones potential;46 the corresponding symmetry
point groups for LJ clusters are C2V, Cs, C5V, and Cs, respectively.

3.1. Energetic and Structural Trends of Pair Potentials.
The average binding energy can be calculated from Table 3
through the expression47

〈Eb〉 )-Vcluster(N)/N (8)

where Vcluster(N) is the global minimum energy of the cluster
with N atoms. Another important quantity is the sublimation
energy, that is, the energy required to remove an atom from
the cluster

∆Esub )E(N)-E(N- 1) (9)

where E(N) ) -Vcluster(N) and similarly for E(N - 1). Although
both 〈Eb〉 and ∆Esub may give important information about the
energetics of the clusters, the relative stability is better taken
into account by calculating the second difference in energy, that
is

∆2E) 2E(N)-E(N- 1)-E(N+ 1) (10)

It is this quantity that is generally compared with experimental
mass spectral intensities.

We represent in Figure 3 the average binding energy [panel
(a)], the sublimation energy [panel (b)], and the second energy
difference [panel (c)] as a function of the size of the cluster.
We include in Figure 3 the results calculated with Pot I and
Pot II of the present work as well as those obtained with the LJ
clusters.46 As a general trend for all three potentials, one ob-
serves that the average binding energy [panel (a)] increases
rapidly with the number of atoms in the cluster for N e 13;
then, as N increases, the slope of the curve tends to decrease.
Particularly interesting in this figure is the apparent coincidence
between the curves for Pot I and Pot II, while the average
binding energy from the Lennard-Jones potential diverges as N
increases. This may be related to the fact that the LJ potential
is more long-range than the ab initio3 and the Rydberg-London9

ones (see Figure 1). We further note the appearance of local
regions of enhanced stability (small concavities) all over of the
curves and, in particular, for N ) 13 and 55 (in this case, the
curve corresponds to a maximum), which are known to be stable
icosahedral structures. This is especially obvious from the peaks

TABLE 2: Parameters of Equations 6 and 7 Used in the
Global Minimum Search of Argon Clusters That Are Hard
to Optimize; See the Text

cluster µ/Eha0
-1 �/Eha0

-4 D/a0 ω1 ω2 ω3

Ar38 6.4 × 10-6 1.78 × 10-7 20 1 1 1
Ar65 0 4.52 × 10-4 12 1 0.85 0.65
Ar75 3.2 × 10-5 4.52 × 10-4 20 1 0.7 0.7
Ar76 3.2 × 10-5 4.52 × 10-4 20 1 0.7 0.4
Ar77 3.2 × 10-5 4.52 × 10-4 12 1 0.75 0.5
Ar78 3.2 × 10-5 4.52 × 10-4 12 1 0.75 0.5
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(maxima) shown in panels (b) and (c), which tend to be
associated with structures with a high relative stability.

It is clear from Figure 3b that the sublimation energies
calculated from Pot I and Pot II are essentially the same for all
clusters considered in this work. Conversely, the sublimation
energies obtained with the Lennard-Jones potential tend to
overestimate those of Pot I and Pot II, especially as N increases;
in any case, all potentials anticipate the same peaks. We note,
among others, the high values of the sublimation energy for
the N ) 13 and 55 icosahedral structures, as well as the N )
38 octahedral cluster. This pattern may be associated with the
high stability of the icosahedral structures, and in fact, one
obtains for these clusters similar peaks in the curves of the
second energy difference shown in Figure 3c, while the
maximum in the sublimation energy for Ar38 must be due to
the relative high instability of Ar37; indeed, Ar39 is relatively
more stable than Ar38, as can be seen from Figure 3c. In addition,
it is especially interesting to observe in Figure 3b that the near-
icosahedral Ar52, Ar53, and Ar54 structures present sublimation
energies which are only slightly below the value for Ar55.

Figure 3c shows for the second energy difference a set of
maxima corresponding to structures that present a relative
stability with respect to their immediate neighbors (the so-called
“magic numbers”). In this set, we can find a great variety of
cluster structures, the highest peaks being those for Ar13 and
Ar55 (Mackay icosahedra). Also, important peaks appear for Ar19

TABLE 3: Energies (in mEh) and Symmetries of the Global
Minima of ArN (3 e N e 78) Obtained with the Four
Potentials Investigated in This Work

N symmetry Pot I Pot II Pot III Pot IV

3 D3h -1.35691 -1.36631 -1.36111 -1.36167
4 Td -2.71382 -2.73263 -2.71184 -2.71410
5 D3h -4.10349 -4.12767 -4.09030 -4.09417
6 Oh -5.67757 -5.69830 -5.63884 -5.64390
7 D5h -7.39167 -7.42172 -7.33724 -7.34528
8 Cs -8.84616 -8.87323 -8.77065 -8.78014
9 C2V -10.73713 -10.76437 -10.63165 -10.64369
10 C3V -12.62101 -12.64608 -12.48225 -12.49684
11 C2V -14.50991 -14.53074 -14.33495 -14.35213
12 C5V -16.76436 -16.78449 -16.54247 -16.56349
13 Ih -19.54973 -19.57116 -19.26499 -19.29127
14 C3V -21.06413 -21.07550 -20.75087 -20.77831
15 C2V -23.00568 -23.00995 -22.65482 -22.68446
16 Cs -24.94037 -24.93549 -24.54913 -24.58091
17 C2 -26.87660 -26.86217 -26.44494 -26.47877
18 C5V -29.09673 -29.07731 -28.61207 -28.64970
19 D5h -31.76234 -31.75067 -31.22284 -31.26573
20 C2V -33.67800 -33.65236 -33.09359 -33.13822
21 C1 -35.58915 -35.55302 -34.96343 -35.01015
22 Cs -37.76036 -37.71458 -37.07943 -37.12935
23 D3h -40.34019 -40.30133 -39.60407 -39.65881
24 Cs -42.23723 -42.18230 -41.45441 -41.51085
25 Cs -44.33858 -44.27194 -43.50112 -43.56047
26 Td -46.84264 -46.78212 -45.94903 -46.01295
27 C2V -48.82729 -48.75820 -47.89565 -47.96172
28 Cs -50.86546 -50.77644 -49.87321 -49.94158
29 D3h -53.24880 -53.16414 -52.19961 -52.27217
30 C2V -55.29208 -55.19645 -54.20110 -54.27600
31 Cs -57.62955 -57.35298 -56.38502 -56.45350
32 C2V -60.20651 -59.91201 -58.89066 -58.96263
33 Cs -62.39393 -62.07399 -61.01328 -61.08725
34 C2V -64.57976 -64.23434 -63.13442 -63.21040
35 C1 -67.03933 -66.68158 -65.53637 -65.61588
36 Cs -69.61840 -69.24240 -68.04338 -68.12638
37 C1 -71.80522 -71.40368 -70.16554 -70.25053
38 Oh -74.64036 -74.14214 -72.87512 -72.95546
39 C5V -77.34581 -76.90678 -75.55246 -75.64533
40 Cs -79.53493 -79.07027 -77.67692 -77.77175
41 Cs -81.74517 -81.25195 -79.81821 -79.91505
42 Cs -84.20850 -83.70233 -82.22277 -82.32308
43 Cs -86.78679 -86.26216 -84.72831 -84.83215
44 C1 -89.00626 -88.45184 -86.87715 -86.98297
45 C1 -91.56036 -90.98415 -89.35680 -89.46565
46 C2V -94.53076 -93.93973 -92.24851 -92.36218
47 C1 -96.75126 -96.13017 -94.39813 -94.51378
48 Cs -99.32511 -98.67858 -96.89172 -97.01039
49 C3V -102.29061 -101.62953 -99.77864 -99.90215
50 Cs -104.54794 -103.85245 -101.95835 -102.08386
51 C2V -107.25612 -106.52088 -104.56189 -104.68988
52 C3V -110.24273 -109.48949 -107.46464 -107.59743
53 C2V -113.22743 -112.45637 -110.36561 -110.50320
54 C5V -116.22035 -115.43017 -113.27341 -113.41573
55 Ih -119.22265 -118.41203 -116.18919 -116.33615
56 C3V -121.01955 -120.17804 -117.92503 -118.07344
57 Cs -123.02555 -122.16833 -119.88858 -120.03861
58 C3V -125.60273 -124.72684 -122.39976 -122.55282
59 C2V -127.81305 -126.90587 -124.53213 -124.68788
60 Cs -130.41620 -129.48729 -127.06482 -127.22346
61 C2V -133.01619 -132.06543 -129.59413 -129.75569
62 Cs -135.20277 -134.21853 -131.69988 -131.86410
63 C1 -137.80002 -136.79403 -134.22641 -134.39352
64 Cs -140.39436 -139.36662 -136.74998 -136.91999
65 C2 -142.58329 -141.52216 -138.85844 -139.03107
66 C1 -145.17767 -144.09485 -141.38223 -141.55773
67 C2 -147.77031 -146.66582 -143.90431 -144.08270
68 C1 -150.28603 -149.16810 -146.33323 -146.51750
69 Cs -152.93695 -151.78986 -148.90145 -149.08870
70 C5V -155.91957 -154.72271 -151.77176 -151.96167
71 C5V -158.62526 -157.42369 -154.40571 -154.60058
72 Cs -160.83553 -159.60751 -156.55098 -156.74768
73 Cs -163.36224 -162.10086 -158.98772 -159.18781
74 Cs -165.94604 -164.66304 -161.50118 -161.70410
75 D5h -168.79947 -167.30390 -164.19232 -164.38079
76 Cs -171.03976 -169.51807 -166.36214 -166.55331
77 C2V -173.67393 -172.12727 -168.92252 -169.11653
78 C1 (Cs)a -175.91374 -174.39790 -171.09183 -171.28853

a C1 is for Pot I, Pot III, and Pot IV, while the minimum for Pot
II presents Cs symmetry.

Figure 3. Average binding energy (a), sublimation energy (b), and
second energy difference (c) as a function of the size of the cluster.
The lines represent the results for Pot I (solid), Pot II (dashed), and
Lennard-Jones (dotted). The most relevant line features are pointed
out by the corresponding numbers of N in panels (a) and (b). In turn,
the numbers in panel (c) mark the peaks associated to clusters with a
minimum coordination number of 6. See the text.
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(two fused centered icosahedra), Ar23 (triple icosahedra), Ar26

(quadruple icosahedra), Ar29, Ar39, Ar46, Ar49, Ar71, and Ar75

(Marks decahedra). Note that these clusters are relatively stable
because they have the surface atoms highly coordinated (in all
of these cases, the minimum coordination number is 6).
Moreover, other minor peaks are visible in Figure 3c for
intermediate nuclearities whose structures present a minimum
coordination number smaller than 6. Excluding the very small
peak at N ) 67 that is not present in the case of LJ, the other
ones are fairly predicted by Pot I and Pot II.

A better way to understand the relation between the form of
the pair potential and the global minimum energy of the cluster
may be achieved by partitioning it into three components48

Vcluster )Enn +Estrain +En-nn (11)

where Enn is the energy obtained by assuming that all distances
between nearest-neighbor atoms are equal to the equilibrium
distance (Re) of the corresponding diatomic potential, while Estrain

is the component accounting for the bonding distances being
strained in relation to Re; En-nn is the energetic contribution of
all non-nearest-neighbor interactions (i.e., associated with large
distances) between the atoms of the cluster. Though the
separation in three different components may be helpful for the
present analysis, one should have in mind that those terms in
eq 11 are not completely independent for obtaining the global
minimum structure as discussed below. We represent in Figure
4 these three components of the energy for Pot I, Pot II, and
LJ. It is clear from this figure that the energy due to the
nearest-neighbor contacts (Enn) is the most important com-
ponent among those in eq 11. It is worth noting from Figure
4a that the Enn curves for the three potentials are nearly
coincident, which is an indication of both similar well depths
and essentially the same number of nearest-neighbor distances
for each N. In contrast, the differences among the potentials
are well patented in the curves of the strain energy [panel
(b)] and En-nn [panel (c)]. In both cases, all of the curves
present a similar behavior with N, but the differences among
the potentials studied increase with the number of atoms in
the cluster and are larger between LJ and the other two
functions than between Pot I and Pot II. Moreover, LJ clusters
tend to be less (more) strained than those modeled with Pot
I and Pot II for N e 30 (N > 30), which may be a
consequence of the longer range of the LJ pair potential. This
factor acts in two opposite ways: on one side, Estrain decreases
with the increasing range of the potential for a given
geometry49 because the curvature of the potential is less
narrow; on the other side, the contribution from En-nn becomes
more important as N increases (especially for LJ clusters, as
shown in Figure 4c), which leads to more-strained structures
(i.e., Estrain increases essentially due to compression). The
balance of these two factors occurs for N around 30 and
explains the behavior displayed in Figure 4b.

It is apparent from Figure 4a that the values of Enn tend to
decrease (i.e., to be more negative) with increasing N since the
number of nearest-neighbor distances is expected to rise with
the nuclearity of the cluster. Exceptions to this behavior occur
for N ) 30-31 and 74-75, which is due to a decrease in the
number of nearest-neighbor distances for Ar31 and Ar75 in
relation to Ar30 and Ar74, respectively. It is interesting to observe
in Figure 4b the abrupt fall off of the strain energy for those
nuclearities, which is a likely factor to determine the afore-
mentioned decrease in the number of nearest-neighbor
distances. Indeed, the strain energy increases essentially up
to N ) 30 so that the clusters may accomplish the highest

number of nearest-neighbor distances (which leads to more
stable structures); for N ) 31, however, the value of Estrain

that would result from an increase of Enn is too high, that is,
leading to an unfavorable geometry. This competition
between Estrain and Enn originates the well-known structural
changes for N ) 38 (Ar38 has octahedral geometry) and N )
75-77 (Ar75, Ar76, and Ar77 have decahedral geometry) for
which less-strained structures become more stable than
Mackay icosahedron-type ones. Because of this, the number
of non-nearest-neighbor distances has an extra increase, and
hence, the En-nn curve drops down for those nuclearities
(Figure 4c).

Although the En-nn component is expected to have a minor
contribution to the structure of the global minimum,48 Figure
4c shows that it becomes more important as the number of
atoms increases or the potential presents a more pronounced
long-range tail. Specifically, non-nearest-neighbor interactions
lead to a contraction of nearest-neighbor distances from the
corresponding pair potential equilibrium value (whose effect
increases with the range of the potential),50 and hence, they
have a certain influence in obtaining more compact structures,
as discussed above. In addition, non-nearest-neighbor interac-
tions are known to play also a role in lowering the energy of
the hexagonal close-packed (hcp) lattices in relation to the
face-centered cubic (fcc) ones for LJ potentials.51 In fact,
the hyperradius of global minimum structures represented

Figure 4. The three contributions to the energy of the cluster according
to eq 11 as a function of the size of cluster: (a) nearest-neighbor
contribution, Enn; (b) strain energy, Estrain; (c) non-nearest-neighbor
component, En-nn. The lines represent the results for Pot I (solid), Pot
II (dashed), and Lennard-Jones (dotted). Major discontinuities are
indicated by the corresponding values of N in panel (b); values in
parentheses are only for the case of Pot I. See the text.
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as a function of N in Figure 5 shows that the LJ potential
leads to the most compact structures (lowest values of the
hyperradius), which is in agreement with the fact that LJ is
more long-ranged than the other two pair potentials (see
Figure 1). Note that the hyperradius (F) arises in the
hyperspherical coordinates representation and can be related
to the moments of inertia of the system (I1, I2, and I3) through
the expression52,53

F2 )
I1 + I2 + I3

2MN
(12)

where MN is the total mass of the cluster. Whereas F may
represent a measure of the compactness of the cluster, its shape
is better visualized by the deformation indices52

�+)
I1 - I2

MNF
2

(13)

�-)
I3 - I2

MNF
2

(14)

where one has assumed that I1 g I2 g I3 and, hence, �- e 0
and �+ g 0. On the basis of the values of these deformation
indices, one may classify the argon clusters as spherical tops

(�- ) �+ ) 0), prolate tops (�- < 0 and �+ ) 0), oblate tops
(�+ > 0 and �- ) 0), and asymmetric tops (�- < 0 and �+ >
0), as described by Aquilanti and collaborators.52 In turn, we
represent the deformation indices as a function of the number
of argon atoms in the lower panel of Figure 5. Note that two
sets of lines (for each potential) are shown in this lower panel;
one represents �+ and never goes below zero, while the other
is for �- and takes only negative or null values; of course, both
lines touch each other for spherical top structures. For the pair
potentials considered in Figure 5, all present spherical tops are
at N ) 4, 6, 13, 26, 38, and 55; prolate tops arise for N )
5, 14, 18, 19, 29, 56, 58, 69 (only for LJ), 70, 71, and 78 (only
for Pot II), while oblate top structures are the
N ) 3, 7, 10, 12, 23, 39, 49, 52, 54, and 75 ones. The remaining
clusters of argon considered in this work are asymmetric tops.
It is worth noting in Figure 5 the general agreement between
Pot I, Pot II, and LJ. In the case of Pot I and Pot II, the only
exception arises for Ar78, where the first potential leads to an
asymmetric shape global minimum structure (with C1 symmetry)
while the second one origins a prolate top (with Cs symmetry);
although having Cs symmetry (like for Pot II), the N ) 78 LJ
cluster is an asymmetric top (like that for Pot I). Besides this,
more exceptions arise for the comparison of LJ with Pot I (or
Pot II): N ) 21, 66, 67, and 69. As mentioned above, Ar69 is a
prolate (asymmetric) top for the LJ (Pot I and Pot II) potential(s),
showing C5V (Cs) symmetry. Conversely, Ar21, Ar66, and Ar67

are asymmetric tops for all of the pair potentials, though
presenting different magnitudes for the deformation indices of
clusters modeled by LJ and both Pot I and Pot II; both Ar21

and Ar66 show C1 symmetry for all three potentials, while Ar67

belongs to the Cs (C2) point group in the case of LJ (Pot I and
Pot II).

3.2. Three-Body Contribution. One of the goals of the
present work stems from the evaluation of the three-body effects
in the structure and energy of the global minima of argon
clusters. Although not shown in Figure 3 for clarity, the curves
for the average binding energy, sublimation energy, and second
energy difference for Pot III and Pot IV essentially resemble
the corresponding ones for Pot II. Thus, the main energetic
features are not significantly modified by including three-body
interactions in the potential of argon clusters up to Ar78. In
addition, we can say (although not represented in Figure 5) that
the curves of the hyperradius and shape parameters for both
Pot III and Pot IV virtually coincide (within the scale of the
plots) with those for Pot I (and also for Pot II, excluding N )
78). This result prompts us to conclude that the three-body part
of the interaction only slightly perturbs the structural properties
(shape and compactness) of the global minima, at least in the
range of N ) 3-78. This is an expected outcome since the
three-body term of the potential is very small in comparison
with the two-body contribution (see above).

Figure 6 displays the contribution of the Axilrod-Teller-Muto
triple-dipole interaction for the total energy of argon clusters
in the range of 3 e N e 78. It is apparent from this figure that
the Axilrod-Teller-Muto contribution for the total energy of
each global minima is quite small (not reaching 2% of the total
energy). The general trend consists of a fast increase of the three-
body contribution up to N around 30; then, it drops down at N
) 31, followed by a slower increase for larger clusters.
However, small oscillations occur in the curves of Figure 6 for
particular nuclearities, the maxima being associated with less
compact icosahedral structures (e.g., Ar13 or Ar55), while the
minima appear for structures with a certain degree of compact-
ness like the nonicosahedral Ar38 cluster. Note that the triple-

Figure 5. Dependence of hyperradius (upper panel) and deformation
indices �- and �+ (lower panel) on the number of atoms in the cluster.
Note that lines below (above) zero in the lower panel are for �- (�+)
since the deformation indices always fulfill the relations �- e 0 and
�+ g 0; hence, when �- and �+ are simultaneously zero, the two
corresponding curves touch each other, and the structure is a spherical
top. For clarity, the curves for Pot III and Pot IV are not plotted, but
they virtually coincide with those for Pot I. See the text.
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dipole interaction is generally destabilizing for triangles with
only acute angles, which is more likely to occur for compact
structures. Another factor that weakens the triple-dipole interac-
tions is the average number of nearest-neighbor atoms, which
may partly explain the aforementioned reduction in the three-
body contribution at Ar31 and the minima of the curves, for
instance, at Ar21 and Ar24; the average number of nearest-
neighbor atoms is ∼3.71 for Ar31 (in comparison with ∼4.03
for Ar30 and ∼3.75 for Ar32), ∼3.62 for Ar21 (in comparison
with ∼3.60 for Ar20 and ∼3.68 for Ar22), and ∼3.79 for Ar24

(in comparison with ∼3.78 for Ar23 and ∼3.84 for Ar25).
The contribution of three-body interactions at small cluster

sizes contrasts with the expected value of ∼10% at the bulk.54

Indeed, surface effects, which are responsible for a great
reduction of three-body terms, become less important as the
number of argon atoms increases. We observe such a trend in
Figure 2, although the three-body contribution is far away from
the bulk limit. In a similar study but using LJ pair potentials
and CDDD ) 516Eha0

9 in the Axilrod-Teller-Muto terms (eq
5), Wales55 has also obtained a nonlinear increase of the change
in energy from the many-body to the two-body potential with
increasing LJ energy. He also found55 that the three-body
contribution rises from ∼2.6% for Ar5 to ∼5.1% for Ar55. It is
worth noting that the discrepancy between the results of Wales
and those from the present work may be due to the different
values used in each case for CDDD as well as the distinct two-
body potentials.

Finally, it is interesting to observe in Figure 6 that the
inclusion of a damping function to account for charge overlap
effects in the triple-dipole term (Pot IV) slightly reduces the
three-body contribution for the total energy of the argon clusters.
However, such a reduction appears to be similar for all sizes
studied; therefore, the curves are essentially parallel to each
other.

3.3. Local versus Global Optimization. One important point
that arises when studying larger clusters is to know whether a
simpler potential (e.g., the LJ potential) may lead to the same
global minima structures as those from an accurate function

(e.g., Pot I in the context of this work), which is expected to be
rather complicated and, hence, computationally demanding (see
Table 1). If so, such a function may be used instead in the global
minimization procedure, and the global minimum of the accurate
function is then easily obtained by performing a small number
of steps of a local search algorithm. Of course, this kind of
scheme leads to a strong reduction of the computational effort
of the global minimization.

In the context of silicon cluster optimization, Hartke56 has
proposed a guiding function that is continuously improved by
including more accurate information (e.g., ab initio energies)
along the minimization procedure. Although more rigorous than
the scheme suggested above for two-body potentials, the kind
of approach proposed by Hartke56 is quite expensive and
probably unnecessary for nonbonding rare gas clusters. Thus,
we have performed a local optimization for ArN (N ) 3-78)
modeled by function Pot I, taking the corresponding LJ cluster
geometry46 as the starting point; the minima are always reached
within a maximum number of 30 iterations. Then, we performed
a similar local optimization but giving the global minima
geometries obtained with Pot II as starting points. Table 4 shows
the differences between the putative global minimum for Pot I
and those obtained from the corresponding structures for LJ
and Pot II in the unsuccessful cases. It is worth noting that one
can obtain the global minima of Pot I through local optimization
of the global minimum structures of Pot II, except for N ) 78;
note that both the hyperradius and shape indices of Ar78 are
different between Pot I and Pot II (see Figure 5), which is an
indication that the two global minima cannot interconvert
through local optimization. Less efficiency is obtained with LJ
that fails the endeavor for N ) 21, 66, 67, 69, and 78. Once
again, we observe differences in the shape indices at those sizes
between LJ and Pot I (or Pot II); see also section 3.1. However,
the major difference in Table 4 occurs for N ) 78. Then, we
represent by two perspective views in Figure 7 the corresponding
global minimum structures for Ar78. It is clear from this figure
that LJ, Pot I, and Pot II potentials lead to rather different
structures, and hence, the impossibility of interconversion among
them through local optimization is not surprising. We further
note that the N ) 78 clusters present different values of nearest-
neighbor distances for all of the pair potentials (342 for LJ,
332 for Pot I, and 343 for Pot II), which is additional evidence
of their structural difference.

A similar local optimization procedure has been carried out
for Pot III and Pot IV. Since the three-body contribution included
in Pot III and Pot IV is very small (see section 3.2), we wonder
whether one can use the global minimum structures of pair
potentials as starting points to obtain the corresponding putative
minima of those many-body potentials by local optimization.
This goal is achieved for both Pot III and Pot IV by taking as
starting points the global minima structures of Pot I. It is
interesting to note that the Ar78 global minimum structures for
Pot III and Pot IV shown in Figure 7 are quite similar to that
of Pot I; in addition, as mentioned in section 3.2, the hyperradius

Figure 6. Contribution of the Axilrod-Teller-Muto three-body
term to the total energy of argon clusters modeled by Pot III (solid
line) and Pot IV (dashed line). Values are given in percentages. See
the text.

TABLE 4: Energy Differences between the Putative Minima
of Pot I and Those Obtained from the Corresponding LJ
and Pot II Structures through Local Optimization

cluster EPot I - E LJ
opt/mEh EPot I - E Pot II

opt /mEh

Ar21 -7.34(-3)
Ar66 -8.19(-3)
Ar67 -5.09(-3)
Ar69 -4.72(-3)
Ar78 -1.08(-1) -1.66(-1)
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and shape parameters for both Pot III and Pot IV essentially
coincide with the corresponding ones for Pot I. Conversely,
applying the local optimization to the global minimum structures
of LJ and Pot II leads to similar results as those met above for
the pair potentials (see previous paragraph); LJ fails to give the
global minima of Pot III and Pot IV for N ) 21, 66, 67, 69,
and 78, while Pot II fails only for N ) 78 (in both cases).

Although the global minimum structure of argon clusters is
affected by the particular potential function only for five values
of N in the range studied here, one expects that other cases will
probably arise for larger nuclearities. We further note that such
behavior cannot be extrapolated for other types of clusters.
Indeed, it has been shown that the potential has a great influence
on the global minima structures of water57–59 and lead60 clusters,
just to mention two important examples.

4. Conclusions

We have performed a global minima search of ArN (N )
3-78) clusters by using our GA and four potential energy
functions. The performance of the simplest version of the GA
has shown to be successful (with a good level of efficiency) in
finding out the global minima structures for most of the argon
cluster structures for the four potentials investigated in this work.
However, for some difficult cases (e.g., Ar75, Ar76, and Ar77),
the GA failed to discover the global optima; therefore, we
modified the algorithm to accomplish a two-phase local
optimization procedure. The first minimization is performed in
a penalized potential, which is then followed by optimization
of the “true” potential. This improvement offers the possibility

to enlarge narrow funnels in the potential energy surface, and
it enhances the performance of the GA. This is particularly
patented for the double-funnel Ar38 cluster, where the improved
version of the GA leads to 100% of success against ∼10% with
the original algorithm. Also, the new GA could discover the
global minima of all “difficult” cases for global optimization,
that is, Ar65 (with Pot I), Ar75, Ar76, Ar77, and Ar78 (with Pot I,
Pot III, and Pot IV).

The Rydberg-London pair potential constitutes an improve-
ment in relation to the LJ function since it guarantees the high
accuracy of, for example, the Aziz potential at a lower
computational cost. Indeed, the global minima given by Pot II
are more reliable than the LJ ones to be used as starting
geometries to obtain global minima for other accurate potentials
(e.g., Pot I) through local optimization. Excluding the case of
Ar78 whose global minima properties are quite distinct between
Pot I and Pot II, these potentials lead to very similar energetic
and structural features for the studied argon clusters. Conversely,
the LJ potential presents distinct global minima structural
properties for Ar21, Ar66, Ar67, Ar69, and Ar78; in this context,
the hyperradius (F) and the shape indices (�- and �+) appear to
be the most adequate parameters to characterize the structural
differences arising in clusters. Moreover, the LJ potential tends
to overestimate (in relation to Pot I and Pot II) the average
binding energy, the sublimation energy, and the strain energy
for N > 30, which may be due to the fact that LJ is the most
long ranged pair potential.

The contribution of the triple-dipole three-body interaction
to the total energy of the global minima has shown to be always
less than 2%, and the correction of the Axilrod-Teller-Muto
term for small interatomic distances by including a damping
function (Pot IV) even reduces the importance of these terms.
Curiously, the application of local optimization to the global
minima of Pot I allows one to obtain the corresponding minima
of many-body potentials (Pot III and Pot IV). Application of
local minimization to the LJ structures fails the global minima
of Pot III and Pot IV again for Ar21, Ar66, Ar67, Ar69, and Ar78.
Excluding N ) 78, all global minima of Pot III and Pot IV can
be obtained through local optimization from the corresponding
Pot II structures found with our GA. Thus, due to the
performance and the low computational cost, we would recom-
mend the use of the global minima of Pot II (rather than LJ
ones) as starting points for searching the corresponding rare
gas structures obtained with more accurate potentials (e.g., from
ab initio or DFT calculations).
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